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ABSTRACT

Objective: Detection and monitoring of electrolyte imbalances are essential for the appropriate 
treatment of many metabolic diseases. However, no reliable and noninvasive tool currently 
exists for such detection. Electrolyte disorders, particularly in heart failure patients, can lead to 
life-threatening situations, which may often develop as a result of medications used in routine 
treatment.

Method: In this study, we developed a deep learning model (DLM) using electrocardiography 
(ECG) to detect electrolyte imbalances in heart failure patients and evaluated its performance in 
a multicenter setting. Seventeen different centers participated in this study. Heart failure patients 
(ejection fraction ≤ 45%) who had blood electrolyte measurements and ECG taken on the same 
day were included. Patients were divided into four groups: those with normal electrolyte values, 
those with hypokalemia, those with hyperkalemia, and those with hyponatremia. Patients who 
developed electrolyte disorders due to medications used for heart failure were classified in the 
relevant group. Confidence intervals (CI): We computed 95% CIs for area under the receiver 
operating characteristic curve (AUROC) via stratified bootstrap (2,000 resamples at the patient 
level) and 95% CIs for accuracy using the Wilson score interval for binomial proportions.

Results: The accuracy rates of the DLM in detecting hyponatremia, hypokalemia, and 
hyperkalemia were 83.33%, 95.33%, and 95.77%, respectively.

Conclusion: The proposed DLM demonstrated high performance in detecting electrolyte 
imbalances. These results suggest that a DLM can be used to detect and monitor electrolyte 
imbalances using ECG on a daily basis.

Keywords: Artificial intelligence, deep learning, electrocardiography, electrolytes

ÖZET

Amaç: Elektrolit dengesizliğinin tespiti ve izlenmesi, birçok metabolik hastalığın uygun tedavisi 
için gereklidir. Ancak bu dengesizlikleri güvenilir ve invaziv olmayan şekilde tespit edebilen bir 
araç henüz mevcut değildir. Özellikle kalp yetmezliği hastalarında görülen elektrolit bozuklukları, 
hastalığın rutin tedavisinde kullanılan ilaçlara bağlı olarak gelişebilen ve yaşamı tehdit eden 
durumlara yol açabilir.

Yöntem: Bu çalışmada, kalp yetmezliği hastalarında elektrolit dengesizliğini tespit etmek amacıyla 
elektrokardiyografi (EKG) kullanan bir derin öğrenme modeli (DLM) geliştirdik ve performansını 
çok merkezli bir çalışmada test ettik. Çalışmaya 17 farklı merkez dahil edildi. Aynı gün kan 
elektrolit değerleri ve EKG’si alınan, ejeksiyon fraksiyonu (EF) ≤ %45 olan kalp yetmezliği hastaları 
çalışmaya alındı. Hastalar dört gruba ayrıldı: normal elektrolit değerleri olanlar, hipokalemisi 
olanlar, hiperkalemisi olanlar ve hiponatremisi olanlar. Kalp yetmezliği tedavisinde kullanılan 
ilaçlara bağlı elektrolit bozukluğu gelişen hastalar ilgili gruba dahil edildi. Güven Aralıkları(GA), 
AUROC için %95 GA, hasta düzeyinde 2.000 tekrar örnekleme (stratified bootstrap) yöntemiyle, 
Accuracy için ise binom oranları için Wilson skor aralığı kullanılarak hesaplandı.

Bulgular: Hiponatremi, hipokalemi ve hiperkalemi gruplarında DLM doğruluk oranları sırasıyla 
%83,33, %95,33 ve %95,77 olarak belirlendi.

Sonuç: Önerilen DLM, elektrolit dengesizliğini tespit etmede yüksek performans göstermiştir. 
Bu sonuçlar, DLM’nin EKG kullanılarak elektrolit dengesizliğinin günlük olarak tespit edilmesi ve 
izlenmesinde kullanılabileceğini göstermektedir.

Anahtar Kelimeler: Yapay zeka, derin öğrenme, elektrokardiyografi, elektrolitler
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Electrolyte balance is critical for maintaining homeostasis and preserving cellular function, 
as imbalances can disrupt numerous physiological processes.1 Electrolytes, including 

sodium, potassium, calcium, and magnesium, are precisely regulated between intracellular 
and extracellular compartments to sustain the normal physiological function of muscles and 
nerves, thereby influencing neuromuscular excitability and contractility.2 Certain electrolyte 
imbalances, such as hyperkalemia or hypocalcemia, can cause fatal arrhythmias and sudden 
cardiac death, making early diagnosis essential for effective intervention.3

Screening for critical electrolyte imbalances is particularly important in patients with conditions 
that impair electrolyte retention and excretion, such as renal failure, as well as in patients 
taking medications that affect electrolyte excretion, including diuretics, which can exacerbate 
these imbalances.4 Moreover, the symptoms of electrolyte imbalance are often vague and 
nonspecific, making diagnosis based solely on patient history and clinical examination difficult 
until the condition progresses and life-threatening complications arise.5

The gold standard for diagnosing electrolyte imbalance remains laboratory testing, which 
quantitatively measures electrolyte concentrations in biological fluids. However, laboratory 
tests can be invasive, costly, and dependent on specialized equipment and infrastructure, 
including trained medical personnel to collect blood samples and hematology analyzers to 
perform biochemical reagent assessments.6 Daily electrolyte assessment is vital for monitoring 
health status and preventing life-threatening events; however, reliance on laboratory tests is 
suboptimal for timely and effective monitoring, emphasizing the need for more accessible and 
rapid diagnostic alternatives.

The condition of the cardiac cell membrane is critically dependent on maintaining a normal 
electrolyte balance across the membrane.7 Previous studies have demonstrated that 
alterations in electrolyte balance can significantly affect the morphological characteristics of 
the electrocardiogram (ECG) waveform. However, diagnosing electrolyte disturbances through 
subtle variations in ECG signals poses considerable challenges for clinicians.8

Deep learning techniques have previously been applied in various medical contexts to detect 
lesions and are now increasingly utilized for diagnosing conditions such as heart failure, valvular 
disease, anemia, and coronary artery disease, as well as for analyzing ECGs. The ECG is a widely 
accepted, noninvasive test that records heart voltage over time.

Deep learning technology, a sophisticated application of artificial intelligence, effectively mimics 
the data-processing capabilities of the human brain and has achieved remarkable success in 
disease screening, diagnosis, and prognosis. Unlike traditional machine learning approaches, 
deep learning algorithms demonstrate superior learning capacity and can automatically extract 
relevant features without extensive data preprocessing or manual feature extraction. This 
capability makes deep learning particularly well-suited for analyzing complex, high-dimensional 
data. With ongoing advances in computing power and the growing availability of digitized data, 
deep learning offers opportunities to enhance ECG interpretation with greater efficiency and 
accuracy, and, more importantly, to expand the functional utility of the ECG. Such progress 
could potentially transform current clinical monitoring and management strategies.9

Deep learning models developed through artificial intelligence algorithms serve as robust tools 
that emulate the data-processing patterns of the human brain to facilitate informed decision-
making. In the past five years, deep learning has demonstrated exceptional promise in medical 
applications, encompassing disease screening, diagnosis, and prognosis.10

For digital ECG data, deep learning algorithms can detect subtle changes in ECGs associated 
with cardiac structural or functional abnormalities. Studies have shown that the application 
of deep learning provides significant improvements in the interpretation of ECG data with 
high efficiency and accuracy. Rapid algorithmic and computational advances are allowing 
us to reconsider the role of deep learning in ECG analysis. Regarding digital ECG data, deep 
learning algorithms are capable of detecting subtle changes in ECGs that may be indicative of 
underlying cardiac structural or functional abnormalities. Empirical studies have shown that 
the application of deep learning leads to significant improvements in the interpretation of 
ECG data, providing enhancements in both efficiency and accuracy. Rapid advancements in 
algorithmic and computational technologies are enabling a reevaluation of the role of deep 
learning within the context of ECG analysis.11

ABBREVIATIONS
ANOVA	 Analysis of Variance
AUROC	 Area under the receiver
	 operating characteristic
	 curve
CE	 Conformité Européenne
CHF	 Congestive heart failure
CI	 Confidence intervals
CNN	 Convolutional neural 
	 network
DLM	 Deep learning model
ECG	 Electrocardiogram
EF	 Ejection fraction
FDA	 Food and Drug 
	 Administration
MCC	 Matthews Correlation 
	 Coefficient
XAI	 Explainable Artificial
	 Intelligence
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Despite the promising performance exhibited by deep 
learning methodologies, several challenges persist. The lack of 
standardization in ECG data may present obstacles for subsequent 
research initiatives, as there currently exists no unified ECG 
input type or established data preprocessing protocol. While 
the majority of studies have utilized 10-second, 12-lead ECGs 
recorded in the supine position as input data, other studies have 
opted for segmented ECGs.12

There is a lack of uniformity in how ECG data is prepared 
prior to analysis, with preprocessing techniques differing 
significantly between studies. This inconsistency complicates 
reproducibility and may compromise the effectiveness of deep 
learning applications. The accuracy of these models is highly 
dependent on the integrity and volume of the input data, 
yet ECG signals are often subject to considerable variability. 
Many investigations utilize data from a single institution or 
rely on open-access datasets, which may not reflect broader 
population characteristics. The ECG recording process itself is 
susceptible to numerous variables, such as device specifications, 
technician skill, electrical interference, muscle activity, 
electrode positioning and adherence, as well as individual 
anatomical and demographic differences. While larger datasets 
can reduce these sources of error, studies based on fewer than 
100 subjects are particularly prone to overfitting, limiting their 
clinical utility. Furthermore, imbalanced class distributions 
remain a persistent challenge, often distorting the perceived 
performance of machine learning algorithms.13

