

Van Tıp Derg 28(4): 479-485, 2021 DOI: 10.5505/vtd.2021. 42402.

# The Comparison of Clinical Features Between Patients with Positive and Negative Appendectomy

Pozitif ve Negatif Apendektomi Yapılan Hastaların Klinik Özelliklerinin Karşılaştırılması

#### Guner Cakmak, Baris Mantoglu, Emre Gonullu, Kayhan Ozdemir, Burak Kamburoglu

Sakarya Training and Research Hospital, Department of General Surgery, Sakarya, Turkey

#### Abstract

**Aim**: The objective of this study was to retrospectively compare clinical features and prognostic values between the patients who were referred to the general surgery clinic of our hospital with the presumed diagnosis of acute appendicitis and underwent positive or negative appendectomy.

**Methods:** Patients were divided into two groups as positive (n:362) and negative appendectomy (n:284) and the data obtained were compared between these two groups. Laboratory investigations were performed in all patients, and white blood cell, mean platelet volume (MPV), neutrophils count, neutrophils (%) (NEU%), C-reactive protein and total bilirubin (TBIL) values were studied.

**Results:** The mean CRP value was found as 57.68 in positive appendectomy (PA) group and 41.43 in negative appendectomy (NA) group, and the mean CRP value was statistically significantly higher in PA group, compared to NA group. The mean TBIL value was 0.97 mg/dl in PA group and 0.69 mg/dl in NA group, and the mean TBIL value was statistically significantly higher in PA group. The other parameters were similar between the groups.

**Conclusion**: According to the results of our study, CRP and TBIL values significantly differ between positive and negative appendectomy patients. Therefore, these values may be used as specific biomarkers in predicting positive acute appendicitis.

Key Words: Appendicitis; appendectomy; C-Reactive Protein; bilirubin; mean platelet volume

#### Introduction

Appendicitis is the most common emergency surgery, with a lifetime risk for appendicitis estimated as 8.6% in men and 6.7% in women (1). In Europe, 112/100000 persons present to emergency departments each year due to acute appendicitis (2). The rate of morbidity from acute appendicitis has been reported between 7%-16% in the general population (3). Appendicitis usually presents with anorexia and tenderness in the right lower abdominal quadrant. However, pain in the right lower quadrant can be associated with

#### Özet

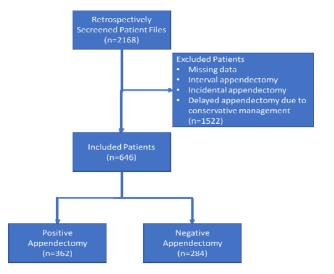
Giriş : Bu çalışmanın amacı, hastanemiz genel cerrahi kliniğine başvuran ve ön tanıda akut apandisit düşünülerek pozitif veya negatif apendektomi yapılan hastaların klinik özelliklerini ve prognostik öneme sahip olabilecek parametreleri retrospektif olarak karşılaştırmaktır.

Yöntem : Hastalar pozitif (n: 362) ve negatif apendektomi (n: 284) olarak iki gruba ayrıldı ve elde edilen veriler bu iki grup arasında karşılaştırıldı.Tüm hastalarda laboratuvar incelemeleri yapılarak lökosit, ortalama trombosit hacmi (MPV), nötrofil sayısı, nötrofil (%), C-reaktif protein (CRP) ve total bilirubin (TBIL) değerleri analiz edildi.

**Bulgular :** Ortalama CRP değeri pozitif apendektomi (PA) grubunda 57.68 ve negatif apendektomi (NA) grubunda 41.43 olarak bulundu ve ortalama CRP değeri NA grubuna göre PA grubunda istatistiksel olarak daha yüksek saptandı. Ortalama total bilirübin değeri PA grubunda 0.97 mg / dl, NA grubunda 0.69 mg / dl idi. PA grubunda istatistiksel olarak anlamlı yüksekti. Diğer laboratuar özellikler açısından iki grup arasında anlamlı fark saptanmamıştır.

**Sonuç:** Çalışmamızın sonuçlarına göre, CRP ve total bilirübin değerleri pozitif ve negatif apendektomi hastaları arasında anlamlı farklılık göstermektedir. Bu nedenle bu değerler, pozitif akut apandisiti tahmin etmede spesifik biyolojik belirteçler olarak kullanılabilir.

