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AMAÇ
Bu çalışmada, antioksidan özelliği bilinen glutaminin kul-
lanımının iskemi-reperfüzyon sonrası oluşabilecek oksi-
dasyon hasarı üzerindeki etkilerini araştırmayı amaçladık.

GEREÇ VE YÖNTEM
Çalışma grubu Wistar Albino sıçanlarla oluşturuldu. Grup 
1, abdominal kompartman grubuydu. Anestezi altındaki sı-
çanların karnına basınç uygulandı. Gaz boşaltıldıktan 3 gün 
sonra sıçanlar sakrifiye edildi, karaciğer, bağırsak ve ak-
ciğer doku parçalarında oksidatif hasar parametresi olarak 
malonildialdehit (MDA) ve glutatyon (GSH) seviyeleri ile 
enflamatuvar parametre olarak miyeloperoksidaz (MPO) 
aktivitesi ölçüldü. Alınan kan örneklerinde serum alanin-
aminoasit transferaz (ALT) ve aspartat-aminoasit transfe-
raz (AST) seviyeleri ölçüldü. Grup 2, abdominal kompart-
man ve glutamin uygulanan gruptu. Sıçanlara 1 hafta bo-
yunca yüksek doz glutamin mide gavajı yolu ile verildi. 
Gavaj işlemi sonrası ilk gruptaki batın içi basınç uygula-
ması yapıldı, 3 gün daha glutamin verilen sıçanlar sakrifiye 
edildi, Grup 1’deki işlemlerin aynısı yapıldı. Grup 3 gluta-
min grubuydu. Grup 4 sham kontrol grubuydu.

BULGULAR
Abdominal kompartman yaratılan sıçanlarda MDA düzeyi 
ve MPO aktivitesi kontrol grubuna göre anlamlı oranda art-
mıştı. Glutamin ile MDA düzeyi ve MPO aktivitesi azaldı, 
GSH seviyesi arttı.

SONUÇ
Oksidatif hasar parametrelerine bakıldığında, glutaminin, 
reperfüzyon hasarını azaltıcı etkisinin antienflamatuvar ve 
antioksidan etkilerine bağlı olduğu düşünülmüştür.
Anahtar Sözcükler: Abdominal kompartman sendromu; antioksi-
dan; glutamin; glutatyon; iskemi; malonildialdehit; miyeloperoksi-
daz; oksidatif stres; reperfüzyon.

BACKGROUND
The aim was to investigate whether or not glutamine, an 
antioxidant effective amino acid, improves the reperfusion-
induced oxidative injury of abdominal hypertension.

METHODS
Wistar Albino rats were used. Group 1: Abdominal com-
partment syndrome alone: With the rats under anesthesia, 
intraabdominal pressure was obtained. Three days later, the 
rats were sacrificed, and intestine, lung and liver samples 
were removed for determination of tissue malondialdehyde 
(MDA) and glutathione (GSH) levels as oxidative injury 
parameters and of myeloperoxidase (MPO) activity as an 
inflammatory parameter. Trunk blood was analyzed for the 
alanine aminotransferase (ALT) and aspartate aminotrans-
ferase (AST) levels. Group 2: Abdominal compartment 
syndrome and glutamine: intragastric glutamine was given 
for seven days before and three days following establish-
ment of the abdominal compartment syndrome model. The 
same examination procedure was then performed. Group 3: 
Glutamine administration alone. Group 4: Control group.

RESULTS
Intraabdominal pressure significantly increased the in-
testine, lung and liver MDA levels and MPO activities in 
comparison to the control group. Glutamine was associ-
ated with decreased MDA levels and MPO activities and 
increased GSH levels. 

