
1

ARCHIVES OF THE
TURKISH SOCIETY
OF CARDIOLOGY

TURKISH
SOCIETY OF
CARDIOLOGY

Official journal of the

Detection of Hypokalemia, Hyponatremia,
and Hyperkalemia in Heart Failure Patients
Using Artificial Intelligence Techniques via
Electrocardiography
Kalp Yetmezliği Hastalarında Yapay Zeka Teknikleri
Kullanarak Elektrokardiyografi Aracılığıyla Hipokalemi,
Hiponatremi ve Hiperkaleminin Tespiti

Ufuk İyigün1

Murat Kerkütlüoğlu2

Hakan Güneş3

Faris Kahramanoğulları4

Tarık Kıvrak5

Bektaş Murat6

Emrah Yeşil7

Ayşegül Ülgen Kunak8

Mustafa Doğduş9

Ahmet Öz10

Mehmet Kaplan11

Sercan Çayırlı12

Mustafa Kamil Yemis10

Aslan Erdoğan13

Çiğdem İleri Doğan14

Nil Savcılıoğlu11

Tuba Ekin15

Mehtap Yeni16

Nagehan Küçükler17

1Department of Cardiology, Private Medstar
Topçular Hospital, Antalya, Türkiye
2Department of Cardiology, Sütçü İmam
University, Kahramanmaraş, Türkiye
3Department of Cardiology, Health Science
University, İzmir Tepecik Training and
Research Hospital, İzmir, Türkiye
4Electrical and Electronics Engineering,
Me-Fa Engineering, Hatay, Türkiye
5Department of Cardiology, Fırat University
Faculty of Medicine, Elazığ, Türkiye
6Department of Cardiology, Eskişehir City
Hospital, Eskişehir, Türkiye
7Department of Cardiology, Mersin University
Faculty of Medicine, Mersin, Türkiye

ABSTRACT

Objective: Detection and monitoring of electrolyte imbalances are essential for the appropriate
treatment of many metabolic diseases. However, no reliable and noninvasive tool currently
exists for such detection. Electrolyte disorders, particularly in heart failure patients, can lead to
life-threatening situations, which may often develop as a result of medications used in routine
treatment.

Method: In this study, we developed a deep learning model (DLM) using electrocardiography
(ECG) to detect electrolyte imbalances in heart failure patients and evaluated its performance in
a multicenter setting. Seventeen different centers participated in this study. Heart failure patients
(ejection fraction ≤ 45%) who had blood electrolyte measurements and ECG taken on the same
day were included. Patients were divided into four groups: those with normal electrolyte values,
those with hypokalemia, those with hyperkalemia, and those with hyponatremia. Patients who
developed electrolyte disorders due to medications used for heart failure were classified in the
relevant group. Confidence intervals (CI): We computed 95% CIs for area under the receiver
operating characteristic curve (AUROC) via stratified bootstrap (2,000 resamples at the patient
level) and 95% CIs for accuracy using the Wilson score interval for binomial proportions.

Results: The accuracy rates of the DLM in detecting hyponatremia, hypokalemia, and
hyperkalemia were 83.33%, 95.33%, and 95.77%, respectively.

Conclusion: The proposed DLM demonstrated high performance in detecting electrolyte
imbalances. These results suggest that a DLM can be used to detect and monitor electrolyte
imbalances using ECG on a daily basis.

Keywords: Artificial intelligence, deep learning, electrocardiography, electrolytes

ÖZET

Amaç: Elektrolit dengesizliğinin tespiti ve izlenmesi, birçok metabolik hastalığın uygun tedavisi
için gereklidir. Ancak bu dengesizlikleri güvenilir ve invaziv olmayan şekilde tespit edebilen bir
araç henüz mevcut değildir. Özellikle kalp yetmezliği hastalarında görülen elektrolit bozuklukları,
hastalığın rutin tedavisinde kullanılan ilaçlara bağlı olarak gelişebilen ve yaşamı tehdit eden
durumlara yol açabilir.

Yöntem: Bu çalışmada, kalp yetmezliği hastalarında elektrolit dengesizliğini tespit etmek amacıyla
elektrokardiyografi (EKG) kullanan bir derin öğrenme modeli (DLM) geliştirdik ve performansını
çok merkezli bir çalışmada test ettik. Çalışmaya 17 farklı merkez dahil edildi. Aynı gün kan
elektrolit değerleri ve EKG’si alınan, ejeksiyon fraksiyonu (EF) ≤ %45 olan kalp yetmezliği hastaları
çalışmaya alındı. Hastalar dört gruba ayrıldı: normal elektrolit değerleri olanlar, hipokalemisi
olanlar, hiperkalemisi olanlar ve hiponatremisi olanlar. Kalp yetmezliği tedavisinde kullanılan
ilaçlara bağlı elektrolit bozukluğu gelişen hastalar ilgili gruba dahil edildi. Güven Aralıkları(GA),
AUROC için %95 GA, hasta düzeyinde 2.000 tekrar örnekleme (stratified bootstrap) yöntemiyle,
Accuracy için ise binom oranları için Wilson skor aralığı kullanılarak hesaplandı.

Bulgular: Hiponatremi, hipokalemi ve hiperkalemi gruplarında DLM doğruluk oranları sırasıyla
%83,33, %95,33 ve %95,77 olarak belirlendi.

Sonuç: Önerilen DLM, elektrolit dengesizliğini tespit etmede yüksek performans göstermiştir.
Bu sonuçlar, DLM’nin EKG kullanılarak elektrolit dengesizliğinin günlük olarak tespit edilmesi ve
izlenmesinde kullanılabileceğini göstermektedir.

Anahtar Kelimeler: Yapay zeka, derin öğrenme, elektrokardiyografi, elektrolitler

ORIGINAL ARTICLE
KLİNİK ÇALIŞMA

https://orcid.org/0000-0002-6693-8822
https://orcid.org/0000-0003-1007-0574
https://orcid.org/0000-0003-3853-5046
https://orcid.org/0009-0003-7762-1227
https://orcid.org/0000-0002-5257-4810
https://orcid.org/0000-0002-6564-7185
https://orcid.org/0000-0003-4102-444X
https://orcid.org/0000-0002-8930-3651
https://orcid.org/0000-0002-3895-1923
https://orcid.org/0000-0003-0268-9641
https://orcid.org/0000-0001-7081-5799
https://orcid.org/0000-0001-9660-9993
https://orcid.org/0009-0000-3416-4108
https://orcid.org/0000-0002-1094-5572
https://orcid.org/0000-0002-7974-9406
https://orcid.org/0000-0002-3509-1868
https://orcid.org/0000-0003-4015-1711
https://orcid.org/0000-0003-1647-5011
https://orcid.org/0000-0002-9867-266X
https://orcid.org/0000-0002-6482-9913

2

Turk Kardiyol Dern Ars 2025;53(0):000–000 İyigün et al. Detection of Electrolyte Disorders with AI-ECG

Electrolyte balance is critical for maintaining homeostasis and preserving cellular function,
as imbalances can disrupt numerous physiological processes.1 Electrolytes, including

sodium, potassium, calcium, and magnesium, are precisely regulated between intracellular
and extracellular compartments to sustain the normal physiological function of muscles and
nerves, thereby influencing neuromuscular excitability and contractility.2 Certain electrolyte
imbalances, such as hyperkalemia or hypocalcemia, can cause fatal arrhythmias and sudden
cardiac death, making early diagnosis essential for effective intervention.3

Screening for critical electrolyte imbalances is particularly important in patients with conditions
that impair electrolyte retention and excretion, such as renal failure, as well as in patients
taking medications that affect electrolyte excretion, including diuretics, which can exacerbate
these imbalances.4 Moreover, the symptoms of electrolyte imbalance are often vague and
nonspecific, making diagnosis based solely on patient history and clinical examination difficult
until the condition progresses and life-threatening complications arise.5

The gold standard for diagnosing electrolyte imbalance remains laboratory testing, which
quantitatively measures electrolyte concentrations in biological fluids. However, laboratory
tests can be invasive, costly, and dependent on specialized equipment and infrastructure,
including trained medical personnel to collect blood samples and hematology analyzers to
perform biochemical reagent assessments.6 Daily electrolyte assessment is vital for monitoring
health status and preventing life-threatening events; however, reliance on laboratory tests is
suboptimal for timely and effective monitoring, emphasizing the need for more accessible and
rapid diagnostic alternatives.

The condition of the cardiac cell membrane is critically dependent on maintaining a normal
electrolyte balance across the membrane.7 Previous studies have demonstrated that
alterations in electrolyte balance can significantly affect the morphological characteristics of
the electrocardiogram (ECG) waveform. However, diagnosing electrolyte disturbances through
subtle variations in ECG signals poses considerable challenges for clinicians.8

Deep learning techniques have previously been applied in various medical contexts to detect
lesions and are now increasingly utilized for diagnosing conditions such as heart failure, valvular
disease, anemia, and coronary artery disease, as well as for analyzing ECGs. The ECG is a widely
accepted, noninvasive test that records heart voltage over time.

Deep learning technology, a sophisticated application of artificial intelligence, effectively mimics
the data-processing capabilities of the human brain and has achieved remarkable success in
disease screening, diagnosis, and prognosis. Unlike traditional machine learning approaches,
deep learning algorithms demonstrate superior learning capacity and can automatically extract
relevant features without extensive data preprocessing or manual feature extraction. This
capability makes deep learning particularly well-suited for analyzing complex, high-dimensional
data. With ongoing advances in computing power and the growing availability of digitized data,
deep learning offers opportunities to enhance ECG interpretation with greater efficiency and
accuracy, and, more importantly, to expand the functional utility of the ECG. Such progress
could potentially transform current clinical monitoring and management strategies.9

Deep learning models developed through artificial intelligence algorithms serve as robust tools
that emulate the data-processing patterns of the human brain to facilitate informed decision-
making. In the past five years, deep learning has demonstrated exceptional promise in medical
applications, encompassing disease screening, diagnosis, and prognosis.10

For digital ECG data, deep learning algorithms can detect subtle changes in ECGs associated
with cardiac structural or functional abnormalities. Studies have shown that the application
of deep learning provides significant improvements in the interpretation of ECG data with
high efficiency and accuracy. Rapid algorithmic and computational advances are allowing
us to reconsider the role of deep learning in ECG analysis. Regarding digital ECG data, deep
learning algorithms are capable of detecting subtle changes in ECGs that may be indicative of
underlying cardiac structural or functional abnormalities. Empirical studies have shown that
the application of deep learning leads to significant improvements in the interpretation of
ECG data, providing enhancements in both efficiency and accuracy. Rapid advancements in
algorithmic and computational technologies are enabling a reevaluation of the role of deep
learning within the context of ECG analysis.11