Anahtar Kelimeler : Apandisit; apendektomi; C-reaktif protein; bilirubin; ortalama trombosit hacmi


numerous pathologies. Because of the wide spectrum of differential diagnosis and lack of specific markers for appendicitis, preoperative diagnosis of this disease is quite challenging (4). Today, the incidence of appendicitis is increasing in developing countries (5). Since serious complications may occur in the case of delayed diagnosis, prompt action is necessary. The management of appendicitis focuses on the prevention with a timely intervention before an uncomplicated appendicitis progresses to a complicated one. Appendectomy, which is sometimes performed on a normal appendicitis is

<sup>\*</sup> Sorumlu Yazar: Guner Cakmak Sağlık Caddesi No: 195 Adapazarı / Sakarya, Turkey. E-mail: mdgunercakmak@gmail.com Phone: +90 264 888 40 00 Orcid: Guner Cakmak 0000-0003-4040-4635, Baris Mantoglu 0000-0002-2161-3629, Emre Gonullu: 0000-0001-6391-4414, Kayhan Ozdemir 0000-0002-8041-198X, Burak Kamburoglu 0000-0003-2242-5723

known as "negative appendectomy" (NA) (6). Complications of acute appendicitis include perforation, peritonitis and sepsis (7). This can increase the rate of negative appendectomy operations. Negative appendectomy rate (NAR) is defined as the incidence of removing appendices that are pathologically normal (8). Negative appendectomy leads to prolonged hospitalization, morbidity and increased costs due to uncesessary operations. In addition, negative appendectomy may be associated with severe postoperative complications. Therefore, accurate an preoperative diagnosis is essential in the cases of suspected acute appendicitis. In the United States of America (USA) over 250000 appendectomy operations are performed yearly, and the rate of negative is approximately 15% in these operations (9). However, owing to better imaging modalities, a constant decrease is seen in the rate of Nas (10). Gynecological pathologies in female patients in childbearing period mimic acute appendicitis, which can cause an increase in the rate of negative Nas (11). According to the current guidelines, the diagnosis of acute appendicitis is established according to clinical examination and confirmed with imaging investigations and some biomarkers including WBC count and CRP (12). Computed tomography (CT) and ultrasonography are used as imaging modalities in order to set a more accurate diagnosis. The objective of this study was to retrospectively compare clinical features and prognostic values between the patients who were referred to the general surgery clinic of our hospital with the presumed diagnosis of acute appendicitis and underwent positive or negative appendectomy.

## Material and Methods

Data of a total of 2168 patients who were referred to our general surgery clinic with the presumed appendicitis and diagnosis of underwent appendectomy between 2010 and 2019 were retrospectively evaluated. Among these patients, 1522 were excluded from the study because of missing data, and those who underwent interval appendectomy, and incidental appendectomy, and the patients for whom appendectomy operation was delayed due to conservative treatment. Finally, data of 646 patients were obtained and evaluated. Patients aged between 16-90 years. Patients were divided into two groups as positive (PA) (n:362) and negative appendectomy (NA) (n:284) and the data obtained were compared between these two groups (Flowchart 1).



Flowchart 1. Study population

Patients' demographic data such as age and type gender, date and of operations, investigations, clinical presentation, macroscopic microscopic findings, imaging and and pathological findings were recorded and analyzed. addition, laboratory investigations were In performed in all patients, and white blood cell (WBC), mean platelet volume (MPV), neutrophils count (NEU), neutrophils (%) (NEU%), Creactive protein (CRP) and total bilirubin (TBIL) values were studied. Inclusion criteria included all patients operated during the nine years period. Considering clinical conditions of the patients and in the cases of uncertain diagnosis or where the clinical picture did not meet physical findings (age, pregnancy, having gynecological examination, comorbidities etc.) abdominopelvic computed tomography and ultrasonography examinations were performed in some patients. The diagnosis appendicitis was established based of on macroscopic findings. Histological diagnosis of appendicitis was set according to the infiltration propria of muscularis with neutrophils granulocytes. Appendectomies were performed by conventional or laparoscopic methods. Lack of the appendicitis in the pathology reports was considered negative appendectomy. In order to identify appendectomy cases with negative samples, pathology reports were interpreted by an author blinded to whether preoperative imaging was performed. Negative appendectomy was defined as a normal appendix following the resection due to suspected appendicitis or medically unnecessary appendectomy. Medically unnecessary appendectomy was defined as an appendectomy operation performed in the case of typically contraindicated surgery.