CONCLUSION
Glutamine appears to have protective effects against reperfu-
sion-induced oxidative damage via its anti-inflammatory and 
antioxidant effect.
Key Words: Abdominal compartment syndrome; antioxidant; glu-
tamine; glutathione; ischemia; malondialdehyde; myeloperoxi-
dase; oxidative stress; reperfusion.
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Intraabdominal pressure (IAP) may increase in a 
variety of conditions ranging from trauma to abdomi-
nal surgery, from laparoscopic surgery to acute pancre-
atitis.[1] When IAP exceeds 15 mmHg, intraabdominal 
hypertension (IAH) ensues. IAH may be encountered 
in various clinical situations due to edema of the small 
intestinal wall following aggressive fluid replacement, 
extensive retroperitoneal bleeding, postoperative 
complications, acute renal failure, treatment-resistant 
massive ascites, serious pancreatitis, and retroperito-
neal tumoral masses.[2-4] 

Ischemia is defined as inadequacy or cessation of 
blood flow to a certain tissue or organ.[5] The tissue be-
comes exposed to hypoxia and hypoxic tissue damage 
arises. Long-term ischemia threatens structural cell 
integrity, and even cell death ensues.[5,6] Reperfusion 
is re-establishment of blood flow to a certain tissue.
[5,7] When blood flow to a previously ischemic tissue 
is restored (reperfusion), tissue destruction is further 
exacerbated by free oxygen radicals released from 
polymorphonuclear leukocytes (PMNL) that migrate 
and reside in the tissue, and reperfusion-induced tissue 
damage occurs.[5,7-9] A variety of cells struggle against 
the potential hazards of free oxygen radicals by releas-
ing enzymatic and non-enzymatic antioxidants in or-
der to limit radical injury. Glutathione (GSH) is one 
of the non-enzymatic antioxidant protectors. It is well 
known that glutamine, which exists in blood and body 
fluids in high concentrations, plays a critical role in 
GSH biosynthesis by providing glutamate to the glu-
tathione system.[10-12] 

In light of the above, considering the antioxi-
dant effects of glutamine, we planned to investigate 
whether or not glutamine administration has favor-
able effects on serious oxidative damage that results 
from increased IAP. We intended to observe whether 
glutamine has an alleviating effect on ischemia–re-
perfusion injury that occurs during and following ab-
dominal compartment syndrome (ACS) by assessing 
the inflammation and oxidative damage parameters 
obtained. 

MATERIALS AND METHODS
The experimental part of the study was performed 

in Istanbul University, Institute of Experimental Medi-
cine and Research, between August and October 2006. 
Biochemical examinations were performed in the Is-
tanbul University Faculty of Medicine, Department of 
Biochemistry. Experiments were performed with per-
mission of the Animal Ethics Committee of Istanbul 
University (Decision date and number: 20.09.2005 - 
31.2005). 

Subjects and Experimental Protocol
Thirty-two adult male Wistar Albino rats were used 

for the present study. The weight range was 200-250 

grams (g) and all rats were kept in iron cages with a 
12-hour day/night cycle and 22°C room temperature. 
The rats planned to undergo the IAP study were fasted 
the night before. 

A 6 French (F) orogastric feeding tube was inserted 
in subjects planned for glutamine administration and 
then glutamine suspension, which was prepared with 
distilled water, was administered through gastric ga-
vage for 10 days at a dose of 1 ml per day (1 g/kg/day). 
In order to create an ACS model under ketamine anes-
thesia, abdomens of the rats were shaved and follow-
ing application of an aseptic and antiseptic 10% po-
vidone iodine solution, a 16-gauge sterile Angiocath 
was inserted intraperitoneally and 20 mmHg pressure 
was applied for 2 hours (h) using CO2. Rats were sac-
rificed using high-dose ketamine. 

Three samples each of liver, small intestine and 
lung tissue were taken from each subject. Tissues 
and lumens of small intestine samples were washed 
twice with PBS (phosphate-buffered saline) solution 
at 4°C and immediately afterwards were placed into 
CryoTubes and stored in a deep freezer at -80°C until 
the date of biochemical analyses. Blood samples taken 
from the heart apex when apical beat was present were 
put into yellow cap dry biochemistry tubes and centri-
fuged in 3000-3500 rpm for 15 minutes (min). Serum 
samples that were taken from each animal were put in 
three different Eppendorf tubes and stored in a deep 
freezer at -80°C until the date of biochemical analyses. 
Malondialdehyde (MDA) and GSH levels as oxidative 
damage parameters and myeloperoxidase (MPO) lev-
els as an inflammatory parameter were measured in 
tissue samples, whereas serum alanine aminotransfer-
ase (ALT) and aspartate aminotransferase (AST) lev-
els were measured in blood samples (Table 1). 

