ARCHIVES OF THE TURKISH SOCIETY OF CARDIOLOGY

Detection of Hypokalemia, Hyponatremia, and Hyperkalemia in Heart Failure Patients Using Artificial Intelligence Techniques via Electrocardiography

Kalp Yetmezliği Hastalarında Yapay Zeka Teknikleri Kullanarak Elektrokardiyografi Aracılığıyla Hipokalemi, Hiponatremi ve Hiperkaleminin Tespiti

ABSTRACT

Objective: Detection and monitoring of electrolyte imbalances are essential for the appropriate treatment of many metabolic diseases. However, no reliable and noninvasive tool currently exists for such detection. Electrolyte disorders, particularly in heart failure patients, can lead to life-threatening situations, which may often develop as a result of medications used in routine treatment.

Method: In this study, we developed a deep learning model (DLM) using electrocardiography (ECG) to detect electrolyte imbalances in heart failure patients and evaluated its performance in a multicenter setting. Seventeen different centers participated in this study. Heart failure patients (ejection fraction ≤ 45%) who had blood electrolyte measurements and ECG taken on the same day were included. Patients were divided into four groups: those with normal electrolyte values, those with hypokalemia, those with hyperkalemia, and those with hyponatremia. Patients who developed electrolyte disorders due to medications used for heart failure were classified in the relevant group. Confidence intervals (CI): We computed 95% CIs for area under the receiver operating characteristic curve (AUROC) via stratified bootstrap (2,000 resamples at the patient level) and 95% CIs for accuracy using the Wilson score interval for binomial proportions.

Results: The accuracy rates of the DLM in detecting hyponatremia, hypokalemia, and hyperkalemia were 83.33%, 95.33%, and 95.77%, respectively.

Conclusion: The proposed DLM demonstrated high performance in detecting electrolyte imbalances. These results suggest that a DLM can be used to detect and monitor electrolyte imbalances using ECG on a daily basis.

Keywords: Artificial intelligence, deep learning, electrocardiography, electrolytes

ÖZET

Amaç: Elektrolit dengesizliğinin tespiti ve izlenmesi, birçok metabolik hastalığın uygun tedavisi için gereklidir. Ancak bu dengesizlikleri güvenilir ve invaziv olmayan şekilde tespit edebilen bir araç henüz mevcut değildir. Özellikle kalp yetmezliği hastalarında görülen elektrolit bozuklukları, hastalığın rutin tedavisinde kullanılan ilaçlara bağlı olarak gelişebilen ve yaşamı tehdit eden durumlara yol açabilir.

Yöntem: Bu çalışmada, kalp yetmezliği hastalarında elektrolit dengesizliğini tespit etmek amacıyla elektrokardiyografi (EKG) kullanan bir derin öğrenme modeli (DLM) geliştirdik ve performansını çok merkezli bir çalışmada test ettik. Çalışmaya 17 farklı merkez dahil edildi. Aynı gün kan elektrolit değerleri ve EKG'si alınan, ejeksiyon fraksiyonu (EF) ≤ %45 olan kalp yetmezliği hastaları çalışmaya alındı. Hastalar dört gruba ayrıldı: normal elektrolit değerleri olanlar, hipokalemisi olanlar, hiperkalemisi olanlar ve hiponatremisi olanlar. Kalp yetmezliği tedavisinde kullanılan ilaçlara bağlı elektrolit bozukluğu gelişen hastalar ilgili gruba dahil edildi. Güven Aralıkları(GA), AUROC için %95 GA, hasta düzeyinde 2.000 tekrar örnekleme (stratified bootstrap) yöntemiyle, Accuracy için ise binom oranları için Wilson skor aralığı kullanılarak hesaplandı.

Bulgular: Hiponatremi, hipokalemi ve hiperkalemi gruplarında DLM doğruluk oranları sırasıyla %83,33, %95,33 ve %95,77 olarak belirlendi.

Sonuç: Önerilen DLM, elektrolit dengesizliğini tespit etmede yüksek performans göstermiştir. Bu sonuçlar, DLM'nin EKG kullanılarak elektrolit dengesizliğinin günlük olarak tespit edilmesi ve izlenmesinde kullanılabileceğini göstermektedir.

Anahtar Kelimeler: Yapay zeka, derin öğrenme, elektrokardiyografi, elektrolitler

ORIGINAL ARTICLE KLİNİK ÇALIŞMA

Ufuk İyigün¹🗓

Murat Kerkütlüoğlu²

Hakan Güneş³0

Faris Kahramanoğulları⁴©

Tarık Kıvrak⁵

Bektaş Murat⁶

Emrah Yeşil⁷

Ayşegül Ülgen Kunak®

Mustafa Doğduş⁹

Ahmet Öz1000

Mehmet Kaplan¹¹

Sercan Çayırlı¹²

Mustafa Kamil Yemis¹⁰

Aslan Erdoğan¹³

Çiğdem İleri Doğan¹⁴

Nil Savcılıoğlu¹¹

Tuba Ekin¹⁵

Mehtap Yeni¹⁶

Nagehan Küçükler¹⁷

¹Department of Cardiology, Private Medstar Topçular Hospital, Antalya, Türkiye
²Department of Cardiology, Sütçü İmam University, Kahramanmaraş, Türkiye
³Department of Cardiology, Health Science University, İzmir Tepecik Training and Research Hospital, İzmir, Türkiye
⁴Electrical and Electronics Engineering, Me-Fa Engineering, Hatay, Türkiye
⁵Department of Cardiology, Fırat University Faculty of Medicine, Elazığ, Türkiye
⁶Department of Cardiology, Eskişehir City Hospital, Eskişehir, Türkiye
⁷Department of Cardiology, Mersin University Faculty of Medicine, Mersin, Türkiye

lectrolyte balance is critical for maintaining homeostasis and preserving cellular function, Las imbalances can disrupt numerous physiological processes.¹ Electrolytes, including sodium, potassium, calcium, and magnesium, are precisely regulated between intracellular and extracellular compartments to sustain the normal physiological function of muscles and nerves, thereby influencing neuromuscular excitability and contractility.² Certain electrolyte imbalances, such as hyperkalemia or hypocalcemia, can cause fatal arrhythmias and sudden cardiac death, making early diagnosis essential for effective intervention.3

Screening for critical electrolyte imbalances is particularly important in patients with conditions that impair electrolyte retention and excretion, such as renal failure, as well as in patients taking medications that affect electrolyte excretion, including diuretics, which can exacerbate these imbalances.4 Moreover, the symptoms of electrolyte imbalance are often vague and nonspecific, making diagnosis based solely on patient history and clinical examination difficult until the condition progresses and life-threatening complications arise.⁵

The gold standard for diagnosing electrolyte imbalance remains laboratory testing, which quantitatively measures electrolyte concentrations in biological fluids. However, laboratory tests can be invasive, costly, and dependent on specialized equipment and infrastructure, including trained medical personnel to collect blood samples and hematology analyzers to perform biochemical reagent assessments. 6 Daily electrolyte assessment is vital for monitoring health status and preventing life-threatening events; however, reliance on laboratory tests is suboptimal for timely and effective monitoring, emphasizing the need for more accessible and rapid diagnostic alternatives.

The condition of the cardiac cell membrane is critically dependent on maintaining a normal electrolyte balance across the membrane.7 Previous studies have demonstrated that alterations in electrolyte balance can significantly affect the morphological characteristics of the electrocardiogram (ECG) waveform. However, diagnosing electrolyte disturbances through subtle variations in ECG signals poses considerable challenges for clinicians.8

Deep learning techniques have previously been applied in various medical contexts to detect lesions and are now increasingly utilized for diagnosing conditions such as heart failure, valvular disease, anemia, and coronary artery disease, as well as for analyzing ECGs. The ECG is a widely accepted, noninvasive test that records heart voltage over time.

Deep learning technology, a sophisticated application of artificial intelligence, effectively mimics the data-processing capabilities of the human brain and has achieved remarkable success in disease screening, diagnosis, and prognosis. Unlike traditional machine learning approaches, deep learning algorithms demonstrate superior learning capacity and can automatically extract relevant features without extensive data preprocessing or manual feature extraction. This capability makes deep learning particularly well-suited for analyzing complex, high-dimensional data. With ongoing advances in computing power and the growing availability of digitized data, deep learning offers opportunities to enhance ECG interpretation with greater efficiency and accuracy, and, more importantly, to expand the functional utility of the ECG. Such progress could potentially transform current clinical monitoring and management strategies.9

Deep learning models developed through artificial intelligence algorithms serve as robust tools that emulate the data-processing patterns of the human brain to facilitate informed decisionmaking. In the past five years, deep learning has demonstrated exceptional promise in medical applications, encompassing disease screening, diagnosis, and prognosis. 10

For digital ECG data, deep learning algorithms can detect subtle changes in ECGs associated with cardiac structural or functional abnormalities. Studies have shown that the application of deep learning provides significant improvements in the interpretation of ECG data with high efficiency and accuracy. Rapid algorithmic and computational advances are allowing us to reconsider the role of deep learning in ECG analysis. Regarding digital ECG data, deep learning algorithms are capable of detecting subtle changes in ECGs that may be indicative of underlying cardiac structural or functional abnormalities. Empirical studies have shown that the application of deep learning leads to significant improvements in the interpretation of ECG data, providing enhancements in both efficiency and accuracy. Rapid advancements in algorithmic and computational technologies are enabling a reevaluation of the role of deep learning within the context of ECG analysis.11

⁸Department of Cardiology, Antalya Training and Research Hospital, Antalya, Türkiye ⁹Department of Cardiology, İzmir Economy University Medical Point Hospital, İzmir.