|          | PA. (n=362) |      | NA. (n=284) |      |
|----------|-------------|------|-------------|------|
|          | n           | %    | n           | %    |
| Male     | 226         | 62.4 | 134         | 47.2 |
| Female   | 136         | 37.6 | 150         | 52.8 |
| Sum      | 362         | 100  | 284         | 100  |
| Mean Age | 28.2 ±16.65 |      | 31.9±17.4   |      |

**Table 1:** Frequency distribution of patients' gender and age by type of appendectomy

PA: Positive appendicitis, NA: Negative appendicitis

Table 2: Comparison results of WBC, MPV, NEU (%), NEU, CRP and TBIL parameters of patients according to the type of appendectomy

|      | Appendectomy Type | n   | x     | SD    | t     | Р     |
|------|-------------------|-----|-------|-------|-------|-------|
| WBC  | Positive          | 362 | 9.97  | 3.44  | 1.81  | 0.070 |
|      | Negative          | 284 | 9.51  | 2.96  | 1.01  |       |
| MPV  | Positive          | 362 | 7.88  | 1.65  | -1.55 | 0.120 |
|      | Negative          | 284 | 8.09  | 1.79  | -1.55 |       |
| NEU% | Positive          | 362 | 76.01 | 12.94 | .31   | 0.750 |
|      | Negative          | 284 | 75.69 | 12.23 | .51   |       |
| NEU  | Positive          | 362 | 7.33  | 2.72  | 69    | 0.480 |
|      | Negative          | 284 | 7.50  | 3.64  | 07    |       |
| CRP  | Positive          | 362 | 57.68 | 58.92 | 3.54  | 0.000 |
|      | Negative          | 284 | 41.43 | 56.36 |       |       |
| TBIL | Positive          | 362 | 0.97  | 0.57  | 7.39  | 0.000 |
|      | Negative          | 284 | 0.69  | 0.39  | 1.59  |       |

Ethical approval was obtained from the local ethics committee of Sakarya University before starting the study with the 27/07/2020 dated and E.6712 numbered decision. The study was conducted in accordance with the ethical principles of the Declaration of Helsinki.

Statistical analysis: Data obtained in the study were analyzed utilizing SPSS version 23.0 (Statistical Package for Social Sciences, SPSS, IBM Incusing Chicago, IL, USA) statistical package software. Normality of the variables was analyzed with the Kolmogorov-Smirnov test. In the comparison of the variables between the groups, Independent Student t test among was used for the normally distributed variables, and Mann-Whitney U test for non-normally distributed variables. Continuous variables were expressed with mean  $\pm$  standard deviation, while categorical variables were given as frequency and percentage. p < 0.05 values were considered statistically significant.

## Results

A total of 646 patients were included in the study with 362 (56%) being in PA group and 284 (44%) in NA group. Of all patients included in the study, 360 (55.7%) were male and 286 (44.3%) were female. A total of 226 (62.4%) patients were male and 136 (37.6%) were female in PA group. Whereas 134 (47.2%) were male and 150 (52.8%) were female in the NA group. No statistically significant difference was seen between both groups in terms of gender. The mean age of all patients was  $30.1 \pm 16.9$  years, and the mean age was found as  $28.2 \pm 16.65$  years in PA group and  $31.9 \pm 17.4$  years in NA group. There was no statistically significant difference between PA and NA groups in terms of age. Appendectomies were