Subjects were divided into four groups as follows:
Group 1 (n=8), ACS model group: Using an An-

giocath, 20 mmHg constant pressure was applied for 2 
h intraperitoneally to the rats, which were under anes-
thesia. The rats were sacrificed three days after emp-
tying of the intraperitoneal gas, and tissue samples 
were taken from the liver, intestine and lung and blood 
sample from the heart apex. 

Group 2 (n=8), ACS model and glutamine-adminis-
tered group: Each rat was administered high-dose glu-
tamine through gastric gavage for one week. Follow-
ing a one-week lavage administration, intraperitoneal 
pressure application was performed as in Group 1. The 
rats were administered glutamine for three more days 
after emptying of the gas, were sacrificed, and then tis-
sue and blood samples were taken as in Group 1. 

Group 3 (n=8), glutamine group: Each rat was ad-
ministered high-dose glutamine through gastric ga-
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vage for 10 days. At the end of 10 days, the anesthe-
tized rats were sacrificed without pressure application 
and the same blood and tissue samples were taken. 

Group 4 (n=8), control group: Rats were only anes-
thetized without pressure application, were sacrificed, 
and the same tissue and blood samples were taken. 

Examinations of Tissue Samples 
The liver, intestine and lung samples were weighed. 

In order to detect MDA and GSH levels, their 10% ho-
mogenates were prepared by homogenizing with cold 
0.15 M KCl solution in a homogenizer. 

Measurement of Glutathione (GSH) Levels
Measurement of GSH is based on the principal 

that Ellman’s reagent (5,5’-dithiobis-2 nitrobenzoic 
acid) is reduced by free sulfhydryl groups (-SH) of tis-
sue homogenate. 1 mole of 2 nitro 5 thiobenzoic acid 
(DTNB) occurs per 1 mole of SH group, and this gives 
absorbance in 412 nm in spectrophotometer. 

GSH levels were computed using extinction quo-
tient and standard. Results were stated as GSH/mg 
protein. 

Measurement of Malondialdehyde (MDA) Levels 
MDA (which is one of the late products of lipid 

peroxidation) and TBA (thiobarbituric acid) complex 
is measured spectrophotometrically. 10% tissue ho-
mogenates were used for this method. Results were 
computed using extinction quotient and standard. 
MDA levels were stated as MDA/mg protein.

Protein Detection
The protein amount in tissue homogenates was 

detected using bicinchoninic acid assay. This method 
is based on the principal that copper-protein complex 
forms chelate with bicinchoninic acid and gives absor-
bance in 562 nm. 

Detection of Myeloperoxidase (MPO) Activity
This method is based on the principal that MPO 

activity containing homogenate reduces o-dianisidine 
dihydrochloride in the presence of H2O2, and this 
reduced product gives absorbance in 460 nm. MPO 
activity was computed using o-dianisidine extinction 
quotient. Results were stated as U/g tissue. 

Examinations of Serum Samples
ALT and AST activities were examined enzymati-

cally in serum using Roche autoanalyzer. 
Statistical Analyses
The results of biochemical data were stated as 

arithmetic average ± standard error. Statistical assess-
ment was performed using one way analysis of vari-
ance (ANOVA), and further analysis was performed 
with Tukey’s test. Values of p<0.05 values were con-
sidered statistically significant. 

RESULTS
Biochemical Analyses
Serum AST and ALT Levels
AST and ALT levels were found to be significantly 

higher in the ACS group (Group 1) compared to con-
trols (Group 4). AST and ALT levels of the glutamine-
administered and ACS model group (Group 2) were 
not significantly different from controls (Group 4), 
whereas these levels were significantly lower when 
compared to the ACS group (Group 1). There were no 
significant differences between the glutamine group 
(Group 3) and controls (Fig. 1).

