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ABSTRACT

BACKGROUND: This study aimed to develop and validate an artificial intelligence model using machine learning (ML) to predict 
hospital mortality in patients with acute mesenteric ischemia (AMI).

METHODS: A total of 122 patients diagnosed with AMI at Sakarya University Training and Research Hospital between January 2011 
and June 2023 were included in the study. These patients were divided into a training cohort (n=97) and a validation cohort (n=25), 
and further categorized as survivors and non-survivors during hospitalization. Serum-based laboratory results served as features. 
Hyperfeatures were eliminated using Recursive Feature Elimination (RFE) in Python to optimize outcomes. ML algorithms and data 
analyses were performed using Python (version 3.7).

RESULTS: Of the patients, 56.5% were male (n=69) and 43.5% were female (n=53). The mean age was 71.9 years (range 39-94 years). 
The mortality rate during hospitalization was 50% (n=61). To achieve optimal results, the model incorporated features such as age, red 
cell distribution width (RDW), C-reactive protein (CRP), D-dimer, lactate, globulin, and creatinine. Success rates in test data were as 
follows: logistic regression (LG), 80%; random forest (RF), 60%; k-nearest neighbor (KN), 52%; multilayer perceptron (MLP), 72%; and 
support vector classifier (SVC), 84%. A voting classifier (VC), aggregating votes from all models, achieved an 84% success rate. Among 
the models, SVC (sensitivity 1.0, specificity 0.77, area under the curve (AUC) 0.90, Confidence Interval (95%): (0.83-0.84)) and VC 
(sensitivity 1.0, specificity 0.77, AUC 0.88, Confidence Interval (95%): (0.83-0.84)) were noted for their effectiveness.

CONCLUSION: Independent risk factors for mortality were identified in patients with AMI. An efficient and rapid method using 
various ML models to predict mortality has been developed.
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INTRODUCTION

Acute mesenteric ischemia (AMI) is a condition characterized 
by interrupted blood flow to the intestine, leading to ischemia 
and subsequent inflammation. Although it is rare, its incidence 
increases with age, accounting for approximately 0.09-0.2% of 
all acute surgical cases.[1] The non-specific nature of its symp-

toms makes diagnosis difficult, significantly impacting mortal-
ity rates. Currently, contrast-enhanced computed tomography 
(CT) is utilized for its diagnosis.[2] Despite advancements in 
surgical techniques and endovascular treatments, mortality 
rates can climb as high as 50% if treatment is delayed.[3] Con-
sequently, some studies have focused on identifying high-risk 
patients early by analyzing risk factors associated with hospital 
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mortality from AMI.[4,5] However, the determinants of early 
mortality and prognosis in AMI are not completely under-
stood, and the risk of hospital death remains difficult to pre-
dict accurately. Therefore, improving mortality prediction in 
AMI patients could provide more accurate clinical information 
for patients and their families, optimize treatment manage-
ment, and inform future research. Accurate predictions may 
also help manage medical costs more effectively and maximize 
the allocation of medical resources.

Machine learning (ML) algorithms analyze historical data, ex-
tract useful information, and learn from patterns to make di-
agnoses and predictions.[6] Increasingly, ML is applied in medi-
cine to derive insights from data and facilitate predictions.[7,8] 
These algorithms can analyze growing amounts of biological 
data, identify treatment targets, and design new therapeutic 
compounds.[9] Additionally, ML can diagnose diseases and pre-
dict risk factors and mortality rates.[10-12]

Our goal is to develop and compare models utilizing various 
machine learning classification algorithms to predict hospital 
mortality among AMI patients and to validate the perfor-
mance of these models.

MATERIALS AND METHODS
This study was approved by the Local Ethics Committee (No. 

71522473/050.01.04/318692-404; date: 28. 12. 2023). It includ-
ed all 122 patients diagnosed with AMI at our center between 
January 2011 and June 2023. AMI diagnosis was confirmed us-
ing angiography-computed tomography. At diagnosis, features 
such as serum-based laboratory results (hemogram, C-reactive 
protein (CRP), albumin, D-dimer, fibrinogen, lactate, globulin, 
creatinine, International Normalized Ratio (INR)), age, and the 
Charlson Comorbidity Index (CCI) were collected. Patients 
were categorized into two groups: survivors and non-survi-
vors during hospitalization. They were further divided into a 
training cohort (n=97) and a validation cohort (n=25). In Py-
thon, hyperfeatures were eliminated using Recursive Feature 
Elimination (RFE) to achieve optimal results. Models created 
included logistic regression (LG), random forest (RF), k-near-
est neighbors (KN), multilayer perceptron (MLP), support vec-
tor classifier (SVC), and voting classifier (VC). 

