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Detection of Hypokalemia, Hyponatremia,
and Hyperkalemia in Heart Failure Patients
Using Artificial Intelligence Techniques via
Electrocardiography

Kalp Yetmezligi Hastalarinda Yapay Zeka Teknikleri
Kullanarak Elektrokardiyografi Araciligiyla Hipokalemi,
Hiponatremi ve Hiperkaleminin Tespiti

ABSTRACT

Objective: Detection and monitoring of electrolyte imbalances are essential for the appropriate
treatment of many metabolic diseases. However, no reliable and noninvasive tool currently
exists for such detection. Electrolyte disorders, particularly in heart failure patients, can lead to
life-threatening situations, which may often develop as a result of medications used in routine
treatment.

Method: In this study, we developed a deep learning model (DLM) using electrocardiography
(ECG) to detect electrolyte imbalances in heart failure patients and evaluated its performance in
a multicenter setting. Seventeen different centers participated in this study. Heart failure patients
(ejection fraction < 45%) who had blood electrolyte measurements and ECG taken on the same
day were included. Patients were divided into four groups: those with normal electrolyte values,
those with hypokalemia, those with hyperkalemia, and those with hyponatremia. Patients who
developed electrolyte disorders due to medications used for heart failure were classified in the
relevant group. Confidence intervals (Cl): We computed 95% Cls for area under the receiver
operating characteristic curve (AUROC) via stratified bootstrap (2,000 resamples at the patient
level) and 95% Cls for accuracy using the Wilson score interval for binomial proportions.

Results: The accuracy rates of the DLM in detecting hyponatremia, hypokalemia, and
hyperkalemia were 83.33%, 95.33%, and 95.77%, respectively.

Conclusion: The proposed DLM demonstrated high performance in detecting electrolyte
imbalances. These results suggest that a DLM can be used to detect and monitor electrolyte
imbalances using ECG on a daily basis.

Keywords: Artificial intelligence, deep learning, electrocardiography, electrolytes

OzET

Amag: Elektrolit dengesizliginin tespiti ve izlenmesi, birgok metabolik hastaligin uygun tedavisi
icin gereklidir. Ancak bu dengesizlikleri glivenilir ve invaziv olmayan sekilde tespit edebilen bir
arag henliz mevcut degildir. Ozellikle kalp yetmezligi hastalarinda gorilen elektrolit bozukluklari,
hastaligin rutin tedavisinde kullanilan ilaglara bagl olarak gelisebilen ve yasami tehdit eden
durumlara yol acabilir.

Yontem: Bu calismada, kalp yetmezligi hastalarinda elektrolit dengesizligini tespit etmek amaciyla
elektrokardiyografi (EKG) kullanan bir derin 6grenme modeli (DLM) gelistirdik ve performansini
cok merkezli bir calismada test ettik. Calismaya 17 farkl merkez dahil edildi. Ayni gin kan
elektrolit degerleri ve EKG'si alinan, ejeksiyon fraksiyonu (EF) < %45 olan kalp yetmezligi hastalar
galismaya alindi. Hastalar dort gruba ayrildi: normal elektrolit degerleri olanlar, hipokalemisi
olanlar, hiperkalemisi olanlar ve hiponatremisi olanlar. Kalp yetmezligi tedavisinde kullanilan
ilaglara bagli elektrolit bozuklugu gelisen hastalar ilgili gruba dahil edildi. Glven Araliklari(GA),
AUROC icin %95 GA, hasta dlizeyinde 2.000 tekrar 6rnekleme (stratified bootstrap) yéntemiyle,
Accuracy igin ise binom oranlari igin Wilson skor araligi kullanilarak hesaplandi.

Bulgular: Hiponatremi, hipokalemi ve hiperkalemi gruplarinda DLM dogruluk oranlari sirasiyla
%83,33, %95,33 ve %95,77 olarak belirlendi.

Sonuc: Onerilen DLM, elektrolit dengesizligini tespit etmede ylksek performans gdstermistir.
Bu sonugclar, DLM'nin EKG kullanilarak elektrolit dengesizliginin glinlik olarak tespit edilmesi ve
izlenmesinde kullanilabilecegini gostermektedir.

Anahtar Kelimeler: Yapay zeka, derin 6grenme, elektrokardiyografi, elektrolitler
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lectrolyte balance is critical for maintaining homeostasis and preserving cellular function,

as imbalances can disrupt numerous physiological processes.' Electrolytes, including
sodium, potassium, calcium, and magnesium, are precisely regulated between intracellular
and extracellular compartments to sustain the normal physiological function of muscles and
nerves, thereby influencing neuromuscular excitability and contractility.? Certain electrolyte
imbalances, such as hyperkalemia or hypocalcemia, can cause fatal arrhythmias and sudden
cardiac death, making early diagnosis essential for effective intervention.3

Screening for critical electrolyte imbalances is particularly important in patients with conditions
that impair electrolyte retention and excretion, such as renal failure, as well as in patients
taking medications that affect electrolyte excretion, including diuretics, which can exacerbate
these imbalances.* Moreover, the symptoms of electrolyte imbalance are often vague and
nonspecific, making diagnosis based solely on patient history and clinical examination difficult
until the condition progresses and life-threatening complications arise.®

The gold standard for diagnosing electrolyte imbalance remains laboratory testing, which
quantitatively measures electrolyte concentrations in biological fluids. However, laboratory
tests can be invasive, costly, and dependent on specialized equipment and infrastructure,
including trained medical personnel to collect blood samples and hematology analyzers to
perform biochemical reagent assessments.® Daily electrolyte assessment is vital for monitoring
health status and preventing life-threatening events; however, reliance on laboratory tests is
suboptimal for timely and effective monitoring, emphasizing the need for more accessible and
rapid diagnostic alternatives.

The condition of the cardiac cell membrane is critically dependent on maintaining a normal
electrolyte balance across the membrane.” Previous studies have demonstrated that
alterations in electrolyte balance can significantly affect the morphological characteristics of
the electrocardiogram (ECG) waveform. However, diagnosing electrolyte disturbances through
subtle variations in ECG signals poses considerable challenges for clinicians.®

Deep learning techniques have previously been applied in various medical contexts to detect
lesions and are now increasingly utilized for diagnosing conditions such as heart failure, valvular
disease, anemia, and coronary artery disease, as well as for analyzing ECGs. The ECG is a widely
accepted, noninvasive test that records heart voltage over time.

Deep learning technology, a sophisticated application of artificialintelligence, effectively mimics
the data-processing capabilities of the human brain and has achieved remarkable success in
disease screening, diagnosis, and prognosis. Unlike traditional machine learning approaches,
deep learning algorithms demonstrate superior learning capacity and can automatically extract
relevant features without extensive data preprocessing or manual feature extraction. This
capability makes deep learning particularly well-suited for analyzing complex, high-dimensional
data. With ongoing advances in computing power and the growing availability of digitized data,
deep learning offers opportunities to enhance ECG interpretation with greater efficiency and
accuracy, and, more importantly, to expand the functional utility of the ECG. Such progress
could potentially transform current clinical monitoring and management strategies.®

Deep learning models developed through artificial intelligence algorithms serve as robust tools
that emulate the data-processing patterns of the human brain to facilitate informed decision-
making. In the past five years, deep learning has demonstrated exceptional promise in medical
applications, encompassing disease screening, diagnosis, and prognosis.'°

For digital ECG data, deep learning algorithms can detect subtle changes in ECGs associated
with cardiac structural or functional abnormalities. Studies have shown that the application
of deep learning provides significant improvements in the interpretation of ECG data with
high efficiency and accuracy. Rapid algorithmic and computational advances are allowing
us to reconsider the role of deep learning in ECG analysis. Regarding digital ECG data, deep
learning algorithms are capable of detecting subtle changes in ECGs that may be indicative of
underlying cardiac structural or functional abnormalities. Empirical studies have shown that
the application of deep learning leads to significant improvements in the interpretation of
ECG data, providing enhancements in both efficiency and accuracy. Rapid advancements in
algorithmic and computational technologies are enabling a reevaluation of the role of deep
learning within the context of ECG analysis."
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ABBREVIATIONS

ANOVA Analysis of Variance
AUROC Area under the receiver
operating characteristic

curve

CE Conformité Européenne

CHF Congestive heart failure

Cl Confidence intervals

CNN Convolutional neural
network

DLM  Deep learning model

ECG Electrocardiogram

EF Ejection fraction

FDA Food and Drug
Administration

MCC  Matthews Correlation
Coefficient

XAl Explainable Artificial
Intelligence
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Despite the promising performance exhibited by deep
learning methodologies, several challenges persist. The lack of
standardization in ECG data may present obstacles for subsequent
research initiatives, as there currently exists no unified ECG
input type or established data preprocessing protocol. While
the majority of studies have utilized 10-second, 12-lead ECGs
recorded in the supine position as input data, other studies have
opted for segmented ECGs."?