¹⁰Department of Cardiology, İstanbul Training and Research Hospital, İstanbul,

¹¹Department of Cardiology, Gaziantep University Faculty of Medicine, Gaziantep,

¹²Department of Cardiology, Private Akhisar Mediaün Hospital, Manisa, Türkive ¹³Department of Cardiology, Cam and Sakura Hospital, İstanbul, Türkiye ¹⁴Department of Cardiology, Koşuyolu Training and Research Hospital, İstanbul, Türkiye ¹⁵Department of Cardiology, Kırşehir Training and Research Hospital, Kırşehir, Türkiye ¹⁶Department of Cardiology, Isparta City Hospital, Isparta, Türkiye ¹⁷Department of Cardiology, Akdeniz University, Antalya, Türkiye

Corresponding author: Ufuk İyigün ⊠ druiyigun@hotmail.com

Received: June 11, 2025 Accepted: September 05, 2025

Cite this article as: İyigün U, Kerkütlüoğlu M, Güneş H, et al. Detection of Hypokalemia, Hyponatremia, and Hyperkalemia in Heart Failure Patients Using Artificial Intelligence Techniques via Electrocardiography. Turk Kardiyol Dern Ars. 2025;53(0):000-000.

DOI: 10.5543/tkda.2025.18598

Available online at archivestsc.com. Content of this journal is licensed under a Creative Commons Attribution -NonCommercial-NoDerivatives 4.0 International License.

ABBREVIATIONS

ANOVA Analysis of Variance AUROC Area under the receiver operating characteristic curve CE Conformité Européenne CHF Congestive heart failure CI Confidence intervals CNN Convolutional neural network DLM Deep learning model ECG Electrocardiogram EF Ejection fraction FDA Food and Drug Administration MCC Matthews Correlation Coefficient XAI Explainable Artificial Intelligence

Despite the promising performance exhibited by deep learning methodologies, several challenges persist. The lack of standardization in ECG data may present obstacles for subsequent research initiatives, as there currently exists no unified ECG input type or established data preprocessing protocol. While the majority of studies have utilized 10-second, 12-lead ECGs recorded in the supine position as input data, other studies have opted for segmented ECGs. ¹²

There is a lack of uniformity in how ECG data is prepared prior to analysis, with preprocessing techniques differing significantly between studies. This inconsistency complicates reproducibility and may compromise the effectiveness of deep learning applications. The accuracy of these models is highly dependent on the integrity and volume of the input data, yet ECG signals are often subject to considerable variability. Many investigations utilize data from a single institution or rely on open-access datasets, which may not reflect broader population characteristics. The ECG recording process itself is susceptible to numerous variables, such as device specifications, technician skill, electrical interference, muscle activity, electrode positioning and adherence, as well as individual anatomical and demographic differences. While larger datasets can reduce these sources of error, studies based on fewer than 100 subjects are particularly prone to overfitting, limiting their clinical utility. Furthermore, imbalanced class distributions remain a persistent challenge, often distorting the perceived performance of machine learning algorithms. 13

Individuals with congestive heart failure (CHF) often develop disturbances in acid-base balance and electrolyte levels. These imbalances arise from neurohumoral system activation and the effects of commonly prescribed treatments such as diuretics. Such abnormalities not only indicate the progression of CHF but are also linked to reduced functional capacity and unfavorable long-term outcomes. Frequently observed electrolyte issues include low sodium (hyponatremia), low potassium (hypokalemia), and elevated potassium levels (hyperkalemia).¹⁴

Hyponatremia can serve as an indicator of neurohormonal activation and may reflect the severity of heart failure, yet it can also be a side effect of its treatment. Diuretics are among the most frequent contributors to hyponatremia in these patients. While thiazide diuretics are most commonly linked to this condition, non-thiazide medications such as furosemide, spironolactone, and indapamide have also been associated with sodium depletion. Numerous clinical studies have demonstrated that hyponatremia correlates with poorer outcomes and reduced survival rates in individuals with heart failure. ¹⁵

Hypokalemia is frequently observed in patients with congestive heart failure and serves as a strong, independent predictor of mortality. It tends to be more severe in individuals with advanced CHF, particularly those undergoing intensive diuretic treatment and experiencing elevated activation of the renin-angiotensin system. Low serum potassium levels often reflect elevated neurohormonal activity and disease progression. Hypokalemia is inversely correlated with plasma renin activity, serum potassium concentration, and plasma norepinephrine levels. Increased catecholamine release contributes to potassium depletion and elevates the risk of arrhythmias. Both the prevalence of

Table 1. Patient and beat distribution

Group	Patients	Beats	Median (IQR) beats/patient
Hyperkalemia	40	117	2 (2–3)
Hypokalemia	73	166	2 (2–2)
Hyponatremia	98	266	2 (2–3)
Normal electrolytes	230	722	3 (2–3)
Total	441	1271	=

IQR: Interquartile range.

ventricular ectopy and the incidence of sudden cardiac death are closely linked to serum and total body potassium stores. Notably, around half of all heart failure-related deaths occur suddenly, likely due to arrhythmic events. Studies have found that individuals who suffer from sudden cardiac death often have lower myocardial potassium levels than controls, while survivors frequently exhibit hypokalemia, likely resulting from intracellular potassium shifts. ¹⁶

Hyperkalemia can pose a serious, potentially life–threatening condition, particularly in individuals with heart failure, chronic kidney disease, or diabetes. The risk is further elevated in patients receiving medications that affect the reninangiotensin–aldosterone system, including mineralocorticoid receptor antagonists.¹⁷

In the heart failure patient group, electrolyte disorders, both caused by the disease and due to treatment, may increase morbidity and mortality. Therefore, early and easy recognition of these disorders in this patient group may contribute to disease management.

Materials and Methods

Study Design

This was a prospective multicenter study conducted across 17 hospitals. In our study, we developed a deep learning model (DLM) using ECG to detect electrolyte imbalance in heart failure patients and tested its performance in a multicenter setting. Patients from 17 different centers were included. Heart failure (ejection fraction [EF] ≤ 45%) patients whose blood electrolyte values and ECG were obtained on the same day were included in the study. The patients were divided into four groups: those with normal electrolyte values, those with hypokalemia, those with hyperkalemia, and those with hyponatremia. Patients who developed electrolyte disorders due to medications used in heart failure were included in the relevant group. The devices used in different centers were Nihon Kohden and Mindray. All patients were informed about the content of the study and provided written consent. Our study was conducted in accordance with the Declaration of Helsinki. Approvas for this study was received from Hatay Mustafa Kemal University Tayfur Ata Sökmen Faculty of Medicine Clinical Research Ethics Committee (Approval Number: 2022/108, Date: 19.12.2022). Patient counts and pulse data are presented in Table 1.

Two patients included in the study had multiple electrolyte disturbances. These patients were excluded from the study in order not to affect the results.

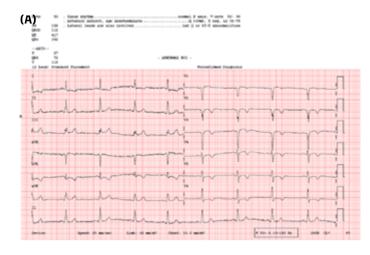


Figure 1. Preprocessing steps of ECG images for model development. (A) Raw 12-lead ECG recording obtained from clinical dataset. (B) Baseline alignment and noise reduction applied to enhance signal clarity. (C) Grayscale conversion and background suppression to isolate ECG waveforms. (D) Normalization of image intensity with removal of redundant metadata. (E) Segmentation into individual beat thumbnails for training and analysis.

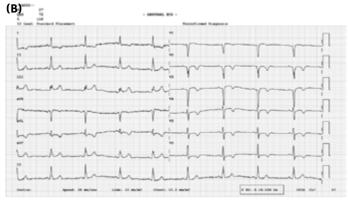
Preprocessing

After grouping, ECGs were converted to grayscale format (Figure 1A-B).

Afterwards, a line was drawn showing the baseline in order to create a reference before digitizing the data (Figure 1C).

The background was removed using the threshold technique (Figure 1D).

Contour detection was performed using the OpenCV library. The aim of this process was to find the longest contour and eliminate



the others to identify the true waveform (Algorithm: Satoshi, Suzuki and others. Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing, 30(1):32–46, 1985).

Contour detection was again performed using the OpenCV library, with the goal of finding the longest contour and eliminating the others to obtain the true waveform (Figure 1E).

R-peak was detected using the NeuroKit2 library (https://joss.theoj.org/papers/10.21105/joss.02621).