Oxidative Damage and Inflammation Parameters
MDA Level
Lung: The MDA level was found to be signifi-

cantly higher in the ACS group (Group 1) compared 
to controls (Group 4) (p<0.05). The MDA level of the 
glutamine-administered and ACS model group (Group 
2) was not significantly different from controls (Group 
4), whereas it was significantly lower when compared 
to the ACS group (Group 1) (p<0.05). There were no 
significant differences between the glutamine group 
(Group 3) and controls (Fig. 2). 

Liver: The MDA level was found to be signifi-
cantly higher in the ACS group (Group 1) compared 
to controls (Group 4) (p<0.05). The MDA level of the 
glutamine-administered and ACS model group (Group 
2) was not significantly different from controls (Group 
4), whereas it was significantly lower when compared 
to the ACS group (Group 1) (p<0.05). There were no 
significant differences between the glutamine group 
(Group 3) and controls (Fig. 2).

Small Intestine: The MDA level was found to be 
significantly higher in the ACS group (Group 1) com-
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Fig. 1.	 Serum AST and ALT values (different letters show 
significance (p<0.05)).
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pared to controls (Group 4) (p<0.05). The MDA level 
of the glutamine- administered and ACS model group 
(Group 2) was not significantly different from controls 
(Group 4), whereas it was significantly lower when 
compared to the ACS group (Group 1) (p<0.05). There 
were no significant differences between the glutamine 
group (Group 3) and controls (Fig. 2). 

GSH Level
Lung: The GSH level was found to be significantly 

higher in the ACS group (Group 1) compared to con-
trols (Group 4) (p<0.05). The GSH level of the gluta-
mine-administered and ACS model group (Group 2) 
was not significantly different from controls (Group 
4), whereas it was significantly lower when compared 
to the ACS group (Group 1) (p<0.05). There were no 
significant differences between the glutamine group 
(Group 3) and controls (Fig. 3). 

Liver: The GSH level was found to be significantly 
higher in the ACS group (Group 1) compared to con-
trols (Group 4) (p<0.05). The GSH level of the gluta-
mine-administered and ACS model group (Group 2) 
was not significantly different from controls (Group 
4), whereas it was significantly lower when compared 
to the ACS group (Group 1) (p<0.05). There were no 

significant differences between the glutamine group 
(Group 3) and controls (Fig. 3). 

Small Intestine: The GSH level was found to be 
significantly higher in the ACS group (Group 1) com-
pared to controls (Group 4) (p<0.05). The GSH level 
of the glutamine- administered and ACS model group 
(Group 2) was not significantly different from controls 
(Group 4), whereas it was significantly lower when 
compared to the ACS group (Group 1) (p<0.05). There 
were no significant differences between the glutamine 
group (Group 3) and controls (Fig. 3). 

MPO Activity
Lung: No significant differences were found be-

tween groups (Fig. 4).

Liver: MPO activity was found to be significantly 
higher in the ACS group (Group 1) compared to con-
trols (Group 4) (p<0.05). MPO activity in the gluta-
mine-administered and ACS model group (Group 2) 
was not significantly different from controls (Group 
4), whereas it was significantly lower when compared 
to the ACS group (Group 1) (p<0.05). There were no 
significant differences between the glutamine group 
(Group 3) and controls (Fig. 4). 
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Fig. 2.	 Tissues MDA levels (different letters show significance (p<0.05)).

Fig. 3.	 Tissues GSH levels (different letters show significance (p<0.05)).
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Fig. 4.	 Tissues MPO activity  (different letters show significance (p<0.05)).
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Small Intestine: MPO activity was found to be 
significantly higher in the ACS group (Group 1) com-
pared to controls (Group 4) (p<0.05). MPO activity 
of the glutamine- administered and ACS model group 
(Group 2) was not significantly different from controls 
(Group 4), whereas it was significantly lower when 
compared to the ACS group (Group 1) (p<0.05). There 
were no significant differences between the glutamine 
group (Group 3) and controls (Fig. 4). 