There is a lack of uniformity in how ECG data is prepared
prior to analysis, with preprocessing techniques differing
significantly between studies. This inconsistency complicates
reproducibility and may compromise the effectiveness of deep
learning applications. The accuracy of these models is highly
dependent on the integrity and volume of the input data,
yet ECG signals are often subject to considerable variability.
Many investigations utilize data from a single institution or
rely on open-access datasets, which may not reflect broader
population characteristics. The ECG recording process itself is
susceptible to numerous variables, such as device specifications,
technician skill, electrical interference, muscle activity,
electrode positioning and adherence, as well as individual
anatomical and demographic differences. While larger datasets
can reduce these sources of error, studies based on fewer than
100 subjects are particularly prone to overfitting, limiting their
clinical utility. Furthermore, imbalanced class distributions
remain a persistent challenge, often distorting the perceived
performance of machine learning algorithms.™

Individuals with congestive heart failure (CHF) often develop
disturbances in acid-base balance and electrolyte levels. These
imbalances arise from neurohumoral system activation and the
effects of commonly prescribed treatments such as diuretics. Such
abnormalities not only indicate the progression of CHF but are
also linked to reduced functional capacity and unfavorable long-
term outcomes. Frequently observed electrolyte issues include
low sodium (hyponatremia), low potassium (hypokalemia), and
elevated potassium levels (hyperkalemia).™

Hyponatremia can serve as an indicator of neurohormonal
activation and may reflect the severity of heart failure, yet it
can also be a side effect of its treatment. Diuretics are among
the most frequent contributors to hyponatremia in these
patients. While thiazide diuretics are most commonly linked to
this condition, non-thiazide medications such as furosemide,
spironolactone, and indapamide have also been associated with
sodium depletion. Numerous clinical studies have demonstrated
that hyponatremia correlates with poorer outcomes and reduced
survival rates in individuals with heart failure.’

Hypokalemia is frequently observed in patients with congestive
heart failure and serves as a strong, independent predictor of
mortality. It tends to be more severe in individuals with advanced
CHF, particularly those undergoing intensive diuretic treatment
and experiencing elevated activation of the renin-angiotensin
system. Low serum potassium levels often reflect elevated
neurohormonal activity and disease progression. Hypokalemia is
inversely correlated with plasma renin activity, serum potassium
concentration, and plasma norepinephrine levels. Increased
catecholamine release contributes to potassium depletion
and elevates the risk of arrhythmias. Both the prevalence of

Turk Kardiyol Dern Ars 2025;53(0):000-000

Table 1. Patient and beat distribution

Group Patients Beats Median (IQR)

beats/patient
Hyperkalemia 40 117 2(2-3)
Hypokalemia 73 166 2 (2-2)
Hyponatremia 98 266 2(2-3)
Normal electrolytes 230 722 3(2-3)
Total 441 1271 -

IQR: Interquartile range.

ventricular ectopy and the incidence of sudden cardiac death
are closely linked to serum and total body potassium stores.
Notably, around half of all heart failure-related deaths occur
suddenly, likely due to arrhythmic events. Studies have found
that individuals who suffer from sudden cardiac death often have
lower myocardial potassium levels than controls, while survivors
frequently exhibit hypokalemia, likely resulting from intracellular
potassium shifts.®

Hyperkalemia can pose a serious, potentially life-threatening
condition, particularly in individuals with heart failure, chronic
kidney disease, or diabetes. The risk is further elevated
in patients receiving medications that affect the renin-
angiotensin-aldosterone system, including mineralocorticoid
receptor antagonists."”

In the heart failure patient group, electrolyte disorders, both
caused by the disease and due to treatment, may increase
morbidity and mortality. Therefore, early and easy recognition of
these disorders in this patient group may contribute to disease
management.

Materials and Methods

Study Design

This was a prospective multicenter study conducted across 17
hospitals. In our study, we developed a deep learning model
(DLM) using ECG to detect electrolyte imbalance in heart failure
patients and tested its performance in a multicenter setting.
Patients from 17 different centers were included. Heart failure
(ejection fraction [EF] < 45%) patients whose blood electrolyte
values and ECG were obtained on the same day were included
in the study. The patients were divided into four groups: those
with normal electrolyte values, those with hypokalemia, those
with hyperkalemia, and those with hyponatremia. Patients who
developed electrolyte disorders due to medications used in heart
failure were included in the relevant group. The devices used in
different centers were Nihon Kohden and Mindray. All patients
were informed about the content of the study and provided
written consent. Our study was conducted in accordance with the
Declaration of Helsinki. Approvas for this study was received from
Hatay Mustafa Kemal University Tayfur Ata S6kmen Faculty of
Medicine Clinical Research Ethics Committee (Approval Number:
2022/108, Date: 19.12.2022). Patient counts and pulse data are
presented in Table 1.

Two patients included in the study had multiple electrolyte
disturbances. These patients were excluded from the study in
order not to affect the results.
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Figure 1. Preprocessing steps of ECG images for model
development. (A) Raw 12-lead ECG recording obtained from
clinical dataset. (B) Baseline alignment and noise reduction
applied to enhance signal clarity. (C) Grayscale conversion
and background suppression to isolate ECG waveforms. (D)
Normalization of image intensity with removal of redundant
metadata. (E) Segmentation into individual beat thumbnails
for training and analysis.

Preprocessing
After grouping, ECGs were converted to grayscale format
(Figure 1A-B).

Afterwards, a line was drawn showing the baseline in order to
create a reference before digitizing the data (Figure 1C).

The background was removed using the threshold technique
(Figure 1D).

Contour detection was performed using the OpenCV library. The
aim of this process was to find the longest contour and eliminate

lyiglin et al. Detection of Electrolyte Disorders with Al-ECG

the others to identify the true waveform (Algorithm: Satoshi,
Suzuki and others. Topological structural analysis of digitized
binary images by border following. Computer Vision, Graphics,
and Image Processing, 30(1):32- 46, 1985).

Contour detection was again performed using the OpenCV
library, with the goal of finding the longest contour and
eliminating the others to obtain the true waveform (Figure 1E).

R-peak was detected using the NeuroKit2 library (https://joss.
theoj.org/papers/10.21105/joss.02621).
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Table 2. Overall performance metrics
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Group Accuracy AUROC Sensitivity Specificity Precision NPV F1-Score MCC
(95% ClI) (95% Cl1) (95% CI) (95% Cl1) (95% Cl1) (95% CI) (95% CI)  (95% CI)

Hyperkalemia 89.47% 0.94 88.00% 90.48% 88.00% 90.48% 0.88 0.79
(77.40-95.61) (0.87-0.98) (71.37-95.68) (77.37-96.57) (71.05-96.00) (77.37-96.77) (0.71-0.96) (0.62-0.91)

Hypokalemia 86.84% 0.84 80.00% 89.47% 80.00% 89.47% 0.80 0.70
(74.01-94.01)  (0.76-0.91)  (62.65-90.52) (76.52-95.64) (62.65-90.52) (76.52-95.64) (0.63-0.91) (0.54-0.82)

Hyponatremia 83.33% 0.91 85.71% 82.05% 85.71% 82.05% 0.86 0.67
(68.64-92.05) (0.82-0.96) (62.41-95.11) (64.62-91.41) (62.41-95.11) (64.62-91.41) (0.62-0.95) (0.48-0.84)

AUROC, Area under the receiver operating characteristic curve; Cl, Confidence interval; MCC, Matthews correlation coefficient; NPV, Negative predictive value; PPV,

Positive predictive value.

The signaling of a single heartbeat was captured and saved as
a CSV file (Figure 2).

Single beats were obtained from D2 leads of all ECGs. While
single beats were selected, beats considered as interference
were excluded from the evaluation with the approval of the
cardiologist. Since it is important for the data to be the same
size in order to be comparable, a padding process was applied
to all CSV files. Each CSV file was then tagged:

e Hyperkalemia: 1, Normal: O
e Hypokalemia: 1, Normal: O
e Hyponatremia: 1, Normal: O.

The dataset was split at the patient level (70% training, 15%
validation, 15% test). To prevent data leakage, no patient
contributed beats to more than one subset. Group-aware
cross-validation (GroupKFold) keyed by patient ID was used.

Model Architecture

The complete Python code for model development, training,
and evaluation is provided in the Supplementary Material as
Supplementary Code 1 (cnn_models.py).