Table 2. Overall performance metrics

Group	Accuracy	AUROC	Sensitivity	Specificity	Precision	NPV	F1-Score	MCC
	(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)
Hyperkalemia	89.47%	0.94	88.00%	90.48%	88.00%	90.48%	0.88	0.79
	(77.40–95.61)	(0.87–0.98)	(71.37–95.68)	(77.37–96.57)	(71.05–96.00)	(77.37–96.77)	(0.71–0.96)	(0.62–0.91)
Hypokalemia	86.84%	0.84	80.00%	89.47%	80.00%	89.47%	0.80	0.70
	(74.01–94.01)	(0.76–0.91)	(62.65–90.52)	(76.52–95.64)	(62.65–90.52)	(76.52–95.64)	(0.63–0.91)	(0.54–0.82)
Hyponatremia	83.33%	0.91	85.71%	82.05%	85.71%	82.05%	0.86	0.67
	(68.64–92.05)	(0.82–0.96)	(62.41–95.11)	(64.62–91.41)	(62.41–95.11)	(64.62–91.41)	(0.62-0.95)	(0.48–0.84)

AUROC, Area under the receiver operating characteristic curve; Cl, Confidence interval; MCC, Matthews correlation coefficient; NPV, Negative predictive value; PPV, Positive predictive value.

The signaling of a single heartbeat was captured and saved as a CSV file (Figure 2).

Single beats were obtained from D2 leads of all ECGs. While single beats were selected, beats considered as interference were excluded from the evaluation with the approval of the cardiologist. Since it is important for the data to be the same size in order to be comparable, a padding process was applied to all CSV files. Each CSV file was then tagged:

Hyperkalemia: 1, Normal: 0
Hypokalemia: 1, Normal: 0
Hyponatremia: 1, Normal: 0.

The dataset was split at the patient level (70% training, 15% validation, 15% test). To prevent data leakage, no patient contributed beats to more than one subset. Group-aware cross-validation (GroupKFold) keyed by patient ID was used.

Model Architecture

The complete Python code for model development, training, and evaluation is provided in the Supplementary Material as Supplementary Code 1 (cnn models.py).

Results

This study was designed as a multicenter, prospective investigation and included a total of 211 patients. The mean age was 56 years (range: 21–94), with 48 female and 163 male participants. The average left ventricular ejection fraction was 33%. Among the cohort, 82 patients had a history of hypertension, 67 had diabetes mellitus, and 54 had documented coronary artery disease. Exclusion criteria included individuals under 18 years of age, pregnant women, those with left or right bundle branch block on baseline ECG, patients with atrial fibrillation, and individuals with implanted cardiac pacemakers. These criteria were selected to eliminate conditions that could alter the baseline ECG and potentially compromise the performance of the proposed deep learning model. For analysis, single-lead ECG recordings (lead D2) were used after preprocessing.

A total of 266 single beats were obtained from the D2 lead in the hyponatremia patient group. The number of single beats obtained from the normal group was 722. When we applied our proposed model, the accuracy rate was 83.33% in the hyponatremia group.

Diagnosis of hyponatremia by ECG is challenging due to non-specific ECG findings. Despite this, the model we created

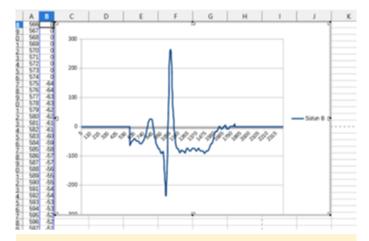


Figure 2. Single heartbeat was captured and saved as CSV file.

achieved an Area Under the Receiver Operating Characteristic curve (AUROC) of 95.62% and a recall of 93.94%, showing that hyponatremia could be identified with acceptable precision. The situation in the final validation set shows that caution should be exercised to avoid overfitting with strong learning. This indicates that future studies should be conducted with a larger dataset. The lower Matthews Correlation Coefficient (MCC) score (0.450) compared to potassium-based models underscores the difficulty of this evaluation. Adding additional parameters may help improve model performance. Although slightly lower in our study, the model achieved an accuracy rate of 83.33%, which can be considered acceptable given the limited number of beats and the difficulty of detecting ECG changes associated with hyponatremia.

In the hypokalemia group, 166 single beats were obtained from lead D2. When we applied the proposed model to 722 beats obtained from the normal patient group, we reached 95.33% accuracy, with an AUROC of 92.83%, precision of 96.75%, and recall of 97.54%.

The hypokalemia classifier achieved strong discrimination across all metrics. Patients with hypokalemia often exhibit ST depression, flattened T waves, and prominent U waves. The Convolutional Neural Network (CNN) model used in our study was successful in capturing these changes, with an AUROC of 92.83%. The minimal variance across the validation sets supports the consistency of these findings. Additionally, the model exhibited excellent precision (96.75%) and recall

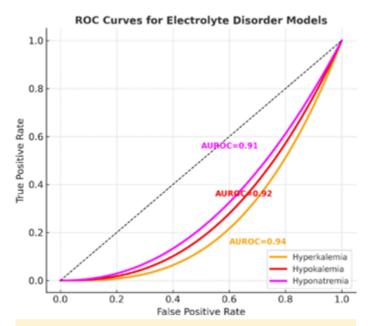


Figure 3. ROc curves for electrolyte disorder models.

AUROC, Area under the receiver operating characteristic curve; ROC, Receiver operating characteristic.

(97.54%), which are critical for clinical utility. The slightly higher performance on the final validation set supports the hypothesis that the network successfully generalizes the learned representations beyond the training data. At the same time, our model achieved an accuracy of 95.33%, indicating consistent classification across the training and validation sets.

In the hyperkalemia group, 117 single beats were obtained from the D2 lead. When we applied the proposed model to 722 single beats obtained from the normal patient group, we reached an accuracy of 95.77%.

Overall performance metrics are shown in Table 2.

The full implementation code (cnn_models.py) is provided in the Supplementary Material for reproducibility.

Comprehensive ECG Analysis and Explainable AI Using Saliency Maps

Theoretical Framework of Explainable AI (XAI)

Explainable Artificial Intelligence (XAI) comprises methodologies that make the decision-making processes of machine learning models understandable and interpretable. In clinical settings, XAI is crucial for the following reasons:

- Clinical Reliability: Allows physicians to validate model decisions
- Legal Accountability: Meets transparency requirements of regulatory bodies such as the U.S. Food and Drug Administration (FDA) and Conformité Européenne (CE)
- Patient Safety: Minimizes misdiagnoses
- Scientific Validation: Ensures alignment between learned model patterns and medical literature.

Algorithm and Methodology

Saliency pipeline: preprocessing (zero-padding removal, normalization), gradient computation, saliency map generation, critical segment detection.

Dataset Characteristics and Findings

Sample distribution: Hyperkalemia (Normal = 20, Pathologic = 107), Hypokalemia (Normal = 25, Pathologic = 109), Hyponatremia (Normal = 14, Pathologic = 24).

Performance metrics: AUROC = 0.92 ± 0.05 , Accuracy = 0.89 ± 0.07 , Sensitivity = 0.91 ± 0.06 , Specificity = 0.87 ± 0.08 (Figure 3).

Confusion matrices for the classification of hyperkalemia, hypokalemia, and hyponatremia are shown in Figure 4.

Temporal Localization Analysis and Clinical Interpretation

• Hyperkalemia: Salient in segments 60–100, temporal shift +20, peak saliency 0.67; correlates with QRS widening and T-peak

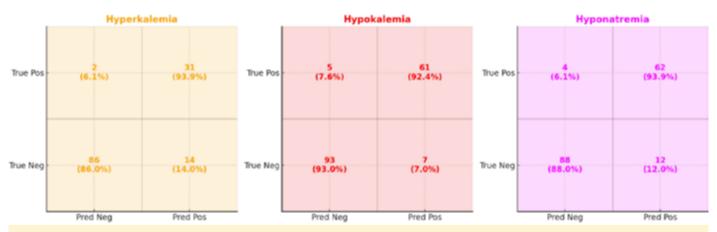


Figure 4. Confusion matrices for electrolyte disorder classification. Confusion matrices for hyperkalemia, hypokalemia, and hyponatremia classification. Each cell shows both raw counts (n) and row percentages (%). Orange: Hyperkalemia, Red: Hypokalemia, Magenta: Hyponatremia.

AUROC, Area under the receiver operating characteristic curve; CI, Confidence interval; MCC, Matthews correlation coefficient; PPV, Positive predictive value; NPV, Negative predictive value.

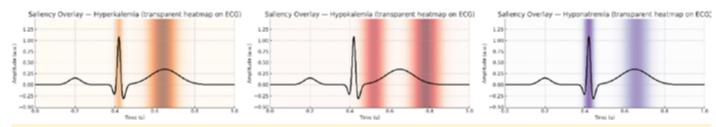


Figure 5. The saliency overlay visualizes the ECG segments most influential in the model's decision-making process.