performed with laparoscopic method in 199 (54.9%) of the patients in PA group and in 207 (72.8%) of the patients in NA group. The remaining patients underwent open surgery. When status of having gynecological examination was examined among the female patients; 105 (77.3%) female patients in PA group and 125 (83.5%) female patients in NA group underwent gynecological examination. Demographic features of the patients are shown in Table 1. Laboratory outcomes were examined and compared between the two groups. Accordingly, the mean WBC value was found as 9.97 K/mm<sup>3</sup> in PA group and 9.51 K/mm3 in NA group, and there was no statistically significant difference between both groups (p=0.07). The mean MPV value was found as 7.88 fl in PA groups and 8.09 fl in NA group, and there was no statistically significant difference between both groups (p=0.12). NEU (%) value was found as 76.01 in PA group and 75.69 in NA group. No statistically significant difference was observed between the two groups in terms of the mean NEU (%) value (p=0.75). The mean neutrophil count was found as 7.33 K/mm3 in the PA group and 7.50 K/mm3 in NA group, and no statistically significant difference was found between the two groups (p=0.48). The mean CRP value was found as 57.68 mg/dl in PA group and 41.43 mg/dl in NA group. There was a statistically significant difference between both groups in terms of the mean CRP value (p = 0.01). When total bilirubin values were examined; the mean TBIL value was 0.97 mg/dl in PA group and 0.69 mg/dl in NA group, and the mean TBIL value was statistically significantly higher in PA group (p = 0.01) (Table 2). When diameters of appendicitis were evaluated; the mean appendicitis diameter was found as 1.09 cm in PA group and 0.88 cm in NA group, and the mean appendicitis diameter was statistically significantly higher in PA group compared to NA group (p = 0.01).

## Discussion

Surgical intervention of a normal appendicitis exposes patients to unnecessary anesthesia and surgical complications, and this may be resulted from improper clinical evaluation, and lack of diagnostic methods. Despite the high incidence of acute appendicitis and use of laboratory markers and imaging modalities, the accurate diagnosis remains challenging. Research of the diagnostic process used for acute appendicitis is highly dynamic, within this context information such as novel inflammatory biomarkers is constantly reported in the literature (13). As in our country, high rates of appendicitis cases have been reported in some other countries (14). Therefore, more effort should be made in order to reduce the incidence of NAR and its complications on hospitals (15).Negative patients and appendectomies lead to both postoperative complications, increased morbidity and mortality rates and costs. Thus, investigation of the factors leading to negative appendectomies is of paramount importance. Among these factors, laboratory parameters take an important place. However, to our knowledge there is no consensus in the literature on this subject. In our study, we first evaluated laboratory values between positive and negative appendectomy cases. We performed preoperative computed tomography by excluding elderly patients, pediatric patients and those with comorbidities. We observed that the rate of negative appendectomy was lower in patients who underwent CT (24.3%). In a study by Wagner et al., the rate of performing preoperative CT raised to 95% from 32% within 10 years (16). In our study, 84.6% of female patients were found to have a gynecological examination. In a study by Joshi et al. 57.1% of female patients were reported to have gynecological examination (15). We believe that higher gynecological examination rate in our study resulted from the necessity of transvaginal ultrasound in addition to abdominal ultrasound in cases of suspected gynecological diseases in young women in order to reduce the incidence of negative appendectomy. Recently, although diagnostic value of laboratory parameters such as MPV, RDW and NAR has been evaluated in patients with suspected appendicitis, results of these studies are highly controversial (17). MPV is a measurement of thrombocyte size that is obtained as a part of routine complete blood count and is usually overlooked by clinicians. Changes in platelet counts can lead to changes in MPV. The size and activity of platelets can be influenced by cytokines such as interleukin IL-3 and IL-6. Elevated MPV levels have been reported in several diseases including chronic obstructive pulmonary disease (COPD), myocardial infarction, diabetes mellitus and high altitude (18). Increases in MPV levels are associated with chronic diseases, while decreases are related to acute diseases (19). In our study, the mean MPV value was not statistically significantly lower in both the PA group and NA group. Although there are a few studies about the role of MPV in acute appendicitis, the results of these studies are variable (18, 20). In a study comparing the healthy control group with patients having acute appendicitis, MPV level was found to be significantly lower in the acute appendicitis group. In the same study, it was emphasized that MPV level should not be overlooked in suspected acute appendicitis cases (18). In another study, a significant reduction was found in MPV level of patients with appendicitis (21). In a study by Uyanik et al., no statistical significance was observed in MPV levels of patients with acute appendicitis (20). In another study, higher MPV levels were found in patients with acute appendicitis compared to the control group (17). In a meta-analysis of five studies including 2101 patients with acute appendicitis, it was reported that MPV can be used as a biomarker for the diagnosis of positive appendicitis and is a rapid and inexpensive indicator (22). In our study, in the gender-based evaluation, MPV values were statistically significantly lowered only in male patients in the PA group. Based on our findings, we believe that MPV values under the lower normal range may be affected by gender and requires further evaluation to be used as a biomarker for positive acute appendicitis. Recent studies have investigated the relationship between hyperbilirubinemia and vermiform of inflammation, and some of these studies have reported that bilirubin can be used as a specific marker of appendiceal perforation (23). In our study, TBIL levels were significantly higher in the PA group compared to the NA group. However, in gender-based evaluation, TBIL levels were significantly higher in male patients both in PA and NA groups. In a study by Akbulut et al., a TBIL cut-off  $\geq 0.67$  is an independent factor predicting acute appendicitis (24). Therefore, our study supports the latest literature in line with our findings. In addition, although the high CRP value in acute appendicitis has been reported in various studies, (12) our outcome of high CRP values in the PA group supports the literature. Although there are several studies about the use of various laboratory markers in the diagnosis of acute appendicitis that were mentioned above, there is still no scientific evidence on the use of blood parameters in predicting acute appendicitis. At this point, it seems possible that NA ratios can be reduced by correlating more than one laboratory data. In imaging examination, one of the most important findings for the diagnosis of acute appendicitis is appendicitis diameter. In the present study, appendicitis diameter was statistically significantly higher in PA group than in NA group. Similarly, in a study by Katipoglu et al., the mean appendicitis diameter was