Results

This study was designed as a multicenter, prospective investigation
and included a total of 211 patients. The mean age was 56 years
(range: 21-94), with 48 female and 163 male participants. The
average left ventricular ejection fraction was 33%. Among the
cohort, 82 patients had a history of hypertension, 67 had diabetes
mellitus, and 54 had documented coronary artery disease.
Exclusion criteria included individuals under 18 years of age,
pregnant women, those with left or right bundle branch block
on baseline ECG, patients with atrial fibrillation, and individuals
with implanted cardiac pacemakers. These criteria were selected
to eliminate conditions that could alter the baseline ECG and
potentially compromise the performance of the proposed deep
learning model. For analysis, single-lead ECG recordings (lead
D2) were used after preprocessing.

A total of 266 single beats were obtained from the D2 lead in
the hyponatremia patient group. The number of single beats
obtained from the normal group was 722. When we applied
our proposed model, the accuracy rate was 83.33% in the
hyponatremia group.

Diagnosis of hyponatremia by ECG is challenging due to non-
specific ECG findings. Despite this, the model we created

Figure 2. Single heartbeat was captured and saved as CSV file.

achieved an Area Under the Receiver Operating Characteristic
curve (RUROC) of 95.62% and a recall of 93.94%, showing that
hyponatremia could be identified with acceptable precision. The
situation in the final validation set shows that caution should be
exercised to avoid overfitting with strong learning. This indicates
that future studies should be conducted with a larger dataset.
The lower Matthews Correlation Coefficient (MCC) score
(0.450) compared to potassium-based models underscores the
difficulty of this evaluation. Adding additional parameters may
help improve model performance. Although slightly lower in our
study, the model achieved an accuracy rate of 83.33%, which
can be considered acceptable given the limited number of beats
and the difficulty of detecting ECG changes associated with
hyponatremia.

In the hypokalemia group, 166 single beats were obtained from
lead D2. When we applied the proposed model to 722 beats
obtained from the normal patient group, we reached 95.33%
accuracy, with an AUROC of 92.83%, precision of 96.75%, and
recall of 97.54%.

The hypokalemia classifier achieved strong discrimination
across all metrics. Patients with hypokalemia often exhibit ST
depression, flattened T waves, and prominent U waves. The
Convolutional Neural Network (CNN) model used in our study
was successful in capturing these changes, with an AUROC
of 92.83%. The minimal variance across the validation sets
supports the consistency of these findings. Additionally, the
model exhibited excellent precision (96.75%) and recall
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Figure 3. ROc curves for electrolyte disorder models.

AUROC, Area under the receiver operating characteristic curve; ROC,
Receiver operating characteristic.

(97.54%), which are critical for clinical utility. The slightly
higher performance on the final validation set supports the
hypothesis that the network successfully generalizes the
learned representations beyond the training data. At the
same time, our model achieved an accuracy of 95.33%,
indicating consistent classification across the training and
validation sets.

In the hyperkalemia group, 117 single beats were obtained from
the D2 lead. When we applied the proposed model to 722 single
beats obtained from the normal patient group, we reached an
accuracy of 95.77%.

Overall performance metrics are shown in Table 2.

lyiglin et al. Detection of Electrolyte Disorders with Al-ECG

The fullimplementation code (cnn_models.py) is provided in the
Supplementary Material for reproducibility.

Comprehensive ECG Analysis and Explainable Al Using
Saliency Maps

Theoretical Framework of Explainable Al (XAl)

Explainable Artificial Intelligence (XAl) comprises methodologies
that make the decision-making processes of machine learning
models understandable and interpretable. In clinical settings, XAl
is crucial for the following reasons:

- Clinical Reliability: Allows physicians to validate model
decisions

- Legal Accountability: Meets transparency requirements
of regulatory bodies such as the U.S. Food and Drug
Administration (FDA) and Conformité Européenne (CE)

- Patient Safety: Minimizes misdiagnoses

- Scientific Validation: Ensures alignment between learned
model patterns and medical literature.

Algorithm and Methodology

Saliency pipeline: preprocessing (zero-padding removal,
normalization), gradient computation, saliency map generation,
critical segment detection.

Dataset Characteristics and Findings

Sample distribution: Hyperkalemia (Normal = 20, Pathologic
= 107), Hypokalemia (Normal = 25, Pathologic = 109),
Hyponatremia (Normal = 14, Pathologic = 24).

Performance metrics: AUROC = 0.92 + 0.05, Accuracy = 0.89 *
0.07, Sensitivity = 0.91 £ 0.06, Specificity = 0.87 + 0.08 (Figure 3).

Confusion matrices for the classification of hyperkalemia,
hypokalemia, and hyponatremia are shown in Figure 4.

Temporal Localization Analysis and Clinical Interpretation
e Hyperkalemia: Salient in segments 60-100, temporal shift +20,
peak saliency 0.67; correlates with QRS widening and T-peak

Figure 4. Confusion matrices for electrolyte disorder classification. Confusion matrices for hyperkalemia, hypokalemia, and
hyponatremia classification. Each cell shows both raw counts (n) and row percentages (%). Orange: Hyperkalemia, Red:

Hypokalemia, Magenta: Hyponatremia.

AUROC, Area under the receiver operating characteristic curve; Cl, Confidence interval; MCC, Matthews correlation coefficient; PPV, Positive predictive value;

NPV, Negative predictive value.
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Figure 5. The saliency overlay visualizes the ECG segments most influential in the model's decision-making process.

e Hypokalemia: Segments 50-90, shift +15, saliency 0.54;
correlates with QT prolongation and U-waves

e Hyponatremia: Segments 50-100, shift +17, saliency 0.61;
correlates with ST changes and arrhythmogenic substrate

Comparative Analysis and Shared Patterns
Electrolyte-specific temporal signatures identified:

- Hyperkalemia: +20 shift, 0.67 saliency
- Hypokalemia: +15 shift, 0.54 saliency
- Hyponatremia: +17 shift, 0.61 saliency

All conditions exhibit temporal shifts, higher saliency in
pathological groups, and variability in gradient magnitude.

Methodological Validity and Clinical Relevance
Pathophysiological validation was confirmed by matching
saliency regions with known ECG changes.

Statistical Significance: Temporal shifts (P < 0.001, Analysis of
Variance [ANOVA]), saliency differences (P < 0.01, Kruskal-
Wallis), inter-group variability (P < 0.05, Levene's test).

This study confirms that CNN models with gradient-based
saliency maps can successfully identify temporal features specific
to electrolyte disorders. XAl adds transparency and enables real-
time decision support. The saliency analysis presented in this
report offers a robust framework for interpreting CNN-based ECG
classification in the context of electrolyte disorders. By aligning
salient temporal segments with known pathophysiological
markers—such as QRS widening in hyperkalemia, QT prolongation
and U-waves in hypokalemia, and ST changes in hyponatremia—
the model not only demonstrates high performance (AUROC
0.92, accuracy 0.89) but also clinical interpretability. This
alignment enhances trust in model outputs and supports their
potential application in real-time decision-making. Importantly,
the observed temporal shifts and saliency peaks were statistically
significant, confirming that the model's focus corresponds
meaningfully to clinically relevant waveform segments. Figure 5
illustrates the saliency overlay, which visualizes the ECG segments
most influential in the model's decision-making process.

Saliency focus regions are shown in Table 3.

Limitations

Although the results obtained in our study support meaningful
conclusions that electrolyte disorders can be detected from ECG
using artificial intelligence methods, it is important to repeat
these findings with larger datasets in order to evaluate their
applicability and achieve more effective results. In future studies,
models incorporating additional patient parameters may provide

Table 3. Saliency focus per class

Condition Primary ECG focus Clinical correlation

Hyperkalemia T-wave region Peaked T-waves
T-U transition

Post-QRS/diffuse

Hypokalemia Flattened T, prominent U

Hyponatremia Subtle, non-specific changes

more efficient results. Additionally, this study did not adopt two
suggested approaches—multi-beat input matrices and a single
multi-label classifier. These remain acknowledged limitations.
Future work will explore multi-beat input representations to
capture temporal dynamics across successive beats and multi-
label classification approaches to enable simultaneous detection
of multiple electrolyte disorders, once larger and more balanced
datasets become available.

In our study, it was planned to take ECG samples and blood
electrolyte measurements on the same day. Minimizing the
time between laboratory measurements and ECG may be
more appropriate to detect ECG changes that can occur due to
electrolyte disturbances.

Discussion

Analyzing ECG data via deep learning models has recently been
shown to be effective in detecting dyskalemia, a finding that
suggests significant potential for this technology within clinical
contexts.'®

Our study focused on developing a DLM specifically for detecting
hypokalemia, hyperkalemia, and hyponatremia. The model was
trained using a comprehensive dataset of ECG samples acquired
from patients, employing advanced deep learning techniques.
Specifically, patients diagnosed with the aforementioned
conditions were systematically grouped and then compared with
carefully defined normal patient cohorts. The results showed
that our model achieved accuracy rates of 83.33% for the
hyponatremia group, 95.33% for the hyperkalemia group, and
95.77% for the hypokalemia group, underscoring the clinical
relevance of our approach.