Individuals with congestive heart failure (CHF) often develop 
disturbances in acid-base balance and electrolyte levels. These 
imbalances arise from neurohumoral system activation and the 
effects of commonly prescribed treatments such as diuretics. Such 
abnormalities not only indicate the progression of CHF but are 
also linked to reduced functional capacity and unfavorable long-
term outcomes. Frequently observed electrolyte issues include 
low sodium (hyponatremia), low potassium (hypokalemia), and 
elevated potassium levels (hyperkalemia).14

Hyponatremia can serve as an indicator of neurohormonal 
activation and may reflect the severity of heart failure, yet it 
can also be a side effect of its treatment. Diuretics are among 
the most frequent contributors to hyponatremia in these 
patients. While thiazide diuretics are most commonly linked to 
this condition, non-thiazide medications such as furosemide, 
spironolactone, and indapamide have also been associated with 
sodium depletion. Numerous clinical studies have demonstrated 
that hyponatremia correlates with poorer outcomes and reduced 
survival rates in individuals with heart failure.15

Hypokalemia is frequently observed in patients with congestive 
heart failure and serves as a strong, independent predictor of 
mortality. It tends to be more severe in individuals with advanced 
CHF, particularly those undergoing intensive diuretic treatment 
and experiencing elevated activation of the renin-angiotensin 
system. Low serum potassium levels often reflect elevated 
neurohormonal activity and disease progression. Hypokalemia is 
inversely correlated with plasma renin activity, serum potassium 
concentration, and plasma norepinephrine levels. Increased 
catecholamine release contributes to potassium depletion 
and elevates the risk of arrhythmias. Both the prevalence of 

ventricular ectopy and the incidence of sudden cardiac death 
are closely linked to serum and total body potassium stores. 
Notably, around half of all heart failure-related deaths occur 
suddenly, likely due to arrhythmic events. Studies have found 
that individuals who suffer from sudden cardiac death often have 
lower myocardial potassium levels than controls, while survivors 
frequently exhibit hypokalemia, likely resulting from intracellular 
potassium shifts.16

Hyperkalemia can pose a serious, potentially life-threatening 
condition, particularly in individuals with heart failure, chronic 
kidney disease, or diabetes. The risk is further elevated 
in patients receiving medications that affect the renin-
angiotensin-aldosterone system, including mineralocorticoid 
receptor antagonists.17

In the heart failure patient group, electrolyte disorders, both 
caused by the disease and due to treatment, may increase 
morbidity and mortality. Therefore, early and easy recognition of 
these disorders in this patient group may contribute to disease 
management.

Materials and Methods

Study Design
This was a prospective multicenter study conducted across 17 
hospitals. In our study, we developed a deep learning model 
(DLM) using ECG to detect electrolyte imbalance in heart failure 
patients and tested its performance in a multicenter setting. 
Patients from 17 different centers were included. Heart failure 
(ejection fraction [EF] ≤ 45%) patients whose blood electrolyte 
values and ECG were obtained on the same day were included 
in the study. The patients were divided into four groups: those 
with normal electrolyte values, those with hypokalemia, those 
with hyperkalemia, and those with hyponatremia. Patients who 
developed electrolyte disorders due to medications used in heart 
failure were included in the relevant group. The devices used in 
different centers were Nihon Kohden and Mindray. All patients 
were informed about the content of the study and provided 
written consent. Our study was conducted in accordance with the 
Declaration of Helsinki. Approvaş for this study was received from 
Hatay Mustafa Kemal University Tayfur Ata Sökmen Faculty of 
Medicine Clinical Research Ethics Committee (Approval Number: 
2022/108, Date: 19.12.2022). Patient counts and pulse data are 
presented in Table 1.

Two patients included in the study had multiple electrolyte 
disturbances. These patients were excluded from the study in 
order not to affect the results.

Table 1. Patient and beat distribution

Group Patients Beats Median (IQR) 
beats/patient

Hyperkalemia 40 117 2 (2–3)

Hypokalemia 73 166 2 (2–2)

Hyponatremia 98 266 2 (2–3)

Normal electrolytes 230 722 3 (2–3)

Total 441 1271 –

IQR: Interquartile range.
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Preprocessing
After grouping, ECGs were converted to grayscale format 
(Figure 1A-B).

Afterwards, a line was drawn showing the baseline in order to 
create a reference before digitizing the data (Figure 1C).

The background was removed using the threshold technique 
(Figure 1D).

Contour detection was performed using the OpenCV library. The 
aim of this process was to find the longest contour and eliminate 

the others to identify the true waveform (Algorithm: Satoshi, 
Suzuki and others. Topological structural analysis of digitized 
binary images by border following. Computer Vision, Graphics, 
and Image Processing, 30(1):32– 46, 1985).

Contour detection was again performed using the OpenCV 
library, with the goal of finding the longest contour and 
eliminating the others to obtain the true waveform (Figure 1E).

R-peak was detected using the NeuroKit2 library (https://joss.
theoj.org/papers/10.21105/joss.02621). 

Figure 1. Preprocessing steps of ECG images for model 
development. (A) Raw 12-lead ECG recording obtained from 
clinical dataset. (B) Baseline alignment and noise reduction 
applied to enhance signal clarity. (C) Grayscale conversion 
and background suppression to isolate ECG waveforms. (D) 
Normalization of image intensity with removal of redundant 
metadata. (E) Segmentation into individual beat thumbnails 
for training and analysis.

(A) (B)

(C)

(D)

(E)
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The signaling of a single heartbeat was captured and saved as 
a CSV file (Figure 2).

Single beats were obtained from D2 leads of all ECGs. While 
single beats were selected, beats considered as interference 
were excluded from the evaluation with the approval of the 
cardiologist. Since it is important for the data to be the same 
size in order to be comparable, a padding process was applied 
to all CSV files. Each CSV file was then tagged:

•	 Hyperkalemia: 1, Normal: 0

•	 Hypokalemia: 1, Normal: 0

•	 Hyponatremia: 1, Normal: 0.

The dataset was split at the patient level (70% training, 15% 
validation, 15% test). To prevent data leakage, no patient 
contributed beats to more than one subset. Group-aware 
cross-validation (GroupKFold) keyed by patient ID was used.

Model Architecture
The complete Python code for model development, training, 
and evaluation is provided in the Supplementary Material as 
Supplementary Code 1 (cnn_models.py).

Results

This study was designed as a multicenter, prospective investigation 
and included a total of 211 patients. The mean age was 56 years 
(range: 21–94), with 48 female and 163 male participants. The 
average left ventricular ejection fraction was 33%. Among the 
cohort, 82 patients had a history of hypertension, 67 had diabetes 
mellitus, and 54 had documented coronary artery disease. 
Exclusion criteria included individuals under 18 years of age, 
pregnant women, those with left or right bundle branch block 
on baseline ECG, patients with atrial fibrillation, and individuals 
with implanted cardiac pacemakers. These criteria were selected 
to eliminate conditions that could alter the baseline ECG and 
potentially compromise the performance of the proposed deep 
learning model. For analysis, single-lead ECG recordings (lead 
D2) were used after preprocessing.

A total of 266 single beats were obtained from the D2 lead in 
the hyponatremia patient group. The number of single beats 
obtained from the normal group was 722. When we applied 
our proposed model, the accuracy rate was 83.33% in the 
hyponatremia group.

Diagnosis of hyponatremia by ECG is challenging due to non-
specific ECG findings. Despite this, the model we created 

achieved an Area Under the Receiver Operating Characteristic 
curve (AUROC) of 95.62% and a recall of 93.94%, showing that 
hyponatremia could be identified with acceptable precision. The 
situation in the final validation set shows that caution should be 
exercised to avoid overfitting with strong learning. This indicates 
that future studies should be conducted with a larger dataset. 
The lower Matthews Correlation Coefficient (MCC) score 
(0.450) compared to potassium-based models underscores the 
difficulty of this evaluation. Adding additional parameters may 
help improve model performance. Although slightly lower in our 
study, the model achieved an accuracy rate of 83.33%, which 
can be considered acceptable given the limited number of beats 
and the difficulty of detecting ECG changes associated with 
hyponatremia.

In the hypokalemia group, 166 single beats were obtained from 
lead D2. When we applied the proposed model to 722 beats 
obtained from the normal patient group, we reached 95.33% 
accuracy, with an AUROC of 92.83%, precision of 96.75%, and 
recall of 97.54%.

The hypokalemia classifier achieved strong discrimination 
across all metrics. Patients with hypokalemia often exhibit ST 
depression, flattened T waves, and prominent U waves. The 
Convolutional Neural Network (CNN) model used in our study 
was successful in capturing these changes, with an AUROC 
of 92.83%. The minimal variance across the validation sets 
supports the consistency of these findings. Additionally, the 
model exhibited excellent precision (96.75%) and recall 

Figure 2. Single heartbeat was captured and saved as CSV file.