ABBREVIATIONS
ANOVA	 Analysis of Variance
AUROC	 Area under the receiver
	 operating characteristic
	 curve
CE	 Conformité Européenne
CHF	 Congestive heart failure
CI	 Confidence intervals
CNN	 Convolutional neural
	 network
DLM	 Deep learning model
ECG	 Electrocardiogram
EF	 Ejection fraction
FDA	 Food and Drug
	 Administration
MCC	 Matthews Correlation
	 Coefficient
XAI	 Explainable Artificial
	 Intelligence

8Department of Cardiology, Antalya Training
and Research Hospital, Antalya, Türkiye
9Department of Cardiology, İzmir Economy
University Medical Point Hospital, İzmir,
Türkiye
10Department of Cardiology, İstanbul
Training and Research Hospital, İstanbul,
Türkiye
11Department of Cardiology, Gaziantep
University Faculty of Medicine, Gaziantep,
Türkiye
12Department of Cardiology, Private Akhisar
Medigün Hospital, Manisa, Türkiye
13Department of Cardiology, Çam and
Sakura Hospital, İstanbul, Türkiye
14Department of Cardiology, Koşuyolu Training
and Research Hospital, İstanbul, Türkiye
15Department of Cardiology, Kırşehir Training
and Research Hospital, Kırşehir, Türkiye
16Department of Cardiology, Isparta City
Hospital, Isparta, Türkiye
17Department of Cardiology, Akdeniz
University, Antalya, Türkiye

Corresponding author:
Ufuk İyigün
 druiyigun@hotmail.com

Received: June 11, 2025
Accepted: September 05, 2025

Cite this article as: İyigün U,
Kerkütlüoğlu M, Güneş H, et al. Detection
of Hypokalemia, Hyponatremia, and
Hyperkalemia in Heart Failure Patients
Using Artificial Intelligence Techniques
via Electrocardiography. Turk Kardiyol
Dern Ars. 2025;53(0):000–000.

DOI: 10.5543/tkda.2025.18598

 Copyright@Author(s)
Available online at archivestsc.com.
Content of this journal is licensed under a
Creative Commons Attribution –
NonCommercial-NoDerivatives 4.0
International License.

3

Turk Kardiyol Dern Ars 2025;53(0):000–000İyigün et al. Detection of Electrolyte Disorders with AI-ECG

Despite the promising performance exhibited by deep
learning methodologies, several challenges persist. The lack of
standardization in ECG data may present obstacles for subsequent
research initiatives, as there currently exists no unified ECG
input type or established data preprocessing protocol. While
the majority of studies have utilized 10-second, 12-lead ECGs
recorded in the supine position as input data, other studies have
opted for segmented ECGs.12

There is a lack of uniformity in how ECG data is prepared
prior to analysis, with preprocessing techniques differing
significantly between studies. This inconsistency complicates
reproducibility and may compromise the effectiveness of deep
learning applications. The accuracy of these models is highly
dependent on the integrity and volume of the input data,
yet ECG signals are often subject to considerable variability.
Many investigations utilize data from a single institution or
rely on open-access datasets, which may not reflect broader
population characteristics. The ECG recording process itself is
susceptible to numerous variables, such as device specifications,
technician skill, electrical interference, muscle activity,
electrode positioning and adherence, as well as individual
anatomical and demographic differences. While larger datasets
can reduce these sources of error, studies based on fewer than
100 subjects are particularly prone to overfitting, limiting their
clinical utility. Furthermore, imbalanced class distributions
remain a persistent challenge, often distorting the perceived
performance of machine learning algorithms.13

Individuals with congestive heart failure (CHF) often develop
disturbances in acid-base balance and electrolyte levels. These
imbalances arise from neurohumoral system activation and the
effects of commonly prescribed treatments such as diuretics. Such
abnormalities not only indicate the progression of CHF but are
also linked to reduced functional capacity and unfavorable long-
term outcomes. Frequently observed electrolyte issues include
low sodium (hyponatremia), low potassium (hypokalemia), and
elevated potassium levels (hyperkalemia).14

Hyponatremia can serve as an indicator of neurohormonal
activation and may reflect the severity of heart failure, yet it
can also be a side effect of its treatment. Diuretics are among
the most frequent contributors to hyponatremia in these
patients. While thiazide diuretics are most commonly linked to
this condition, non-thiazide medications such as furosemide,
spironolactone, and indapamide have also been associated with
sodium depletion. Numerous clinical studies have demonstrated
that hyponatremia correlates with poorer outcomes and reduced
survival rates in individuals with heart failure.15

Hypokalemia is frequently observed in patients with congestive
heart failure and serves as a strong, independent predictor of
mortality. It tends to be more severe in individuals with advanced
CHF, particularly those undergoing intensive diuretic treatment
and experiencing elevated activation of the renin-angiotensin
system. Low serum potassium levels often reflect elevated
neurohormonal activity and disease progression. Hypokalemia is
inversely correlated with plasma renin activity, serum potassium
concentration, and plasma norepinephrine levels. Increased
catecholamine release contributes to potassium depletion
and elevates the risk of arrhythmias. Both the prevalence of

ventricular ectopy and the incidence of sudden cardiac death
are closely linked to serum and total body potassium stores.
Notably, around half of all heart failure-related deaths occur
suddenly, likely due to arrhythmic events. Studies have found
that individuals who suffer from sudden cardiac death often have
lower myocardial potassium levels than controls, while survivors
frequently exhibit hypokalemia, likely resulting from intracellular
potassium shifts.16

Hyperkalemia can pose a serious, potentially life-threatening
condition, particularly in individuals with heart failure, chronic
kidney disease, or diabetes. The risk is further elevated
in patients receiving medications that affect the renin-
angiotensin-aldosterone system, including mineralocorticoid
receptor antagonists.17

In the heart failure patient group, electrolyte disorders, both
caused by the disease and due to treatment, may increase
morbidity and mortality. Therefore, early and easy recognition of
these disorders in this patient group may contribute to disease
management.

Materials and Methods

Study Design
This was a prospective multicenter study conducted across 17
hospitals. In our study, we developed a deep learning model
(DLM) using ECG to detect electrolyte imbalance in heart failure
patients and tested its performance in a multicenter setting.
Patients from 17 different centers were included. Heart failure
(ejection fraction [EF] ≤ 45%) patients whose blood electrolyte
values and ECG were obtained on the same day were included
in the study. The patients were divided into four groups: those
with normal electrolyte values, those with hypokalemia, those
with hyperkalemia, and those with hyponatremia. Patients who
developed electrolyte disorders due to medications used in heart
failure were included in the relevant group. The devices used in
different centers were Nihon Kohden and Mindray. All patients
were informed about the content of the study and provided
written consent. Our study was conducted in accordance with the
Declaration of Helsinki. Approvaş for this study was received from
Hatay Mustafa Kemal University Tayfur Ata Sökmen Faculty of
Medicine Clinical Research Ethics Committee (Approval Number:
2022/108, Date: 19.12.2022). Patient counts and pulse data are
presented in Table 1.

Two patients included in the study had multiple electrolyte
disturbances. These patients were excluded from the study in
order not to affect the results.

Table 1. Patient and beat distribution

Group Patients Beats Median (IQR)
beats/patient

Hyperkalemia 40 117 2 (2–3)

Hypokalemia 73 166 2 (2–2)

Hyponatremia 98 266 2 (2–3)

Normal electrolytes 230 722 3 (2–3)

Total 441 1271 –

IQR: Interquartile range.

4

Turk Kardiyol Dern Ars 2025;53(0):000–000 İyigün et al. Detection of Electrolyte Disorders with AI-ECG

Preprocessing
After grouping, ECGs were converted to grayscale format
(Figure 1A-B).

Afterwards, a line was drawn showing the baseline in order to
create a reference before digitizing the data (Figure 1C).

The background was removed using the threshold technique
(Figure 1D).

Contour detection was performed using the OpenCV library. The
aim of this process was to find the longest contour and eliminate

the others to identify the true waveform (Algorithm: Satoshi,
Suzuki and others. Topological structural analysis of digitized
binary images by border following. Computer Vision, Graphics,
and Image Processing, 30(1):32– 46, 1985).

Contour detection was again performed using the OpenCV
library, with the goal of finding the longest contour and
eliminating the others to obtain the true waveform (Figure 1E).

R-peak was detected using the NeuroKit2 library (https://joss.
theoj.org/papers/10.21105/joss.02621).

Figure 1. Preprocessing steps of ECG images for model
development. (A) Raw 12-lead ECG recording obtained from
clinical dataset. (B) Baseline alignment and noise reduction
applied to enhance signal clarity. (C) Grayscale conversion
and background suppression to isolate ECG waveforms. (D)
Normalization of image intensity with removal of redundant
metadata. (E) Segmentation into individual beat thumbnails
for training and analysis.

(A) (B)

(C)

(D)

(E)

5

Turk Kardiyol Dern Ars 2025;53(0):000–000İyigün et al. Detection of Electrolyte Disorders with AI-ECG

The signaling of a single heartbeat was captured and saved as
a CSV file (Figure 2).

Single beats were obtained from D2 leads of all ECGs. While
single beats were selected, beats considered as interference
were excluded from the evaluation with the approval of the
cardiologist. Since it is important for the data to be the same
size in order to be comparable, a padding process was applied
to all CSV files. Each CSV file was then tagged:

•	 Hyperkalemia: 1, Normal: 0

•	 Hypokalemia: 1, Normal: 0

•	 Hyponatremia: 1, Normal: 0.

The dataset was split at the patient level (70% training, 15%
validation, 15% test). To prevent data leakage, no patient
contributed beats to more than one subset. Group-aware
cross-validation (GroupKFold) keyed by patient ID was used.

Model Architecture
The complete Python code for model development, training,
and evaluation is provided in the Supplementary Material as
Supplementary Code 1 (cnn_models.py).

Results

This study was designed as a multicenter, prospective investigation
and included a total of 211 patients. The mean age was 56 years
(range: 21–94), with 48 female and 163 male participants. The
average left ventricular ejection fraction was 33%. Among the
cohort, 82 patients had a history of hypertension, 67 had diabetes
mellitus, and 54 had documented coronary artery disease.
Exclusion criteria included individuals under 18 years of age,
pregnant women, those with left or right bundle branch block
on baseline ECG, patients with atrial fibrillation, and individuals
with implanted cardiac pacemakers. These criteria were selected
to eliminate conditions that could alter the baseline ECG and
potentially compromise the performance of the proposed deep
learning model. For analysis, single-lead ECG recordings (lead
D2) were used after preprocessing.