significantly higher in the positive appendectomy cases (25). The main limitations of this study are its retrospective design and being conducted in a single center. However, the number of our patients is relatively higher than the other studies in the literature. In addition, unlike the other studies in the literature higher MPV (female group) and TBIL values in the positive appendectomy cases will bring a new projection to the literature.

## Conclusion

According to the results of our study, CRP and TBIL values significantly differed between positive and negative appendectomy patients. Therefore, these values may be used as specific biomarkers in predicting positive acute appendicitis. We believe that these results will contribute to the literature and will be guiding for future studies. However, further studies are needed to determine the laboratory parameters that can be used as diagnostic biomarkers.

Authors contributions: GC: conceived and designed the study; BM, EG: developed the study protocol, collected the data, GC, KO: analyzed and interpreted the data; BK: supervised the study.

## Acknowledgement: None.

**Conflict of interest:** The authors declare no conflict of interest to disclose.

Scientific responsibility statement: The authors declare that they are responsible for the article's scientific content including study design, data collection, analysis and interpretation, writing, some of the main line, or all of the preparation and scientific review of the contents and approval of the final version of the article.

Animal and human rights statement: All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Funding: None

## References

- 1. Huang TH, Huang YC, Tu CW. Acute appendicitis or not: Facts and suggestions to reduce valueless surgery. J Acute Med 2013;3(4):142-147.
- 2. Ferris M, Quan S, Kaplan BS, Molodecky N, Ball CG, Chernoff GW, et al. The global incidence of appendicitis: A systematic review of population-based studies. Ann Surg 2017;266(2):237-241.

- Tsai MC, Kao LT, Lin HC, Chung SD, Lee CZ. Acute appendicitis is associated with peptic ulcers: A population-based study. Sci Rep 2015;5:18044.
- Poletti PA, Becker M, Becker CD, Halfon Poletti A, Rutschmann OT, et al. Emergency assessment of patients with acute abdominal pain using low-dose CT with iterative reconstruction: a comparative study. Eur Radiol 2017;27(8):3300-3309.
- Sartelli M, Baiocchi GL, Di Saverio S, Ferrara F, Labricciosa FM, Ansaloni L, et al. Prospective Observational Study on acute Appendicitis Worldwide (POSAW). World J Emerg Surg 2018;13(1):19.
- Ruffolo C, Fiorot A, Pagura G, Antoniutti M, Massani M, Caratozzolo E, et al. Acute appendicitis: what is the gold standard of treatment?. World J Gastroenterol 2013; 19(47):8799-8807.
- Webb EM, Nguyen A, Wang ZJ, Stengel JW, Westphalen AC, Coakley FV. The negative appendectomy rate: who benefits from preoperative CT?. AJR Am J Roentgenol 2011;197(4):861-866.
- 8. Raja AS, Wright C, Sodickson AD, Zane RD, Schiff GD, Hanson R, et al. Negative appendectomy rate in the era of CT: An 18-year perspective. Radiology 2010; 256(2): 460-465.
- SCOAP Collaborative, Cuschieri J, Florence M, Flum DR, Jurkovich GJ, Lin P, Steele SR,, et al. Negative appendectomy and imaging accuracy in the washington state surgical care and outcomes assessment program. Ann Surg 2008;248(4): 557-563.
- Seetahal SA, Bolorunduro OB, Sookdeo TC, Oyetunji TA, Greene WR, Frederick W, et al. Negative appendectomy: A 10-year review of a nationally representative sample. Am J Surg 2011;201(4):433-437.
- 11. Hatipoglu S, Hatipoglu F, Abdullayev R. Acute right lower abdominal pain in women of reproductive age: Clinical clues. World J Gastroenterol 2014;14:4043-4049.
- 12. Yu CW, Juan LI, Wu MH, Shen CJ, Wu JY, Lee CC. Systematic review and metaanalysis of the diagnostic accuracy of procalcitonin, C-reactive protein and white blood cell count for suspected acute appendicitis. Br J Surg 2013;100(3):322-329.
- 13. Sack U, Biereder B, Elouahidi T, Bauer K, Keller T, Tröbs RB. Diagnostic value of blood inflammatory markers for detection