Table 2. Overall performance metrics

Group Accuracy 
(95% CI)

AUROC 
(95% CI)

Sensitivity 
(95% CI)

Specificity 
(95% CI)

Precision 
(95% CI)

NPV 
(95% CI)

F1-Score 
(95% CI)

MCC 
(95% CI)

Hyperkalemia 89.47% 
(77.40–95.61)

0.94 
(0.87–0.98)

88.00% 
(71.37–95.68)

90.48% 
(77.37–96.57)

88.00% 
(71.05–96.00)

90.48% 
(77.37–96.77)

0.88 
(0.71–0.96)

0.79 
(0.62–0.91)

Hypokalemia 86.84% 
(74.01–94.01)

0.84 
(0.76–0.91)

80.00% 
(62.65–90.52)

89.47% 
(76.52–95.64)

80.00% 
(62.65–90.52)

89.47% 
(76.52–95.64)

0.80 
(0.63–0.91)

0.70 
(0.54–0.82)

Hyponatremia 83.33% 
(68.64–92.05)

0.91 
(0.82–0.96)

85.71% 
(62.41–95.11)

82.05% 
(64.62–91.41)

85.71% 
(62.41–95.11)

82.05% 
(64.62–91.41)

0.86 
(0.62–0.95)

0.67 
(0.48–0.84)

AUROC, Area under the receiver operating characteristic curve; CI, Confidence interval; MCC, Matthews correlation coefficient; NPV, Negative predictive value; PPV, 
Positive predictive value.
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(97.54%), which are critical for clinical utility. The slightly 
higher performance on the final validation set supports the 
hypothesis that the network successfully generalizes the 
learned representations beyond the training data. At the 
same time, our model achieved an accuracy of 95.33%, 
indicating consistent classification across the training and 
validation sets.

In the hyperkalemia group, 117 single beats were obtained from 
the D2 lead. When we applied the proposed model to 722 single 
beats obtained from the normal patient group, we reached an 
accuracy of 95.77%.

Overall performance metrics are shown in Table 2.

The full implementation code (cnn_models.py) is provided in the 
Supplementary Material for reproducibility.

Comprehensive ECG Analysis and Explainable AI Using 
Saliency Maps

Theoretical Framework of Explainable AI (XAI)
Explainable Artificial Intelligence (XAI) comprises methodologies 
that make the decision-making processes of machine learning 
models understandable and interpretable. In clinical settings, XAI 
is crucial for the following reasons:

-	 Clinical Reliability: Allows physicians to validate model 
decisions

-	 Legal Accountability: Meets transparency requirements 
of regulatory bodies such as the U.S. Food and Drug 
Administration (FDA) and Conformité Européenne (CE)

-	 Patient Safety: Minimizes misdiagnoses

-	 Scientific Validation: Ensures alignment between learned 
model patterns and medical literature.

Algorithm and Methodology
Saliency pipeline: preprocessing (zero-padding removal, 
normalization), gradient computation, saliency map generation, 
critical segment detection.

Dataset Characteristics and Findings
Sample distribution: Hyperkalemia (Normal = 20, Pathologic 
= 107), Hypokalemia (Normal = 25, Pathologic = 109), 
Hyponatremia (Normal = 14, Pathologic = 24).

Performance metrics: AUROC = 0.92 ± 0.05, Accuracy = 0.89 ± 
0.07, Sensitivity = 0.91 ± 0.06, Specificity = 0.87 ± 0.08 (Figure 3).

Confusion matrices for the classification of hyperkalemia, 
hypokalemia, and hyponatremia are shown in Figure 4.

Temporal Localization Analysis and Clinical Interpretation
•	 Hyperkalemia: Salient in segments 60-100, temporal shift +20, 

peak saliency 0.67; correlates with QRS widening and T-peak

Figure 3. ROc curves for electrolyte disorder models.

AUROC, Area under the receiver operating characteristic curve; ROC, 
Receiver operating characteristic.

Figure 4. Confusion matrices for electrolyte disorder classification. Confusion matrices for hyperkalemia, hypokalemia, and 
hyponatremia classification. Each cell shows both raw counts (n) and row percentages (%). Orange: Hyperkalemia, Red: 
Hypokalemia, Magenta: Hyponatremia.

AUROC, Area under the receiver operating characteristic curve; CI, Confidence interval; MCC, Matthews correlation coefficient; PPV, Positive predictive value; 
NPV, Negative predictive value.
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•	 Hypokalemia: Segments 50-90, shift +15, saliency 0.54; 
correlates with QT prolongation and U-waves

•	 Hyponatremia: Segments 50-100, shift +17, saliency 0.61; 
correlates with ST changes and arrhythmogenic substrate

Comparative Analysis and Shared Patterns
Electrolyte-specific temporal signatures identified:

-	 Hyperkalemia: +20 shift, 0.67 saliency

-	 Hypokalemia: +15 shift, 0.54 saliency

-	 Hyponatremia: +17 shift, 0.61 saliency

All conditions exhibit temporal shifts, higher saliency in 
pathological groups, and variability in gradient magnitude.

Methodological Validity and Clinical Relevance
Pathophysiological validation was confirmed by matching 
saliency regions with known ECG changes.

Statistical Significance: Temporal shifts (P < 0.001, Analysis of 
Variance [ANOVA]), saliency differences (P < 0.01, Kruskal-
Wallis), inter-group variability (P < 0.05, Levene’s test).

This study confirms that CNN models with gradient-based 
saliency maps can successfully identify temporal features specific 
to electrolyte disorders. XAI adds transparency and enables real-
time decision support. The saliency analysis presented in this 
report offers a robust framework for interpreting CNN-based ECG 
classification in the context of electrolyte disorders. By aligning 
salient temporal segments with known pathophysiological 
markers—such as QRS widening in hyperkalemia, QT prolongation 
and U-waves in hypokalemia, and ST changes in hyponatremia—
the model not only demonstrates high performance (AUROC 
0.92, accuracy 0.89) but also clinical interpretability. This 
alignment enhances trust in model outputs and supports their 
potential application in real-time decision-making. Importantly, 
the observed temporal shifts and saliency peaks were statistically 
significant, confirming that the model’s focus corresponds 
meaningfully to clinically relevant waveform segments. Figure 5 
illustrates the saliency overlay, which visualizes the ECG segments 
most influential in the model’s decision-making process.

Saliency focus regions are shown in Table 3.

Limitations
Although the results obtained in our study support meaningful 
conclusions that electrolyte disorders can be detected from ECG 
using artificial intelligence methods, it is important to repeat 
these findings with larger datasets in order to evaluate their 
applicability and achieve more effective results. In future studies, 
models incorporating additional patient parameters may provide 

more efficient results. Additionally, this study did not adopt two 
suggested approaches—multi-beat input matrices and a single 
multi-label classifier. These remain acknowledged limitations. 
Future work will explore multi-beat input representations to 
capture temporal dynamics across successive beats and multi-
label classification approaches to enable simultaneous detection 
of multiple electrolyte disorders, once larger and more balanced 
datasets become available.

In our study, it was planned to take ECG samples and blood 
electrolyte measurements on the same day. Minimizing the 
time between laboratory measurements and ECG may be 
more appropriate to detect ECG changes that can occur due to 
electrolyte disturbances.

Discussion

Analyzing ECG data via deep learning models has recently been 
shown to be effective in detecting dyskalemia, a finding that 
suggests significant potential for this technology within clinical 
contexts.18

Our study focused on developing a DLM specifically for detecting 
hypokalemia, hyperkalemia, and hyponatremia. The model was 
trained using a comprehensive dataset of ECG samples acquired 
from patients, employing advanced deep learning techniques. 
Specifically, patients diagnosed with the aforementioned 
conditions were systematically grouped and then compared with 
carefully defined normal patient cohorts. The results showed 
that our model achieved accuracy rates of 83.33% for the 
hyponatremia group, 95.33% for the hyperkalemia group, and 
95.77% for the hypokalemia group, underscoring the clinical 
relevance of our approach.

In a related study, Lin et al.18 introduced ECG12Net, a deep 
learning model designed to detect dyskalemias through 
comprehensive ECG analysis. Using a training set of more than 
50,000 ECGs and a sophisticated deep convolutional network to 
identify numerous ECG features, ECG12Net demonstrated higher 
performance than clinicians in detecting dyskalemias, specifically 
showing sensitivity rates of 95.6% for severe hypokalemia and 
84.5% for severe hyperkalemia.19 The results of our work are 
generally consistent with these previous findings, reinforcing the 
effectiveness of deep learning models.

Figure 5. The saliency overlay visualizes the ECG segments most influential in the model’s decision-making process.

Table 3. Saliency focus per class

Condition Primary ECG focus Clinical correlation
Hyperkalemia T-wave region Peaked T-waves

Hypokalemia T-U transition Flattened T, prominent U

Hyponatremia Post-QRS/diffuse Subtle, non-specific changes
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While serum potassium concentration can be rapidly assessed in 
hospital settings using venous blood tests, diagnosing hypokalemia 
outside those settings remains a considerable problem, partly 
because affected patients often do not exhibit clear symptoms. 
Consequently, using ECGs to screen patients noninvasively for 
hypokalemia could significantly improve early detection and, by 
extension, patient care and outcomes. Furthermore, numerous 
wearable devices for monitoring ECGs have emerged in recent 
years, providing additional support in this area.12

The limitations of our study, specifically the sample size, 
warrant further confirmatory and controlled investigations. 
Still, our findings suggest that deep learning models can detect 
subtle changes that may elude even experienced cardiologists. 
This aligns with other studies in the literature, bolstering the 
transformative potential of deep learning in ECG analysis.6

Although we applied our model to more data than the other 
two electrolyte disorders (hypokalemia and hyperkalemia) in our 
study, the accuracy rate in the hyponatremia group was 83.33%, 
lower than in the other groups. One reason for this may be that 
ECG findings due to hyponatremia are less obvious than in the 
other two groups. To increase accuracy rates, studies involving 
evaluation with larger datasets are needed.