DISCUSSION
Abdominal compartment syndrome (ACS), which 

results from a sudden increase in IAP, is a frequent 
condition seen in clinical practice, especially in emer-
gency surgery, trauma clinics and intensive care units, 
and it is sometimes fatal.[13-17] Because laparoscopic 
interventions increase IAP, negative effects of IAP el-
evation due to minimally invasive abdominal surgical 
interventions sometimes occur. Although Mendoza–
Sagaon et al.[18] reported that laparoscopic cholecys-
tectomy does not significantly increase stress response 
in pigs compared to open cholecystectomy, Akbulut 

et al.[19] reported in an experimental study that oxida-
tive damage occurs due to pneumoperitoneum, which 
was produced in order to imitate laparoscopic donor 
nephrectomy in rat kidneys, and this damage increases 
with pneumoperitoneum duration. 

Oxidative damage created by free radicals emerg-
ing from increased IAP is one of the important phys-
iopathologic components of ACS at the cellular base.
[13] Free radicals may disrupt DNA transcription and 
replication by generating breaks in DNA helixes and 
may cause cell death in subsequent mitosis.[6,7,9] It is 
known that free radicals cause damage by increas-
ing the synthesis of proinflammatory mediators like 
cytokines, and this oxidative damage could be dem-
onstrated using the parameters of GSH and MDA. 
Serum ALT levels also increase as a result of hepatic 
dysfunction due to IAP increase. A continued increase 
in AST and ALT levels in the blood during and after 
the decompression period indicates tissue damage due 
to reperfusion. In our study, MDA levels, which in-
dicated lipid peroxidation, were significantly higher, 
and GSH levels, which indicated antioxidant capac-
ity, were significantly lower in subjects that underwent 
ACS model generation when compared to controls. It 
was observed that AST and ALT levels were high in 
the serum samples of the subjects in which the ACS 
model was generated. 

Reperfusion causes emergence of many reactive 
oxygen species and related disruption of cellular func-
tion to varying degrees. Ischemia-reperfusion creates 
an acute inflammatory response proceeding with neu-
trophil activation. Proteases and cytotoxic proteins like 
MPO and reactive oxygen species are released from 
neutrophils to the extracellular fluid. It was shown in 
various studies that nuclear factor (NF)-κB activa-
tion ensued due to release of free oxygen radicals. 
As a result of this activation, synthesis of mediators 
including interleukin (IL)-1, IL-6, IL-8, IL-12, tumor 
necrosis factor (TNF)-α, inducible nitric oxide syn-
thase (iNOS), cyclooxygenase (COX)-2, intercellular 
adhesion molecule (ICAM), and vascular adhesion 
molecule (VCAM) is stimulated and an inflammatory 
response occurs. Therefore, the amount of proinflam-
matory molecules is regulated by NF-κB.[20-22] 

Organ failure subsequent to reperfusion proceeds 
with decreased microvascular permeability, edema, 
disordered vasoregulation, infiltration of inflammato-
ry cells, parenchymal cell damage, and necrosis.[23] If 
synthesis of oxidants, cytokines and various mediators 
emerging in pathological settings during which tissue 
damage occurs cannot be prevented, sepsis and multi-
organ failure may occur. If the effect of the blood-in-
testine barrier is considered in sepsis, the importance 
of prevention of oxidative damage and bacterial trans-
location can be recognized.[24,25] 
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Table 1.	 Mean values and standard deviations of AST and 
ALT (U/L), tissue GSH (nmol GSH/mg 

	 protein) and MDA (pmol MDA/mg protein) 
	 levels and MPO activity (U/g tissue) data in 
	 subject groups

Groups	 AST levels	 ALT levels

Group 1	 268.1±76	 118.8±21.4
Group 2	 153.8±30.4	 88.7±7.2
Group 3	 148.8±29.7	 70.6±28.4
Group 4	 158.8±71.7	 67.8±15.7