In a related study, Lin et al.®® introduced ECG12Net, a deep
learning model designed to detect dyskalemias through
comprehensive ECG analysis. Using a training set of more than
50,000 ECGs and a sophisticated deep convolutional network to
identify numerous ECG features, ECG12Net demonstrated higher
performance than clinicians in detecting dyskalemias, specifically
showing sensitivity rates of 95.6% for severe hypokalemia and
84.5% for severe hyperkalemia.’ The results of our work are
generally consistent with these previous findings, reinforcing the
effectiveness of deep learning models.
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While serum potassium concentration can be rapidly assessed in
hospitalsettings using venous blood tests, diagnosing hypokalemia
outside those settings remains a considerable problem, partly
because affected patients often do not exhibit clear symptoms.
Consequently, using ECGs to screen patients noninvasively for
hypokalemia could significantly improve early detection and, by
extension, patient care and outcomes. Furthermore, numerous
wearable devices for monitoring ECGs have emerged in recent
years, providing additional support in this area.'

The limitations of our study, specifically the sample size,
warrant further confirmatory and controlled investigations.
Still, our findings suggest that deep learning models can detect
subtle changes that may elude even experienced cardiologists.
This aligns with other studies in the literature, bolstering the
transformative potential of deep learning in ECG analysis.®

Although we applied our model to more data than the other
two electrolyte disorders (hypokalemia and hyperkalemia) in our
study, the accuracy rate in the hyponatremia group was 83.33%,
lower than in the other groups. One reason for this may be that
ECG findings due to hyponatremia are less obvious than in the
other two groups. To increase accuracy rates, studies involving
evaluation with larger datasets are needed.

Datasets created with patients who have pure electrolyte disorders
may produce more efficient results in detecting changes due to
these conditions. However, because most electrolyte disorders
coexist with other diseases and many medications are used in
these patient groups, ECG parameters may be affected. This may
cause the applied model to reach incorrect results. In our study,
the frequency of diabetes mellitus, hypertension, and coronary
artery disease was high, and the number of medications used
for these was also high. To reduce the effects that may arise
from this situation, future studies with similar groups in terms of
disease and drug use are needed.

One of the main problems in studies based on ECG and deep
learning models is that standardization has not yet been
achieved. It can be seen from publications in the literature that
models can be applied to data taken from different leads in
different studies.’ While some ECG studies are carried out on
raw data, in others, ECGs in formats such as JPEG and PDF are
used. Data received from different devices in different centers
can lead to a number of difficulties such as a more costly data
processing phase, longer processing times, and greater reliance
on human-dependent processes. In our study, the difference in
the number of centers and the types of devices used caused the
data processing phase to be longer.

In the future, applications that contribute to routine monitoring,
especially for patients at risk of electrolyte disorders, can be
developed for smartphones capable of taking photographs and
recording a single-lead ECG signal. This may accelerate with
advances in sensor technology and the resulting improvement
in the quality of data signals received from patients. Continuous
collection of individual changes and their use in personalized
medicine applications will open up broad horizons for the future.

On the other hand, as the success rate of evaluations using
photographic ECGs increases, application-based systems can
also be used as assistive tools for physicians and patients in
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disadvantaged regions where cardiologists are not available or
laboratory services are inadequate.

These systems can further be integrated into remote monitoring
platforms, providing benefits such as more qualified treatment
and early detection of potentially life-threatening conditions in
disadvantaged groups at risk, such as heart failure patients.

This study demonstrates that computer vision-based Al models
can accurately detect diagnostic features on ECG images. To
facilitate the integration of this technology into routine clinical
practice, future research should aim to develop models capable
of generalizing across diverse ECG image formats and originating
from multiple sources, while encompassing a wider spectrum
of clinically relevant diagnoses. These models can be designed
to accommodate various ECG styles and layouts, enhancing
their applicability across settings. Furthermore, the underlying
algorithms may be adapted for innovative applications—such as
smartphone-based tools or smart health platforms—to enable the
detection of electrolyte imbalances directly from ECG photographs.

Future work will explore multi-beat input representations
to capture temporal dynamics across successive beats,
potentially enhancing the model's sensitivity to subtle intra-
patient variations.

Conclusion

The proposed DLM exhibited strong performance in accurately
identifying electrolyte imbalances, underscoring its potential
value in clinical settings. These findings indicate that such a
model could be integrated into routine practice for the detection
and monitoring of electrolyte disturbances using ECG data,
offering a promising tool to enhance patient care and outcomes,
particularly in high-risk populations. Supporting this model with
further studies to ensure its compatibility with clinical practice
may increase the power and value.
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# -*- coding: utf-8 -*-
Complete CNN Classification with Output Management
Fixed version with proper indentation

import tensorflow as tf

from tensorflow.keras.layers import Conv1lD, MaxPooling1D, Flatten, Dense, Dropout

from tensorflow.keras import Sequential

from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping

from sklearn.model selection import StratifiedKFold

import random

import numpy as np

import os

import sys

import matplotlib.pyplot as plt

import pandas as pd

from sklearn.metrics import (roc_curve, roc_auc_score, confusion matrix,
precision_score, recall score, fl_score,
matthews_corrcoef, precision_recall curve,
average precision_score)

import seaborn as sns

import warnings

from datetime import datetime

import json

warnings.filterwarnings('ignore')

# Set random seeds
np.random.seed(42)
tf.random.set seed(42)
random.seed(42)

# Global variables

OUTPUT _DIR = None
LOG_FILE = None

CURRENT_ TIMESTAMP = None

def setup output directory():
global OUTPUT DIR, LOG_FILE, CURRENT TIMESTAMP
CURRENT_TIMESTAMP = datetime.now().strftime("%Y%m%d_ %H%M%S")
OUTPUT DIR = f"./output {CURRENT TIMESTAMP}"
os.makedirs(OUTPUT DIR, exist ok=True)
os.makedirs(f"{OUTPUT _ DIR}/plots", exist ok=True)
os.makedirs(f'{OUTPUT _ DIR }/models", exist_ok=True)
os.makedirs(f"{OUTPUT DIR}/reports", exist ok=True)
LOG _FILE =f"{OUTPUT _DIR}/console_output.txt"
print(f"[¥ Output directory created: {OUTPUT_DIR}")
log message(f"CNN Classification System - Output Log")
log message(f"Timestamp: {CURRENT TIMESTAMP}")
log_message("="*80)
return OUTPUT_DIR



def log_message(message, also_print=True):
global LOG_FILE
if LOG_FILE:
with open(LOG_FILE, 'a', encoding="utf-8'") as f:
f.write(message + "\n')
if also_print:
print(message)

def save plot(fig, filename, title=""):

global OUTPUT DIR

if OUTPUT DIR:
filepath = f"{OUTPUT DIR}/plots/{filename}"
fig.savefig(filepath, dpi=300, bbox inches="tight', facecolor="white', edgecolor="none")
log_message(f" ul Plot saved: {filepath}", also_print=False)
return filepath

return None

def save results summary(results_dict, filename):
global OUTPUT_DIR
if OUTPUT DIR:
# Convert numpy types to Python native types for JSON serialization
def convert numpy_types(obj):
if isinstance(obj, dict):
return {key: convert numpy_types(value) for key, value in obj.items()}
elif isinstance(obj, list):
return [convert numpy_types(item) for item in obj]
elif isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return obj

# Convert the results dictionary
json_safe dict = convert numpy_types(results_dict)

json_file = f"{OUTPUT DIR}/reports/{filename}.json"
with open(json_file, 'W', encoding="utf-8'") as f:
json.dump(json_safe dict, f, indent=4, ensure ascii=False)
txt_file = f"{OUTPUT _DIR}/reports/{filename}.txt"
with open(txt_file, 'W', encoding="utf-8') as f:
f.write(f"CNN Classification Results - { CURRENT TIMESTAMP}\n")
f.write("="*80 + "\n\n")
def write_dict(d, indent=0):
for key, value in d.items():
if isinstance(value, dict):
fowrite(" " * indent + " {key}:\n")
write dict(value, indent + 1)
elif isinstance(value, list):
fowrite(" " * indent + f"'{key}: {value}\n")



elif isinstance(value, (float, np.floating)):
fowrite(" " * indent + " {key}: {float(value):.4f}\n")
else:
fowrite(" " * indent + "' {key}: {value}\n")
write dict(json_safe dict)
log_message(f"[*] Results saved: {json_file} and {txt file}", also_print=False)
return json_file, txt file
return None, None

def load_data(data_dir, train_ratio=0.7, test_ratio=0.15, val ratio=0.15):
if abs(train_ratio + test_ratio + val _ratio - 1.0) > le-6:
raise ValueError("Oranlarin toplami 1.0 olmali!")