Datasets created with patients who have pure electrolyte disorders 
may produce more efficient results in detecting changes due to 
these conditions. However, because most electrolyte disorders 
coexist with other diseases and many medications are used in 
these patient groups, ECG parameters may be affected. This may 
cause the applied model to reach incorrect results. In our study, 
the frequency of diabetes mellitus, hypertension, and coronary 
artery disease was high, and the number of medications used 
for these was also high. To reduce the effects that may arise 
from this situation, future studies with similar groups in terms of 
disease and drug use are needed.

One of the main problems in studies based on ECG and deep 
learning models is that standardization has not yet been 
achieved. It can be seen from publications in the literature that 
models can be applied to data taken from different leads in 
different studies.12 While some ECG studies are carried out on 
raw data, in others, ECGs in formats such as JPEG and PDF are 
used. Data received from different devices in different centers 
can lead to a number of difficulties such as a more costly data 
processing phase, longer processing times, and greater reliance 
on human-dependent processes. In our study, the difference in 
the number of centers and the types of devices used caused the 
data processing phase to be longer.

In the future, applications that contribute to routine monitoring, 
especially for patients at risk of electrolyte disorders, can be 
developed for smartphones capable of taking photographs and 
recording a single-lead ECG signal. This may accelerate with 
advances in sensor technology and the resulting improvement 
in the quality of data signals received from patients. Continuous 
collection of individual changes and their use in personalized 
medicine applications will open up broad horizons for the future.

On the other hand, as the success rate of evaluations using 
photographic ECGs increases, application-based systems can 
also be used as assistive tools for physicians and patients in 

disadvantaged regions where cardiologists are not available or 
laboratory services are inadequate.

These systems can further be integrated into remote monitoring 
platforms, providing benefits such as more qualified treatment 
and early detection of potentially life-threatening conditions in 
disadvantaged groups at risk, such as heart failure patients.

This study demonstrates that computer vision-based AI models 
can accurately detect diagnostic features on ECG images. To 
facilitate the integration of this technology into routine clinical 
practice, future research should aim to develop models capable 
of generalizing across diverse ECG image formats and originating 
from multiple sources, while encompassing a wider spectrum 
of clinically relevant diagnoses. These models can be designed 
to accommodate various ECG styles and layouts, enhancing 
their applicability across settings. Furthermore, the underlying 
algorithms may be adapted for innovative applications—such as 
smartphone-based tools or smart health platforms—to enable the 
detection of electrolyte imbalances directly from ECG photographs.

Future work will explore multi-beat input representations 
to capture temporal dynamics across successive beats, 
potentially enhancing the model’s sensitivity to subtle intra-
patient variations.

Conclusion

The proposed DLM exhibited strong performance in accurately 
identifying electrolyte imbalances, underscoring its potential 
value in clinical settings. These findings indicate that such a 
model could be integrated into routine practice for the detection 
and monitoring of electrolyte disturbances using ECG data, 
offering a promising tool to enhance patient care and outcomes, 
particularly in high-risk populations. Supporting this model with 
further studies to ensure its compatibility with clinical practice 
may increase the power and value.
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# -*- coding: utf-8 -*- 
""" 
Complete CNN Classification with Output Management 
Fixed version with proper indentation 
""" 
 
import tensorflow as tf 
from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense, Dropout 
from tensorflow.keras import Sequential 
from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping 
from sklearn.model_selection import StratifiedKFold 
import random 
import numpy as np 
import os 
import sys 
import matplotlib.pyplot as plt 
import pandas as pd 
from sklearn.metrics import (roc_curve, roc_auc_score, confusion_matrix,  
                           precision_score, recall_score, f1_score,  
                           matthews_corrcoef, precision_recall_curve,  
                           average_precision_score) 
import seaborn as sns 
import warnings 
from datetime import datetime 
import json 
warnings.filterwarnings('ignore') 
 
# Set random seeds 
np.random.seed(42) 
tf.random.set_seed(42) 
random.seed(42) 
 
# Global variables 
OUTPUT_DIR = None 
LOG_FILE = None 
CURRENT_TIMESTAMP = None 
 
def setup_output_directory(): 
    global OUTPUT_DIR, LOG_FILE, CURRENT_TIMESTAMP 
    CURRENT_TIMESTAMP = datetime.now().strftime("%Y%m%d_%H%M%S") 
    OUTPUT_DIR = f"./output_{CURRENT_TIMESTAMP}" 
    os.makedirs(OUTPUT_DIR, exist_ok=True) 
    os.makedirs(f"{OUTPUT_DIR}/plots", exist_ok=True) 
    os.makedirs(f"{OUTPUT_DIR}/models", exist_ok=True) 
    os.makedirs(f"{OUTPUT_DIR}/reports", exist_ok=True) 
    LOG_FILE = f"{OUTPUT_DIR}/console_output.txt" 
    print(f"📁 Output directory created: {OUTPUT_DIR}") 
    log_message(f"CNN Classification System - Output Log") 
    log_message(f"Timestamp: {CURRENT_TIMESTAMP}") 
    log_message("="*80) 
    return OUTPUT_DIR 
 



def log_message(message, also_print=True): 
    global LOG_FILE 
    if LOG_FILE: 
        with open(LOG_FILE, 'a', encoding='utf-8') as f: 
            f.write(message + '\n') 
    if also_print: 
        print(message) 
 
def save_plot(fig, filename, title=""): 
    global OUTPUT_DIR 
    if OUTPUT_DIR: 
        filepath = f"{OUTPUT_DIR}/plots/{filename}" 
        fig.savefig(filepath, dpi=300, bbox_inches='tight', facecolor='white', edgecolor='none') 
        log_message(f"📊 Plot saved: {filepath}", also_print=False) 
        return filepath 
    return None 
 
def save_results_summary(results_dict, filename): 
    global OUTPUT_DIR 
    if OUTPUT_DIR: 
        # Convert numpy types to Python native types for JSON serialization 
        def convert_numpy_types(obj): 
            if isinstance(obj, dict): 
                return {key: convert_numpy_types(value) for key, value in obj.items()} 
            elif isinstance(obj, list): 
                return [convert_numpy_types(item) for item in obj] 
            elif isinstance(obj, np.integer): 
                return int(obj) 
            elif isinstance(obj, np.floating): 
                return float(obj) 
            elif isinstance(obj, np.ndarray): 
                return obj.tolist() 
            else: 
                return obj 
         
        # Convert the results dictionary 
        json_safe_dict = convert_numpy_types(results_dict) 
         
        json_file = f"{OUTPUT_DIR}/reports/{filename}.json" 
        with open(json_file, 'w', encoding='utf-8') as f: 
            json.dump(json_safe_dict, f, indent=4, ensure_ascii=False) 
        txt_file = f"{OUTPUT_DIR}/reports/{filename}.txt" 
        with open(txt_file, 'w', encoding='utf-8') as f: 
            f.write(f"CNN Classification Results - {CURRENT_TIMESTAMP}\n") 
            f.write("="*80 + "\n\n") 
            def write_dict(d, indent=0): 
                for key, value in d.items(): 
                    if isinstance(value, dict): 
                        f.write("  " * indent + f"{key}:\n") 
                        write_dict(value, indent + 1) 
                    elif isinstance(value, list): 
                        f.write("  " * indent + f"{key}: {value}\n") 



                    elif isinstance(value, (float, np.floating)): 
                        f.write("  " * indent + f"{key}: {float(value):.4f}\n") 
                    else: 
                        f.write("  " * indent + f"{key}: {value}\n") 
            write_dict(json_safe_dict) 
        log_message(f"💾 Results saved: {json_file} and {txt_file}", also_print=False) 
        return json_file, txt_file 
    return None, None 
 
def load_data(data_dir, train_ratio=0.7, test_ratio=0.15, val_ratio=0.15): 
    if abs(train_ratio + test_ratio + val_ratio - 1.0) > 1e-6: 
        raise ValueError("Oranların toplamı 1.0 olmalı!") 
     
    all_data = [] 
    all_labels = [] 
 
    for folder in os.listdir(data_dir): 
        folder_path = os.path.join(data_dir, folder) 
        if not os.path.isdir(folder_path): 
            print(f"Skipping file: {folder}") 
            continue 
 
        for file in os.listdir(folder_path): 
            if not file.endswith('.csv'): 
                continue 
            file_path = os.path.join(folder_path, file) 
            try: 
                data = np.loadtxt(file_path, delimiter=',', skiprows=1, usecols=[1]) 
                all_data.append(data) 
                if folder == 'groupA': 
                    all_labels.append(0) 
                elif folder == 'groupB': 
                    all_labels.append(1) 
                else: 
                    print(f"Unknown folder: {folder}") 
            except Exception as e: 
                print(f"Error reading file {file_path}: {e}") 
                continue 
 
    combined = list(zip(all_data, all_labels)) 
    random.shuffle(combined) 
    all_data, all_labels = zip(*combined) 
     
    total_samples = len(all_data) 
    train_end = int(total_samples * train_ratio) 
    test_end = train_end + int(total_samples * test_ratio) 
     
    train_data = all_data[:train_end] 
    train_labels = all_labels[:train_end] 
    test_data = all_data[train_end:test_end] 
    test_labels = all_labels[train_end:test_end] 
    val_data = all_data[test_end:] 



    val_labels = all_labels[test_end:] 
 
    padded_train_data = pad_zeros(train_data, target_length=128) 
    padded_test_data = pad_zeros(test_data, target_length=128) 
    padded_val_data = pad_zeros(val_data, target_length=128) 
     
    padded_train_data = np.array(padded_train_data) 
    padded_test_data = np.array(padded_test_data) 
    padded_val_data = np.array(padded_val_data) 
     