Statistical Analysis

Traditional statistical methods were employed to identify dif-
ferences between survivors and non-survivors of AMI. The 
conformity of variables to normal distribution was assessed 
using the Kolmogorov-Smirnov and Shapiro-Wilk tests. De-
scriptive statistics were applied, utilizing mean and standard 
deviation for normally distributed variables, and median and 
interquartile range for non-normally distributed variables. 
To detect significant differences between survivors and non-

Table 1. Comparison of characteristics of survivors and non-survivors

Patient characteristics Survivors (n=61) Non-survivors (n=61) p-value

Age 69.68±13.39 74.21±12.02 <0.05**

Gender

 Male 37 (53.6%) 32 (46.4%) 0.46***

 Female 24 (45.3%) 209 (54.7%)

Charlson comorbidity index 4 (0-8) 5.00 (0.0-10.0) <0.05*

Neutrophil (K/uL) 15.73±8.60 15.59±8.57 0.92**

Platelet (K/uL) 247.21±81.12 251.77±100.89 0.78**

Lymphocyte (K/uL) 1.35±1.05 1.25±1.35 0.65**

Mean platelet volume (fl) 9.34±1.80 9.64±2.37 0.43**

Red cell distribution width (%) 15.4 (11.4-33.8) 16.9 (11.75-30.70) <0.05*

White blood cell (K/uL) 18.34±9.109 17.88±8.96 0.77**

Monocyte (K/uL) 0.99±0.56 0.96±0.78 0.81**

C-Reactive protein (mg/L) 110 (0.53-458) 196.00 (2.40-519) 0.12*

Albumin (g/dL) 3.15±0.63 3.08±0.86 0.66**

Globulin (g/dL) 2.73±0.40 2.81±0.59 0.46**

D-Dimer (ugFEU/L) 1385 (257-7550) 3670 (869-18200) <0.05*

Fibrinogen (g/L) 6.31 (3.05-497) 7.46 (0.32-415) 0.88*

Lactate (mmol/L) 2.40 (0.90-11.3) 6.7 (1.30-19.0) <0.001*

Creatinine (mg/dL) 1.07 (0.46-3.32) 1.51 (0.44-6.29) <0.001*

INR  1.24 (0.85-12) 1.41 (0.87-12) <0.001*

*Mann-Whitney U Test. **Independent Samples T-Test. ***Chi-square Test.
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survivors of AMI, the Independent Samples t-test or Mann-
Whitney U-test was used for numerical variables, and the 
Chi-square test for categorical variables. Statistical analysis 
was conducted using IBM SPSS (Statistical Package for the 
Social Sciences) Statistics (Version 25.0, Armonk, NY: IBM 
Corp). A p-value less than 0.05 was considered statistically 
significant.

The performance of each ML model was evaluated using a 
confusion matrix. ML algorithms and data analysis were con-
ducted using Python (Version 3.7, Wilmington, Delaware, 
USA: PSF).

RESULTS
Among the patients, 56.5% were male (n=69) and 43.5% 
were female (n=53). The mean age was 71.9 years (range 
39-94 years). The mortality rate during hospitalization was 
50% (n=61). Significant differences were observed between 
survivors and non-survivors in terms of age, CCI, red cell 
distribution width (RDW), D-dimer, lactate, creatinine, and 
INR (Table 1).

Recursive Feature Elimination identified age, RDW, CRP, D-
dimer, lactate, globulin, and creatinine as the most relevant 
features for optimal results. The coefficients were as follows: 
-0.41 for age, -0.44 for RDW, -0.24 for CRP, -0.33 for D-
dimer, -0.53 for lactate, 0.05 for globulin, and -0.75 for creati-

nine. The success rates in the test data were: 80% for logistic 
regression (LG), 60% for random forest (RF), 52% for k-near-
est neighbor (KN), 72% for multilayer perceptron (MLP), 84% 
for support vector classifier (SVC). The voting classifier (VC), 
which integrated all models, also achieved an 84% success 
rate. Among the models, SVC demonstrated high effective-
ness with a sensitivity of 1.0, a specificity of 0.77, and an area 
under the curve (AUC) of 0.90, with a confidence interval of 
95% (0.83-0.84), and VC showed a sensitivity of 1.0, a speci-
ficity of 0.77, and an AUC of 0.88 with a confidence interval 
of 95% (0.83-0.84) (Table 2, Fig. 1).

DISCUSSION
This study utilized various ML models to predict hospital 
mortality in patients with acute mesenteric ischemia. Our 
findings indicate that ML models can accurately predict hospi-
tal mortality in AMI patients. 