of acute appendicitis in children. BMC Surg 2006;6(1):15-15.

- 14. Kırkıl C, Karabulut K, Aygen E, Ilhan YS, Yur M, Binnetoğlu K, Bülbüller N. Appendicitis scores may be useful in reducing the costs of treatment for right lower quadrant pain. Ulus Travma ve Acil Cerrahi Derg 2013;19:13-19.
- 15. Joshi MK, Joshi R, Alam SE, Agarwal S, Kumar S. Negative appendectomy: an Aaudit of resident-performed surgery. How can its incidence be minimized? Indian J Surg 2015;1(3):913-917.
- 16. Wagner PL, Eachempati SR, Soe K, Pieracci FM, Shou J, Barie PS. Defining the current negative appendectomy rate: For whom is preoperative computed tomography making an impact? Surgery 2008;144:276-282.
- 17. Narci H, Turk E, Karagulle E, Togan T, Karabulut K. The role of red cell distribution width in the diagnosis of acute appendicitis: A retrospective case-controlled study. World J Emerg Surg 2013;8:46.
- Albayrak Y, Albayrak A, Albayrak F, Yildirim R, Aylu B, Uyanik A, et al. Mean platelet volume: A new predictor in confirming acute appendicitis diagnosis. Clin Appl Thromb 2011;17:362-366.
- 19. Erdem H, Aktimur R, Cetinkunar S, Reyhan E, Gokler C, Irkorucu O, et al. Evaluation of mean platelet volume as a diagnostic biomarker in acute appendicitis. Int J Clin Exp Med 2015;8(1):1291-1295.
- 20. Uyanik B, Kavalci C, Arslan ED, Yilmaz F, Aslan O, Dede S, et al. Role of Mean Platelet Volume in Diagnosis of Childhood Acute Appendicitis. Emerg Med Int 2012; 2012:823095.
- 21. Bilici S, Sekmenli T, Göksu M, Melek M, Avci V. Mean platelet volume in diagnosis of acute appendicitis in children. Afr Health Sci 2011;11:427-432.
- 22. Fan Z, Zhang Y, Pan J, Wang S. Acute appendicitis and mean platelet volume: A systemic review and meta-analysis. Ann Clin Lab Sci 2017;47(6):768-772.
- 23. Muller S, Falch C, Axt S, Wilhelm P, Hein D, Königsrainer A, et al. Diagnostic accuracy of hyperbilirubinaemia in anticipating appendicitis and its severity. Emerg Med J 2015; 0:1-5.
- 24. Akbulut S, Koc C, Sahin TT, Sahin E, Tuncer A, Demyati K, et al. Determination of factors predicting acute appendicitis and

perforated appendicitis. Ulus Travma Acil Cerrahi Derg Ahead of Print: UTD-60344.

25. Katipoglu B, Aygun A, Cinar H. The effect of appendix diameter on perforation in acute appendicitis cases CMJ 2019;41:392-397.

Van Tıp Derg Cilt:28, Sayı:4, Ekim/2021