Hormonal interplay in hyperprolactinemia: Insights from a large-scale study of reproductive-age patients

Reyyan GÖKÇEN İŞCAN

Müşerref Banu YILMAZ

Department of Obstetrics and Gynecology, University of Health Sciences, Turkey. Istanbul Zeynep Kamil Maternity and Children's Diseases Health Training and Research Center, Istanbul, Turkey

ORCID ID

RGİ: 0000-0001-7302-9101 **MBY**: 0000-0002-2248-016X

ABSTRACT

Objective: This study examined serum prolactin and reproductive hormone levels in women with elevated prolactin levels, with a particular focus on fertility status. The objective was to understand how prolactin affects reproductive hormones in infertile women, aiming to improve diagnostic and therapeutic strategies.

Material and Methods: The study involved 847 women aged 18–46 years who visited gynecology outpatient clinics between January and October 2019. Participants with prolactin levels \geq 26 µg/L underwent hormone testing on the second or third day of menstruation. Patients were categorized based on fertility status and prolactin levels, specifically into groups of 26–100 µg/L and >100 µg/L. Demographics, symptoms, medical history, and hormone profiles were analyzed using NCSS 2007 software, employing descriptive methods, the chi-squared test, and Spearman's correlation.

Results: A statistically significant yet very weak negative correlation was identified between prolactin and estradiol levels in patients with moderate hyperprolactinemia (26–100 μ g/L), as well as in both infertile and non-infertile subgroups. No significant associations were found between prolactin and gonadotropins (FSH=follicle-stimulating hormone, LH=luteinizing hormone) or progesterone, regardless of prolactin level or fertility status. In patients with highly elevated prolactin levels (\geq 100 μ g/L), no statistically significant correlation was observed between prolactin levels and any measured reproductive hormone levels.

Conclusion: This cross-sectional study provides insights into the hormonal interplay in hyperprolactinemia, showing that serum prolactin levels are weakly correlated with estradiol levels and are not significantly associated with gonadotropin levels in clinical settings. These findings suggest that prolactin may impair reproductive function through indirect mechanisms not captured by static hormone measurements. Future research should incorporate longitudinal designs and clinical outcomes to further elucidate the relationship between prolactin and reproductive function.

Keywords: Estradiol, gonadotropins, hyperprolactinemia, infertility, reproductive hormones.

Cite this article as: Gökçen İşcan R, Yılmaz MB. Hormonal interplay in hyperprolactinemia: Insights from a large-scale study of reproductive-age patients. Zeynep Kamil Med J 2025;56(4):179–183.

Received: July 16, 2025 Revised: July 19, 2025 Accepted: July 21, 2025 Online: October 22, 2025

Correspondence: Reyyan GÖKÇEN İŞCAN, MD. Sağlık Bilimleri Üniversitesi, İstanbul Zeynep Kamil Kadın ve Çocuk Hastalıkları Sağlık Uygulama ve Araştırma Merkezi Kadın Hastalıkları ve Doğum Kliniği, İstanbul, Türkiye.

Tel: +90 505 365 72 73 e-mail: reyyangokcen@gmail.com

Zeynep Kamil Medical Journal published by Kare Publishing. Zeynep Kamil Tıp Dergisi, Kare Yayıncılık tarafından basılmıştır.

OPEN ACCESS This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

INTRODUCTION

Hyperprolactinemia, the most prevalent endocrine disorder affecting the hypothalamic-pituitary axis, is a significant concern in gynecological endocrinology owing to its association with hypogonadism and infertility. Pathological hyperprolactinemia is characterized by elevated serum prolactin (PRL) levels resulting from excessive prolactin secretion, excluding physiological causes. The diagnosis is confirmed when serum PRL levels, measured on two separate occasions, exceed the normal range established by the laboratory, typically with an upper limit of 20 ng/mL (20 μ g/L SI units) or 400–500 mU/L. The prevalence is 5% among individuals attending family planning clinics, 9% among those with primary amenorrhea, and 17% among women diagnosed with polycystic ovary syndrome.