A total of 266 single beats were obtained from the D2 lead in
the hyponatremia patient group. The number of single beats
obtained from the normal group was 722. When we applied
our proposed model, the accuracy rate was 83.33% in the
hyponatremia group.

Diagnosis of hyponatremia by ECG is challenging due to non-
specific ECG findings. Despite this, the model we created

achieved an Area Under the Receiver Operating Characteristic
curve (AUROC) of 95.62% and a recall of 93.94%, showing that
hyponatremia could be identified with acceptable precision. The
situation in the final validation set shows that caution should be
exercised to avoid overfitting with strong learning. This indicates
that future studies should be conducted with a larger dataset.
The lower Matthews Correlation Coefficient (MCC) score
(0.450) compared to potassium-based models underscores the
difficulty of this evaluation. Adding additional parameters may
help improve model performance. Although slightly lower in our
study, the model achieved an accuracy rate of 83.33%, which
can be considered acceptable given the limited number of beats
and the difficulty of detecting ECG changes associated with
hyponatremia.

In the hypokalemia group, 166 single beats were obtained from
lead D2. When we applied the proposed model to 722 beats
obtained from the normal patient group, we reached 95.33%
accuracy, with an AUROC of 92.83%, precision of 96.75%, and
recall of 97.54%.

The hypokalemia classifier achieved strong discrimination
across all metrics. Patients with hypokalemia often exhibit ST
depression, flattened T waves, and prominent U waves. The
Convolutional Neural Network (CNN) model used in our study
was successful in capturing these changes, with an AUROC
of 92.83%. The minimal variance across the validation sets
supports the consistency of these findings. Additionally, the
model exhibited excellent precision (96.75%) and recall

Figure 2. Single heartbeat was captured and saved as CSV file.

Table 2. Overall performance metrics

Group Accuracy
(95% CI)

AUROC
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Precision
(95% CI)

NPV
(95% CI)

F1-Score
(95% CI)

MCC
(95% CI)

Hyperkalemia 89.47%
(77.40–95.61)

0.94
(0.87–0.98)

88.00%
(71.37–95.68)

90.48%
(77.37–96.57)

88.00%
(71.05–96.00)

90.48%
(77.37–96.77)

0.88
(0.71–0.96)

0.79
(0.62–0.91)

Hypokalemia 86.84%
(74.01–94.01)

0.84
(0.76–0.91)

80.00%
(62.65–90.52)

89.47%
(76.52–95.64)

80.00%
(62.65–90.52)

89.47%
(76.52–95.64)

0.80
(0.63–0.91)

0.70
(0.54–0.82)

Hyponatremia 83.33%
(68.64–92.05)

0.91
(0.82–0.96)

85.71%
(62.41–95.11)

82.05%
(64.62–91.41)

85.71%
(62.41–95.11)

82.05%
(64.62–91.41)

0.86
(0.62–0.95)

0.67
(0.48–0.84)

AUROC, Area under the receiver operating characteristic curve; CI, Confidence interval; MCC, Matthews correlation coefficient; NPV, Negative predictive value; PPV,
Positive predictive value.

6

Turk Kardiyol Dern Ars 2025;53(0):000–000 İyigün et al. Detection of Electrolyte Disorders with AI-ECG

(97.54%), which are critical for clinical utility. The slightly
higher performance on the final validation set supports the
hypothesis that the network successfully generalizes the
learned representations beyond the training data. At the
same time, our model achieved an accuracy of 95.33%,
indicating consistent classification across the training and
validation sets.

In the hyperkalemia group, 117 single beats were obtained from
the D2 lead. When we applied the proposed model to 722 single
beats obtained from the normal patient group, we reached an
accuracy of 95.77%.

Overall performance metrics are shown in Table 2.

The full implementation code (cnn_models.py) is provided in the
Supplementary Material for reproducibility.

Comprehensive ECG Analysis and Explainable AI Using
Saliency Maps

Theoretical Framework of Explainable AI (XAI)
Explainable Artificial Intelligence (XAI) comprises methodologies
that make the decision-making processes of machine learning
models understandable and interpretable. In clinical settings, XAI
is crucial for the following reasons:

-	 Clinical Reliability: Allows physicians to validate model
decisions

-	 Legal Accountability: Meets transparency requirements
of regulatory bodies such as the U.S. Food and Drug
Administration (FDA) and Conformité Européenne (CE)

-	 Patient Safety: Minimizes misdiagnoses

-	 Scientific Validation: Ensures alignment between learned
model patterns and medical literature.

Algorithm and Methodology
Saliency pipeline: preprocessing (zero-padding removal,
normalization), gradient computation, saliency map generation,
critical segment detection.

Dataset Characteristics and Findings
Sample distribution: Hyperkalemia (Normal = 20, Pathologic
= 107), Hypokalemia (Normal = 25, Pathologic = 109),
Hyponatremia (Normal = 14, Pathologic = 24).

Performance metrics: AUROC = 0.92 ± 0.05, Accuracy = 0.89 ±
0.07, Sensitivity = 0.91 ± 0.06, Specificity = 0.87 ± 0.08 (Figure 3).

Confusion matrices for the classification of hyperkalemia,
hypokalemia, and hyponatremia are shown in Figure 4.

Temporal Localization Analysis and Clinical Interpretation
•	 Hyperkalemia: Salient in segments 60-100, temporal shift +20,

peak saliency 0.67; correlates with QRS widening and T-peak

Figure 3. ROc curves for electrolyte disorder models.

AUROC, Area under the receiver operating characteristic curve; ROC,
Receiver operating characteristic.

Figure 4. Confusion matrices for electrolyte disorder classification. Confusion matrices for hyperkalemia, hypokalemia, and
hyponatremia classification. Each cell shows both raw counts (n) and row percentages (%). Orange: Hyperkalemia, Red:
Hypokalemia, Magenta: Hyponatremia.

AUROC, Area under the receiver operating characteristic curve; CI, Confidence interval; MCC, Matthews correlation coefficient; PPV, Positive predictive value;
NPV, Negative predictive value.

7

Turk Kardiyol Dern Ars 2025;53(0):000–000İyigün et al. Detection of Electrolyte Disorders with AI-ECG

•	 Hypokalemia: Segments 50-90, shift +15, saliency 0.54;
correlates with QT prolongation and U-waves

•	 Hyponatremia: Segments 50-100, shift +17, saliency 0.61;
correlates with ST changes and arrhythmogenic substrate

Comparative Analysis and Shared Patterns
Electrolyte-specific temporal signatures identified:

-	 Hyperkalemia: +20 shift, 0.67 saliency

-	 Hypokalemia: +15 shift, 0.54 saliency

-	 Hyponatremia: +17 shift, 0.61 saliency

All conditions exhibit temporal shifts, higher saliency in
pathological groups, and variability in gradient magnitude.

Methodological Validity and Clinical Relevance
Pathophysiological validation was confirmed by matching
saliency regions with known ECG changes.

Statistical Significance: Temporal shifts (P < 0.001, Analysis of
Variance [ANOVA]), saliency differences (P < 0.01, Kruskal-
Wallis), inter-group variability (P < 0.05, Levene’s test).

This study confirms that CNN models with gradient-based
saliency maps can successfully identify temporal features specific
to electrolyte disorders. XAI adds transparency and enables real-
time decision support. The saliency analysis presented in this
report offers a robust framework for interpreting CNN-based ECG
classification in the context of electrolyte disorders. By aligning
salient temporal segments with known pathophysiological
markers—such as QRS widening in hyperkalemia, QT prolongation
and U-waves in hypokalemia, and ST changes in hyponatremia—
the model not only demonstrates high performance (AUROC
0.92, accuracy 0.89) but also clinical interpretability. This
alignment enhances trust in model outputs and supports their
potential application in real-time decision-making. Importantly,
the observed temporal shifts and saliency peaks were statistically
significant, confirming that the model’s focus corresponds
meaningfully to clinically relevant waveform segments. Figure 5
illustrates the saliency overlay, which visualizes the ECG segments
most influential in the model’s decision-making process.

Saliency focus regions are shown in Table 3.

Limitations
Although the results obtained in our study support meaningful
conclusions that electrolyte disorders can be detected from ECG
using artificial intelligence methods, it is important to repeat
these findings with larger datasets in order to evaluate their
applicability and achieve more effective results. In future studies,
models incorporating additional patient parameters may provide

more efficient results. Additionally, this study did not adopt two
suggested approaches—multi-beat input matrices and a single
multi-label classifier. These remain acknowledged limitations.
Future work will explore multi-beat input representations to
capture temporal dynamics across successive beats and multi-
label classification approaches to enable simultaneous detection
of multiple electrolyte disorders, once larger and more balanced
datasets become available.

In our study, it was planned to take ECG samples and blood
electrolyte measurements on the same day. Minimizing the
time between laboratory measurements and ECG may be
more appropriate to detect ECG changes that can occur due to
electrolyte disturbances.

Discussion

Analyzing ECG data via deep learning models has recently been
shown to be effective in detecting dyskalemia, a finding that
suggests significant potential for this technology within clinical
contexts.18

Our study focused on developing a DLM specifically for detecting
hypokalemia, hyperkalemia, and hyponatremia. The model was
trained using a comprehensive dataset of ECG samples acquired
from patients, employing advanced deep learning techniques.
Specifically, patients diagnosed with the aforementioned
conditions were systematically grouped and then compared with
carefully defined normal patient cohorts. The results showed
that our model achieved accuracy rates of 83.33% for the
hyponatremia group, 95.33% for the hyperkalemia group, and
95.77% for the hypokalemia group, underscoring the clinical
relevance of our approach.

In a related study, Lin et al.18 introduced ECG12Net, a deep
learning model designed to detect dyskalemias through
comprehensive ECG analysis. Using a training set of more than
50,000 ECGs and a sophisticated deep convolutional network to
identify numerous ECG features, ECG12Net demonstrated higher
performance than clinicians in detecting dyskalemias, specifically
showing sensitivity rates of 95.6% for severe hypokalemia and
84.5% for severe hyperkalemia.19 The results of our work are
generally consistent with these previous findings, reinforcing the
effectiveness of deep learning models.

Figure 5. The saliency overlay visualizes the ECG segments most influential in the model’s decision-making process.