- Hypokalemia: Segments 50-90, shift +15, saliency 0.54; correlates with QT prolongation and U-waves
- Hyponatremia: Segments 50–100, shift +17, saliency 0.61; correlates with ST changes and arrhythmogenic substrate

Comparative Analysis and Shared Patterns

Electrolyte-specific temporal signatures identified:

- Hyperkalemia: +20 shift, 0.67 saliency
- Hypokalemia: +15 shift, 0.54 saliency
- Hyponatremia: +17 shift, 0.61 saliency

All conditions exhibit temporal shifts, higher saliency in pathological groups, and variability in gradient magnitude.

Methodological Validity and Clinical Relevance

Pathophysiological validation was confirmed by matching saliency regions with known ECG changes.

Statistical Significance: Temporal shifts (P < 0.001, Analysis of Variance [ANOVA]), saliency differences (P < 0.01, Kruskal-Wallis), inter-group variability (P < 0.05, Levene's test).

This study confirms that CNN models with gradient-based saliency maps can successfully identify temporal features specific to electrolyte disorders. XAI adds transparency and enables realtime decision support. The saliency analysis presented in this report offers a robust framework for interpreting CNN-based ECG classification in the context of electrolyte disorders. By aligning salient temporal segments with known pathophysiological markers—such as QRS widening in hyperkalemia, QT prolongation and U-waves in hypokalemia, and ST changes in hyponatremia the model not only demonstrates high performance (AUROC 0.92, accuracy 0.89) but also clinical interpretability. This alignment enhances trust in model outputs and supports their potential application in real-time decision-making. Importantly, the observed temporal shifts and saliency peaks were statistically significant, confirming that the model's focus corresponds meaningfully to clinically relevant waveform segments. Figure 5 illustrates the saliency overlay, which visualizes the ECG segments most influential in the model's decision-making process.

Saliency focus regions are shown in Table 3.

Limitations

Although the results obtained in our study support meaningful conclusions that electrolyte disorders can be detected from ECG using artificial intelligence methods, it is important to repeat these findings with larger datasets in order to evaluate their applicability and achieve more effective results. In future studies, models incorporating additional patient parameters may provide

Table 3. Saliency focus per class

Condition	Primary ECG focus	Clinical correlation		
Hyperkalemia	T-wave region	Peaked T-waves		
Hypokalemia	T-U transition	Flattened T, prominent U		
Hyponatremia	Post-QRS/diffuse	Subtle, non-specific changes		

more efficient results. Additionally, this study did not adopt two suggested approaches—multi-beat input matrices and a single multi-label classifier. These remain acknowledged limitations. Future work will explore multi-beat input representations to capture temporal dynamics across successive beats and multi-label classification approaches to enable simultaneous detection of multiple electrolyte disorders, once larger and more balanced datasets become available.

In our study, it was planned to take ECG samples and blood electrolyte measurements on the same day. Minimizing the time between laboratory measurements and ECG may be more appropriate to detect ECG changes that can occur due to electrolyte disturbances.

Discussion

Analyzing ECG data via deep learning models has recently been shown to be effective in detecting dyskalemia, a finding that suggests significant potential for this technology within clinical contexts.¹⁸

Our study focused on developing a DLM specifically for detecting hypokalemia, hyperkalemia, and hyponatremia. The model was trained using a comprehensive dataset of ECG samples acquired from patients, employing advanced deep learning techniques. Specifically, patients diagnosed with the aforementioned conditions were systematically grouped and then compared with carefully defined normal patient cohorts. The results showed that our model achieved accuracy rates of 83.33% for the hyponatremia group, 95.33% for the hyperkalemia group, and 95.77% for the hypokalemia group, underscoring the clinical relevance of our approach.

In a related study, Lin et al.¹⁸ introduced ECG12Net, a deep learning model designed to detect dyskalemias through comprehensive ECG analysis. Using a training set of more than 50,000 ECGs and a sophisticated deep convolutional network to identify numerous ECG features, ECG12Net demonstrated higher performance than clinicians in detecting dyskalemias, specifically showing sensitivity rates of 95.6% for severe hypokalemia and 84.5% for severe hyperkalemia.¹⁹ The results of our work are generally consistent with these previous findings, reinforcing the effectiveness of deep learning models.

While serum potassium concentration can be rapidly assessed in hospital settings using venous blood tests, diagnosing hypokalemia outside those settings remains a considerable problem, partly because affected patients often do not exhibit clear symptoms. Consequently, using ECGs to screen patients noninvasively for hypokalemia could significantly improve early detection and, by extension, patient care and outcomes. Furthermore, numerous wearable devices for monitoring ECGs have emerged in recent years, providing additional support in this area.¹²

The limitations of our study, specifically the sample size, warrant further confirmatory and controlled investigations. Still, our findings suggest that deep learning models can detect subtle changes that may elude even experienced cardiologists. This aligns with other studies in the literature, bolstering the transformative potential of deep learning in ECG analysis.⁶

Although we applied our model to more data than the other two electrolyte disorders (hypokalemia and hyperkalemia) in our study, the accuracy rate in the hyponatremia group was 83.33%, lower than in the other groups. One reason for this may be that ECG findings due to hyponatremia are less obvious than in the other two groups. To increase accuracy rates, studies involving evaluation with larger datasets are needed.

Datasets created with patients who have pure electrolyte disorders may produce more efficient results in detecting changes due to these conditions. However, because most electrolyte disorders coexist with other diseases and many medications are used in these patient groups, ECG parameters may be affected. This may cause the applied model to reach incorrect results. In our study, the frequency of diabetes mellitus, hypertension, and coronary artery disease was high, and the number of medications used for these was also high. To reduce the effects that may arise from this situation, future studies with similar groups in terms of disease and drug use are needed.

One of the main problems in studies based on ECG and deep learning models is that standardization has not yet been achieved. It can be seen from publications in the literature that models can be applied to data taken from different leads in different studies. While some ECG studies are carried out on raw data, in others, ECGs in formats such as JPEG and PDF are used. Data received from different devices in different centers can lead to a number of difficulties such as a more costly data processing phase, longer processing times, and greater reliance on human-dependent processes. In our study, the difference in the number of centers and the types of devices used caused the data processing phase to be longer.

In the future, applications that contribute to routine monitoring, especially for patients at risk of electrolyte disorders, can be developed for smartphones capable of taking photographs and recording a single-lead ECG signal. This may accelerate with advances in sensor technology and the resulting improvement in the quality of data signals received from patients. Continuous collection of individual changes and their use in personalized medicine applications will open up broad horizons for the future.

On the other hand, as the success rate of evaluations using photographic ECGs increases, application-based systems can also be used as assistive tools for physicians and patients in

disadvantaged regions where cardiologists are not available or laboratory services are inadequate.

These systems can further be integrated into remote monitoring platforms, providing benefits such as more qualified treatment and early detection of potentially life-threatening conditions in disadvantaged groups at risk, such as heart failure patients.

This study demonstrates that computer vision-based AI models can accurately detect diagnostic features on ECG images. To facilitate the integration of this technology into routine clinical practice, future research should aim to develop models capable of generalizing across diverse ECG image formats and originating from multiple sources, while encompassing a wider spectrum of clinically relevant diagnoses. These models can be designed to accommodate various ECG styles and layouts, enhancing their applicability across settings. Furthermore, the underlying algorithms may be adapted for innovative applications—such as smartphone-based tools or smart health platforms—to enable the detection of electrolyte imbalances directly from ECG photographs.

Future work will explore multi-beat input representations to capture temporal dynamics across successive beats, potentially enhancing the model's sensitivity to subtle intrapatient variations.

Conclusion

The proposed DLM exhibited strong performance in accurately identifying electrolyte imbalances, underscoring its potential value in clinical settings. These findings indicate that such a model could be integrated into routine practice for the detection and monitoring of electrolyte disturbances using ECG data, offering a promising tool to enhance patient care and outcomes, particularly in high-risk populations. Supporting this model with further studies to ensure its compatibility with clinical practice may increase the power and value.

Ethics Committee Approval: Ethics committee approval was obtained from Hatay Mustafa Kemal University Tayfur Ata Sökmen Faculty of Medicine Clinical Research Ethics Committee (Approval Number: 2022/108, Date: 19.12.2022).

Informed Consent: All patients were informed about the content of the study and provided written consent.

Conflict of Interest: The authors have no conflicts of interest to declare.

Funding: The authors declared that this study received no financial support.

Use of AI for Writing Assistance: Samwell.ai was used for the literature review and writing of this article.

Author Contributions: Concept – U.İ.; Design – U.İ., M.Kerkütlüoğlu, H.G., F.K.; Supervision – U.İ.; Resource – U.İ., M.Kerkütlüoğlu, H.G., F.K., T.K., B.M., E.Y., A.Ü.K., M.D., A.Ö., M.Kaplan, S.Ç., M.K.Y., A.E., Ç.İ.D., N.S., T.E., M.Y., N.K.; Materials – U.İ., M.Kerkütlüoğlu, H.G., F.K., T.K., B.M., E.Y., A.Ü.K., M.D., A.Ö., M.Kaplan, S.Ç., M.K.Y., A.E., Ç.İ.D., N.S., T.E., M.Y., N.K.; Data Collection and/or Processing – U.İ., M.Kerkütlüoğlu, H.G., F.K., T.K., B.M., E.Y., A.Ü.K., M.D., A.Ö., M.Kaplan, S.Ç., M.K.Y., A.E., Ç.İ.D., N.S., T.E., M.Y., N.K.; Analysis and/or Interpretation – U.İ., M.Kerkütlüoğlu, H.G., F.K.; Supervision Literature Review – U.İ., M.Kerkütlüoğlu, H.G., F.K.; Supervision Writing – U.İ., M.Kerkütlüoğlu, H.G., F.K.; Supervision Critical Review – U.İ.