Prolactin is known to adversely affect the reproductive axis by reducing gonadotropin-releasing hormone (GnRH) secretion. [4] Animal studies have shown that elevated PRL levels lead to a decrease in both the amplitude and frequency of luteinizing hormone (LH) pulsations.[5,6] However, despite reports indicating that most GnRH-secreting neuronal cells lack PRL receptors,[7] it has been discovered that GnRH release is not directly influenced by PRL levels. Instead, it is indirectly regulated by kisspeptin, a regulatory neurocell type.[8-10] An increase in the frequency of GnRH pulsation is correlated with a predominance of LH secretion, whereas a decrease in pulsation results in hypothalamic amenorrhea characterized by dominant follicle-stimulating hormone (FSH) gonadotropin secretion. [11] Studies have indicated that causes of hyperprolactinemia that do not result in structural changes in pituitary gonadotroph cells, such as drugs or functional causes, lead to dominant FSH secretion.[11,12] In contrast, organic causes such as adenomas directly reduce both FSH and LH levels. These findings suggest that PRL levels could serve as a predictor of changes in gonadotropin levels, aiding in determining both the etiology and severity of symptoms such as amenorrhea and infertility.[12]

Although hyperprolactinemia is a well-recognized cause of reproductive dysfunction, the relationship between elevated prolactin levels and other reproductive hormones—particularly gonadotropins, estradiol, and progesterone—remains unclear. Existing data are limited and often inconsistent, largely owing to the complex hormonal interplay and variability in the underlying causes of hyperprolactinemia. [12,13] Most studies lack stratification by fertility status and often do not explore hormonal correlations in a clinically meaningful manner. Understanding how prolactin interacts with key reproductive hormones in infertile individuals is essential for improving diagnostic accuracy and treatment planning. This large-scale study aimed to address this gap by examining the correlation between serum prolactin and gonadotropin levels (FSH and LH), as well as estradiol, progesterone, and thyroid-stimulating hormone (TSH) levels, in patients with hyperprolactinemia, with a focus on infertility.

MATERIAL AND METHODS

The study included women who attended the gynecology outpatient clinics at Zeynep Kamil Women and Children's Diseases Training and Research Hospital from January to October 2019. These participants sought consultation for infertility, characterized by the inability

to conceive after 12 months of regular intercourse, or for other conditions related to menstrual disorders such as oligomenorrhea or amenorrhea. The participants underwent serum hormonal profile tests on the second or third day of their menstrual cycle. Patients with serum prolactin levels ≥26 µg/L, indicative of hyperprolactinemia, were included in this study. Demographic data, symptoms and findings, history of chronic diseases, and hormone profiles (FSH, LH, estradiol, progesterone, and TSH) of the patients were reviewed and recorded through the hospital data system following the Zeynep Kamil Women and Children's Diseases Training and Research Hospital's ethics committee approval (18.09.2019/86). This study was conducted in accordance with the principles of the Declaration of Helsinki.

Patients with chronic illnesses, a history of systemic drug use, or treatments that could affect their hormone profiles were excluded. The remaining patients were categorized into two groups: infertile and other diagnoses; the latter included menstrual cycle-related disorders such as oligomenorrhea and amenorrhea. They were further divided based on prolactin levels into those with slightly elevated levels (26–100 μ g/L) and those with highly elevated levels (>100 μ g/L). The results were statistically analyzed to explore the contribution of endocrine profile changes to hyperprolactinemia, to correlate PRL levels with LH, FSH, estradiol, and progesterone levels, and to identify their relationship with infertility. The patient selection process and exclusion criteria are summarized in a flow chart (Fig. 1).

Statistical Analysis

NCSS (Number Cruncher Statistical System) 2007 (Kaysville, Utah, USA) software was used for statistical analyses. To evaluate the study data, descriptive statistical methods such as mean, standard deviation, frequency, percentage, minimum, and maximum were utilized. The normality of the distribution of quantitative data was assessed using the Shapiro–Wilk test and graphical analyses. Pearson's chi-square test was applied for comparing qualitative data, while Spearman correlation analysis was conducted to examine relationships between quantitative variables. Statistical significance was set at p<0.05.

RESULTS

The initial cohort comprised 1,153 patients. Of these, 36 pregnant women (due to physiological hyperprolactinemia), 67 patients with a diagnosis of endometriosis (owing to the potential impact on reproductive hormone balance), and 203 patients with incomplete hormonal profiles (lacking data on parameters other than prolactin) were excluded. The final study population included 847 patients aged 18–46 years, with a mean age of 30.9±6.6 years. Serum prolactin levels in this group ranged from 26.13 to 258.14 μ g/L, with a mean of 43.07±23.25 μ g/L. Comprehensive hormonal measurements, including estradiol (E2), progesterone, thyroid-stimulating hormone (TSH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and the LH/FSH ratio, are presented in Table 1. Notably, 75.3% (n=638) of the patients were diagnosed with infertility.