all data =]
all labels =[]

for folder in os.listdir(data_dir):
folder path = os.path.join(data_dir, folder)
if not os.path.isdir(folder path):
print(f"'Skipping file: {folder}")
continue

for file in os.listdir(folder path):
if not file.endswith('.csv'):
continue
file path = os.path.join(folder path, file)
try:
data = np.loadtxt(file_path, delimiter=',", skiprows=1, usecols=[1])
all data.append(data)
if folder == "groupA":
all labels.append(0)
elif folder == "groupB":
all labels.append(1)
else:
print(f"Unknown folder: {folder}")
except Exception as e:
print(f"Error reading file {file path}: {e}")
continue

combined = list(zip(all data, all labels))
random.shuffle(combined)
all data, all labels = zip(*combined)

total _samples = len(all_data)
train_end = int(total samples * train_ratio)
test end = train_end + int(total samples * test ratio)

train_data = all data[:train_end]
train_labels = all labels[:train_end]

test data = all data[train_end:test end]
test labels = all labels[train_end:test end]
val data = all data[test end:]



val_labels = all labels[test end:]

padded train_data = pad zeros(train_data, target length=128)
padded test data = pad zeros(test data, target length=128)
padded val data =pad zeros(val data, target length=128)

padded train_data = np.array(padded_train data)
padded test data = np.array(padded test data)
padded val data = np.array(padded val data)

print(f'Dataset split:")

print(f" Total samples: {total samples}")

print(f" Train: {len(train_data)} samples ({len(train_data)/total samples*100:.1f}%)")
print(f" Test: {len(test data)} samples ({len(test data)/total samples*100:.1f}%)")
print(f" Validation: {len(val data)} samples ({len(val data)/total samples*100:.1f}%)")

log message(f''Dataset split:")

log message(f" Total samples: {total samples}")

log message(f" Train: {len(train_data)} samples ({len(train_data)/total samples*100:.1f}%)")
log message(f" Test: {len(test data)} samples ({len(test data)/total samples*100:.1f}%)")

log message(f" Validation: {len(val data)} samples ({len(val data)/total samples*100:.1f}%)")

padded train_data = padded train_data.reshape(-1, 128, 1)
padded test data = padded test data.reshape(-1, 128, 1)
padded val data =padded val data.reshape(-1, 128, 1)

train_labels = np.array(train_labels)
test labels = np.array(test labels)
val_labels = np.array(val labels)

return (padded train_data, train_labels, padded test data, test labels, padded val data,
val_labels)

def pad_zeros(data, target length=128):
padded data =[]
for file in data:
current_length = len(file)
if current length == target length:
padded_data.append(file)
elif current length < target length:
padded_file = np.zeros(target length)
padded file[:current length] = file
padded_data.append(padded file)
else:
indices = np.linspace(0, current length-1, target length, dtype=int)
downsampled_file = file[indices]
padded data.append(downsampled _file)
return padded data

def create_model(complexity="medium', learning_rate=0.0001):
model = Sequential()



if complexity == 'simple":

model.add(Conv1D(filters=16, kernel size=3, strides=2, activation="relu', input_shape=(128,
1))

model.add(MaxPooling1 D(pool size=2))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128, activation="relu'))
model.add(Dense(1, activation="sigmoid'))

elif complexity == 'medium":
model.add(Conv1D(filters=32, kernel size=5, activation="relu', input_shape=(128, 1)))
model.add(Conv1D(filters=32, kernel size=3, activation="relu"))
model.add(MaxPooling1 D(pool size=2))
model.add(Dropout(0.3))
model.add(Conv1D(filters=64, kernel size=3, activation="relu"))
model.add(MaxPooling1 D(pool size=2))
model.add(Dropout(0.3))
model.add(Flatten())
model.add(Dense(256, activation="relu"))
model.add(Dropout(0.4))
model.add(Dense(128, activation="relu'))
model.add(Dropout(0.4))
model.add(Dense(1, activation="sigmoid'))

elif complexity == 'complex":
model.add(Conv1D(filters=64, kernel size=7, activation="relu’, input_shape=(128, 1)))
model.add(Conv1D(filters=64, kernel size=5, activation="relu"))
model.add(MaxPooling1 D(pool size=2))
model.add(Dropout(0.3))
model.add(Conv1D(filters=128, kernel size=3, activation="relu'))
model.add(Conv1D(filters=128, kernel size=3, activation="relu'))
model.add(MaxPooling1 D(pool size=2))
model.add(Dropout(0.4))
model.add(Conv1D(filters=256, kernel size=3, activation="relu'))
model.add(MaxPooling1 D(pool size=2))
model.add(Dropout(0.4))
model.add(Flatten())
model.add(Dense(512, activation="relu'))
model.add(Dropout(0.5))
model.add(Dense(256, activation="relu"))
model.add(Dropout(0.5))
model.add(Dense(128, activation="relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation="sigmoid'))

optimizer = tf.keras.optimizers. Adam(learning_rate=learning_rate)
model.compile(optimizer=optimizer, loss="binary crossentropy', metrics=['accuracy'])
return model

def train_model(model, train_data, train_labels, test data, test labels, epochs=200):
train_data = np.array(train_data, dtype=np.float32)
train_labels = np.array(train_labels, dtype=np.float32)
test data = np.array(test data, dtype=np.float32)
test labels = np.array(test labels, dtype=np.float32)



print(f"'Training data shape: {train_data.shape}")
print(f'Training labels shape: {train_labels.shape}")

log message(f"Training started - Max epochs: {epochs}")
log message(f"Training data shape: {train_data.shape}")

reduce Ir = ReduceLROnPlateau(monitor='val loss', factor=0.3, patience=10, min_lr=1e-8§,
verbose=1, cooldown=5)

early stop = EarlyStopping(monitor="'val loss', patience=30, restore best weights=True,
verbose=1, min_delta=0.0001)

history = model fit(train_data, train_labels, validation data=(test data, test labels),
epochs=epochs, batch_size=8, callbacks=[reduce Ir, early stop], verbose=1)
return history

def evaluate validation set(model, val data, val labels, dataset name="Validation"):
val data = np.array(val data, dtype=np.float32)
val_labels = np.array(val labels, dtype=np.float32)

print(f"\n{'="*60}")
print(f" {dataset name.upper()} SET EVALUATION")
print(f" {'="*60}")

log_message(f"\n{'='*60}")
log message(f" {dataset name.upper()} SET EVALUATION")
log_message(f" {'="*60}")

val_loss, val _accuracy = model.evaluate(val data, val labels, verbose=0)
print(f' {dataset name} Loss: {val loss:.4f}")

print(f'{dataset name} Accuracy: {val accuracy:.4f}")

log message(f' {dataset name} Loss: {val loss:.4f}")

log message(f'{dataset name} Accuracy: {val accuracy:.4f}")

y_pred proba = model.predict(val data, verbose=0).flatten()
y_pred_binary = (y_pred proba > (.5).astype(int)

fpr, tpr, thresholds = roc_curve(val labels, y pred proba)
auroc =roc_auc_score(val labels, y pred proba)
precision = precision_score(val labels, y pred binary)
recall =recall score(val labels, y pred binary)

f1 =f1_score(val labels, y pred binary)

mcc = matthews_corrcoef(val labels, y pred binary)

tn, fp, fn, tp = confusion_matrix(val labels, y pred binary).ravel()
specificity = tn / (tn + fp)

ppv=tp/ (tp + fp) if (tp + fp) > O else O

npv = tn/ (tn + fn) if (tn + fn) > 0 else 0

print(f\n{dataset name} Performance Metrics:")
print(f AUROC Score: {auroc:.4f}")

print(f Accuracy: {val accuracy:.4f}")

print(f" Precision: {precision:.4f}")



print(f' Recall: {recall:.4f}")

print(f' Specificity: {specificity:.4f}")
print(f F1-Score: {fl:.4f}")

print(f MCC: {mcc:.4f}")

log message(f'\n{dataset name} Performance Metrics:")
log message(f AUROC Score: {auroc:.4f}")

log message(f Accuracy: {val accuracy:.4f}")

log message(f' Precision: {precision:.4f}")

log message(f' Recall: {recall:.4f}")

log message(f' F1-Score: {fl:.4f}")

optimal_idx = np.argmax(tpr - fpr)
optimal threshold = thresholds[optimal idx]