Table 3. Saliency focus per class

Condition Primary ECG focus Clinical correlation
Hyperkalemia T-wave region Peaked T-waves

Hypokalemia T-U transition Flattened T, prominent U

Hyponatremia Post-QRS/diffuse Subtle, non-specific changes

8

Turk Kardiyol Dern Ars 2025;53(0):000–000 İyigün et al. Detection of Electrolyte Disorders with AI-ECG

While serum potassium concentration can be rapidly assessed in
hospital settings using venous blood tests, diagnosing hypokalemia
outside those settings remains a considerable problem, partly
because affected patients often do not exhibit clear symptoms.
Consequently, using ECGs to screen patients noninvasively for
hypokalemia could significantly improve early detection and, by
extension, patient care and outcomes. Furthermore, numerous
wearable devices for monitoring ECGs have emerged in recent
years, providing additional support in this area.12

The limitations of our study, specifically the sample size,
warrant further confirmatory and controlled investigations.
Still, our findings suggest that deep learning models can detect
subtle changes that may elude even experienced cardiologists.
This aligns with other studies in the literature, bolstering the
transformative potential of deep learning in ECG analysis.6

Although we applied our model to more data than the other
two electrolyte disorders (hypokalemia and hyperkalemia) in our
study, the accuracy rate in the hyponatremia group was 83.33%,
lower than in the other groups. One reason for this may be that
ECG findings due to hyponatremia are less obvious than in the
other two groups. To increase accuracy rates, studies involving
evaluation with larger datasets are needed.

Datasets created with patients who have pure electrolyte disorders
may produce more efficient results in detecting changes due to
these conditions. However, because most electrolyte disorders
coexist with other diseases and many medications are used in
these patient groups, ECG parameters may be affected. This may
cause the applied model to reach incorrect results. In our study,
the frequency of diabetes mellitus, hypertension, and coronary
artery disease was high, and the number of medications used
for these was also high. To reduce the effects that may arise
from this situation, future studies with similar groups in terms of
disease and drug use are needed.

One of the main problems in studies based on ECG and deep
learning models is that standardization has not yet been
achieved. It can be seen from publications in the literature that
models can be applied to data taken from different leads in
different studies.12 While some ECG studies are carried out on
raw data, in others, ECGs in formats such as JPEG and PDF are
used. Data received from different devices in different centers
can lead to a number of difficulties such as a more costly data
processing phase, longer processing times, and greater reliance
on human-dependent processes. In our study, the difference in
the number of centers and the types of devices used caused the
data processing phase to be longer.

In the future, applications that contribute to routine monitoring,
especially for patients at risk of electrolyte disorders, can be
developed for smartphones capable of taking photographs and
recording a single-lead ECG signal. This may accelerate with
advances in sensor technology and the resulting improvement
in the quality of data signals received from patients. Continuous
collection of individual changes and their use in personalized
medicine applications will open up broad horizons for the future.

On the other hand, as the success rate of evaluations using
photographic ECGs increases, application-based systems can
also be used as assistive tools for physicians and patients in

disadvantaged regions where cardiologists are not available or
laboratory services are inadequate.

These systems can further be integrated into remote monitoring
platforms, providing benefits such as more qualified treatment
and early detection of potentially life-threatening conditions in
disadvantaged groups at risk, such as heart failure patients.

This study demonstrates that computer vision-based AI models
can accurately detect diagnostic features on ECG images. To
facilitate the integration of this technology into routine clinical
practice, future research should aim to develop models capable
of generalizing across diverse ECG image formats and originating
from multiple sources, while encompassing a wider spectrum
of clinically relevant diagnoses. These models can be designed
to accommodate various ECG styles and layouts, enhancing
their applicability across settings. Furthermore, the underlying
algorithms may be adapted for innovative applications—such as
smartphone-based tools or smart health platforms—to enable the
detection of electrolyte imbalances directly from ECG photographs.

Future work will explore multi-beat input representations
to capture temporal dynamics across successive beats,
potentially enhancing the model’s sensitivity to subtle intra-
patient variations.

Conclusion

The proposed DLM exhibited strong performance in accurately
identifying electrolyte imbalances, underscoring its potential
value in clinical settings. These findings indicate that such a
model could be integrated into routine practice for the detection
and monitoring of electrolyte disturbances using ECG data,
offering a promising tool to enhance patient care and outcomes,
particularly in high-risk populations. Supporting this model with
further studies to ensure its compatibility with clinical practice
may increase the power and value.

Ethics Committee Approval: Ethics committee approval was obtained
from Hatay Mustafa Kemal University Tayfur Ata Sökmen Faculty
of Medicine Clinical Research Ethics Committee (Approval Number:
2022/108, Date: 19.12.2022).

Informed Consent: All patients were informed about the content of the
study and provided written consent.

Conflict of Interest: The authors have no conflicts of interest to declare.

Funding: The authors declared that this study received no financial support.

Use of AI for Writing Assistance: Samwell.ai was used for the literature
review and writing of this article.

Author Contributions: Concept – U.İ.; Design – U.İ., M.Kerkütlüoğlu,
H.G., F.K.; Supervision – U.İ.; Resource – U.İ., M.Kerkütlüoğlu, H.G., F.K.,
T.K., B.M., E.Y., A.Ü.K., M.D., A.Ö., M.Kaplan, S.Ç., M.K.Y., A.E., Ç.İ.D.,
N.S., T.E., M.Y., N.K.; Materials – U.İ., M.Kerkütlüoğlu, H.G., F.K., T.K.,
B.M., E.Y., A.Ü.K., M.D., A.Ö., M.Kaplan, S.Ç., M.K.Y., A.E., Ç.İ.D., N.S.,
T.E., M.Y., N.K.; Data Collection and/or Processing - U.İ., M.Kerkütlüoğlu,
H.G., F.K., T.K., B.M., E.Y., A.Ü.K., M.D., A.Ö., M.Kaplan, S.Ç., M.K.Y.,
A.E., Ç.İ.D., N.S., T.E., M.Y., N.K.; Analysis and/or Interpretation -
U.İ., M.Kerkütlüoğlu, H.G., F.K.; Supervision Literature Review – U.İ.,
M.Kerkütlüoğlu, H.G., F.K.; Supervision Writing – U.İ., M.Kerkütlüoğlu,
H.G., F.K.; Supervision Critical Review – U.İ.

Peer-review: Externally peer-reviewed.

9

Turk Kardiyol Dern Ars 2025;53(0):000–000İyigün et al. Detection of Electrolyte Disorders with AI-ECG

References
1.	 Rhoda KM, Porter MJ, Quintini C. Fluid and electrolyte

management: putting a plan in motion. JPEN J Parenter Enteral Nutr.
2011;35(6):675-685. [CrossRef]

2.	 Riggs JE. Neurologic manifestations of electrolyte disturbances.
Neurol Clin. 2002;20(1):227-239, vii. [CrossRef]

3.	 Klingkowski U, Kropshofer G, Crazzolara R, Schachner T, Cortina G.
Refractory hyperkalaemic cardiac arrest - What to do first: Treat
the reversible cause or initiate E-CPR? Resuscitation. 2019;142:81.
[CrossRef]

4.	 Arampatzis S, Funk GC, Leichtle AB, et al. Impact of diuretic
therapy-associated electrolyte disorders present on admission to
the emergency department: a cross-sectional analysis. BMC Med.
2013;11:83. [CrossRef]

5.	 El-Sherif N, Turitto G. Electrolyte disorders and arrhythmogenesis.
Cardiol J. 2011;18(3):233-245.

6.	 Kwon JM, Jung MS, Kim KH, et al. Artificial intelligence for detecting
electrolyte imbalance using electrocardiography. Ann Noninvasive
Electrocardiol. 2021;26(3):e12839. [CrossRef]

7.	 Noordam R, Young WJ, Salman R, et al. Effects of Calcium,
Magnesium, and Potassium Concentrations on Ventricular
Repolarization in Unselected Individuals. J Am Coll Cardiol.
2019;73(24):3118-3131. [CrossRef]

8.	 Attia ZI, Noseworthy PA, Lopez-Jimenez F, et al. An artificial
intelligence-enabled ECG algorithm for the identification of patients
with atrial fibrillation during sinus rhythm: a retrospective analysis of
outcome prediction. Lancet. 2019;394(10201):861-867. [CrossRef]

9.	 Attia ZI, DeSimone CV, Dillon JJ, et al. Novel Bloodless Potassium
Determination Using a Signal-Processed Single-Lead ECG. J Am
Heart Assoc. 2016;5(1):e002746. [CrossRef]

10.	 Lau ES, Di Achille P, Kopparapu K, et al. Deep Learning-Enabled
Assessment of Left Heart Structure and Function Predicts

Cardiovascular Outcomes. J Am Coll Cardiol. 2023;82(20):1936-
1948. [CrossRef]

11.	 Somani S, Russak AJ, Richter F, et al. Deep learning and the
electrocardiogram: review of the current state-of-the-art.
Europace. 2021;23(8):1179-1191. [CrossRef]

12.	 Lai C, Zhou S, Trayanova NA. Optimal ECG-lead selection increases
generalizability of deep learning on ECG abnormality classification.
Philos Trans A Math Phys Eng Sci. 2021;379(2212):20200258. [CrossRef]

13.	 Urso C, Brucculeri S, Caimi G. Acid-base and electrolyte abnormalities
in heart failure: pathophysiology and implications. Heart Fail Rev.
2015;20(4):493-503. [CrossRef]

14.	 Rodriguez M, Hernandez M, Cheungpasitporn W, et al. Hyponatremia
in Heart Failure: Pathogenesis and Management. Curr Cardiol Rev.
2019;15(4):252-261. [CrossRef]

15.	 Bielecka-Dabrowa A, Mikhailidis DP, Jones L, Rysz J, Aronow WS,
Banach M. The meaning of hypokalemia in heart failure. Int J
Cardiol. 2012;158(1):12-17. [CrossRef]

16.	 Sarwar CMS, Bhagat AA, Anker SD, Butler J. Role of Hyperkalemia in
Heart Failure and the Therapeutic Use of Potassium Binders. Handb
Exp Pharmacol. 2017;243:537-560. [CrossRef]

17.	 Galloway CD, Valys AV, Shreibati JB, et al. Development and
Validation of a Deep-Learning Model to Screen for Hyperkalemia
From the Electrocardiogram. JAMA Cardiol. 2019;4(5):428-436.
[CrossRef]

18.	 Lin CS, Lin C, Fang WH, et al. A Deep-Learning Algorithm
(ECG12Net) for Detecting Hypokalemia and Hyperkalemia by
Electrocardiography: Algorithm Development. JMIR Med Inform.
2020;8(3):e15931. [CrossRef]