In patients with moderately elevated prolactin levels (26–100 μ g/L), a statistically significant but very weak negative correlation (0.084) was observed between prolactin and E2 levels (r=-0.084, p=0.018). A statistically significant positive correlation at a very

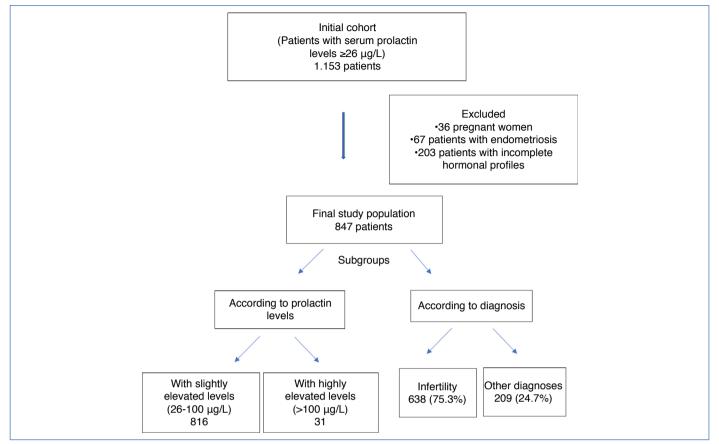


Figure 1: Flow chart of patient selection and exclusion criteria.

weak level (0.074) was found between prolactin and progesterone levels (r=0.074, p=0.042). No statistically significant correlation was found between prolactin levels and TSH, LH, FSH, or LH/FSH levels (p>0.05) (Table 2).

In patients with highly elevated prolactin levels (\geq 100 µg/L), no statistically significant correlation was observed between prolactin levels and E2, progesterone, TSH, LH, FSH, or the LH/FSH ratio (p>0.05) (Table 2).

In patients diagnosed with infertility, a very weak yet statistically significant negative correlation was observed between prolactin and E2 levels, with a correlation coefficient of -0.100 and a p-value of 0.012. However, no statistically significant correlations were identified between prolactin levels and progesterone, TSH, LH, FSH, or the LH/FSH ratio (p>0.05) (Table 3).

In patients with other diagnoses, a very weak yet statistically significant negative correlation of -0.166 was observed between prolactin and E2 levels (r=-0.166, p=0.021). However, no statistically significant relationships were identified between prolactin levels and progesterone, TSH, LH, FSH, or the LH/FSH ratio (p>0.05) (Table 3).

DISCUSSION

This large-scale cross-sectional study explored the correlation between serum prolactin levels and reproductive hormones (FSH, LH, estradiol, progesterone, and TSH) in women with hyperprolactinemia stratified by both fertility status and degree of prolactin elevation. Our findings revealed a statistically significant yet very weak negative correlation between prolactin and estradiol levels, particularly among patients with moderate hyperprolactinemia, as well as within both the infertility and other diagnoses subgroups. Notably, no significant associations were found between prolactin and gonadotropins or progesterone, irrespective of prolactin levels or fertility status.

These findings are consistent with previous evidence suggesting that prolactin suppresses the hypothalamic–pituitary–gonadal axis primarily by reducing GnRH pulsatility rather than by directly acting on gonadotrophs, given that GnRH neurons largely lack prolactin receptors. Instead, this suppression is likely mediated by kisspeptin inhibition, as demonstrated in both animal and human models. [14–17] Furthermore, animal studies have shown that hyperprolactinemia impairs LH pulse frequency and amplitude, which can, in turn, affect ovulatory function. [5,18] However, the absence of a strong or consistent correlation between prolactin and gonadotropins in our study suggests that these effects may not be reliably captured using single-point hormone measurements in clinical practice.