# Create comprehensive plot
plt.figure(figsize=(15, 10))

# ROC Curve

plt.subplot(2, 3, 1)

plt.plot(fpr, tpr, color="darkorange', Iw=2, label=fROC (AUROC = {auroc:.4f})")
plt.plot([0, 1], [0, 1], color="navy', Iw=2, linestyle='"--")

plt.xlabel('False Positive Rate')

plt.ylabel("True Positive Rate')

plt.title(f {dataset name} ROC Curve')

plt.legend()

plt.grid(True)

# Confusion Matrix

plt.subplot(2, 3, 2)

cm = confusion_matrix(val labels, y pred binary)

sns.heatmap(cm, annot=True, fmt="d', cmap='Blues', xticklabels=['Group A', 'Group B'],
yticklabels=['Group A', 'Group B'])

plt.title(f' {dataset name} Confusion Matrix')

plt.xlabel('Predicted’)

plt.ylabel('Actual')

# Metrics Bar Chart
plt.subplot(2, 3, 3)
metrics_names = ['Accuracy', 'Precision’, 'Recall', 'F1-Score']
metrics_values = [val accuracy, precision, recall, 1]
plt.bar(metrics names, metrics_values, color=['skyblue', 'lightgreen’, 'lightcoral', 'lightpink'])
plt.ylim(0, 1)
plt.title(f {dataset name} Metrics')
plt.xticks(rotation=45)
for 1, v in enumerate(metrics_values):
plt.text(i, v + 0.01, f'{v:.3f}', ha='center")

# Probability Distribution

plt.subplot(2, 3, 4)

plt.hist(y_pred proba[val labels == 0], bins=20, alpha=0.7, label='Group A', color="blue')
plt.hist(y_pred proba[val labels == 1], bins=20, alpha=0.7, label='Group B', color="red")



plt.axvline(x=0.5, color="black’, linestyle='--', label='"Threshold (0.5)")
plt.xlabel('Prediction Probability")

plt.ylabel('Frequency")

plt.title('Probability Distribution')

plt.legend()

# Precision-Recall Curve

plt.subplot(2, 3, 5)

precision_curve, recall curve, = precision_recall curve(val labels, y pred proba)

avg precision = average precision_score(val labels, y pred proba)

plt.plot(recall curve, precision_curve, color="purple', lw=2, label='AP = {avg precision:.4f}")
plt.xlabel('Recall’)

plt.ylabel('Precision’)

plt.title('Precision-Recall Curve')

plt.legend()

plt.grid(True)

# Error Analysis

plt.subplot(2, 3, 6)

error_types = ["TP', 'TN', 'FP', 'FN']

error_counts = [tp, tn, fp, fn]

colors = ['green', 'lightgreen’, 'orange', 'red']

plt.pie(error_counts, labels=error_types, colors=colors, autopct="%1.1{%%")
plt.title("Prediction Distribution')

plt.tight layout()

fig = plt.gcf()

save plot(fig, f'"{dataset name.lower()} analysis.png")
plt.show()

# Save results
results = {
'loss'": float(val_loss),
'accuracy': float(val accuracy),
'auroc': float(auroc),
'precision': float(precision),
'recall': float(recall),
'specificity': float(specificity),
'f1_score': float(f1),
'mcc': float(mcc),
'ppv': float(ppv),
'"npv': float(npv),
'optimal _threshold": float(optimal threshold),
'confusion_matrix': {'tp': int(tp), 'tn": int(tn), 'fp': int(fp), 'fn': int(fn)}

}

save results summary(results, f"' {dataset name.lower()} results")
return results, y pred proba,y pred binary

def perform_kfold validation(all data, all labels, model complexity="medium’,
learning_rate=0.0001, k_folds=5, epochs=200):
print(f"\nk&) Starting {k folds}-Fold Cross Validation...")



log_message(f"\nk&J Starting {k folds}-Fold Cross Validation...")
skf = StratifiedKFold(n_splits=k folds, shuffle=True, random_state=42)

fold results = {'fold": [], 'accuracy": [], 'auroc': [], 'precision': [], 'recall': [], 'f1_score": [], 'mec': [],
'epochs_trained": []}

fold models =[]

fold histories =[] # Store training histories

for fold, (train_idx, val idx) in enumerate(skf.split(all data, all labels), 1):
print(f"\n[F FOLD {fold}/{k folds}")
log_message(f"\n[Z FOLD {fold}/{k folds}")

X train_fold = all data[train_idx]
y_train_fold = all labels[train_idx]
X val fold=all data[val idx]
y_val fold=all labels[val idx]

print(f'Train samples: {len(X train fold)}")
print(f"Validation samples: {len(X val fold)}")

model = create_model(complexity=model complexity, learning_rate=learning_rate)

# Train model for fold

X train_fold = np.array(X_train_fold, dtype=np.float32)
y_train_fold = np.array(y_train_fold, dtype=np.float32)
X val fold =np.array(X val fold, dtype=np.float32)
y_val fold =np.array(y_val fold, dtype=np.float32)

reduce Ir = ReduceLROnPlateau(monitor='val loss', factor=0.3, patience=8, min_Ir=1e-8§,
verbose=0)

early stop = EarlyStopping(monitor="'val loss', patience=25, restore best weights=True,
verbose=0)

history = model.fit(X_train fold, y train fold, validation data=(X val fold, y val fold),
epochs=epochs, batch_size=8, callbacks=[reduce Ir, early stop], verbose=0)

# Store history for later plotting
fold_histories.append(history)

# Evaluate fold

val_loss, val_accuracy = model.evaluate(X val fold, y val fold, verbose=0)
y_pred proba = model.predict(X val fold, verbose=0).flatten()

y_pred binary = (y_pred proba > 0.5).astype(int)

auroc =roc_auc_score(y_val fold,y pred proba)
precision = precision_score(y_val fold, y pred binary)
recall =recall score(y val fold,y pred binary)

f1 =f1_score(y _val fold, y pred binary)

mcc = matthews_corrcoef(y val fold, y pred binary)

fold results['fold'].append(fold)



fold results['accuracy'].append(float(val accuracy))

fold results['auroc'].append(float(auroc))

fold results['precision'].append(float(precision))

fold results['recall'].append(float(recall))

fold results['f1 score'].append(float(f1))

fold results['mcc'].append(float(mcc))

fold results['epochs_trained'].append(int(len(history.history['loss'])))
fold models.append(model)

print(f"€4 Fold {fold} - Accuracy: {val accuracy:.4f}, AUROC: {auroc:.4f}")
log message(f"4 Fold {fold} - Accuracy: {val accuracy:.4f}, AUROC: {auroc:.4f}")

# Plot K-fold training histories
plot _kfold training histories(fold histories, fold results)

# Print summary

print(f"\ng] K-FOLD RESULTS SUMMARY™")

log message(f"\nyl K-FOLD RESULTS SUMMARY™")
log_message("="*50)

metrics = ['accuracy’, 'auroc', 'precision’, 'recall', 'f1_score', 'mcc']
summary_stats = {}

for metric in metrics:
values = fold results[metric]
mean_val = np.mean(values)
std_val = np.std(values)
summary_line = f"'{metric.upper()}: {mean_val: .4f} £+ {std val:.4f}"
print(summary_line)
log message(summary _line)

# Store for later use
summary_stats[metric] = {

'mean': float(mean_val),

'std": float(std_val),

'values': [float(v) for v in values]

}

# Create comprehensive K-fold summary
kfold summary = {
'timestamp': CURRENT TIMESTAMP,
'k_folds": k_folds,
'model complexity': model complexity,
'learning_rate': learning_rate,
'max_epochs': epochs,
'total samples used": len(all_data),
'fold_details": {
'individual results": fold results,
'summary_statistics': summary_stats
5>
'best_fold": {
'fold number': int(np.argmax(fold_results['auroc']) + 1),



'best_auroc': float(np.max(fold_results['auroc'])),
'best_accuracy': float(fold results['accuracy'][np.argmax(fold_results['auroc'])]),
'best_f1_score': float(fold results['f]l score'][np.argmax(fold results['auroc'])])

}
}

# Save K-fold results
save results summary(kfold summary, "kfold detailed results")

return fold results, fold models

def plot_kfold training_histories(fold histories, fold results):

K-fold training gecmislerini gorsellestirir
print("\n ~/ Plotting K-fold training histories...")
log_message("\n~/ Plotting K-fold training histories...")

plt.figure(figsize=(20, 12))

# 1. Training Loss for all folds
plt.subplot(2, 4, 1)
for 1, history in enumerate(fold histories):
plt.plot(history.history['loss'], alpha=0.7, label=f'Fold {i+1}', linewidth=2)
plt.title('Training Loss Across Folds')
plt.xlabel("Epoch")
plt.ylabel('Loss")
plt.legend()
plt.grid(True, alpha=0.3)