    print(f"Dataset split:") 
    print(f"  Total samples: {total_samples}") 
    print(f"  Train: {len(train_data)} samples ({len(train_data)/total_samples*100:.1f}%)") 
    print(f"  Test: {len(test_data)} samples ({len(test_data)/total_samples*100:.1f}%)") 
    print(f"  Validation: {len(val_data)} samples ({len(val_data)/total_samples*100:.1f}%)") 
     
    log_message(f"Dataset split:") 
    log_message(f"  Total samples: {total_samples}") 
    log_message(f"  Train: {len(train_data)} samples ({len(train_data)/total_samples*100:.1f}%)") 
    log_message(f"  Test: {len(test_data)} samples ({len(test_data)/total_samples*100:.1f}%)") 
    log_message(f"  Validation: {len(val_data)} samples ({len(val_data)/total_samples*100:.1f}%)") 
     
    padded_train_data = padded_train_data.reshape(-1, 128, 1) 
    padded_test_data = padded_test_data.reshape(-1, 128, 1) 
    padded_val_data = padded_val_data.reshape(-1, 128, 1) 
 
    train_labels = np.array(train_labels) 
    test_labels = np.array(test_labels) 
    val_labels = np.array(val_labels) 
 
    return (padded_train_data, train_labels, padded_test_data, test_labels, padded_val_data, 
val_labels) 
 
def pad_zeros(data, target_length=128): 
    padded_data = [] 
    for file in data: 
        current_length = len(file) 
        if current_length == target_length: 
            padded_data.append(file) 
        elif current_length < target_length: 
            padded_file = np.zeros(target_length) 
            padded_file[:current_length] = file 
            padded_data.append(padded_file) 
        else: 
            indices = np.linspace(0, current_length-1, target_length, dtype=int) 
            downsampled_file = file[indices] 
            padded_data.append(downsampled_file) 
    return padded_data 
 
def create_model(complexity='medium', learning_rate=0.0001): 
    model = Sequential() 
     



    if complexity == 'simple': 
        model.add(Conv1D(filters=16, kernel_size=3, strides=2, activation='relu', input_shape=(128, 
1))) 
        model.add(MaxPooling1D(pool_size=2)) 
        model.add(Dropout(0.2)) 
        model.add(Flatten()) 
        model.add(Dense(128, activation='relu')) 
        model.add(Dense(1, activation='sigmoid')) 
    elif complexity == 'medium': 
        model.add(Conv1D(filters=32, kernel_size=5, activation='relu', input_shape=(128, 1))) 
        model.add(Conv1D(filters=32, kernel_size=3, activation='relu')) 
        model.add(MaxPooling1D(pool_size=2)) 
        model.add(Dropout(0.3)) 
        model.add(Conv1D(filters=64, kernel_size=3, activation='relu')) 
        model.add(MaxPooling1D(pool_size=2)) 
        model.add(Dropout(0.3)) 
        model.add(Flatten()) 
        model.add(Dense(256, activation='relu')) 
        model.add(Dropout(0.4)) 
        model.add(Dense(128, activation='relu')) 
        model.add(Dropout(0.4)) 
        model.add(Dense(1, activation='sigmoid')) 
    elif complexity == 'complex': 
        model.add(Conv1D(filters=64, kernel_size=7, activation='relu', input_shape=(128, 1))) 
        model.add(Conv1D(filters=64, kernel_size=5, activation='relu')) 
        model.add(MaxPooling1D(pool_size=2)) 
        model.add(Dropout(0.3)) 
        model.add(Conv1D(filters=128, kernel_size=3, activation='relu')) 
        model.add(Conv1D(filters=128, kernel_size=3, activation='relu')) 
        model.add(MaxPooling1D(pool_size=2)) 
        model.add(Dropout(0.4)) 
        model.add(Conv1D(filters=256, kernel_size=3, activation='relu')) 
        model.add(MaxPooling1D(pool_size=2)) 
        model.add(Dropout(0.4)) 
        model.add(Flatten()) 
        model.add(Dense(512, activation='relu')) 
        model.add(Dropout(0.5)) 
        model.add(Dense(256, activation='relu')) 
        model.add(Dropout(0.5)) 
        model.add(Dense(128, activation='relu')) 
        model.add(Dropout(0.5)) 
        model.add(Dense(1, activation='sigmoid')) 
 
    optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) 
    model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy']) 
    return model 
 
def train_model(model, train_data, train_labels, test_data, test_labels, epochs=200): 
    train_data = np.array(train_data, dtype=np.float32) 
    train_labels = np.array(train_labels, dtype=np.float32) 
    test_data = np.array(test_data, dtype=np.float32) 
    test_labels = np.array(test_labels, dtype=np.float32) 



 
    print(f"Training data shape: {train_data.shape}") 
    print(f"Training labels shape: {train_labels.shape}") 
    log_message(f"Training started - Max epochs: {epochs}") 
    log_message(f"Training data shape: {train_data.shape}") 
 
    reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.3, patience=10, min_lr=1e-8, 
verbose=1, cooldown=5) 
    early_stop = EarlyStopping(monitor='val_loss', patience=30, restore_best_weights=True, 
verbose=1, min_delta=0.0001) 
 
    history = model.fit(train_data, train_labels, validation_data=(test_data, test_labels), 
epochs=epochs, batch_size=8, callbacks=[reduce_lr, early_stop], verbose=1) 
    return history 
 
def evaluate_validation_set(model, val_data, val_labels, dataset_name="Validation"): 
    val_data = np.array(val_data, dtype=np.float32) 
    val_labels = np.array(val_labels, dtype=np.float32) 
     
    print(f"\n{'='*60}") 
    print(f"{dataset_name.upper()} SET EVALUATION") 
    print(f"{'='*60}") 
     
    log_message(f"\n{'='*60}") 
    log_message(f"{dataset_name.upper()} SET EVALUATION") 
    log_message(f"{'='*60}") 
     
    val_loss, val_accuracy = model.evaluate(val_data, val_labels, verbose=0) 
    print(f'{dataset_name} Loss: {val_loss:.4f}') 
    print(f'{dataset_name} Accuracy: {val_accuracy:.4f}') 
    log_message(f'{dataset_name} Loss: {val_loss:.4f}') 
    log_message(f'{dataset_name} Accuracy: {val_accuracy:.4f}') 
     
    y_pred_proba = model.predict(val_data, verbose=0).flatten() 
    y_pred_binary = (y_pred_proba > 0.5).astype(int) 
     
    fpr, tpr, thresholds = roc_curve(val_labels, y_pred_proba) 
    auroc = roc_auc_score(val_labels, y_pred_proba) 
    precision = precision_score(val_labels, y_pred_binary) 
    recall = recall_score(val_labels, y_pred_binary) 
    f1 = f1_score(val_labels, y_pred_binary) 
    mcc = matthews_corrcoef(val_labels, y_pred_binary) 
     
    tn, fp, fn, tp = confusion_matrix(val_labels, y_pred_binary).ravel() 
    specificity = tn / (tn + fp) 
    ppv = tp / (tp + fp) if (tp + fp) > 0 else 0 
    npv = tn / (tn + fn) if (tn + fn) > 0 else 0 
     
    print(f'\n{dataset_name} Performance Metrics:') 
    print(f'  AUROC Score: {auroc:.4f}') 
    print(f'  Accuracy: {val_accuracy:.4f}') 
    print(f'  Precision: {precision:.4f}') 



    print(f'  Recall: {recall:.4f}') 
    print(f'  Specificity: {specificity:.4f}') 
    print(f'  F1-Score: {f1:.4f}') 
    print(f'  MCC: {mcc:.4f}') 
     
    log_message(f'\n{dataset_name} Performance Metrics:') 
    log_message(f'  AUROC Score: {auroc:.4f}') 
    log_message(f'  Accuracy: {val_accuracy:.4f}') 
    log_message(f'  Precision: {precision:.4f}') 
    log_message(f'  Recall: {recall:.4f}') 
    log_message(f'  F1-Score: {f1:.4f}') 
     
    optimal_idx = np.argmax(tpr - fpr) 
    optimal_threshold = thresholds[optimal_idx] 
     
    # Create comprehensive plot 
    plt.figure(figsize=(15, 10)) 
     
    # ROC Curve 
    plt.subplot(2, 3, 1) 
    plt.plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC (AUROC = {auroc:.4f})') 
    plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') 
    plt.xlabel('False Positive Rate') 
    plt.ylabel('True Positive Rate') 
    plt.title(f'{dataset_name} ROC Curve') 
    plt.legend() 
    plt.grid(True) 
     
    # Confusion Matrix 
    plt.subplot(2, 3, 2) 
    cm = confusion_matrix(val_labels, y_pred_binary) 
    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['Group A', 'Group B'], 
yticklabels=['Group A', 'Group B']) 
    plt.title(f'{dataset_name} Confusion Matrix') 
    plt.xlabel('Predicted') 
    plt.ylabel('Actual') 
     
    # Metrics Bar Chart 
    plt.subplot(2, 3, 3) 
    metrics_names = ['Accuracy', 'Precision', 'Recall', 'F1-Score'] 
    metrics_values = [val_accuracy, precision, recall, f1] 
    plt.bar(metrics_names, metrics_values, color=['skyblue', 'lightgreen', 'lightcoral', 'lightpink']) 
    plt.ylim(0, 1) 
    plt.title(f'{dataset_name} Metrics') 
    plt.xticks(rotation=45) 
    for i, v in enumerate(metrics_values): 
        plt.text(i, v + 0.01, f'{v:.3f}', ha='center') 
     