One of the primary strengths of this study was its large sample size and well-defined patient population, which allowed for robust statistical analysis and subgroup stratification. The inclusion of infertile individuals adds to the clinical depth, as most previous studies did not consider fertility status when evaluating prolactin-related hormonal changes. Furthermore, the strict

Table 1: Descriptive information and hormonal results

Min-Max	Average±SD
18–46	30.9±6.6
26.13-258.14	43.07±23.25
5.44-1677	60.48±89.98
0.01–28	0.68±2.07
0-40.55	2.29±2.54
0.05-52	5.15±4.15
0.01-95.49	7.4±7.74
0.02–25	0.87±1.05
n	%
638	75.3
209	24.7
	18–46 26.13–258.14 5.44–1677 0.01–28 0–40.55 0.05–52 0.01–95.49 0.02–25 n

Min: Minimum; Max: Maximum; SD; Standard deviation; $\rm E_2$: Estradiol; $\rm P_4$: Progesterone; TSH: Thyroid-stimulating hormone; LH: Luteinizing hormone; FSH: Follicle-stimulating hormone.

Table 2: Correlation between prolactin and other hormones, including LH/FSH levels associated with prolactin concentrations

(n=847)	Prolactin 26-100 mcg/L (n=816)		Prola ≥100 ı (n=	mcg/L
	r	р	r	р
E2	-0.084	0.018*	-0.277	0.131
P4	0.074	0.042*	-0.206	0.274
TSH	0.034	0.331	-0.304	0.097
LH	-0.047	0.189	0.105	0.581
FSH	-0.026	0.463	-0.052	0.779
LH/FSH	-0.013	0.713	0.071	0.708

Spearman correlation coefficient *p<0.05. $\rm E_2$: Estradiol; $\rm P_4$: Progesterone; TSH: Thyroid-stimulating hormone; LH: Luteinizing hormone; FSH: Follicle-stimulating hormone.

exclusion of patients with confounding factors such as pregnancy, endometriosis, or incomplete hormonal data increased the internal validity of our results.

However, this study had several limitations. First, its cross-sectional design limits its ability to infer causal relationships or dynamic hormonal interactions. Serum hormone levels were measured at a single time point, which may not accurately reflect the pulsatile nature of GnRH and LH secretion. Second, our study did not include advanced hormonal markers such as kisspeptin or

Table 3: The correlation between prolactin, other hormones, and LH/FSH levels in relation to infertility

(n=847)	Infertility Prolactin		Other diagnoses Prolactin	
	r	р	r	р
E ₂	-0.100	0.012*	-0.166	0.021*
$P_{_4}$	0.031	0.441	0.077	0.338
TSH	0.066	0.095	0.013	0.854
LH	-0.057	0.150	-0.134	0.066
FSH	0.010	0.806	-0.128	0.071
LH/FSH	-0.064	0.108	-0.029	0.695

Spearman correlation coefficient *p<0.05. $\rm E_2$: Estradiol; $\rm P_4$: Progesterone; TSH: Thyroid-stimulating hormone; LH: Luteinizing hormone; FSH: Follicle-stimulating hormone.

anti-Müllerian hormone (AMH), nor did it evaluate clinical outcomes such as ovulation or pregnancy rates. Finally, etiological subtyping of hyperprolactinemia (e.g., prolactinoma vs. drug-induced vs. idiopathic) was not performed, which may have further clarified hormonal patterns.

CONCLUSION

This study provides valuable insights into the hormonal interplay in hyperprolactinemia by demonstrating that, despite its well-known suppressive effect on the reproductive axis, serum prolactin levels are only weakly correlated with estradiol and not significantly associated with gonadotropin levels in routine clinical settings. These findings suggest that prolactin may impair reproductive function through indirect mechanisms that are not fully captured by static hormone measurements. Future studies should include longitudinal designs, dynamic testing (such as GnRH stimulation or kisspeptin challenge), and clinical outcomes such as ovulation and pregnancy rates to provide a more comprehensive understanding. Stratifying patients according to the etiology of hyperprolactinemia is also critical for identifying subgroup-specific hormonal profiles and guiding individualized therapeutic strategies.

Statement

Ethics Committee Approval: The University of Health Sciences, Turkey. Istanbul Zeynep Kamil Maternity and Children's Diseases Health Training and Research Center Clinical Research Ethics Committee granted approval for this study (date: 18.09.2019, number: 86).

Informed Consent: Written informed consent was not required due to the retrospective design and ethics committee regulations.

Conflict of Interest: The authors have no conflict of interest to declare.

Financial Disclosure: The authors declared that this study has received no financial support.

Use of Al for Writing Assistance: Not declared.