Increases in age, RDW, CRP, D-dimer, lactate, and creatinine, 
along with a decrease in globulin, were identified as indepen-
dent risk factors for mortality in AMI. Literature recognizes 
age as a risk factor for mortality in AMI cases,[13,14] which sup-
ports the findings of our study. Additionally, lactate is an im-
portant parameter often associated with hypoxia, necrosis, 
and inflammation. Consistent with our findings, other studies 
have identified lactate as a risk factor for mortality in AMI.[4,14] 
Similarly, elevated serum creatinine levels have been linked to 
increased mortality in AMI cases.[15] In our research, we also 
found that elevated RDW was a risk factor. Although previ-
ous studies have associated elevated RDW with AMI prog-
nosis, it has also been linked to sepsis in other research.[16] 
This may be due to damage to the intestinal mucosa, which 
compromises its resistance to bacteria and leads to sepsis. 
This could explain the poor prognosis in AMI patients with 
elevated RDW. Destek S. et al. identified CRP as a potential 
prognostic biomarker in AMI,[17] and Gorla et al. reported 
that D-dimer served as a prognostic marker in patients with 
aortic syndrome.[18] Contrarily, the literature reports that 
globulin levels increase in chronic inflammation, with elevated 
globulin levels associated with poor prognosis, especially in 
cancer patients.[19,20] Among the features selected by RFE, 
only globulin differs from those commonly reported in the 
literature. In studies involving acute ischemic stroke patients, 

Table 2. Comparison of models

Models Sensitivity Specificity AUC Confidence Interval (95%)

Logistic regression 1.0 0.72 0.88 0.79-0.80

Random forest 0.71 0.55 0.74 0.58-0.60

K-Nearest neighbor 1.0 0.33 0.85 0.51-0.52

MLP 0.71 0.72 0.76 0.71-0.72

SVC 1.0 0.77 0.90 0.83- 0.84

Voting classifier 1.0 0.77 0.88 0.83- 0.84

Figure 1. Receiver operating characteristic (ROC) curve of mod-
els.
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elevated globulin levels were also linked to a poor prognosis.
[21] However, there are no comprehensive studies using globu-
lin in the context of AMI or sepsis for comparison. In our 
study, the most potent feature was creatinine, while globulin 
was the least effective.

RFE operates by eliminating redundant and weak features 
to minimize training errors. It is an independent and power-
ful technique that enhances the model's generalization per-
formance.[22] It starts by building a model with all features, 
ranking each according to its importance. The process then 
involves removing the least essential feature, rebuilding the 
model, and recalculating its importance. This method quickly 
calculates the combination of all features until the best per-
formance is achieved.[23] RFE has been used in numerous 
medical studies[24-26] and selects the most potent features. It 
improves model performance by ranking many features based 
on a specific ML method.[27] 

Our study utilized well-established basic classifier algorithms 
commonly referenced in medical research.[28-31] However, 
each algorithm has its advantages and disadvantages. RF and 
KN require large datasets. As the number of independent 
variables increases, KN’s performance significantly slows, ad-
versely affecting its accuracy. In RF, each tree makes a predic-
tion, and these predictions are collectively voted on to derive 
the final result. This method tends to perform slowly and may 
not yield optimal outcomes with complex datasets. It is more 
effective with larger datasets and in image analysis.[32,33] On 
the other hand, MLP are versatile and applicable to different 
datasets, but they may underperform due to overfitting in the 
training data. Additionally, there is a risk of getting stuck in 
local minima during optimization.[34] SVC performs well with 
clear separation margins and in high-dimensional spaces, of-
fering faster predictions and greater accuracy. However, they 
are unsuitable for large datasets due to slow learning times.
[34] LG is easy to implement and interpret, and performs well 
if the dataset can be linearly separated. It is less prone to 
overfitting but can still overfit in large datasets.[35]

To evaluate the predictive performance of our models, we 
used accuracy, sensitivity, and specificity metrics, calculated 
through a confusion matrix that includes True Negative, False 
Negative, True Positive, False Positive values. The receiver 
operating characteristic (ROC) curve was used to assess the 
models. The discriminative power of the prediction models 
was evaluated by the area under the curve (AUC), accom-
panied by a 95% confidence interval (CI). The methods we 
employed to evaluate the model are frequently used and have 
been validated in the literature.[23,36,37]

To our knowledge, no specific scoring system exists for 
AMI. The Acute Physiology and Chronic Health Evaluation 
(APACHE) score, Simplified Acute Physiology Score (SAPS), 
and Sequential Organ Failure Assessment (SOFA) score are 
employed to predict outcomes in intensive care patients. 
However, they are insufficient for predicting the prognosis 

in AMI cases. In a study involving 82 AMI patients, Yilmaz 
A. et al. found that APACHE, SAPS, and SOFA scores were 
inadequate for predicting prognosis.[38] In this context, six dif-
ferent ML predictive models were developed, among which 
the SVC demonstrated the highest performance (sensitivity: 
1.0, specificity: 0.77, AUC: 0.90, Confidence Interval (95%): 
0.83-0.84). 