    # Probability Distribution 
    plt.subplot(2, 3, 4) 
    plt.hist(y_pred_proba[val_labels == 0], bins=20, alpha=0.7, label='Group A', color='blue') 
    plt.hist(y_pred_proba[val_labels == 1], bins=20, alpha=0.7, label='Group B', color='red') 



    plt.axvline(x=0.5, color='black', linestyle='--', label='Threshold (0.5)') 
    plt.xlabel('Prediction Probability') 
    plt.ylabel('Frequency') 
    plt.title('Probability Distribution') 
    plt.legend() 
     
    # Precision-Recall Curve 
    plt.subplot(2, 3, 5) 
    precision_curve, recall_curve, _ = precision_recall_curve(val_labels, y_pred_proba) 
    avg_precision = average_precision_score(val_labels, y_pred_proba) 
    plt.plot(recall_curve, precision_curve, color='purple', lw=2, label=f'AP = {avg_precision:.4f}') 
    plt.xlabel('Recall') 
    plt.ylabel('Precision') 
    plt.title('Precision-Recall Curve') 
    plt.legend() 
    plt.grid(True) 
     
    # Error Analysis 
    plt.subplot(2, 3, 6) 
    error_types = ['TP', 'TN', 'FP', 'FN'] 
    error_counts = [tp, tn, fp, fn] 
    colors = ['green', 'lightgreen', 'orange', 'red'] 
    plt.pie(error_counts, labels=error_types, colors=colors, autopct='%1.1f%%') 
    plt.title('Prediction Distribution') 
     
    plt.tight_layout() 
    fig = plt.gcf() 
    save_plot(fig, f"{dataset_name.lower()}_analysis.png") 
    plt.show() 
     
    # Save results 
    results = { 
        'loss': float(val_loss), 
        'accuracy': float(val_accuracy), 
        'auroc': float(auroc), 
        'precision': float(precision), 
        'recall': float(recall), 
        'specificity': float(specificity), 
        'f1_score': float(f1), 
        'mcc': float(mcc), 
        'ppv': float(ppv), 
        'npv': float(npv), 
        'optimal_threshold': float(optimal_threshold), 
        'confusion_matrix': {'tp': int(tp), 'tn': int(tn), 'fp': int(fp), 'fn': int(fn)} 
    } 
     
    save_results_summary(results, f"{dataset_name.lower()}_results") 
    return results, y_pred_proba, y_pred_binary 
 
def perform_kfold_validation(all_data, all_labels, model_complexity='medium', 
learning_rate=0.0001, k_folds=5, epochs=200): 
    print(f"\n🔄 Starting {k_folds}-Fold Cross Validation...") 



    log_message(f"\n🔄 Starting {k_folds}-Fold Cross Validation...") 
     
    skf = StratifiedKFold(n_splits=k_folds, shuffle=True, random_state=42) 
     
    fold_results = {'fold': [], 'accuracy': [], 'auroc': [], 'precision': [], 'recall': [], 'f1_score': [], 'mcc': [], 
'epochs_trained': []} 
    fold_models = [] 
    fold_histories = []  # Store training histories 
     
    for fold, (train_idx, val_idx) in enumerate(skf.split(all_data, all_labels), 1): 
        print(f"\n📁 FOLD {fold}/{k_folds}") 
        log_message(f"\n📁 FOLD {fold}/{k_folds}") 
         
        X_train_fold = all_data[train_idx] 
        y_train_fold = all_labels[train_idx] 
        X_val_fold = all_data[val_idx] 
        y_val_fold = all_labels[val_idx] 
         
        print(f"Train samples: {len(X_train_fold)}") 
        print(f"Validation samples: {len(X_val_fold)}") 
         
        model = create_model(complexity=model_complexity, learning_rate=learning_rate) 
         
        # Train model for fold 
        X_train_fold = np.array(X_train_fold, dtype=np.float32) 
        y_train_fold = np.array(y_train_fold, dtype=np.float32) 
        X_val_fold = np.array(X_val_fold, dtype=np.float32) 
        y_val_fold = np.array(y_val_fold, dtype=np.float32) 
         
        reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.3, patience=8, min_lr=1e-8, 
verbose=0) 
        early_stop = EarlyStopping(monitor='val_loss', patience=25, restore_best_weights=True, 
verbose=0) 
         
        history = model.fit(X_train_fold, y_train_fold, validation_data=(X_val_fold, y_val_fold), 
epochs=epochs, batch_size=8, callbacks=[reduce_lr, early_stop], verbose=0) 
         
        # Store history for later plotting 
        fold_histories.append(history) 
         
        # Evaluate fold 
        val_loss, val_accuracy = model.evaluate(X_val_fold, y_val_fold, verbose=0) 
        y_pred_proba = model.predict(X_val_fold, verbose=0).flatten() 
        y_pred_binary = (y_pred_proba > 0.5).astype(int) 
         
        auroc = roc_auc_score(y_val_fold, y_pred_proba) 
        precision = precision_score(y_val_fold, y_pred_binary) 
        recall = recall_score(y_val_fold, y_pred_binary) 
        f1 = f1_score(y_val_fold, y_pred_binary) 
        mcc = matthews_corrcoef(y_val_fold, y_pred_binary) 
         
        fold_results['fold'].append(fold) 



        fold_results['accuracy'].append(float(val_accuracy)) 
        fold_results['auroc'].append(float(auroc)) 
        fold_results['precision'].append(float(precision)) 
        fold_results['recall'].append(float(recall)) 
        fold_results['f1_score'].append(float(f1)) 
        fold_results['mcc'].append(float(mcc)) 
        fold_results['epochs_trained'].append(int(len(history.history['loss']))) 
        fold_models.append(model) 
         
        print(f"✅ Fold {fold} - Accuracy: {val_accuracy:.4f}, AUROC: {auroc:.4f}") 
        log_message(f"✅ Fold {fold} - Accuracy: {val_accuracy:.4f}, AUROC: {auroc:.4f}") 
     
    # Plot K-fold training histories 
    plot_kfold_training_histories(fold_histories, fold_results) 
     
    # Print summary 
    print(f"\n📊 K-FOLD RESULTS SUMMARY") 
    log_message(f"\n📊 K-FOLD RESULTS SUMMARY") 
    log_message("="*50) 
     
    metrics = ['accuracy', 'auroc', 'precision', 'recall', 'f1_score', 'mcc'] 
    summary_stats = {} 
     
    for metric in metrics: 
        values = fold_results[metric] 
        mean_val = np.mean(values) 
        std_val = np.std(values) 
        summary_line = f"{metric.upper()}: {mean_val:.4f} ± {std_val:.4f}" 
        print(summary_line) 
        log_message(summary_line) 
         
        # Store for later use 
        summary_stats[metric] = { 
            'mean': float(mean_val), 
            'std': float(std_val), 
            'values': [float(v) for v in values] 
        } 
     
    # Create comprehensive K-fold summary 
    kfold_summary = { 
        'timestamp': CURRENT_TIMESTAMP, 
        'k_folds': k_folds, 
        'model_complexity': model_complexity, 
        'learning_rate': learning_rate, 
        'max_epochs': epochs, 
        'total_samples_used': len(all_data), 
        'fold_details': { 
            'individual_results': fold_results, 
            'summary_statistics': summary_stats 
        }, 
        'best_fold': { 
            'fold_number': int(np.argmax(fold_results['auroc']) + 1), 



            'best_auroc': float(np.max(fold_results['auroc'])), 
            'best_accuracy': float(fold_results['accuracy'][np.argmax(fold_results['auroc'])]), 
            'best_f1_score': float(fold_results['f1_score'][np.argmax(fold_results['auroc'])]) 
        } 
    } 
     
    # Save K-fold results 
    save_results_summary(kfold_summary, "kfold_detailed_results") 
     
    return fold_results, fold_models 
 
def plot_kfold_training_histories(fold_histories, fold_results): 
    """ 
    K-fold training geçmişlerini görselleştirir 
    """ 
    print("\n📈 Plotting K-fold training histories...") 
    log_message("\n📈 Plotting K-fold training histories...") 
     
    plt.figure(figsize=(20, 12)) 
     
    # 1. Training Loss for all folds 
    plt.subplot(2, 4, 1) 
    for i, history in enumerate(fold_histories): 
        plt.plot(history.history['loss'], alpha=0.7, label=f'Fold {i+1}', linewidth=2) 
    plt.title('Training Loss Across Folds') 
    plt.xlabel('Epoch') 
    plt.ylabel('Loss') 
    plt.legend() 
    plt.grid(True, alpha=0.3) 
     
    # 2. Validation Loss for all folds 
    plt.subplot(2, 4, 2) 
    for i, history in enumerate(fold_histories): 
        plt.plot(history.history['val_loss'], alpha=0.7, label=f'Fold {i+1}', linewidth=2) 
    plt.title('Validation Loss Across Folds') 
    plt.xlabel('Epoch') 
    plt.ylabel('Loss') 
    plt.legend() 
    plt.grid(True, alpha=0.3) 
     
    # 3. Training Accuracy for all folds 
    plt.subplot(2, 4, 3) 
    for i, history in enumerate(fold_histories): 
        plt.plot(history.history['accuracy'], alpha=0.7, label=f'Fold {i+1}', linewidth=2) 
    plt.title('Training Accuracy Across Folds') 
    plt.xlabel('Epoch') 
    plt.ylabel('Accuracy') 
    plt.legend() 
    plt.grid(True, alpha=0.3) 
     
    # 4. Validation Accuracy for all folds 
    plt.subplot(2, 4, 4) 



    for i, history in enumerate(fold_histories): 
        plt.plot(history.history['val_accuracy'], alpha=0.7, label=f'Fold {i+1}', linewidth=2) 
    plt.title('Validation Accuracy Across Folds') 
    plt.xlabel('Epoch') 
    plt.ylabel('Accuracy') 
    plt.legend() 
    plt.grid(True, alpha=0.3) 
     