Author Contributions: Concept – RGİ, MBY; Design – RGİ, MBY; Supervision – RGİ, MBY; Resources – RGİ, MBY; Materials – RGİ, MBY; Data Collection and/ or Processing – RGİ, MBY; Analysis and/or Interpretation – RGİ, MBY; Literature Search – RGİ, MBY; Writing – RGİ, MBY; Critical Reviews – RGİ, MBY.

Peer-review: Externally peer-reviewed.

REFERENCES

- Sonigo C, Bouilly J, Carré N, Tolle V, Caraty A, Tello J, et al. Hyperprolactinemia-induced ovarian acyclicity is reversed by kisspeptin administration. J Clin Invest 2012;122:3791–5.
- Majumdar A, Mangal NS. Hyperprolactinemia. J Hum Reprod Sci 2013;6:168–75.
- Biller BM, Luciano A, Crosignani PG, Molitch M, Olive D, Rebar R, et al. Guidelines for the diagnosis and treatment of hyperprolactinemia. J Reprod Med 1999:44:1075–84.
- Grattan DR. 60 years of neuroendocrinology: The hypothalamo-prolactin axis. J Endocrinol 2015;226:T101–22.
- Cohen-Becker IR, Selmanoff M, Wise PM. Hyperprolactinemia alters the frequency and amplitude of pulsatile luteinizing hormone secretion in the ovariectomized rat. Neuroendocrinology 1986;42:328–33.
- Brown RSE, Khant Aung Z, Phillipps HR, Barad Z, Lein HJ, Boehm U, et al. Acute suppression of LH secretion by prolactin in female mice is mediated by kisspeptin neurons in the arcuate nucleus. Endocrinology 2019;160:1323–32.
- Grattan DR, Jasoni CL, Liu X, Anderson GM, Herbison AE. Prolactin regulation of gonadotropin-releasing hormone neurons to suppress luteinizing hormone secretion in mice. Endocrinology 2007;148:4344–51.
- Yılmaz MB, Sahin S, Devranoğlu B, Kemahli MNC, Çelik Z, Özkan BN, et al. Relationship between serum adiponectin and kisspeptin levels and insulin resistance in patients with PCOS. South Clin Istanb Eurasia 2024;35:79–84.

- Caraty A, Smith JT, Lomet D, Ben Saïd S, Morrissey A, Cognie J, et al. Kisspeptin synchronizes preovulatory surges in cyclical ewes and causes ovulation in seasonally acyclic ewes. Endocrinology. 2007;148:5258–67.
- Clarkson J, d'Anglemont de Tassigny X, Moreno AS, Colledge WH, Herbison AE. Kisspeptin-GPR54 signaling is essential for preovulatory gonadotropin-releasing hormone neuron activation and the luteinizing hormone surge. J Neurosci 2008;28:8691–7.
- Perrett RM, McArdle CA. Molecular mechanisms of gonadotropinreleasing hormone signaling: Integrating cyclic nucleotides into the network. Front Endocrinol 2013;4:180.
- Abbara A, Clarke SA, Nesbitt A, Ali S, Comninos AN, Hatfield E, et al. Interpretation of serum gonadotropin levels in hyperprolactinaemia. Neuroendocrinology 2018;107:105–13.
- 13. Fourman LT, Fazeli PK. Neuroendocrine causes of amenorrhea--An update. J Clin Endocrinol Metab 2015;100:812–24.
- 14. Grattan DR. 60 years of neuroendocrinology: the hypothalamo-prolactin axis. J Endocrinol 2015;226;T101–22.
- 15. Khorram O, Bedran de Castro JC, McCann SM. Stress-induced secretion of alpha-melanocyte-stimulating hormone and its physiological role in modulating the secretion of prolactin and luteinizing hormone in the female rat. Endocrinology 1985;117:2483–9.
- 16. Smith MS, Freeman ME, Neill JD. The control of progesterone secretion during the estrous cycle and early pseudopregnancy in the rat: Prolactin, gonadotropin and steroid levels associated with rescue of the corpus luteum of pseudopregnancy. Endocrinology 1975;96:219–26.
- Araujo-Lopes R, Crampton JR, Aquino NS, Miranda RM, Kokay IC, Reis AM, et al. Prolactin regulates kisspeptin neurons in the arcuate nucleus to suppress LH secretion in female rats. Endocrinology 2014;155:1010– 20.
- Park SK, Keenan MW, Selmanoff M. Graded hyperprolactinemia first suppresses LH pulse frequency and then pulse amplitude in castrated male rats. Neuroendocrinology 1993;58:448–53.