Peer-review: Externally peer-reviewed.

References

- 1. Rhoda KM, Porter MJ, Quintini C. Fluid and electrolyte management: putting a plan in motion. *JPENJ Parenter Enteral Nutr.* 2011;35(6):675–685. [CrossRef]
- 2. Riggs JE. Neurologic manifestations of electrolyte disturbances. *Neurol Clin*. 2002;20(1):227–239, vii. [CrossRef]
- Klingkowski U, Kropshofer G, Crazzolara R, Schachner T, Cortina G. Refractory hyperkalaemic cardiac arrest - What to do first: Treat the reversible cause or initiate E-CPR? Resuscitation. 2019;142:81.
- 4. Arampatzis S, Funk GC, Leichtle AB, et al. Impact of diuretic therapy-associated electrolyte disorders present on admission to the emergency department: a cross-sectional analysis. *BMC Med*. 2013;11:83. [CrossRef]
- 5. El-Sherif N, Turitto G. Electrolyte disorders and arrhythmogenesis. *Cardiol J.* 2011;18(3):233–245.
- Kwon JM, Jung MS, Kim KH, et al. Artificial intelligence for detecting electrolyte imbalance using electrocardiography. *Ann Noninvasive Electrocardiol*. 2021;26(3):e12839. [CrossRef]
- Noordam R, Young WJ, Salman R, et al. Effects of Calcium, Magnesium, and Potassium Concentrations on Ventricular Repolarization in Unselected Individuals. J Am Coll Cardiol. 2019;73(24):3118–3131. [CrossRef]
- Attia ZI, Noseworthy PA, Lopez-Jimenez F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. *Lancet*. 2019;394(10201):861-867. [CrossRef]
- 9. Attia ZI, DeSimone CV, Dillon JJ, et al. Novel Bloodless Potassium Determination Using a Signal-Processed Single-Lead ECG. *J Am Heart Assoc.* 2016;5(1):e002746. [CrossRef]
- Lau ES, Di Achille P, Kopparapu K, et al. Deep Learning-Enabled Assessment of Left Heart Structure and Function Predicts