# 2. Validation Loss for all folds
plt.subplot(2, 4, 2)
for 1, history in enumerate(fold histories):
plt.plot(history.history['val loss'], alpha=0.7, label=f'Fold {i+1}', linewidth=2)
plt.title('Validation Loss Across Folds')
plt.xlabel("Epoch")
plt.ylabel('Loss")
plt.legend()
plt.grid(True, alpha=0.3)

# 3. Training Accuracy for all folds
plt.subplot(2, 4, 3)
for 1, history in enumerate(fold histories):
plt.plot(history.history['accuracy'], alpha=0.7, label=f'Fold {i+1}', linewidth=2)
plt.title('Training Accuracy Across Folds')
plt.xlabel("Epoch")
plt.ylabel('Accuracy')
plt.legend()
plt.grid(True, alpha=0.3)

# 4. Validation Accuracy for all folds
plt.subplot(2, 4, 4)



for 1, history in enumerate(fold histories):
plt.plot(history.history['val accuracy'], alpha=0.7, label=f'Fold {i+1}', linewidth=2)
plt.title("Validation Accuracy Across Folds')
plt.xlabel("Epoch")
plt.ylabel('Accuracy')
plt.legend()
plt.grid(True, alpha=0.3)

# 5. Epochs trained per fold
plt.subplot(2, 4, 5)
folds = fold results['fold']
epochs_trained = fold results['epochs_trained']
colors = plt.cm.Set3(np.linspace(0, 1, len(folds)))
bars = plt.bar(folds, epochs_trained, color=colors, alpha=0.8)
plt.title('Epochs Trained per Fold')
plt.xlabel('Fold')
plt.ylabel("Epochs')
plt.grid(True, alpha=0.3)
# Add value labels on bars
for bar, epochs in zip(bars, epochs_trained):
plt.text(bar.get x() + bar.get width()/2, bar.get height() + 0.5,
f'{epochs}', ha='center', va="bottom', fontweight="bold")

# 6. Performance metrics across folds

plt.subplot(2, 4, 6)

folds = fold results['fold']

plt.plot(folds, fold results['accuracy'], 'o-', label='Accuracy’, linewidth=2, markersize=8)
plt.plot(folds, fold_results['auroc'], 's-', label="AUROC"', linewidth=2, markersize=8)
plt.plot(folds, fold results['f1 score'], '"*-', label='"F1-Score', linewidth=2, markersize=8)
plt.title('Performance Metrics Across Folds')

plt.xlabel('Fold')

plt.ylabel('Score")

plt.legend()

plt.grid(True, alpha=0.3)

plt.ylim(0.5, 1.0)

# 7. Average training curves

plt.subplot(2, 4, 7)

# Calculate average training curves

max_epochs = max(len(h.history['loss']) for h in fold histories)
avg_train_loss =[]

avg val loss =[]

for epoch in range(max_epochs):
epoch_train_losses =[]
epoch_val losses =[]
for history in fold histories:
if epoch < len(history.history['loss']):
epoch_train_losses.append(history.history['loss'][epoch])
epoch_val losses.append(history.history['val loss']|[epoch])

if epoch_train losses:



avg_train_loss.append(np.mean(epoch_train_losses))
avg_val loss.append(np.mean(epoch_val losses))

plt.plot(avg train_loss, label='Average Training Loss', linewidth=3, color="blue')
plt.plot(avg val loss, label='Average Validation Loss', linewidth=3, color="red")
plt.title('Average Loss Curves')

plt.xlabel("Epoch")

plt.ylabel('Loss")

plt.legend()

plt.grid(True, alpha=0.3)

# 8. Best fold detailed training curve
plt.subplot(2, 4, 8)

best fold idx = np.argmax(fold_results['auroc'])
best history = fold_histories[best fold idx]

plt.plot(best_history.history['loss'], label="Training Loss', linewidth=2, color='blue")

plt.plot(best_history.history['val loss'], label="Validation Loss', linewidth=2, color="red')

plt.plot(best_history.history['accuracy'], label="Training Accuracy', linewidth=2, color='green’,
linestyle="--")

plt.plot(best_history.history['val accuracy'], label="Validation Accuracy', linewidth=2,
color='orange', linestyle="--'

plt.title(f Best Fold ({best fold idx + 1}) Training Curves')

plt.xlabel("Epoch")

plt.ylabel('Loss / Accuracy')

plt.legend()

plt.grid(True, alpha=0.3)

plt.tight layout()

# Save the plot

fig = plt.gcf()
save plot(fig, "kfold training_histories.png", "K-Fold Training Histories")

plt.show()

# Log some statistics about training

avg_epochs = np.mean(fold_results['epochs_trained'])
min_epochs = np.min(fold_results['epochs_trained'])
max_epochs = np.max(fold results['epochs_trained'])

print(f"\n gyl Training Statistics:")

print(f" Average epochs trained: {avg epochs:.1f}")

print(f" Min epochs: {min_epochs}")

print(f" Max epochs: {max_epochs}")

print(f" Best fold: {best fold idx + 1} (AUROC: {fold results['auroc'][best fold idx]:.4f})")

log_message(f"\nhl Training Statistics:")

log message(f' Average epochs trained: {avg epochs:.1f}")
log _message(f' Min epochs: {min_epochs}")

log message(f' Max epochs: {max_epochs}")



log message(f" Best fold: {best fold idx + 1} (AUROC:
{fold results['auroc'][best fold idx]:.4f})")

def plot_single training_history(history):

Tek model egitim ge¢misini gorsellestirir
print("\n ~/ Plotting training history...")
log_message("\n~ Plotting training history...")

plt.figure(figsize=(12, 4))

plt.subplot(1, 2, 1)

plt.plot(history.history['loss'], label="Training Loss', linewidth=2)
plt.plot(history.history['val loss'], label="Validation Loss', linewidth=2)
plt.title('Model Loss')

plt.xlabel("Epoch")

plt.ylabel('Loss'")

plt.legend()

plt.grid(True)

plt.subplot(1, 2, 2)

plt.plot(history.history['accuracy'], label="Training Accuracy', linewidth=2)
plt.plot(history.history['val accuracy'], label='Validation Accuracy', linewidth=2)
plt.title('Model Accuracy')

plt.xlabel("Epoch")

plt.ylabel('Accuracy')

plt.legend()

plt.grid(True)

plt.tight layout()

# Save training history plot

fig = plt.gcf()
save plot(fig, "single model training_history.png", "Single Model Training History")

plt.show()

# Log training statistics

final train_loss = history.history['loss'][-1]
final val loss = history.history['val loss'|[-1]
final train_acc = history.history['accuracy'][-1]
final val acc = history.history['val accuracy'][-1]
epochs_trained = len(history.history['loss'])

print(f"\n gyl Training Statistics:")

print(f" Epochs trained: {epochs_trained}")

print(f* Final training loss: {final train loss:.4f}")
print(f" Final validation loss: {final val loss:.4f}")
print(f" Final training accuracy: {final train acc:.4f}")
print(f" Final validation accuracy: {final val acc:.4f}")



log_message(f"\nnl Training Statistics:")

log message(f' Epochs trained: {epochs_trained}")

log message(f" Final training loss: {final train loss:.4f}")

log message(f" Final validation loss: {final val loss:.4f}")

log message(f" Final training accuracy: {final train _acc:.4f}")
log message(f" Final validation accuracy: {final val acc:.4f}")

if name ==' main "
setup output directory()

data_dir ="./data’

print("#’ CNN Classification System Starting...")
log_message("# CNN Classification System Starting...")

try:

train_data, train_labels, test data, test labels, val data, val labels = load data(data dir)
except Exception as e:

error msg = "X Error loading data: {e}"

print(error_msg)

log message(error msg)

sys.exit(1)