The limitations of our study include its retrospective nature 
and the restriction to a single center. Additionally, data re-
garding the duration of symptoms and vital signs at the time 
of diagnosis were not available in our digital data system.

CONCLUSION

In conclusion, by utilizing conventional statistical methods 
and routine blood tests, we identified increased age, CCI, 
RDW, D-Dimer, lactate, creatinine, and INR as risk factors 
for mortality in AMI. Additionally, we developed an inexpen-
sive, accurate, and fast artificial intelligence model to predict 
hospital mortality in AMI cases. We believe this model can 
offer significant clinical benefits. Moreover, ML methods can 
be utilized in the diagnosis and prognosis prediction of vari-
ous other diseases. Therefore, there is a need for prospective 
multicenter studies. 
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Akut mezenter iskemisinde mortaliteyi tahmin etmeye yönelik bir yöntem: 
Makine öğrenimi
Ahmet Tarık Harmantepe,1 Ugur Can Dulger,2 Emre Gonullu,1 Enis Dikicier,2 Adem Şentürk,3 Erhan Eröz4

1Sakarya Üniversitesi Tıp Fakültesi, Gastroenteroloji Cerrahisi Bilim Dalı, Sakarya, Türkiye
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AMAÇ: Bu çalışma, akut mezenterik iskemi (AMI) hastalarında hastane ölümünü tahmin eden bir yapay zeka modeli geliştirmek ve doğrulamak için 
makine öğrenimi (ML) modellerini kullanmayı amaçladı.
GEREÇ VE YÖNTEM: Ocak 2011-Haziran 2023 tarihleri arasında Sakarya Üniversitesi Eğitim ve Araştırma Hastanesi'nde AMİ tanısı alan 122 has-
tanın tamamı çalışmaya dahil edildi. Hastalar bir eğitim kohortu (n=97) ve bir doğrulama kohortu (n=25) olarak ikiye ayrıldı. Tüm hastalar ölenler 
ve hayatta kalanlar olarak 2 gruba ayrıldı. Parametre olarak serum bazlı laboratuvar sonuçları kullanıldı. En iyi sonucu elde etmek için Python'da Re-
cursive Feature Elimination (RFE) ile hiperparametreler ortadan kaldırıldı. ML algoritmaları ve veri analizi Python (3.7) programlama dilinde yapıldı.
BULGULAR: Hastaların %56.5’i erkek (n=69), %43.5’i kadın (n=53) idi. Hastaların yaş ortalaması 71,9 (39-94) idi. Hastaneye yatışta mortalite oranı 
%50 (n=61) idi. Optimum sonuçlara ulaşmak için model yalnızca yaş, RDW, C reaktif  protein (CRP), D-dimer, laktat, globulin ve kreatin özelliklerini 
seçti. Test verilerindeki başarı oranı lojistik regresyonda (LG) %80, random forest’ de %60, k-en yakın komşuluğunda (KN) %52, çok katmanlı sinir 
ağında (MLP) %72, destek vektör makinelerinde (SVC) %84 idi. Tüm modellerin oylanmasıyla oluşturulan voiting classifier’ de (VC) %84 başarı oranı 
elde edildi. Modeller arasında SVC (duyarlılık 1.0 özgüllük 0.77 AUC 0.90 Güven Aralığı (%95): (0.83- 0.84)) ve VC (duyarlılık 1.0 özgüllük 0.77 AUC 
0.88 Güven Aralığı (%95): (0.83- 0.84)) gösterdi.
SONUÇ: Hastaların %56.5’i erkek (n=69), %43.5’i kadın (n=53) idi. Hastaların yaş ortalaması 71,9 (39-94) idi. Hastaneye yatışta mortalite oranı 
%50 (n=61) idi. Optimum sonuçlara ulaşmak için model yalnızca yaş, RDW, C reaktif  protein (CRP), D-dimer, laktat, globulin ve kreatin özelliklerini 
seçti. Test verilerindeki başarı oranı lojistik regresyonda (LG) %80, random forest’ de %60, k-en yakın komşuluğunda (KN) %52, çok katmanlı sinir 
ağında (MLP) %72, destek vektör makinelerinde (SVC) %84 idi. Tüm modellerin oylanmasıyla oluşturulan voiting classifier’ de (VC) %84 başarı oranı 
elde edildi. Modeller arasında SVC (duyarlılık 1.0 özgüllük 0.77 AUC 0.90 Güven Aralığı (%95): (0.83-0.84)) ve VC (duyarlılık 1.0 özgüllük 0.77 AUC 
0.88 Güven Aralığı (%95): (0.83-0.84)) gösterdi.

Anahtar sözcükler: Makine öğrenimi; mezenter iskemisi; prognoz; tahmin. 
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