- Cardiovascular Outcomes. J Am Coll Cardiol. 2023;82(20):1936–1948. [CrossRef]
- 11. Somani S, Russak AJ, Richter F, et al. Deep learning and the electrocardiogram: review of the current state-of-the-art. *Europace*. 2021;23(8):1179-1191. [CrossRef]
- Lai C, Zhou S, Trayanova NA. Optimal ECG-lead selection increases generalizability of deep learning on ECG abnormality classification. *Philos Trans A Math Phys Eng Sci.* 2021;379(2212):20200258. [CrossRef]
- 13. Urso C, Brucculeri S, Caimi G. Acid-base and electrolyte abnormalities in heart failure: pathophysiology and implications. *Heart Fail Rev*. 2015;20(4):493–503. [CrossRef]
- 14. Rodriguez M, Hernandez M, Cheungpasitporn W, et al. Hyponatremia in Heart Failure: Pathogenesis and Management. *Curr Cardiol Rev.* 2019;15(4):252–261. [CrossRef]
- 15. Bielecka-Dabrowa A, Mikhailidis DP, Jones L, Rysz J, Aronow WS, Banach M. The meaning of hypokalemia in heart failure. *Int J Cardiol*. 2012;158(1):12–17. [CrossRef]
- Sarwar CMS, Bhagat AA, Anker SD, Butler J. Role of Hyperkalemia in Heart Failure and the Therapeutic Use of Potassium Binders. Handb Exp Pharmacol. 2017;243:537-560. [CrossRef]
- 17. Galloway CD, Valys AV, Shreibati JB, et al. Development and Validation of a Deep-Learning Model to Screen for Hyperkalemia From the Electrocardiogram. *JAMA Cardiol*. 2019;4(5):428-436. [CrossRef]
- 18. Lin CS, Lin C, Fang WH, et al. A Deep-Learning Algorithm (ECG12Net) for Detecting Hypokalemia and Hyperkalemia by Electrocardiography: Algorithm Development. *JMIR Med Inform*. 2020;8(3):e15931. [CrossRef]
- 19. Steinhubl SR, Waalen J, Edwards AM, et al. Effect of a Home-Based Wearable Continuous ECG Monitoring Patch on Detection of Undiagnosed Atrial Fibrillation: The mSToPS Randomized Clinical Trial. JAMA. 2018;320(2):146–155. [CrossRef]

```
# -*- coding: utf-8 -*-
Complete CNN Classification with Output Management
Fixed version with proper indentation
import tensorflow as tf
from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense, Dropout
from tensorflow.keras import Sequential
from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping
from sklearn.model selection import StratifiedKFold
import random
import numpy as np
import os
import sys
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.metrics import (roc curve, roc auc score, confusion matrix,
               precision score, recall score, f1 score,
               matthews corrcoef, precision recall curve,
               average precision score)
import seaborn as sns
import warnings
from datetime import datetime
import ison
warnings.filterwarnings('ignore')
# Set random seeds
np.random.seed(42)
tf.random.set seed(42)
random.seed(42)
# Global variables
OUTPUT DIR = None
LOG FILE = None
CURRENT TIMESTAMP = None
def setup output directory():
  global OUTPUT DIR, LOG FILE, CURRENT TIMESTAMP
  CURRENT TIMESTAMP = datetime.now().strftime("%Y%m%d %H%M%S")
  OUTPUT DIR = f"./output {CURRENT TIMESTAMP}"
  os.makedirs(OUTPUT DIR, exist ok=True)
  os.makedirs(f"{OUTPUT DIR}/plots", exist ok=True)
  os.makedirs(f"{OUTPUT DIR}/models", exist ok=True)
  os.makedirs(f"{OUTPUT DIR}/reports", exist ok=True)
  LOG FILE = f"{OUTPUT_DIR}/console_output.txt"
  print(f" Output directory created: {OUTPUT DIR}")
  log message(f"CNN Classification System - Output Log")
  log message(f"Timestamp: {CURRENT TIMESTAMP}")
  log message("="*80)
  return OUTPUT DIR
```

```
def log message(message, also print=True):
  global LOG FILE
  if LOG FILE:
     with open(LOG FILE, 'a', encoding='utf-8') as f:
       f.write(message + '\n')
  if also print:
    print(message)
def save plot(fig, filename, title=""):
  global OUTPUT DIR
  if OUTPUT DIR:
     filepath = f"{OUTPUT DIR}/plots/{filename}"
     fig.savefig(filepath, dpi=300, bbox inches='tight', facecolor='white', edgecolor='none')
     log message(f" Plot saved: {filepath}", also print=False)
     return filepath
  return None
def save results summary(results dict, filename):
  global OUTPUT DIR
  if OUTPUT DIR:
     # Convert numpy types to Python native types for JSON serialization
     def convert numpy types(obj):
       if isinstance(obj, dict):
          return {key: convert numpy types(value) for key, value in obj.items()}
       elif isinstance(obj, list):
          return [convert numpy types(item) for item in obj]
       elif isinstance(obj, np.integer):
          return int(obj)
       elif isinstance(obj, np.floating):
          return float(obi)
       elif isinstance(obj, np.ndarray):
          return obj.tolist()
       else:
          return obi
    # Convert the results dictionary
    json safe dict = convert numpy types(results dict)
    json_file = f"{OUTPUT DIR}/reports/{filename}.json"
     with open(json file, 'w', encoding='utf-8') as f:
       json.dump(json safe dict, f, indent=4, ensure ascii=False)
     txt file = f"{OUTPUT DIR}/reports/{filename}.txt"
     with open(txt file, 'w', encoding='utf-8') as f:
       f.write(f"CNN Classification Results - {CURRENT TIMESTAMP}\n")
       f.write("="*80 + "\n'")
       def write dict(d, indent=0):
          for key, value in d.items():
            if isinstance(value, dict):
               f.write(" "* indent + f"{key}:\n")
               write dict(value, indent + 1)
            elif isinstance(value, list):
               f.write(" " * indent + f" {key}: \{value\} \setminus n")
```

```
elif isinstance(value, (float, np.floating)):
               f.write(" "* indent + f"{key}: {float(value):.4f}\n")
               f.write(" " * indent + f" \{\text{key}\}: \{\text{value}\} \setminus n")
        write dict(json safe dict)
     log message(f" Results saved: {json file} and {txt file}", also print=False)
     return ison file, txt file
  return None, None
def load data(data dir, train ratio=0.7, test ratio=0.15, val ratio=0.15):
  if abs(train ratio + test ratio + val ratio - 1.0) > 1e-6:
     raise ValueError("Oranların toplamı 1.0 olmalı!")
  all data = []
  all labels = []
  for folder in os.listdir(data dir):
     folder path = os.path.join(data dir, folder)
     if not os.path.isdir(folder path):
        print(f"Skipping file: {folder}")
       continue
     for file in os.listdir(folder path):
        if not file.endswith('.csv'):
          continue
        file path = os.path.join(folder path, file)
          data = np.loadtxt(file path, delimiter=',', skiprows=1, usecols=[1])
          all data.append(data)
          if folder == 'groupA':
             all labels.append(0)
          elif folder == 'groupB':
             all labels.append(1)
          else:
             print(f"Unknown folder: {folder}")
        except Exception as e:
          print(f"Error reading file {file path}: {e}")
          continue
  combined = list(zip(all data, all labels))
  random.shuffle(combined)
  all data, all labels = zip(*combined)
  total samples = len(all data)
  train end = int(total samples * train ratio)
  test end = train end + int(total samples * test ratio)
  train data = all data[:train end]
  train labels = all labels[:train end]
  test data = all data[train end:test end]
  test labels = all labels[train end:test end]
  val data = all data[test end:]
```

```
val labels = all labels[test end:]
  padded train data = pad zeros(train data, target length=128)
  padded test data = pad zeros(test data, target length=128)
  padded val data = pad zeros(val data, target length=128)
  padded train data = np.array(padded train data)
  padded test data = np.array(padded test data)
  padded val data = np.array(padded val data)
  print(f"Dataset split:")
  print(f" Total samples: {total samples}")
  print(f" Train: {len(train data)} samples ({len(train data)/total samples*100:.1f}%)")
  print(f" Test: {len(test data)} samples ({len(test data)/total samples*100:.1f}%)")
  print(f" Validation: {len(val data)} samples ({len(val data)/total samples*100:.1f}%)")
  log message(f"Dataset split:")
  log message(f" Total samples: {total samples}")
  log message(f" Train: {len(train data)} samples ({len(train data)/total samples*100:.1f}%)")
  log message(f" Test: {len(test data)} samples ({len(test data)/total samples*100:.1f}%)")
  log message(f" Validation: {len(val data)} samples ({len(val data)/total samples*100:.1f}%)")
  padded train data = padded train data.reshape(-1, 128, 1)
  padded test data = padded test data.reshape(-1, 128, 1)
  padded val data = padded val data.reshape(-1, 128, 1)
  train labels = np.array(train labels)
  test labels = np.array(test labels)
  val labels = np.array(val labels)
  return (padded train data, train labels, padded test data, test labels, padded val data,
val labels)
def pad zeros(data, target length=128):
  padded data = []
  for file in data:
     current length = len(file)
    if current length == target length:
       padded data.append(file)
    elif current length < target length:
       padded file = np.zeros(target length)
       padded file[:current length] = file
       padded data.append(padded file)
    else:
       indices = np.linspace(0, current length-1, target length, dtype=int)
       downsampled file = file[indices]
       padded data.append(downsampled file)
  return padded data
def create model(complexity='medium', learning rate=0.0001):
  model = Sequential()
```

```
if complexity == 'simple':
    model.add(Conv1D(filters=16, kernel size=3, strides=2, activation='relu', input_shape=(128,
1)))
    model.add(MaxPooling1D(pool size=2))
    model.add(Dropout(0.2))
    model.add(Flatten())
    model.add(Dense(128, activation='relu'))
    model.add(Dense(1, activation='sigmoid'))
  elif complexity == 'medium':
    model.add(Conv1D(filters=32, kernel size=5, activation='relu', input shape=(128, 1)))
    model.add(Conv1D(filters=32, kernel size=3, activation='relu'))
    model.add(MaxPooling1D(pool size=2))
    model.add(Dropout(0.3))
    model.add(Conv1D(filters=64, kernel size=3, activation='relu'))
    model.add(MaxPooling1D(pool size=2))
    model.add(Dropout(0.3))
    model.add(Flatten())
    model.add(Dense(256, activation='relu'))
    model.add(Dropout(0.4))
    model.add(Dense(128, activation='relu'))
    model.add(Dropout(0.4))
    model.add(Dense(1, activation='sigmoid'))
  elif complexity == 'complex':
    model.add(Conv1D(filters=64, kernel size=7, activation='relu', input shape=(128, 1)))
    model.add(Conv1D(filters=64, kernel_size=5, activation='relu'))