    # 5. Epochs trained per fold 
    plt.subplot(2, 4, 5) 
    folds = fold_results['fold'] 
    epochs_trained = fold_results['epochs_trained'] 
    colors = plt.cm.Set3(np.linspace(0, 1, len(folds))) 
    bars = plt.bar(folds, epochs_trained, color=colors, alpha=0.8) 
    plt.title('Epochs Trained per Fold') 
    plt.xlabel('Fold') 
    plt.ylabel('Epochs') 
    plt.grid(True, alpha=0.3) 
    # Add value labels on bars 
    for bar, epochs in zip(bars, epochs_trained): 
        plt.text(bar.get_x() + bar.get_width()/2, bar.get_height() + 0.5,  
                 f'{epochs}', ha='center', va='bottom', fontweight='bold') 
     
    # 6. Performance metrics across folds 
    plt.subplot(2, 4, 6) 
    folds = fold_results['fold'] 
    plt.plot(folds, fold_results['accuracy'], 'o-', label='Accuracy', linewidth=2, markersize=8) 
    plt.plot(folds, fold_results['auroc'], 's-', label='AUROC', linewidth=2, markersize=8) 
    plt.plot(folds, fold_results['f1_score'], '^-', label='F1-Score', linewidth=2, markersize=8) 
    plt.title('Performance Metrics Across Folds') 
    plt.xlabel('Fold') 
    plt.ylabel('Score') 
    plt.legend() 
    plt.grid(True, alpha=0.3) 
    plt.ylim(0.5, 1.0) 
     
    # 7. Average training curves 
    plt.subplot(2, 4, 7) 
    # Calculate average training curves 
    max_epochs = max(len(h.history['loss']) for h in fold_histories) 
    avg_train_loss = [] 
    avg_val_loss = [] 
     
    for epoch in range(max_epochs): 
        epoch_train_losses = [] 
        epoch_val_losses = [] 
        for history in fold_histories: 
            if epoch < len(history.history['loss']): 
                epoch_train_losses.append(history.history['loss'][epoch]) 
                epoch_val_losses.append(history.history['val_loss'][epoch]) 
         
        if epoch_train_losses: 



            avg_train_loss.append(np.mean(epoch_train_losses)) 
            avg_val_loss.append(np.mean(epoch_val_losses)) 
     
    plt.plot(avg_train_loss, label='Average Training Loss', linewidth=3, color='blue') 
    plt.plot(avg_val_loss, label='Average Validation Loss', linewidth=3, color='red') 
    plt.title('Average Loss Curves') 
    plt.xlabel('Epoch') 
    plt.ylabel('Loss') 
    plt.legend() 
    plt.grid(True, alpha=0.3) 
     
    # 8. Best fold detailed training curve 
    plt.subplot(2, 4, 8) 
    best_fold_idx = np.argmax(fold_results['auroc']) 
    best_history = fold_histories[best_fold_idx] 
     
    plt.plot(best_history.history['loss'], label='Training Loss', linewidth=2, color='blue') 
    plt.plot(best_history.history['val_loss'], label='Validation Loss', linewidth=2, color='red') 
    plt.plot(best_history.history['accuracy'], label='Training Accuracy', linewidth=2, color='green', 
linestyle='--') 
    plt.plot(best_history.history['val_accuracy'], label='Validation Accuracy', linewidth=2, 
color='orange', linestyle='--') 
    plt.title(f'Best Fold ({best_fold_idx + 1}) Training Curves') 
    plt.xlabel('Epoch') 
    plt.ylabel('Loss / Accuracy') 
    plt.legend() 
    plt.grid(True, alpha=0.3) 
     
    plt.tight_layout() 
     
    # Save the plot 
    fig = plt.gcf() 
    save_plot(fig, "kfold_training_histories.png", "K-Fold Training Histories") 
     
    plt.show() 
     
    # Log some statistics about training 
    avg_epochs = np.mean(fold_results['epochs_trained']) 
    min_epochs = np.min(fold_results['epochs_trained']) 
    max_epochs = np.max(fold_results['epochs_trained']) 
     
    print(f"\n📊 Training Statistics:") 
    print(f"   Average epochs trained: {avg_epochs:.1f}") 
    print(f"   Min epochs: {min_epochs}") 
    print(f"   Max epochs: {max_epochs}") 
    print(f"   Best fold: {best_fold_idx + 1} (AUROC: {fold_results['auroc'][best_fold_idx]:.4f})") 
     
    log_message(f"\n📊 Training Statistics:") 
    log_message(f"   Average epochs trained: {avg_epochs:.1f}") 
    log_message(f"   Min epochs: {min_epochs}") 
    log_message(f"   Max epochs: {max_epochs}") 



    log_message(f"   Best fold: {best_fold_idx + 1} (AUROC: 
{fold_results['auroc'][best_fold_idx]:.4f})") 
 
def plot_single_training_history(history): 
    """ 
    Tek model eğitim geçmişini görselleştirir 
    """ 
    print("\n📈 Plotting training history...") 
    log_message("\n📈 Plotting training history...") 
     
    plt.figure(figsize=(12, 4)) 
     
    plt.subplot(1, 2, 1) 
    plt.plot(history.history['loss'], label='Training Loss', linewidth=2) 
    plt.plot(history.history['val_loss'], label='Validation Loss', linewidth=2) 
    plt.title('Model Loss') 
    plt.xlabel('Epoch') 
    plt.ylabel('Loss') 
    plt.legend() 
    plt.grid(True) 
     
    plt.subplot(1, 2, 2) 
    plt.plot(history.history['accuracy'], label='Training Accuracy', linewidth=2) 
    plt.plot(history.history['val_accuracy'], label='Validation Accuracy', linewidth=2) 
    plt.title('Model Accuracy') 
    plt.xlabel('Epoch') 
    plt.ylabel('Accuracy') 
    plt.legend() 
    plt.grid(True) 
     
    plt.tight_layout() 
     
    # Save training history plot 
    fig = plt.gcf() 
    save_plot(fig, "single_model_training_history.png", "Single Model Training History") 
     
    plt.show() 
     
    # Log training statistics 
    final_train_loss = history.history['loss'][-1] 
    final_val_loss = history.history['val_loss'][-1] 
    final_train_acc = history.history['accuracy'][-1] 
    final_val_acc = history.history['val_accuracy'][-1] 
    epochs_trained = len(history.history['loss']) 
     
    print(f"\n📊 Training Statistics:") 
    print(f"   Epochs trained: {epochs_trained}") 
    print(f"   Final training loss: {final_train_loss:.4f}") 
    print(f"   Final validation loss: {final_val_loss:.4f}") 
    print(f"   Final training accuracy: {final_train_acc:.4f}") 
    print(f"   Final validation accuracy: {final_val_acc:.4f}") 
     



    log_message(f"\n📊 Training Statistics:") 
    log_message(f"   Epochs trained: {epochs_trained}") 
    log_message(f"   Final training loss: {final_train_loss:.4f}") 
    log_message(f"   Final validation loss: {final_val_loss:.4f}") 
    log_message(f"   Final training accuracy: {final_train_acc:.4f}") 
    log_message(f"   Final validation accuracy: {final_val_acc:.4f}") 
 
if __name__ == '__main__': 
    setup_output_directory() 
     
    data_dir = './data' 
     
    print("🚀 CNN Classification System Starting...") 
    log_message("🚀 CNN Classification System Starting...") 
 
    try: 
        train_data, train_labels, test_data, test_labels, val_data, val_labels = load_data(data_dir) 
    except Exception as e: 
        error_msg = f"❌ Error loading data: {e}" 
        print(error_msg) 
        log_message(error_msg) 
        sys.exit(1) 
 
    # Configuration 
    model_complexity = 'medium' 
    learning_rate = 0.0001 
    max_epochs = 200 
    use_kfold = True 
    k_folds = 5 
     
    print(f"\n⚙ Configuration:") 
    print(f"   Model: {model_complexity}") 
    print(f"   Learning Rate: {learning_rate}") 
    print(f"   Max Epochs: {max_epochs}") 
    print(f"   K-Fold: {use_kfold}") 
     
    log_message(f"\n⚙ Configuration:") 
    log_message(f"   Model: {model_complexity}") 
    log_message(f"   Learning Rate: {learning_rate}") 
    log_message(f"   Max Epochs: {max_epochs}") 
    log_message(f"   K-Fold: {use_kfold}") 
     
    if use_kfold: 
        all_train_data = np.concatenate([train_data, test_data], axis=0) 
        all_train_labels = np.concatenate([train_labels, test_labels], axis=0) 
         
        fold_results, fold_models = perform_kfold_validation(all_train_data, all_train_labels, 
model_complexity, learning_rate, k_folds, max_epochs) 
         
        best_fold_idx = np.argmax(fold_results['auroc']) 
        best_model = fold_models[best_fold_idx] 



         
        print(f"\n🏆 Best model: Fold {best_fold_idx + 1}") 
        print(f"   Best AUROC: {fold_results['auroc'][best_fold_idx]:.4f}") 
        print(f"   Best Accuracy: {fold_results['accuracy'][best_fold_idx]:.4f}") 
        print(f"   Best F1-Score: {fold_results['f1_score'][best_fold_idx]:.4f}") 
         
        log_message(f"\n🏆 Best model: Fold {best_fold_idx + 1}") 
        log_message(f"   Best AUROC: {fold_results['auroc'][best_fold_idx]:.4f}") 
        log_message(f"   Best Accuracy: {fold_results['accuracy'][best_fold_idx]:.4f}") 
        log_message(f"   Best F1-Score: {fold_results['f1_score'][best_fold_idx]:.4f}") 
         
        print(f"\n🎯 Final evaluation on held-out validation set...") 
        log_message(f"\n🎯 Final evaluation on held-out validation set...") 
         