19.	 Steinhubl SR, Waalen J, Edwards AM, et al. Effect of a Home-Based
Wearable Continuous ECG Monitoring Patch on Detection of
Undiagnosed Atrial Fibrillation: The mSToPS Randomized Clinical
Trial. JAMA. 2018;320(2):146-155. [CrossRef]

https://doi.org/10.1177/0148607111421913
https://doi.org/10.1016/S0733-8619(03)00060-4
https://doi.org/10.1016/j.resuscitation.2019.07.014
https://doi.org/10.1186/1741-7015-11-83
https://doi.org/10.1111/anec.12839
https://www.jacc.org/doi/10.1016/j.jacc.2019.03.519
https://doi.org/10.1016/S0140-6736(19)31721-0
https://doi.org/10.1161/JAHA.115.002746
https://doi.org/10.1016/j.jacc.2023.09.800
https://doi.org/10.1093/europace/euaa377
https://doi.org/10.1098/rsta.2020.0258
https://doi.org/10.1007/s10741-015-9482-y
https://doi.org/10.2174/1573403X15666190306111812
https://doi.org/10.1016/j.ijcard.2011.06.121
https://doi.org/10.1007/164_2017_25
https://doi.org/10.1001/jamacardio.2019.0640
https://doi.org/10.2196/15931
https://doi.org/10.1001/jama.2018.8102

-*- coding: utf-8 -*-
"""
Complete CNN Classification with Output Management
Fixed version with proper indentation
"""

import tensorflow as tf
from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense, Dropout
from tensorflow.keras import Sequential
from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping
from sklearn.model_selection import StratifiedKFold
import random
import numpy as np
import os
import sys
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.metrics import (roc_curve, roc_auc_score, confusion_matrix,
 precision_score, recall_score, f1_score,
 matthews_corrcoef, precision_recall_curve,
 average_precision_score)
import seaborn as sns
import warnings
from datetime import datetime
import json
warnings.filterwarnings('ignore')

Set random seeds
np.random.seed(42)
tf.random.set_seed(42)
random.seed(42)

Global variables
OUTPUT_DIR = None
LOG_FILE = None
CURRENT_TIMESTAMP = None

def setup_output_directory():
 global OUTPUT_DIR, LOG_FILE, CURRENT_TIMESTAMP
 CURRENT_TIMESTAMP = datetime.now().strftime("%Y%m%d_%H%M%S")
 OUTPUT_DIR = f"./output_{CURRENT_TIMESTAMP}"
 os.makedirs(OUTPUT_DIR, exist_ok=True)
 os.makedirs(f"{OUTPUT_DIR}/plots", exist_ok=True)
 os.makedirs(f"{OUTPUT_DIR}/models", exist_ok=True)
 os.makedirs(f"{OUTPUT_DIR}/reports", exist_ok=True)
 LOG_FILE = f"{OUTPUT_DIR}/console_output.txt"
 print(f"📁 Output directory created: {OUTPUT_DIR}")
 log_message(f"CNN Classification System - Output Log")
 log_message(f"Timestamp: {CURRENT_TIMESTAMP}")
 log_message("="*80)
 return OUTPUT_DIR

def log_message(message, also_print=True):
 global LOG_FILE
 if LOG_FILE:
 with open(LOG_FILE, 'a', encoding='utf-8') as f:
 f.write(message + '\n')
 if also_print:
 print(message)

def save_plot(fig, filename, title=""):
 global OUTPUT_DIR
 if OUTPUT_DIR:
 filepath = f"{OUTPUT_DIR}/plots/{filename}"
 fig.savefig(filepath, dpi=300, bbox_inches='tight', facecolor='white', edgecolor='none')
 log_message(f"📊 Plot saved: {filepath}", also_print=False)
 return filepath
 return None

def save_results_summary(results_dict, filename):
 global OUTPUT_DIR
 if OUTPUT_DIR:
 # Convert numpy types to Python native types for JSON serialization
 def convert_numpy_types(obj):
 if isinstance(obj, dict):
 return {key: convert_numpy_types(value) for key, value in obj.items()}
 elif isinstance(obj, list):
 return [convert_numpy_types(item) for item in obj]
 elif isinstance(obj, np.integer):
 return int(obj)
 elif isinstance(obj, np.floating):
 return float(obj)
 elif isinstance(obj, np.ndarray):
 return obj.tolist()
 else:
 return obj

 # Convert the results dictionary
 json_safe_dict = convert_numpy_types(results_dict)

 json_file = f"{OUTPUT_DIR}/reports/{filename}.json"
 with open(json_file, 'w', encoding='utf-8') as f:
 json.dump(json_safe_dict, f, indent=4, ensure_ascii=False)
 txt_file = f"{OUTPUT_DIR}/reports/{filename}.txt"
 with open(txt_file, 'w', encoding='utf-8') as f:
 f.write(f"CNN Classification Results - {CURRENT_TIMESTAMP}\n")
 f.write("="*80 + "\n\n")
 def write_dict(d, indent=0):
 for key, value in d.items():
 if isinstance(value, dict):
 f.write(" " * indent + f"{key}:\n")
 write_dict(value, indent + 1)
 elif isinstance(value, list):
 f.write(" " * indent + f"{key}: {value}\n")

 elif isinstance(value, (float, np.floating)):
 f.write(" " * indent + f"{key}: {float(value):.4f}\n")
 else:
 f.write(" " * indent + f"{key}: {value}\n")
 write_dict(json_safe_dict)
 log_message(f"💾 Results saved: {json_file} and {txt_file}", also_print=False)
 return json_file, txt_file
 return None, None

def load_data(data_dir, train_ratio=0.7, test_ratio=0.15, val_ratio=0.15):
 if abs(train_ratio + test_ratio + val_ratio - 1.0) > 1e-6:
 raise ValueError("Oranların toplamı 1.0 olmalı!")

 all_data = []
 all_labels = []

 for folder in os.listdir(data_dir):
 folder_path = os.path.join(data_dir, folder)
 if not os.path.isdir(folder_path):
 print(f"Skipping file: {folder}")
 continue

 for file in os.listdir(folder_path):
 if not file.endswith('.csv'):
 continue
 file_path = os.path.join(folder_path, file)
 try:
 data = np.loadtxt(file_path, delimiter=',', skiprows=1, usecols=[1])
 all_data.append(data)
 if folder == 'groupA':
 all_labels.append(0)
 elif folder == 'groupB':
 all_labels.append(1)
 else:
 print(f"Unknown folder: {folder}")
 except Exception as e:
 print(f"Error reading file {file_path}: {e}")
 continue

 combined = list(zip(all_data, all_labels))
 random.shuffle(combined)
 all_data, all_labels = zip(*combined)

 total_samples = len(all_data)
 train_end = int(total_samples * train_ratio)
 test_end = train_end + int(total_samples * test_ratio)

 train_data = all_data[:train_end]
 train_labels = all_labels[:train_end]
 test_data = all_data[train_end:test_end]
 test_labels = all_labels[train_end:test_end]
 val_data = all_data[test_end:]

 val_labels = all_labels[test_end:]

 padded_train_data = pad_zeros(train_data, target_length=128)
 padded_test_data = pad_zeros(test_data, target_length=128)
 padded_val_data = pad_zeros(val_data, target_length=128)

 padded_train_data = np.array(padded_train_data)
 padded_test_data = np.array(padded_test_data)
 padded_val_data = np.array(padded_val_data)

 print(f"Dataset split:")
 print(f" Total samples: {total_samples}")
 print(f" Train: {len(train_data)} samples ({len(train_data)/total_samples*100:.1f}%)")
 print(f" Test: {len(test_data)} samples ({len(test_data)/total_samples*100:.1f}%)")
 print(f" Validation: {len(val_data)} samples ({len(val_data)/total_samples*100:.1f}%)")

 log_message(f"Dataset split:")
 log_message(f" Total samples: {total_samples}")
 log_message(f" Train: {len(train_data)} samples ({len(train_data)/total_samples*100:.1f}%)")
 log_message(f" Test: {len(test_data)} samples ({len(test_data)/total_samples*100:.1f}%)")
 log_message(f" Validation: {len(val_data)} samples ({len(val_data)/total_samples*100:.1f}%)")

 padded_train_data = padded_train_data.reshape(-1, 128, 1)
 padded_test_data = padded_test_data.reshape(-1, 128, 1)
 padded_val_data = padded_val_data.reshape(-1, 128, 1)

 train_labels = np.array(train_labels)
 test_labels = np.array(test_labels)
 val_labels = np.array(val_labels)

 return (padded_train_data, train_labels, padded_test_data, test_labels, padded_val_data,
val_labels)

def pad_zeros(data, target_length=128):
 padded_data = []
 for file in data:
 current_length = len(file)
 if current_length == target_length:
 padded_data.append(file)
 elif current_length < target_length:
 padded_file = np.zeros(target_length)
 padded_file[:current_length] = file
 padded_data.append(padded_file)
 else:
 indices = np.linspace(0, current_length-1, target_length, dtype=int)
 downsampled_file = file[indices]
 padded_data.append(downsampled_file)
 return padded_data

def create_model(complexity='medium', learning_rate=0.0001):
 model = Sequential()

 if complexity == 'simple':
 model.add(Conv1D(filters=16, kernel_size=3, strides=2, activation='relu', input_shape=(128,
1)))
 model.add(MaxPooling1D(pool_size=2))
 model.add(Dropout(0.2))
 model.add(Flatten())
 model.add(Dense(128, activation='relu'))
 model.add(Dense(1, activation='sigmoid'))
 elif complexity == 'medium':
 model.add(Conv1D(filters=32, kernel_size=5, activation='relu', input_shape=(128, 1)))
 model.add(Conv1D(filters=32, kernel_size=3, activation='relu'))
 model.add(MaxPooling1D(pool_size=2))
 model.add(Dropout(0.3))
 model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))
 model.add(MaxPooling1D(pool_size=2))
 model.add(Dropout(0.3))
 model.add(Flatten())
 model.add(Dense(256, activation='relu'))
 model.add(Dropout(0.4))
 model.add(Dense(128, activation='relu'))
 model.add(Dropout(0.4))
 model.add(Dense(1, activation='sigmoid'))
 elif complexity == 'complex':
 model.add(Conv1D(filters=64, kernel_size=7, activation='relu', input_shape=(128, 1)))
 model.add(Conv1D(filters=64, kernel_size=5, activation='relu'))
 model.add(MaxPooling1D(pool_size=2))
 model.add(Dropout(0.3))
 model.add(Conv1D(filters=128, kernel_size=3, activation='relu'))
 model.add(Conv1D(filters=128, kernel_size=3, activation='relu'))
 model.add(MaxPooling1D(pool_size=2))
 model.add(Dropout(0.4))
 model.add(Conv1D(filters=256, kernel_size=3, activation='relu'))
 model.add(MaxPooling1D(pool_size=2))
 model.add(Dropout(0.4))
 model.add(Flatten())
 model.add(Dense(512, activation='relu'))
 model.add(Dropout(0.5))
 model.add(Dense(256, activation='relu'))
 model.add(Dropout(0.5))
 model.add(Dense(128, activation='relu'))
 model.add(Dropout(0.5))
 model.add(Dense(1, activation='sigmoid'))

 optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
 model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy'])
 return model

def train_model(model, train_data, train_labels, test_data, test_labels, epochs=200):
 train_data = np.array(train_data, dtype=np.float32)
 train_labels = np.array(train_labels, dtype=np.float32)
 test_data = np.array(test_data, dtype=np.float32)
 test_labels = np.array(test_labels, dtype=np.float32)

 print(f"Training data shape: {train_data.shape}")
 print(f"Training labels shape: {train_labels.shape}")
 log_message(f"Training started - Max epochs: {epochs}")
 log_message(f"Training data shape: {train_data.shape}")

 reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.3, patience=10, min_lr=1e-8,
verbose=1, cooldown=5)
 early_stop = EarlyStopping(monitor='val_loss', patience=30, restore_best_weights=True,
verbose=1, min_delta=0.0001)

 history = model.fit(train_data, train_labels, validation_data=(test_data, test_labels),
epochs=epochs, batch_size=8, callbacks=[reduce_lr, early_stop], verbose=1)
 return history

def evaluate_validation_set(model, val_data, val_labels, dataset_name="Validation"):
 val_data = np.array(val_data, dtype=np.float32)
 val_labels = np.array(val_labels, dtype=np.float32)

 print(f"\n{'='*60}")
 print(f"{dataset_name.upper()} SET EVALUATION")
 print(f"{'='*60}")

 log_message(f"\n{'='*60}")
 log_message(f"{dataset_name.upper()} SET EVALUATION")
 log_message(f"{'='*60}")

 val_loss, val_accuracy = model.evaluate(val_data, val_labels, verbose=0)
 print(f'{dataset_name} Loss: {val_loss:.4f}')
 print(f'{dataset_name} Accuracy: {val_accuracy:.4f}')
 log_message(f'{dataset_name} Loss: {val_loss:.4f}')
 log_message(f'{dataset_name} Accuracy: {val_accuracy:.4f}')

 y_pred_proba = model.predict(val_data, verbose=0).flatten()
 y_pred_binary = (y_pred_proba > 0.5).astype(int)

 fpr, tpr, thresholds = roc_curve(val_labels, y_pred_proba)
 auroc = roc_auc_score(val_labels, y_pred_proba)
 precision = precision_score(val_labels, y_pred_binary)
 recall = recall_score(val_labels, y_pred_binary)
 f1 = f1_score(val_labels, y_pred_binary)
 mcc = matthews_corrcoef(val_labels, y_pred_binary)

 tn, fp, fn, tp = confusion_matrix(val_labels, y_pred_binary).ravel()
 specificity = tn / (tn + fp)
 ppv = tp / (tp + fp) if (tp + fp) > 0 else 0
 npv = tn / (tn + fn) if (tn + fn) > 0 else 0

 print(f'\n{dataset_name} Performance Metrics:')
 print(f' AUROC Score: {auroc:.4f}')
 print(f' Accuracy: {val_accuracy:.4f}')
 print(f' Precision: {precision:.4f}')

 print(f' Recall: {recall:.4f}')
 print(f' Specificity: {specificity:.4f}')
 print(f' F1-Score: {f1:.4f}')
 print(f' MCC: {mcc:.4f}')

 log_message(f'\n{dataset_name} Performance Metrics:')
 log_message(f' AUROC Score: {auroc:.4f}')
 log_message(f' Accuracy: {val_accuracy:.4f}')
 log_message(f' Precision: {precision:.4f}')
 log_message(f' Recall: {recall:.4f}')
 log_message(f' F1-Score: {f1:.4f}')

 optimal_idx = np.argmax(tpr - fpr)
 optimal_threshold = thresholds[optimal_idx]

 # Create comprehensive plot
 plt.figure(figsize=(15, 10))

 # ROC Curve
 plt.subplot(2, 3, 1)
 plt.plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC (AUROC = {auroc:.4f})')
 plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
 plt.xlabel('False Positive Rate')
 plt.ylabel('True Positive Rate')
 plt.title(f'{dataset_name} ROC Curve')
 plt.legend()
 plt.grid(True)

 # Confusion Matrix
 plt.subplot(2, 3, 2)
 cm = confusion_matrix(val_labels, y_pred_binary)
 sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['Group A', 'Group B'],
yticklabels=['Group A', 'Group B'])
 plt.title(f'{dataset_name} Confusion Matrix')
 plt.xlabel('Predicted')
 plt.ylabel('Actual')

 # Metrics Bar Chart
 plt.subplot(2, 3, 3)
 metrics_names = ['Accuracy', 'Precision', 'Recall', 'F1-Score']
 metrics_values = [val_accuracy, precision, recall, f1]
 plt.bar(metrics_names, metrics_values, color=['skyblue', 'lightgreen', 'lightcoral', 'lightpink'])
 plt.ylim(0, 1)
 plt.title(f'{dataset_name} Metrics')
 plt.xticks(rotation=45)
 for i, v in enumerate(metrics_values):
 plt.text(i, v + 0.01, f'{v:.3f}', ha='center')

 # Probability Distribution
 plt.subplot(2, 3, 4)
 plt.hist(y_pred_proba[val_labels == 0], bins=20, alpha=0.7, label='Group A', color='blue')
 plt.hist(y_pred_proba[val_labels == 1], bins=20, alpha=0.7, label='Group B', color='red')

 plt.axvline(x=0.5, color='black', linestyle='--', label='Threshold (0.5)')
 plt.xlabel('Prediction Probability')
 plt.ylabel('Frequency')
 plt.title('Probability Distribution')
 plt.legend()

 # Precision-Recall Curve
 plt.subplot(2, 3, 5)
 precision_curve, recall_curve, _ = precision_recall_curve(val_labels, y_pred_proba)
 avg_precision = average_precision_score(val_labels, y_pred_proba)
 plt.plot(recall_curve, precision_curve, color='purple', lw=2, label=f'AP = {avg_precision:.4f}')
 plt.xlabel('Recall')
 plt.ylabel('Precision')
 plt.title('Precision-Recall Curve')
 plt.legend()
 plt.grid(True)

 # Error Analysis
 plt.subplot(2, 3, 6)
 error_types = ['TP', 'TN', 'FP', 'FN']
 error_counts = [tp, tn, fp, fn]
 colors = ['green', 'lightgreen', 'orange', 'red']
 plt.pie(error_counts, labels=error_types, colors=colors, autopct='%1.1f%%')
 plt.title('Prediction Distribution')

 plt.tight_layout()
 fig = plt.gcf()
 save_plot(fig, f"{dataset_name.lower()}_analysis.png")
 plt.show()

 # Save results
 results = {
 'loss': float(val_loss),
 'accuracy': float(val_accuracy),
 'auroc': float(auroc),
 'precision': float(precision),
 'recall': float(recall),
 'specificity': float(specificity),
 'f1_score': float(f1),
 'mcc': float(mcc),
 'ppv': float(ppv),
 'npv': float(npv),
 'optimal_threshold': float(optimal_threshold),
 'confusion_matrix': {'tp': int(tp), 'tn': int(tn), 'fp': int(fp), 'fn': int(fn)}
 }

 save_results_summary(results, f"{dataset_name.lower()}_results")
 return results, y_pred_proba, y_pred_binary

def perform_kfold_validation(all_data, all_labels, model_complexity='medium',
learning_rate=0.0001, k_folds=5, epochs=200):
 print(f"\n🔄 Starting {k_folds}-Fold Cross Validation...")

 log_message(f"\n🔄 Starting {k_folds}-Fold Cross Validation...")

 skf = StratifiedKFold(n_splits=k_folds, shuffle=True, random_state=42)

 fold_results = {'fold': [], 'accuracy': [], 'auroc': [], 'precision': [], 'recall': [], 'f1_score': [], 'mcc': [],
'epochs_trained': []}
 fold_models = []
 fold_histories = [] # Store training histories

 for fold, (train_idx, val_idx) in enumerate(skf.split(all_data, all_labels), 1):
 print(f"\n📁 FOLD {fold}/{k_folds}")
 log_message(f"\n📁 FOLD {fold}/{k_folds}")

 X_train_fold = all_data[train_idx]
 y_train_fold = all_labels[train_idx]
 X_val_fold = all_data[val_idx]
 y_val_fold = all_labels[val_idx]

 print(f"Train samples: {len(X_train_fold)}")
 print(f"Validation samples: {len(X_val_fold)}")

 model = create_model(complexity=model_complexity, learning_rate=learning_rate)

 # Train model for fold
 X_train_fold = np.array(X_train_fold, dtype=np.float32)
 y_train_fold = np.array(y_train_fold, dtype=np.float32)
 X_val_fold = np.array(X_val_fold, dtype=np.float32)
 y_val_fold = np.array(y_val_fold, dtype=np.float32)

 reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.3, patience=8, min_lr=1e-8,
verbose=0)
 early_stop = EarlyStopping(monitor='val_loss', patience=25, restore_best_weights=True,
verbose=0)

 history = model.fit(X_train_fold, y_train_fold, validation_data=(X_val_fold, y_val_fold),
epochs=epochs, batch_size=8, callbacks=[reduce_lr, early_stop], verbose=0)

 # Store history for later plotting
 fold_histories.append(history)

 # Evaluate fold
 val_loss, val_accuracy = model.evaluate(X_val_fold, y_val_fold, verbose=0)
 y_pred_proba = model.predict(X_val_fold, verbose=0).flatten()
 y_pred_binary = (y_pred_proba > 0.5).astype(int)

 auroc = roc_auc_score(y_val_fold, y_pred_proba)
 precision = precision_score(y_val_fold, y_pred_binary)
 recall = recall_score(y_val_fold, y_pred_binary)
 f1 = f1_score(y_val_fold, y_pred_binary)
 mcc = matthews_corrcoef(y_val_fold, y_pred_binary)

 fold_results['fold'].append(fold)

 fold_results['accuracy'].append(float(val_accuracy))
 fold_results['auroc'].append(float(auroc))
 fold_results['precision'].append(float(precision))
 fold_results['recall'].append(float(recall))
 fold_results['f1_score'].append(float(f1))
 fold_results['mcc'].append(float(mcc))
 fold_results['epochs_trained'].append(int(len(history.history['loss'])))
 fold_models.append(model)

 print(f"✅ Fold {fold} - Accuracy: {val_accuracy:.4f}, AUROC: {auroc:.4f}")
 log_message(f"✅ Fold {fold} - Accuracy: {val_accuracy:.4f}, AUROC: {auroc:.4f}")