    model.add(MaxPooling1D(pool size=2))
    model.add(Dropout(0.3))
    model.add(Conv1D(filters=128, kernel size=3, activation='relu'))
    model.add(Conv1D(filters=128, kernel_size=3, activation='relu'))
    model.add(MaxPooling1D(pool size=2))
    model.add(Dropout(0.4))
    model.add(Conv1D(filters=256, kernel size=3, activation='relu'))
    model.add(MaxPooling1D(pool size=2))
    model.add(Dropout(0.4))
    model.add(Flatten())
    model.add(Dense(512, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(256, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(128, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(1, activation='sigmoid'))
  optimizer = tf.keras.optimizers.Adam(learning rate=learning rate)
  model.compile(optimizer=optimizer, loss='binary crossentropy', metrics=['accuracy'])
  return model
def train model(model, train data, train labels, test data, test labels, epochs=200):
  train data = np.array(train data, dtype=np.float32)
  train labels = np.array(train labels, dtype=np.float32)
  test data = np.array(test data, dtype=np.float32)
  test labels = np.array(test labels, dtype=np.float32)
```

```
print(f"Training data shape: {train data.shape}")
  print(f"Training labels shape: {train labels.shape}")
  log message(f"Training started - Max epochs: {epochs}")
  log message(f"Training data shape: {train data.shape}")
  reduce lr = ReduceLROnPlateau(monitor='val loss', factor=0.3, patience=10, min lr=1e-8,
verbose=1, cooldown=5)
  early stop = EarlyStopping(monitor='val loss', patience=30, restore best weights=True,
verbose=1, min delta=0.0001)
  history = model.fit(train data, train labels, validation data=(test data, test labels),
epochs=epochs, batch size=8, callbacks=[reduce lr, early stop], verbose=1)
  return history
def evaluate validation set(model, val data, val labels, dataset name="Validation"):
  val data = np.array(val data, dtype=np.float32)
  val labels = np.array(val labels, dtype=np.float32)
  print(f'' \setminus n\{'='*60\}'')
  print(f"{dataset name.upper()} SET EVALUATION")
  print(f"{'='*60}")
  log message(f"\n{'='*60}")
  log message(f"{dataset name.upper()} SET EVALUATION")
  \log \text{ message}(f''\{'='*60\}'')
  val loss, val accuracy = model.evaluate(val data, val labels, verbose=0)
  print(f'{dataset name} Loss: {val loss:.4f}')
  print(f'{dataset name} Accuracy: {val accuracy:.4f}')
  log message(f'{dataset name} Loss: {val loss:.4f}')
  log message(f'{dataset name} Accuracy: {val accuracy:.4f}')
  y pred proba = model.predict(val data, verbose=0).flatten()
  y pred binary = (y \text{ pred proba} > 0.5).astype(int)
  fpr, tpr, thresholds = roc curve(val labels, y pred proba)
  auroc = roc auc score(val labels, v pred proba)
  precision = precision score(val labels, y pred binary)
  recall = recall score(val labels, y pred binary)
  f1 = f1 score(val labels, y pred binary)
  mcc = matthews corrcoef(val labels, y pred binary)
  tn, fp, fn, tp = confusion matrix(val labels, y pred binary).ravel()
  specificity = tn / (tn + fp)
  ppv = tp / (tp + fp) if (tp + fp) > 0 else 0
  npv = tn / (tn + fn) if (tn + fn) > 0 else 0
  print(f\n{dataset name} Performance Metrics:')
  print(f' AUROC Score: {auroc:.4f}')
  print(f' Accuracy: {val accuracy:.4f}')
  print(f' Precision: {precision:.4f}')
```

```
print(f' Recall: {recall:.4f}')
  print(f' Specificity: {specificity:.4f}')
  print(f' F1-Score: {f1:.4f}')
  print(f' MCC: {mcc:.4f}')
  log message(f\n{dataset name} Performance Metrics:')
  log message(f' AUROC Score: {auroc:.4f}')
  log message(f' Accuracy: {val accuracy:.4f}')
  log message(f Precision: {precision:.4f}')
  log message(f' Recall: {recall:.4f}')
  log message(f' F1-Score: {f1:.4f}')
  optimal idx = np.argmax(tpr - fpr)
  optimal threshold = thresholds[optimal idx]
  # Create comprehensive plot
  plt.figure(figsize=(15, 10))
  # ROC Curve
  plt.subplot(2, 3, 1)
  plt.plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC (AUROC = {auroc:.4f})')
  plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
  plt.xlabel('False Positive Rate')
  plt.ylabel('True Positive Rate')
  plt.title(f'{dataset name} ROC Curve')
  plt.legend()
  plt.grid(True)
  # Confusion Matrix
  plt.subplot(2, 3, 2)
  cm = confusion matrix(val labels, y pred binary)
  sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['Group A', 'Group B'],
yticklabels=['Group A', 'Group B'])
  plt.title(f'{dataset name} Confusion Matrix')
  plt.xlabel('Predicted')
  plt.ylabel('Actual')
  # Metrics Bar Chart
  plt.subplot(2, 3, 3)
  metrics names = ['Accuracy', 'Precision', 'Recall', 'F1-Score']
  metrics values = [val accuracy, precision, recall, f1]
  plt.bar(metrics names, metrics values, color=['skyblue', 'lightgreen', 'lightcoral', 'lightpink'])
  plt.ylim(0, 1)
  plt.title(f'{dataset name} Metrics')
  plt.xticks(rotation=45)
  for i, v in enumerate(metrics values):
    plt.text(i, v + 0.01, f'{v:.3f}', ha='center')
  # Probability Distribution
  plt.subplot(2, 3, 4)
  plt.hist(y pred proba[val labels == 0], bins=20, alpha=0.7, label='Group A', color='blue')
  plt.hist(y pred proba[val labels == 1], bins=20, alpha=0.7, label='Group B', color='red')
```

```
plt.axvline(x=0.5, color='black', linestyle='--', label='Threshold (0.5)')
  plt.xlabel('Prediction Probability')
  plt.ylabel('Frequency')
  plt.title('Probability Distribution')
  plt.legend()
  # Precision-Recall Curve
  plt.subplot(2, 3, 5)
  precision curve, recall curve, = precision recall curve(val labels, y pred proba)
  avg precision = average precision score(val labels, y pred proba)
  plt.plot(recall curve, precision curve, color='purple', lw=2, label=f'AP = {avg precision:.4f}')
  plt.xlabel('Recall')
  plt.ylabel('Precision')
  plt.title('Precision-Recall Curve')
  plt.legend()
  plt.grid(True)
  # Error Analysis
  plt.subplot(2, 3, 6)
  error_types = ['TP', 'TN', 'FP', 'FN']
  error counts = [tp, tn, fp, fn]
  colors = ['green', 'lightgreen', 'orange', 'red']
  plt.pie(error counts, labels=error types, colors=colors, autopct='%1.1f'%%')
  plt.title('Prediction Distribution')
  plt.tight layout()
  fig = plt.gcf()
  save plot(fig, f"{dataset name.lower()} analysis.png")
  plt.show()
  # Save results
  results = {
     'loss': float(val loss),
     'accuracy': float(val accuracy),
     'auroc': float(auroc),
     'precision': float(precision),
     'recall': float(recall),
     'specificity': float(specificity),
     'f1 score': float(f1),
     'mcc': float(mcc),
     'ppv': float(ppv),
     'npv': float(npv),
     'optimal threshold': float(optimal threshold),
     'confusion matrix': {'tp': int(tp), 'tn': int(tn), 'fp': int(fp), 'fn': int(fn)}
  }
  save results summary(results, f"{dataset name.lower()} results")
  return results, y pred proba, y pred binary
def perform kfold validation(all data, all labels, model complexity='medium',
learning rate=0.0001, k folds=5, epochs=200):
  print(f"\n Starting {k folds}-Fold Cross Validation...")
```

```
log message(f"\n Starting {k folds}-Fold Cross Validation...")
  skf = StratifiedKFold(n splits=k folds, shuffle=True, random state=42)
  fold results = {'fold': [], 'accuracy': [], 'auroc': [], 'precision': [], 'recall': [], 'f1 score': [], 'mcc': [],
'epochs trained': []}
  fold models = \prod
  fold histories = [] # Store training histories
  for fold, (train idx, val idx) in enumerate(skf.split(all data, all labels), 1):
    print(f"\n FOLD {fold}/{k folds}")
    log message(f"\n FOLD {fold}/{k folds}")
    X train fold = all data[train idx]
     y train fold = all labels[train idx]
    X val fold = all data[val idx]
    y val fold = all labels[val idx]
    print(f"Train samples: {len(X train fold)}")
    print(f"Validation samples: {len(X val fold)}")
    model = create model(complexity=model complexity, learning rate=learning rate)
    # Train model for fold
    X train fold = np.array(X train fold, dtype=np.float32)
    y train fold = np.array(y train fold, dtype=np.float32)
    X val fold = np.array(X val fold, dtype=np.float32)
    y val fold = np.array(y val fold, dtype=np.float32)
    reduce lr = ReduceLROnPlateau(monitor='val loss', factor=0.3, patience=8, min lr=1e-8,
verbose=0)
    early stop = EarlyStopping(monitor='val loss', patience=25, restore best weights=True,
verbose=0)
    history = model.fit(X train fold, y train fold, validation data=(X val fold, y val fold),
epochs=epochs, batch size=8, callbacks=[reduce lr, early stop], verbose=0)
    # Store history for later plotting
    fold histories.append(history)
    # Evaluate fold
    val loss, val accuracy = model.evaluate(X val fold, y val fold, verbose=0)
    y pred proba = model.predict(X val fold, verbose=0).flatten()
    y pred binary = (y \text{ pred proba} > 0.5).astype(int)
    auroc = roc auc score(y_val_fold, y_pred_proba)
    precision = precision score(y val fold, y pred binary)
    recall = recall score(y val fold, y pred binary)
    f1 = f1 score(y val fold, y pred binary)
    mcc = matthews corrcoef(y val fold, y pred binary)
    fold results['fold'].append(fold)
```

```
fold results['accuracy'].append(float(val accuracy))
  fold results['auroc'].append(float(auroc))
  fold results['precision'].append(float(precision))
  fold results['recall'].append(float(recall))
  fold results['f1 score'].append(float(f1))
  fold results['mcc'].append(float(mcc))
  fold_results['epochs_trained'].append(int(len(history.history['loss'])))
  fold models.append(model)
  print(f' Fold {fold} - Accuracy: {val accuracy:.4f}, AUROC: {auroc:.4f}")
  log message(f" Fold {fold} - Accuracy: {val accuracy:.4f}, AUROC: {auroc:.4f}")
# Plot K-fold training histories
plot kfold training histories (fold histories, fold results)
# Print summary
print(f"\n K-FOLD RESULTS SUMMARY")
log message(f"\n K-FOLD RESULTS SUMMARY")
log message("="*50)
metrics = ['accuracy', 'auroc', 'precision', 'recall', 'f1 score', 'mcc']
summary stats = \{\}
for metric in metrics:
  values = fold results[metric]
  mean val = np.mean(values)
  std val = np.std(values)
  summary line = f''{metric.upper()}: {mean val:.4f} ± {std val:.4f}"
  print(summary line)
  log message(summary line)
  # Store for later use
  summary stats[metric] = {
     'mean': float(mean val),
     'std': float(std val),
     'values': [float(v) for v in values]
  }
# Create comprehensive K-fold summary
kfold summary = {
  'timestamp': CURRENT TIMESTAMP,