# Configuration

model complexity = 'medium'’
learning_rate = 0.0001
max_epochs = 200

use kfold =True

k folds=5

print(f"\ni@ Configuration:")

print(f" Model: {model complexity}")
print(f" Learning Rate: {learning rate}")
print(f" Max Epochs: {max_epochs}")
print(f" K-Fold: {use kfold}")

log_message(f"\ni® Configuration:")

log message(f' Model: {model complexity}")
log message(f" Learning Rate: {learning rate}")
log message(f' Max Epochs: {max_epochs}")
log message(f' K-Fold: {use kfold}")

if use kfold:
all train_data = np.concatenate([train_data, test data], axis=0)
all train_labels = np.concatenate([train_labels, test labels], axis=0)

fold_results, fold models = perform kfold validation(all train data, all train labels,
model complexity, learning_rate, k folds, max_epochs)

best fold idx = np.argmax(fold_results['auroc'])
best model = fold models[best fold idx]



print(f"\n‘Y’ Best model: Fold {best_fold idx + 1}")

print(f" Best AUROC: {fold results['auroc'][best fold idx]:.4f}")
print(f" Best Accuracy: {fold results['accuracy'][best fold idx]:.4f}")
print(f" Best F1-Score: {fold results['f]1 score'][best fold idx]:.4f}")

log message(f"\n'Y Best model: Fold {best fold idx + 1}")

log message(f' Best AUROC: {fold results['auroc'][best fold idx]:.4f}")

log message(f' Best Accuracy: {fold results['accuracy'][best fold idx]:.4f}")
log message(f' Best F1-Score: {fold results['f] score'][best fold idx]:.4f}")

print(f"\n@" Final evaluation on held-out validation set...")
log message(f"\n@" Final evaluation on held-out validation set...")

val results, , =evaluate validation set(best model, val data, val labels,
"Final Validation")

# Compare K-fold vs Final validation

kfold mean_auroc = np.mean(fold_results['auroc'])
kfold std auroc = np.std(fold_results['auroc'])
kfold mean acc = np.mean(fold results['accuracy'])
kfold std acc = np.std(fold results['accuracy'])

print(f"\nul K-FOLD vs FINAL VALIDATION COMPARISON")
print(f"{'="*60}")

print(f"K-Fold Cross Validation (Average + Std):")

print(f' AUROC: {kfold mean auroc:.4f} + {kfold std auroc:.4f}")
print(f" Accuracy: {kfold mean acc:.4f} + {kfold std acc:.4f}")
print(f"\nFinal Validation (Held-out):")

print(f' AUROC: {val results['auroc']:.4f}")

print(f" Accuracy: {val results['accuracy']:.4f}")

log_message(f"\nll K-FOLD vs FINAL VALIDATION COMPARISON")
log_message(f" {'="*60}")

log message(f"'K-Fold Cross Validation (Average + Std):")

log message(f' AUROC: {kfold mean auroc:.4f} + {kfold std auroc:.4f}")
log message(f" Accuracy: {kfold mean acc:.4f} + {kfold std acc:.4f}")
log message(f"\nFinal Validation (Held-out):")

log message(f' AUROC: {val results['auroc']:.4f}")

log message(f' Accuracy: {val results['accuracy']:.4f}")

# Generalization analysis
auroc_diff = kfold mean_auroc - val results['auroc']
acc_diff = kfold mean acc - val results['accuracy']

print(f"\nGeneralization Analysis:")
print(f' AUROC difference (K-fold - Final): {auroc_diff:.4f}")
print(f" Accuracy difference (K-fold - Final): {acc_diff:.4f}")

log_message(f"\nGeneralization Analysis:")
log message(f' AUROC difference (K-fold - Final): {auroc_diff:.4f}")



log message(f" Accuracy difference (K-fold - Final): {acc diff:.4f}")

if abs(auroc_diff) < 0.03 and abs(acc_diff) < 0.03:

generalization_msg =" Excellent generalization! Model performs consistently."
elif abs(auroc_diff) < 0.05 and abs(acc_diff) < 0.05:
generalization msg =" Good generalization. Model is reliable."

elif abs(auroc_diff) < 0.10 and abs(acc_diff) < 0.10:

generalization msg =" /! Fair generalization. Some performance drop expected."
else:

generalization msg =" ) Poor generalization. Significant performance variability."

print(generalization_msg)
log message(generalization_msg)

final auroc = val results['auroc']

# Create comprehensive final summary
final summary = {

'timestamp': CURRENT TIMESTAMP,

'dataset_info": {
'total _samples': len(train_labels) + len(test labels) + len(val labels),
'train_samples': len(train_labels),
'test samples': len(test labels),
'validation_samples': len(val labels),
'train_percentage': 70.0,
'test_percentage': round((len(test labels) / (len(train_labels) + len(test labels) +

len(val labels))) * 100, 1),
'validation percentage': round((len(val labels) / (len(train_labels) + len(test labels) +
len(val _labels))) * 100, 1)

¥,

'configuration': {
'model complexity': model complexity,
'learning_rate': learning_rate,
'max_epochs': max_epochs,
'use_kfold'": use kfold,
'k folds': k_folds

}

fold performance": {

'mean_auroc': float(kfold mean auroc),

'std_auroc'": float(kfold std auroc),

'mean_accuracy': float(kfold mean acc),

'std_accuracy': float(kfold std acc),

'best_fold": {
'fold number": int(best fold idx + 1),
‘auroc': float(fold_results['auroc'][best fold idx]),
'accuracy': float(fold results['accuracy'][best fold idx]),
'f1_score': float(fold results['fl1 score'][best fold idx])

}
1

'final validation": {
'auroc': float(val results['auroc']),
'accuracy': float(val results['accuracy']),



'f1_score': float(val _results['f]1 score']),
'precision': float(val results['precision']),
'recall'’: float(val results['recall']),
'mec': float(val results['mcc'])
¥,
'generalization_analysis'": {
‘auroc_difference': float(auroc_difY),
'accuracy_difference': float(acc_diff),
'generalization_assessment': generalization msg.strip()

}
}

save results summary(final summary, "comprehensive final summary")

else:
model = create_model(complexity=model complexity, learning_rate=learning_rate)
history = train_model(model, train_data, train_labels, test data, test labels, max_epochs)
val results, , =evaluate validation set(model, val data, val labels, "Validation")

final auroc = val results['auroc']

# Final summary

print(f"\n_| COMPREHENSIVE FINAL RESULTS:")

print(f"{'="*60}")

print(f"Dataset Information:")

print(f" Total samples: {len(train_labels) + len(test labels) + len(val labels)}")

print(f" Train: {len(train_labels)} samples (70.0%)")

print(f" Test: {len(test labels)} samples ({(len(test labels) / (Ilen(train_labels) + len(test labels)
+ len(val labels))) * 100:.1f}%)")

print(f" Validation: {len(val labels)} samples ({(len(val labels) / (len(train_labels) +
len(test_labels) + len(val_labels))) * 100:.1f}%)")

if use kfold:
print(f"\nK-Fold Cross Validation Results:")
print(f' Mean AUROC: {kfold mean auroc:.4f} + {kfold std auroc:.4f}")
print(f' Mean Accuracy: {kfold mean acc:.4f} + {kfold std acc:.4f}")
print(f" Best Fold: {best fold idx + 1} (AUROC:
{fold results['auroc'][best fold idx]:.4f})")

print(f"\nFinal Validation Performance:")

print(f" Final AUROC: {final auroc:.4f}")

print(f" Final Accuracy: {val results['accuracy']:.4f}")
print(f* Final F1-Score: {val results['f] score']:.4f}")
print(f" Final Precision: {val results['precision']:.4f}")
print(f* Final Recall: {val results['recall']:.4f}")
print(f" Final MCC: {val results['mcc']:.4f}")

# Log the same information

log_message(f"\n_| COMPREHENSIVE FINAL RESULTS:")

log_message(f" {'="*60}")

log message(f''Dataset Information:")

log message(f' Total samples: {len(train_labels) + len(test labels) + len(val labels)}")
log message(f' Train: {len(train_labels)} samples (70.0%)")



log message(f" Test: {len(test labels)} samples ({(len(test labels) / (len(train_labels) +
len(test_labels) + len(val_labels))) * 100:.1f}%)")

log message(f" Validation: {len(val labels)} samples ({(len(val labels) / (len(train_labels) +
len(test_labels) + len(val _labels))) * 100:.1f}%)")

if use kfold:
log message(f"\nK-Fold Cross Validation Results:")
log message(f' Mean AUROC: {kfold mean auroc:.4f} + {kfold std auroc:.4f}")
log message(f' Mean Accuracy: {kfold mean acc:.4f} + {kfold std acc:.4f}")
log message(f' Best Fold: {best fold idx + 1} (AUROC:
{fold results['auroc'][best fold idx]:.4f})")

log message(f"\nFinal Validation Performance:")

log message(f" Final AUROC: {final auroc:.4f}")

log message(f" Final Accuracy: {val results['accuracy']:.4f}")
log message(f' Final F1-Score: {val results['f] score']:.4f}")
log message(f" Final Precision: {val results['precision']:.4f}")
log message(f" Final Recall: {val results['recall]:.4f}")

log message(f" Final MCC: {val results['mcc']:.4f}")

print(f"\n[Z All results saved to: {OUTPUT _DIR}")
print("#& Analysis Complete!")

log message(f"\n[= All results saved to: {OUTPUT DIR}")
log_message("##% Analysis Complete!")