 # Plot K-fold training histories
 plot_kfold_training_histories(fold_histories, fold_results)

 # Print summary
 print(f"\n📊 K-FOLD RESULTS SUMMARY")
 log_message(f"\n📊 K-FOLD RESULTS SUMMARY")
 log_message("="*50)

 metrics = ['accuracy', 'auroc', 'precision', 'recall', 'f1_score', 'mcc']
 summary_stats = {}

 for metric in metrics:
 values = fold_results[metric]
 mean_val = np.mean(values)
 std_val = np.std(values)
 summary_line = f"{metric.upper()}: {mean_val:.4f} ± {std_val:.4f}"
 print(summary_line)
 log_message(summary_line)

 # Store for later use
 summary_stats[metric] = {
 'mean': float(mean_val),
 'std': float(std_val),
 'values': [float(v) for v in values]
 }

 # Create comprehensive K-fold summary
 kfold_summary = {
 'timestamp': CURRENT_TIMESTAMP,
 'k_folds': k_folds,
 'model_complexity': model_complexity,
 'learning_rate': learning_rate,
 'max_epochs': epochs,
 'total_samples_used': len(all_data),
 'fold_details': {
 'individual_results': fold_results,
 'summary_statistics': summary_stats
 },
 'best_fold': {
 'fold_number': int(np.argmax(fold_results['auroc']) + 1),

 'best_auroc': float(np.max(fold_results['auroc'])),
 'best_accuracy': float(fold_results['accuracy'][np.argmax(fold_results['auroc'])]),
 'best_f1_score': float(fold_results['f1_score'][np.argmax(fold_results['auroc'])])
 }
 }

 # Save K-fold results
 save_results_summary(kfold_summary, "kfold_detailed_results")

 return fold_results, fold_models

def plot_kfold_training_histories(fold_histories, fold_results):
 """
 K-fold training geçmişlerini görselleştirir
 """
 print("\n📈 Plotting K-fold training histories...")
 log_message("\n📈 Plotting K-fold training histories...")

 plt.figure(figsize=(20, 12))

 # 1. Training Loss for all folds
 plt.subplot(2, 4, 1)
 for i, history in enumerate(fold_histories):
 plt.plot(history.history['loss'], alpha=0.7, label=f'Fold {i+1}', linewidth=2)
 plt.title('Training Loss Across Folds')
 plt.xlabel('Epoch')
 plt.ylabel('Loss')
 plt.legend()
 plt.grid(True, alpha=0.3)

 # 2. Validation Loss for all folds
 plt.subplot(2, 4, 2)
 for i, history in enumerate(fold_histories):
 plt.plot(history.history['val_loss'], alpha=0.7, label=f'Fold {i+1}', linewidth=2)
 plt.title('Validation Loss Across Folds')
 plt.xlabel('Epoch')
 plt.ylabel('Loss')
 plt.legend()
 plt.grid(True, alpha=0.3)

 # 3. Training Accuracy for all folds
 plt.subplot(2, 4, 3)
 for i, history in enumerate(fold_histories):
 plt.plot(history.history['accuracy'], alpha=0.7, label=f'Fold {i+1}', linewidth=2)
 plt.title('Training Accuracy Across Folds')
 plt.xlabel('Epoch')
 plt.ylabel('Accuracy')
 plt.legend()
 plt.grid(True, alpha=0.3)

 # 4. Validation Accuracy for all folds
 plt.subplot(2, 4, 4)

 for i, history in enumerate(fold_histories):
 plt.plot(history.history['val_accuracy'], alpha=0.7, label=f'Fold {i+1}', linewidth=2)
 plt.title('Validation Accuracy Across Folds')
 plt.xlabel('Epoch')
 plt.ylabel('Accuracy')
 plt.legend()
 plt.grid(True, alpha=0.3)

 # 5. Epochs trained per fold
 plt.subplot(2, 4, 5)
 folds = fold_results['fold']
 epochs_trained = fold_results['epochs_trained']
 colors = plt.cm.Set3(np.linspace(0, 1, len(folds)))
 bars = plt.bar(folds, epochs_trained, color=colors, alpha=0.8)
 plt.title('Epochs Trained per Fold')
 plt.xlabel('Fold')
 plt.ylabel('Epochs')
 plt.grid(True, alpha=0.3)
 # Add value labels on bars
 for bar, epochs in zip(bars, epochs_trained):
 plt.text(bar.get_x() + bar.get_width()/2, bar.get_height() + 0.5,
 f'{epochs}', ha='center', va='bottom', fontweight='bold')

 # 6. Performance metrics across folds
 plt.subplot(2, 4, 6)
 folds = fold_results['fold']
 plt.plot(folds, fold_results['accuracy'], 'o-', label='Accuracy', linewidth=2, markersize=8)
 plt.plot(folds, fold_results['auroc'], 's-', label='AUROC', linewidth=2, markersize=8)
 plt.plot(folds, fold_results['f1_score'], '^-', label='F1-Score', linewidth=2, markersize=8)
 plt.title('Performance Metrics Across Folds')
 plt.xlabel('Fold')
 plt.ylabel('Score')
 plt.legend()
 plt.grid(True, alpha=0.3)
 plt.ylim(0.5, 1.0)

 # 7. Average training curves
 plt.subplot(2, 4, 7)
 # Calculate average training curves
 max_epochs = max(len(h.history['loss']) for h in fold_histories)
 avg_train_loss = []
 avg_val_loss = []

 for epoch in range(max_epochs):
 epoch_train_losses = []
 epoch_val_losses = []
 for history in fold_histories:
 if epoch < len(history.history['loss']):
 epoch_train_losses.append(history.history['loss'][epoch])
 epoch_val_losses.append(history.history['val_loss'][epoch])

 if epoch_train_losses:

 avg_train_loss.append(np.mean(epoch_train_losses))
 avg_val_loss.append(np.mean(epoch_val_losses))

 plt.plot(avg_train_loss, label='Average Training Loss', linewidth=3, color='blue')
 plt.plot(avg_val_loss, label='Average Validation Loss', linewidth=3, color='red')
 plt.title('Average Loss Curves')
 plt.xlabel('Epoch')
 plt.ylabel('Loss')
 plt.legend()
 plt.grid(True, alpha=0.3)

 # 8. Best fold detailed training curve
 plt.subplot(2, 4, 8)
 best_fold_idx = np.argmax(fold_results['auroc'])
 best_history = fold_histories[best_fold_idx]

 plt.plot(best_history.history['loss'], label='Training Loss', linewidth=2, color='blue')
 plt.plot(best_history.history['val_loss'], label='Validation Loss', linewidth=2, color='red')
 plt.plot(best_history.history['accuracy'], label='Training Accuracy', linewidth=2, color='green',
linestyle='--')
 plt.plot(best_history.history['val_accuracy'], label='Validation Accuracy', linewidth=2,
color='orange', linestyle='--')
 plt.title(f'Best Fold ({best_fold_idx + 1}) Training Curves')
 plt.xlabel('Epoch')
 plt.ylabel('Loss / Accuracy')
 plt.legend()
 plt.grid(True, alpha=0.3)

 plt.tight_layout()

 # Save the plot
 fig = plt.gcf()
 save_plot(fig, "kfold_training_histories.png", "K-Fold Training Histories")

 plt.show()

 # Log some statistics about training
 avg_epochs = np.mean(fold_results['epochs_trained'])
 min_epochs = np.min(fold_results['epochs_trained'])
 max_epochs = np.max(fold_results['epochs_trained'])

 print(f"\n📊 Training Statistics:")
 print(f" Average epochs trained: {avg_epochs:.1f}")
 print(f" Min epochs: {min_epochs}")
 print(f" Max epochs: {max_epochs}")
 print(f" Best fold: {best_fold_idx + 1} (AUROC: {fold_results['auroc'][best_fold_idx]:.4f})")

 log_message(f"\n📊 Training Statistics:")
 log_message(f" Average epochs trained: {avg_epochs:.1f}")
 log_message(f" Min epochs: {min_epochs}")
 log_message(f" Max epochs: {max_epochs}")

 log_message(f" Best fold: {best_fold_idx + 1} (AUROC:
{fold_results['auroc'][best_fold_idx]:.4f})")

def plot_single_training_history(history):
 """
 Tek model eğitim geçmişini görselleştirir
 """
 print("\n📈 Plotting training history...")
 log_message("\n📈 Plotting training history...")

 plt.figure(figsize=(12, 4))

 plt.subplot(1, 2, 1)
 plt.plot(history.history['loss'], label='Training Loss', linewidth=2)
 plt.plot(history.history['val_loss'], label='Validation Loss', linewidth=2)
 plt.title('Model Loss')
 plt.xlabel('Epoch')
 plt.ylabel('Loss')
 plt.legend()
 plt.grid(True)

 plt.subplot(1, 2, 2)
 plt.plot(history.history['accuracy'], label='Training Accuracy', linewidth=2)
 plt.plot(history.history['val_accuracy'], label='Validation Accuracy', linewidth=2)
 plt.title('Model Accuracy')
 plt.xlabel('Epoch')
 plt.ylabel('Accuracy')
 plt.legend()
 plt.grid(True)

 plt.tight_layout()

 # Save training history plot
 fig = plt.gcf()
 save_plot(fig, "single_model_training_history.png", "Single Model Training History")

 plt.show()

 # Log training statistics
 final_train_loss = history.history['loss'][-1]
 final_val_loss = history.history['val_loss'][-1]
 final_train_acc = history.history['accuracy'][-1]
 final_val_acc = history.history['val_accuracy'][-1]
 epochs_trained = len(history.history['loss'])

 print(f"\n📊 Training Statistics:")
 print(f" Epochs trained: {epochs_trained}")
 print(f" Final training loss: {final_train_loss:.4f}")
 print(f" Final validation loss: {final_val_loss:.4f}")
 print(f" Final training accuracy: {final_train_acc:.4f}")
 print(f" Final validation accuracy: {final_val_acc:.4f}")

 log_message(f"\n📊 Training Statistics:")
 log_message(f" Epochs trained: {epochs_trained}")
 log_message(f" Final training loss: {final_train_loss:.4f}")
 log_message(f" Final validation loss: {final_val_loss:.4f}")
 log_message(f" Final training accuracy: {final_train_acc:.4f}")
 log_message(f" Final validation accuracy: {final_val_acc:.4f}")

if __name__ == '__main__':
 setup_output_directory()

 data_dir = './data'

 print("🚀 CNN Classification System Starting...")
 log_message("🚀 CNN Classification System Starting...")

 try:
 train_data, train_labels, test_data, test_labels, val_data, val_labels = load_data(data_dir)
 except Exception as e:
 error_msg = f"❌ Error loading data: {e}"
 print(error_msg)
 log_message(error_msg)
 sys.exit(1)