        val_results, _, _ = evaluate_validation_set(best_model, val_data, val_labels, 
"Final_Validation") 
         
        # Compare K-fold vs Final validation 
        kfold_mean_auroc = np.mean(fold_results['auroc']) 
        kfold_std_auroc = np.std(fold_results['auroc']) 
        kfold_mean_acc = np.mean(fold_results['accuracy']) 
        kfold_std_acc = np.std(fold_results['accuracy']) 
         
        print(f"\n📊 K-FOLD vs FINAL VALIDATION COMPARISON") 
        print(f"{'='*60}") 
        print(f"K-Fold Cross Validation (Average ± Std):") 
        print(f"   AUROC: {kfold_mean_auroc:.4f} ± {kfold_std_auroc:.4f}") 
        print(f"   Accuracy: {kfold_mean_acc:.4f} ± {kfold_std_acc:.4f}") 
        print(f"\nFinal Validation (Held-out):") 
        print(f"   AUROC: {val_results['auroc']:.4f}") 
        print(f"   Accuracy: {val_results['accuracy']:.4f}") 
         
        log_message(f"\n📊 K-FOLD vs FINAL VALIDATION COMPARISON") 
        log_message(f"{'='*60}") 
        log_message(f"K-Fold Cross Validation (Average ± Std):") 
        log_message(f"   AUROC: {kfold_mean_auroc:.4f} ± {kfold_std_auroc:.4f}") 
        log_message(f"   Accuracy: {kfold_mean_acc:.4f} ± {kfold_std_acc:.4f}") 
        log_message(f"\nFinal Validation (Held-out):") 
        log_message(f"   AUROC: {val_results['auroc']:.4f}") 
        log_message(f"   Accuracy: {val_results['accuracy']:.4f}") 
         
        # Generalization analysis 
        auroc_diff = kfold_mean_auroc - val_results['auroc'] 
        acc_diff = kfold_mean_acc - val_results['accuracy'] 
         
        print(f"\nGeneralization Analysis:") 
        print(f"   AUROC difference (K-fold - Final): {auroc_diff:.4f}") 
        print(f"   Accuracy difference (K-fold - Final): {acc_diff:.4f}") 
         
        log_message(f"\nGeneralization Analysis:") 
        log_message(f"   AUROC difference (K-fold - Final): {auroc_diff:.4f}") 



        log_message(f"   Accuracy difference (K-fold - Final): {acc_diff:.4f}") 
         
        if abs(auroc_diff) < 0.03 and abs(acc_diff) < 0.03: 
            generalization_msg = "   ✅ Excellent generalization! Model performs consistently." 
        elif abs(auroc_diff) < 0.05 and abs(acc_diff) < 0.05: 
            generalization_msg = "   ✅ Good generalization. Model is reliable." 
        elif abs(auroc_diff) < 0.10 and abs(acc_diff) < 0.10: 
            generalization_msg = "   ⚠ Fair generalization. Some performance drop expected." 
        else: 
            generalization_msg = "   ❌ Poor generalization. Significant performance variability." 
         
        print(generalization_msg) 
        log_message(generalization_msg) 
         
        final_auroc = val_results['auroc'] 
         
        # Create comprehensive final summary 
        final_summary = { 
            'timestamp': CURRENT_TIMESTAMP, 
            'dataset_info': { 
                'total_samples': len(train_labels) + len(test_labels) + len(val_labels), 
                'train_samples': len(train_labels), 
                'test_samples': len(test_labels), 
                'validation_samples': len(val_labels), 
                'train_percentage': 70.0, 
                'test_percentage': round((len(test_labels) / (len(train_labels) + len(test_labels) + 
len(val_labels))) * 100, 1), 
                'validation_percentage': round((len(val_labels) / (len(train_labels) + len(test_labels) + 
len(val_labels))) * 100, 1) 
            }, 
            'configuration': { 
                'model_complexity': model_complexity, 
                'learning_rate': learning_rate, 
                'max_epochs': max_epochs, 
                'use_kfold': use_kfold, 
                'k_folds': k_folds 
            }, 
            'kfold_performance': { 
                'mean_auroc': float(kfold_mean_auroc), 
                'std_auroc': float(kfold_std_auroc), 
                'mean_accuracy': float(kfold_mean_acc), 
                'std_accuracy': float(kfold_std_acc), 
                'best_fold': { 
                    'fold_number': int(best_fold_idx + 1), 
                    'auroc': float(fold_results['auroc'][best_fold_idx]), 
                    'accuracy': float(fold_results['accuracy'][best_fold_idx]), 
                    'f1_score': float(fold_results['f1_score'][best_fold_idx]) 
                } 
            }, 
            'final_validation': { 
                'auroc': float(val_results['auroc']), 
                'accuracy': float(val_results['accuracy']), 



                'f1_score': float(val_results['f1_score']), 
                'precision': float(val_results['precision']), 
                'recall': float(val_results['recall']), 
                'mcc': float(val_results['mcc']) 
            }, 
            'generalization_analysis': { 
                'auroc_difference': float(auroc_diff), 
                'accuracy_difference': float(acc_diff), 
                'generalization_assessment': generalization_msg.strip() 
            } 
        } 
         
        save_results_summary(final_summary, "comprehensive_final_summary") 
         
    else: 
        model = create_model(complexity=model_complexity, learning_rate=learning_rate) 
        history = train_model(model, train_data, train_labels, test_data, test_labels, max_epochs) 
        val_results, _, _ = evaluate_validation_set(model, val_data, val_labels, "Validation") 
        final_auroc = val_results['auroc'] 
     
    # Final summary 
    print(f"\n📋 COMPREHENSIVE FINAL RESULTS:") 
    print(f"{'='*60}") 
    print(f"Dataset Information:") 
    print(f"   Total samples: {len(train_labels) + len(test_labels) + len(val_labels)}") 
    print(f"   Train: {len(train_labels)} samples (70.0%)") 
    print(f"   Test: {len(test_labels)} samples ({(len(test_labels) / (len(train_labels) + len(test_labels) 
+ len(val_labels))) * 100:.1f}%)") 
    print(f"   Validation: {len(val_labels)} samples ({(len(val_labels) / (len(train_labels) + 
len(test_labels) + len(val_labels))) * 100:.1f}%)") 
     
    if use_kfold: 
        print(f"\nK-Fold Cross Validation Results:") 
        print(f"   Mean AUROC: {kfold_mean_auroc:.4f} ± {kfold_std_auroc:.4f}") 
        print(f"   Mean Accuracy: {kfold_mean_acc:.4f} ± {kfold_std_acc:.4f}") 
        print(f"   Best Fold: {best_fold_idx + 1} (AUROC: 
{fold_results['auroc'][best_fold_idx]:.4f})") 
     
    print(f"\nFinal Validation Performance:") 
    print(f"   Final AUROC: {final_auroc:.4f}") 
    print(f"   Final Accuracy: {val_results['accuracy']:.4f}") 
    print(f"   Final F1-Score: {val_results['f1_score']:.4f}") 
    print(f"   Final Precision: {val_results['precision']:.4f}") 
    print(f"   Final Recall: {val_results['recall']:.4f}") 
    print(f"   Final MCC: {val_results['mcc']:.4f}") 
     
    # Log the same information 
    log_message(f"\n📋 COMPREHENSIVE FINAL RESULTS:") 
    log_message(f"{'='*60}") 
    log_message(f"Dataset Information:") 
    log_message(f"   Total samples: {len(train_labels) + len(test_labels) + len(val_labels)}") 
    log_message(f"   Train: {len(train_labels)} samples (70.0%)") 



    log_message(f"   Test: {len(test_labels)} samples ({(len(test_labels) / (len(train_labels) + 
len(test_labels) + len(val_labels))) * 100:.1f}%)") 
    log_message(f"   Validation: {len(val_labels)} samples ({(len(val_labels) / (len(train_labels) + 
len(test_labels) + len(val_labels))) * 100:.1f}%)") 
     
    if use_kfold: 
        log_message(f"\nK-Fold Cross Validation Results:") 
        log_message(f"   Mean AUROC: {kfold_mean_auroc:.4f} ± {kfold_std_auroc:.4f}") 
        log_message(f"   Mean Accuracy: {kfold_mean_acc:.4f} ± {kfold_std_acc:.4f}") 
        log_message(f"   Best Fold: {best_fold_idx + 1} (AUROC: 
{fold_results['auroc'][best_fold_idx]:.4f})") 
     
    log_message(f"\nFinal Validation Performance:") 
    log_message(f"   Final AUROC: {final_auroc:.4f}") 
    log_message(f"   Final Accuracy: {val_results['accuracy']:.4f}") 
    log_message(f"   Final F1-Score: {val_results['f1_score']:.4f}") 
    log_message(f"   Final Precision: {val_results['precision']:.4f}") 
    log_message(f"   Final Recall: {val_results['recall']:.4f}") 
    log_message(f"   Final MCC: {val_results['mcc']:.4f}") 
     
    print(f"\n📁 All results saved to: {OUTPUT_DIR}") 
    print("🏁 Analysis Complete!") 
     
    log_message(f"\n📁 All results saved to: {OUTPUT_DIR}") 
    log_message("🏁 Analysis Complete!") 