Groups		  GSH levels

	 Lung	 Liver	 Small intestine

Group 1	 4.87±1.27	 15.32±3.83	 26.85±3.78
Group 2	 12.35±2.64	 23.14±4.95	 44.33±14.5
Group 3	 15.67±2.31	 24.4±2.32	 49.92±9.95
Group 4	 15.58±4.7	 21.85±2.45	 46.39±9.69

Groups		  MDA levels

	 Lung	 Liver	 Small intestine

Group 1	 624.8±101.3	 612.9±157.6	 409.8±150
Group 2	 430.2±115.7	 301.9±53.7	 246.7±103.8
Group 3	 437.8±73.9	 288.9±47.3	 240.9±97.5
Group 4	 421.4±85	 281±49	 225.9±113.2

Groups		  MPO activities

	 Lung	 Liver	 Small intestine

Group 1	 3.76±0.23	 2.35±0.6	 2.37±0.56
Group 2	 3.11±1.1	 1.04±0.12	 1.32±0.32
Group 3	 2.99±0.54	 1.04±0.46	 0.92±0.21
Group 4	 3.55±0.6	 0.95±0.23	 0.89±0.78



As a result of ACS, cytokine activation occurs 
and organ damage is seen.[23] It is known that activ-
ity of the MPO enzyme, which is released from neu-
trophils, increases in the ischemic period seen during 
IAP increase. However, MPO activity is greater in the 
reperfusion period following decompression than in 
the ischemia period.[26] In our study, it was observed 
that as an oxidative stress parameter, MPO activity 
increased in tissue samples of rats in which the ACS 
model was generated. However, MPO activity was 
significantly decreased in the ACS model + glutamine 
administration group. No significant difference was 
found between groups when MPO activities in lung 
tissue samples taken from the rats were considered 
alone. 

GSH is the most important defensive mechanism 
preventing development of oxidative damage, and it 
thus protects homeostasis at the cellular base.[27-29] Pre-
vious studies showed that tissue GSH levels and activ-
ities of GSH peroxidase and GSH reductase enzymes, 
which are critical components of the GSH redox cycle, 
consequently decrease when the metabolism becomes 
exposed to oxidative stress.[30,31] In our study, compati-
ble with the literature, it was observed that tissue GSH 
levels decreased following the ischemia-reperfusion 
period in animal subjects in which the ACS model was 
generated, and this decrement could significantly be 
precluded in the group supplemented with glutamine. 

Glutamine is a non-essential amino acid, the impor-
tance of which has been recognized in recent years. It 
acts as an energy source for rapidly regenerating cells 
like enterocytes, colonocytes and lymphocytes. It also 
has metabolic effects including protein synthesis and 
regulation of acid base balance, anabolic and trophic 
effects, gluconeogenesis, nucleic acid synthesis, GSH 
synthesis, and immunologic cell regulation. More-
over, studies have shown that glutamine regulates che-
motherapy-related alterations in intestinal absorption 
and intestinal permeability and has favorable effects 
on radiation-related tissue damage.[32,33] 

Although glutamine is synthesized and stored in 
the organism, its consumption increases rapidly in cat-
abolic conditions like major surgery, sepsis, trauma, 
and inflammation.[32-38] Glutamine, together with ala-
nine and arginine, is one of a few amino acids the level 
of which decreases as a result of increased consump-
tion due to a variety of inner and outer processes cre-
ating stress in metabolism and compromising homeo-
stasis. Although it could not be statistically confirmed, 
it was reported that favorable results were obtained 
with glutamine-supplemented parenteral nutrition 
in intensive care patients who could not be provided 
nutrition via the enteral route for a long period.[12,36-40] 
In experimental models of sepsis, burn, radiation en-
teritis, ischemia-reperfusion, total parenteral nutrition, 

and starvation, it was demonstrated that glutamine ad-
ministration decreased oxidative damage and bacterial 
translocation and provided protection for the mucosal 
barrier with increasing secreted IgA levels.[20,34-38,41] It 
was found that glutamine reabsorption was affected, 
and transport of glutamine from the intestinal lumen 
and glutaminase activity increased in sepsis and trau-
ma and in conditions where levels of stress hormones 
increased.[32,34,36,42,43] 