 # Configuration
 model_complexity = 'medium'
 learning_rate = 0.0001
 max_epochs = 200
 use_kfold = True
 k_folds = 5

 print(f"\n⚙ Configuration:")
 print(f" Model: {model_complexity}")
 print(f" Learning Rate: {learning_rate}")
 print(f" Max Epochs: {max_epochs}")
 print(f" K-Fold: {use_kfold}")

 log_message(f"\n⚙ Configuration:")
 log_message(f" Model: {model_complexity}")
 log_message(f" Learning Rate: {learning_rate}")
 log_message(f" Max Epochs: {max_epochs}")
 log_message(f" K-Fold: {use_kfold}")

 if use_kfold:
 all_train_data = np.concatenate([train_data, test_data], axis=0)
 all_train_labels = np.concatenate([train_labels, test_labels], axis=0)

 fold_results, fold_models = perform_kfold_validation(all_train_data, all_train_labels,
model_complexity, learning_rate, k_folds, max_epochs)

 best_fold_idx = np.argmax(fold_results['auroc'])
 best_model = fold_models[best_fold_idx]

 print(f"\n🏆 Best model: Fold {best_fold_idx + 1}")
 print(f" Best AUROC: {fold_results['auroc'][best_fold_idx]:.4f}")
 print(f" Best Accuracy: {fold_results['accuracy'][best_fold_idx]:.4f}")
 print(f" Best F1-Score: {fold_results['f1_score'][best_fold_idx]:.4f}")

 log_message(f"\n🏆 Best model: Fold {best_fold_idx + 1}")
 log_message(f" Best AUROC: {fold_results['auroc'][best_fold_idx]:.4f}")
 log_message(f" Best Accuracy: {fold_results['accuracy'][best_fold_idx]:.4f}")
 log_message(f" Best F1-Score: {fold_results['f1_score'][best_fold_idx]:.4f}")

 print(f"\n🎯 Final evaluation on held-out validation set...")
 log_message(f"\n🎯 Final evaluation on held-out validation set...")

 val_results, _, _ = evaluate_validation_set(best_model, val_data, val_labels,
"Final_Validation")

 # Compare K-fold vs Final validation
 kfold_mean_auroc = np.mean(fold_results['auroc'])
 kfold_std_auroc = np.std(fold_results['auroc'])
 kfold_mean_acc = np.mean(fold_results['accuracy'])
 kfold_std_acc = np.std(fold_results['accuracy'])

 print(f"\n📊 K-FOLD vs FINAL VALIDATION COMPARISON")
 print(f"{'='*60}")
 print(f"K-Fold Cross Validation (Average ± Std):")
 print(f" AUROC: {kfold_mean_auroc:.4f} ± {kfold_std_auroc:.4f}")
 print(f" Accuracy: {kfold_mean_acc:.4f} ± {kfold_std_acc:.4f}")
 print(f"\nFinal Validation (Held-out):")
 print(f" AUROC: {val_results['auroc']:.4f}")
 print(f" Accuracy: {val_results['accuracy']:.4f}")

 log_message(f"\n📊 K-FOLD vs FINAL VALIDATION COMPARISON")
 log_message(f"{'='*60}")
 log_message(f"K-Fold Cross Validation (Average ± Std):")
 log_message(f" AUROC: {kfold_mean_auroc:.4f} ± {kfold_std_auroc:.4f}")
 log_message(f" Accuracy: {kfold_mean_acc:.4f} ± {kfold_std_acc:.4f}")
 log_message(f"\nFinal Validation (Held-out):")
 log_message(f" AUROC: {val_results['auroc']:.4f}")
 log_message(f" Accuracy: {val_results['accuracy']:.4f}")

 # Generalization analysis
 auroc_diff = kfold_mean_auroc - val_results['auroc']
 acc_diff = kfold_mean_acc - val_results['accuracy']

 print(f"\nGeneralization Analysis:")
 print(f" AUROC difference (K-fold - Final): {auroc_diff:.4f}")
 print(f" Accuracy difference (K-fold - Final): {acc_diff:.4f}")

 log_message(f"\nGeneralization Analysis:")
 log_message(f" AUROC difference (K-fold - Final): {auroc_diff:.4f}")

 log_message(f" Accuracy difference (K-fold - Final): {acc_diff:.4f}")

 if abs(auroc_diff) < 0.03 and abs(acc_diff) < 0.03:
 generalization_msg = " ✅ Excellent generalization! Model performs consistently."
 elif abs(auroc_diff) < 0.05 and abs(acc_diff) < 0.05:
 generalization_msg = " ✅ Good generalization. Model is reliable."
 elif abs(auroc_diff) < 0.10 and abs(acc_diff) < 0.10:
 generalization_msg = " ⚠ Fair generalization. Some performance drop expected."
 else:
 generalization_msg = " ❌ Poor generalization. Significant performance variability."

 print(generalization_msg)
 log_message(generalization_msg)

 final_auroc = val_results['auroc']

 # Create comprehensive final summary
 final_summary = {
 'timestamp': CURRENT_TIMESTAMP,
 'dataset_info': {
 'total_samples': len(train_labels) + len(test_labels) + len(val_labels),
 'train_samples': len(train_labels),
 'test_samples': len(test_labels),
 'validation_samples': len(val_labels),
 'train_percentage': 70.0,
 'test_percentage': round((len(test_labels) / (len(train_labels) + len(test_labels) +
len(val_labels))) * 100, 1),
 'validation_percentage': round((len(val_labels) / (len(train_labels) + len(test_labels) +
len(val_labels))) * 100, 1)
 },
 'configuration': {
 'model_complexity': model_complexity,
 'learning_rate': learning_rate,
 'max_epochs': max_epochs,
 'use_kfold': use_kfold,
 'k_folds': k_folds
 },
 'kfold_performance': {
 'mean_auroc': float(kfold_mean_auroc),
 'std_auroc': float(kfold_std_auroc),
 'mean_accuracy': float(kfold_mean_acc),
 'std_accuracy': float(kfold_std_acc),
 'best_fold': {
 'fold_number': int(best_fold_idx + 1),
 'auroc': float(fold_results['auroc'][best_fold_idx]),
 'accuracy': float(fold_results['accuracy'][best_fold_idx]),
 'f1_score': float(fold_results['f1_score'][best_fold_idx])
 }
 },
 'final_validation': {
 'auroc': float(val_results['auroc']),
 'accuracy': float(val_results['accuracy']),

 'f1_score': float(val_results['f1_score']),
 'precision': float(val_results['precision']),
 'recall': float(val_results['recall']),
 'mcc': float(val_results['mcc'])
 },
 'generalization_analysis': {
 'auroc_difference': float(auroc_diff),
 'accuracy_difference': float(acc_diff),
 'generalization_assessment': generalization_msg.strip()
 }
 }

 save_results_summary(final_summary, "comprehensive_final_summary")

 else:
 model = create_model(complexity=model_complexity, learning_rate=learning_rate)
 history = train_model(model, train_data, train_labels, test_data, test_labels, max_epochs)
 val_results, _, _ = evaluate_validation_set(model, val_data, val_labels, "Validation")
 final_auroc = val_results['auroc']

 # Final summary
 print(f"\n📋 COMPREHENSIVE FINAL RESULTS:")
 print(f"{'='*60}")
 print(f"Dataset Information:")
 print(f" Total samples: {len(train_labels) + len(test_labels) + len(val_labels)}")
 print(f" Train: {len(train_labels)} samples (70.0%)")
 print(f" Test: {len(test_labels)} samples ({(len(test_labels) / (len(train_labels) + len(test_labels)
+ len(val_labels))) * 100:.1f}%)")
 print(f" Validation: {len(val_labels)} samples ({(len(val_labels) / (len(train_labels) +
len(test_labels) + len(val_labels))) * 100:.1f}%)")

 if use_kfold:
 print(f"\nK-Fold Cross Validation Results:")
 print(f" Mean AUROC: {kfold_mean_auroc:.4f} ± {kfold_std_auroc:.4f}")
 print(f" Mean Accuracy: {kfold_mean_acc:.4f} ± {kfold_std_acc:.4f}")
 print(f" Best Fold: {best_fold_idx + 1} (AUROC:
{fold_results['auroc'][best_fold_idx]:.4f})")

 print(f"\nFinal Validation Performance:")
 print(f" Final AUROC: {final_auroc:.4f}")
 print(f" Final Accuracy: {val_results['accuracy']:.4f}")
 print(f" Final F1-Score: {val_results['f1_score']:.4f}")
 print(f" Final Precision: {val_results['precision']:.4f}")
 print(f" Final Recall: {val_results['recall']:.4f}")
 print(f" Final MCC: {val_results['mcc']:.4f}")

 # Log the same information
 log_message(f"\n📋 COMPREHENSIVE FINAL RESULTS:")
 log_message(f"{'='*60}")
 log_message(f"Dataset Information:")
 log_message(f" Total samples: {len(train_labels) + len(test_labels) + len(val_labels)}")
 log_message(f" Train: {len(train_labels)} samples (70.0%)")

 log_message(f" Test: {len(test_labels)} samples ({(len(test_labels) / (len(train_labels) +
len(test_labels) + len(val_labels))) * 100:.1f}%)")
 log_message(f" Validation: {len(val_labels)} samples ({(len(val_labels) / (len(train_labels) +
len(test_labels) + len(val_labels))) * 100:.1f}%)")

 if use_kfold:
 log_message(f"\nK-Fold Cross Validation Results:")
 log_message(f" Mean AUROC: {kfold_mean_auroc:.4f} ± {kfold_std_auroc:.4f}")
 log_message(f" Mean Accuracy: {kfold_mean_acc:.4f} ± {kfold_std_acc:.4f}")
 log_message(f" Best Fold: {best_fold_idx + 1} (AUROC:
{fold_results['auroc'][best_fold_idx]:.4f})")

 log_message(f"\nFinal Validation Performance:")
 log_message(f" Final AUROC: {final_auroc:.4f}")
 log_message(f" Final Accuracy: {val_results['accuracy']:.4f}")
 log_message(f" Final F1-Score: {val_results['f1_score']:.4f}")
 log_message(f" Final Precision: {val_results['precision']:.4f}")
 log_message(f" Final Recall: {val_results['recall']:.4f}")
 log_message(f" Final MCC: {val_results['mcc']:.4f}")

 print(f"\n📁 All results saved to: {OUTPUT_DIR}")
 print("🏁 Analysis Complete!")

 log_message(f"\n📁 All results saved to: {OUTPUT_DIR}")
 log_message("🏁 Analysis Complete!")