Glutamine is also responsible for NADPH and ATP 
production. Increased utilization of cellular glutamine 
delays and also prevents neutrophil apoptosis. Chang 
et al.[44] investigated the antiapoptotic effect of gluta-
mine in one study about the effects of glutamine on T 
cells. It was found that glutamine not only regulated 
intracellular oxidative balance but also precluded es-
pecially T cell apoptosis. An increase in bcl-2 gene 
expression is thought to be the most important step 
of apoptosis preventing the effect of glutamine in the 
period following its entry into the cell.[45,46] Moreover, 
it is emphasized that glutamine administration to burn 
patients increases the bacterial killing ability of neu-
trophils and regulates release of free radicals.[37,47] 

Various studies demonstrated that ischemia reper-
fusion in organs is related with lipid peroxidation. The 
autocatalytic mechanism triggered by lipid peroxida-
tion causes oxidative damage in the cell membrane. 
Toxic and reactive metabolites, which emerge as a 
result of this process, cause cell death.[48,49] Because 
MDA is one of the latest products of the lipid peroxi-
dation process, it is a reliable parameter for assessing 
the degree of peroxidation and thus oxidative damage. 
There are studies in the literature demonstrating a 40% 
to 100% increase in MDA levels from baseline follow-
ing ischemia reperfusion.[48-50] 

In models of ischemia-reperfusion, it was estab-
lished that iNOS gene expression decreased in sub-
jects fed a glutamine-supplemented diet.[51] It is also 
known that glutamine acts as an important step in 
GSH synthesis. On the other hand, NF-κB activation 
is closely associated with intracellular redox balance 
and the GSH/GSSG ratio. Glutamine administration 
increased intracellular GSH and decreased NF-κB re-
lease. This decrement in NF-κB expression precludes 
dependent release of cytokines.[20,52-54] In our study, it 
was established that there was a significant decrease in 
oxidative damage parameters in glutamine- adminis-
tered rats with ACS compared to those in whom ACS 
was generated without glutamine administration. 

Various substances were tested in order to prevent 
and treat oxidative damage in clinical and experimen-
tal settings. Administration of protective substances 
including probiotics, radical scavengers, selenium, 
vitamin E, ascorbic acid, glutamine, taurine, betaine, 
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melatonin, alanine, curcumin, anti IL-10 receptor anti-
bodies, and anti IL-6 receptor antibodies was found to 
decrease oxidative damage. Kaçmaz et al.[50] reported 
that octreotide application significantly decreased re-
perfusion-related oxidative damage in models of acute 
abdominal hypertension-generated rats. Protective ef-
fects of these agents are attributed to their alleviating 
effects on synthesis of free oxygen, nitrites and nitrate 
radicals.[20,24,34,35,55,56] 

In our study, IAP increase was found to increase 
the inflammatory response and reperfusion-related 
oxidative damage. Oxidative damage was established 
with an increase in MDA levels and decrease in GSH 
levels in the lung, liver and small intestine tissues; in-
flammatory response was established with an increase 
in MPO activity in the liver and small intestine tissues. 
Glutamine was found effective when administered in 
order to alleviate the oxidative damage and inflamma-
tion developed in these tissues. 

This study demonstrates that the favorable and 
protective effects of glutamine, which is also known 
as an antiapoptotic amino acid, on oxidative damage 
secondary to ACS-generated ischemia reperfusion are 
due to its antioxidant and antiinflammatory properties. 

As a result, it was observed that glutamine dimin-
ished oxidative stress-related damage in IAP increase 
and ACS. This effect can be explained by glutamine’s 
antioxidant and antiinflammatory features. Glutamine 
can be applied as a therapeutic agent in confining re-
perfusion damage elicited by visceral ischemia due to 
ACS, which occurs during and/or following traumatic 
and surgical procedures and as a result of IAP increase 
generated by laparoscopic surgical techniques, which 
are used extensively today. Before and after clinical 
settings that proceed with IAP increase, glutamine 
should be added to nutritional supplements of patients 
in which ACS development is possible.
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