  'k folds': k folds,
  'model complexity': model complexity,
  'learning rate': learning rate,
  'max epochs': epochs,
  'total samples used': len(all_data),
  'fold details': {
     'individual results': fold results,
     'summary statistics': summary stats
  },
  'best fold': {
     'fold number': int(np.argmax(fold results['auroc']) + 1),
```

```
'best auroc': float(np.max(fold results['auroc'])),
       'best accuracy': float(fold results['accuracy'][np.argmax(fold results['auroc'])]),
       'best f1 score': float(fold results['f1 score'][np.argmax(fold results['auroc'])])
  }
  # Save K-fold results
  save results summary(kfold summary, "kfold detailed results")
  return fold results, fold models
def plot kfold training histories (fold histories, fold results):
  K-fold training geçmişlerini görselleştirir
  print("\n ✓ Plotting K-fold training histories...")
  log message("\n ✓ Plotting K-fold training histories...")
  plt.figure(figsize=(20, 12))
  # 1. Training Loss for all folds
  plt.subplot(2, 4, 1)
  for i, history in enumerate(fold histories):
     plt.plot(history.history['loss'], alpha=0.7, label=f'Fold {i+1}', linewidth=2)
  plt.title('Training Loss Across Folds')
  plt.xlabel('Epoch')
  plt.ylabel('Loss')
  plt.legend()
  plt.grid(True, alpha=0.3)
  #2. Validation Loss for all folds
  plt.subplot(2, 4, 2)
  for i, history in enumerate(fold histories):
     plt.plot(history.history['val loss'], alpha=0.7, label=fFold {i+1}', linewidth=2)
  plt.title('Validation Loss Across Folds')
  plt.xlabel('Epoch')
  plt.ylabel('Loss')
  plt.legend()
  plt.grid(True, alpha=0.3)
  #3. Training Accuracy for all folds
  plt.subplot(2, 4, 3)
  for i, history in enumerate(fold histories):
     plt.plot(history.history['accuracy'], alpha=0.7, label=f'Fold {i+1}', linewidth=2)
  plt.title('Training Accuracy Across Folds')
  plt.xlabel('Epoch')
  plt.ylabel('Accuracy')
  plt.legend()
  plt.grid(True, alpha=0.3)
  # 4. Validation Accuracy for all folds
  plt.subplot(2, 4, 4)
```

```
for i, history in enumerate(fold histories):
  plt.plot(history.history['val_accuracy'], alpha=0.7, label=f'Fold {i+1}', linewidth=2)
plt.title('Validation Accuracy Across Folds')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.grid(True, alpha=0.3)
# 5. Epochs trained per fold
plt.subplot(2, 4, 5)
folds = fold results['fold']
epochs trained = fold results['epochs trained']
colors = plt.cm.Set3(np.linspace(0, 1, len(folds)))
bars = plt.bar(folds, epochs trained, color=colors, alpha=0.8)
plt.title('Epochs Trained per Fold')
plt.xlabel('Fold')
plt.ylabel('Epochs')
plt.grid(True, alpha=0.3)
# Add value labels on bars
for bar, epochs in zip(bars, epochs trained):
  plt.text(bar.get x() + bar.get width()/2, bar.get height() + 0.5,
        f'{epochs}', ha='center', va='bottom', fontweight='bold')
# 6. Performance metrics across folds
plt.subplot(2, 4, 6)
folds = fold results['fold']
plt.plot(folds, fold results['accuracy'], 'o-', label='Accuracy', linewidth=2, markersize=8)
plt.plot(folds, fold results['auroc'], 's-', label='AUROC', linewidth=2, markersize=8)
plt.plot(folds, fold results['f1 score'], '^-', label='F1-Score', linewidth=2, markersize=8)
plt.title('Performance Metrics Across Folds')
plt.xlabel('Fold')
plt.ylabel('Score')
plt.legend()
plt.grid(True, alpha=0.3)
plt.ylim(0.5, 1.0)
#7. Average training curves
plt.subplot(2, 4, 7)
# Calculate average training curves
max epochs = max(len(h.history['loss']) for h in fold histories)
avg train loss = []
avg val loss = []
for epoch in range(max epochs):
  epoch train losses = []
  epoch val losses = []
  for history in fold histories:
     if epoch < len(history.history['loss']):
       epoch train losses.append(history.history['loss'][epoch])
       epoch val losses.append(history.history['val loss'][epoch])
  if epoch train losses:
```

```
avg train loss.append(np.mean(epoch train losses))
       avg val loss.append(np.mean(epoch val losses))
  plt.plot(avg train loss, label='Average Training Loss', linewidth=3, color='blue')
  plt.plot(avg_val_loss, label='Average Validation Loss', linewidth=3, color='red')
  plt.title('Average Loss Curves')
  plt.xlabel('Epoch')
  plt.ylabel('Loss')
  plt.legend()
  plt.grid(True, alpha=0.3)
  #8. Best fold detailed training curve
  plt.subplot(2, 4, 8)
  best fold idx = np.argmax(fold results['auroc'])
  best history = fold histories[best fold idx]
  plt.plot(best history.history['loss'], label='Training Loss', linewidth=2, color='blue')
  plt.plot(best history.history['val loss'], label='Validation Loss', linewidth=2, color='red')
  plt.plot(best history.history['accuracy'], label='Training Accuracy', linewidth=2, color='green',
linestyle='--')
  plt.plot(best history.history['val accuracy'], label='Validation Accuracy', linewidth=2,
color='orange', linestyle='--')
  plt.title(fBest Fold ({best fold idx + 1}) Training Curves')
  plt.xlabel('Epoch')
  plt.ylabel('Loss / Accuracy')
  plt.legend()
  plt.grid(True, alpha=0.3)
  plt.tight layout()
  # Save the plot
  fig = plt.gcf()
  save plot(fig, "kfold training histories.png", "K-Fold Training Histories")
  plt.show()
  # Log some statistics about training
  avg epochs = np.mean(fold results['epochs trained'])
  min epochs = np.min(fold results['epochs trained'])
  max epochs = np.max(fold results['epochs trained'])
  print(f"\n Training Statistics:")
  print(f" Average epochs trained: {avg epochs:.1f}")
  print(f" Min epochs: {min epochs}")
  print(f" Max epochs: {max epochs}")
  print(f" Best fold: {best fold idx + 1} (AUROC: {fold results['auroc'][best fold idx]:.4f})")
  log_message(f"\n Training Statistics:")
  log_message(f" Average epochs trained: {avg_epochs:.1f}")
  log message(f" Min epochs: {min epochs}")
  log_message(f" Max epochs: {max_epochs}")
```

```
log message(f" Best fold: {best fold idx + 1} (AUROC:
{fold results['auroc'][best fold idx]:.4f})")
def plot single training history(history):
  Tek model eğitim geçmişini görselleştirir
  print("\n \rightarrow Plotting training history...")
  log message("\n ✓ Plotting training history...")
  plt.figure(figsize=(12, 4))
  plt.subplot(1, 2, 1)
  plt.plot(history.history['loss'], label='Training Loss', linewidth=2)
  plt.plot(history.history['val loss'], label='Validation Loss', linewidth=2)
  plt.title('Model Loss')
  plt.xlabel('Epoch')
  plt.vlabel('Loss')
  plt.legend()
  plt.grid(True)
  plt.subplot(1, 2, 2)
  plt.plot(history.history['accuracy'], label='Training Accuracy', linewidth=2)
  plt.plot(history.history['val accuracy'], label='Validation Accuracy', linewidth=2)
  plt.title('Model Accuracy')
  plt.xlabel('Epoch')
  plt.ylabel('Accuracy')
  plt.legend()
  plt.grid(True)
  plt.tight layout()
  # Save training history plot
  fig = plt.gcf()
  save plot(fig, "single model training history.png", "Single Model Training History")
  plt.show()
  # Log training statistics
  final train loss = history.history['loss'][-1]
  final val loss = history.history['val loss'][-1]
  final train acc = history.history['accuracy'][-1]
  final val acc = history.history['val accuracy'][-1]
  epochs trained = len(history.history['loss'])
  print(f" Epochs trained: {epochs trained}")
  print(f" Final training loss: {final train loss:.4f}")
  print(f" Final validation loss: {final val loss:.4f}")
  print(f" Final training accuracy: {final_train_acc:.4f}")
  print(f" Final validation accuracy: {final val acc:.4f}")
```

```
log message(f"\n Training Statistics:")
  log message(f" Epochs trained: {epochs trained}")
  log message(f" Final training loss: {final train loss:.4f}")
  log_message(f" Final validation loss: {final_val_loss:.4f}")
  log_message(f" Final training accuracy: {final_train_acc:.4f}")
  log_message(f" Final validation accuracy: {final_val_acc:.4f}")
if name == ' main ':
  setup output directory()
  data dir = './data'
  log message(" CNN Classification System Starting...")
  try:
    train data, train labels, test data, test labels, val data, val labels = load data(data dir)
  except Exception as e:
    error msg = f'' \times Error loading data: \{e\}''
    print(error msg)
    log message(error msg)
    sys.exit(1)
  # Configuration
  model complexity = 'medium'
  learning rate = 0.0001
  max epochs = 200
  use kfold = True
  k 	ext{ folds} = 5
  print(f"\n\overline{\pi} Configuration:")
  print(f" Model: {model complexity}")
  print(f" Learning Rate: {learning rate}")
  print(f" Max Epochs: {max epochs}")
  print(f" K-Fold: {use kfold}")
  log message(f"\n\ Configuration:")
  log message(f" Model: {model complexity}")
  log_message(f" Learning Rate: {learning_rate}")
  log message(f" Max Epochs: {max epochs}")
  log_message(f" K-Fold: {use_kfold}")
  if use kfold:
    all train data = np.concatenate([train data, test data], axis=0)
    all train labels = np.concatenate([train labels, test labels], axis=0)
    fold results, fold models = perform kfold validation(all train data, all train labels,
model complexity, learning rate, k folds, max epochs)
    best fold idx = np.argmax(fold results['auroc'])
    best model = fold models[best fold idx]
```

```
print(f'' \setminus n) Best model: Fold {best fold idx + 1}")
    print(f" Best AUROC: {fold results['auroc'][best fold idx]:.4f}")
    print(f" Best Accuracy: {fold results['accuracy'][best fold idx]:.4f}")
    print(f" Best F1-Score: {fold results['f1 score'][best fold idx]:.4f}")
    \log \operatorname{message}(f'' \setminus \mathbb{Z} \text{ Best model: Fold } \{\text{best fold idx} + 1\}'')
    log message(f" Best AUROC: {fold results['auroc'][best fold idx]:.4f}")
    log message(f" Best Accuracy: {fold results['accuracy'][best fold idx]:.4f}")
    log message(f" Best F1-Score: {fold results['f1 score'][best fold idx]:.4f}")
    print(f"\no Final evaluation on held-out validation set...")
    log message(f"\no Final evaluation on held-out validation set...")
    val results, , = evaluate validation set(best model, val data, val labels,
"Final Validation")
    # Compare K-fold vs Final validation
    kfold mean auroc = np.mean(fold results['auroc'])
    kfold std auroc = np.std(fold results['auroc'])
    kfold mean acc = np.mean(fold results['accuracy'])
    kfold std acc = np.std(fold results['accuracy'])
    print(f"\n K-FOLD vs FINAL VALIDATION COMPARISON")
    print(f" {'='*60}")
    print(f"K-Fold Cross Validation (Average \pm Std):")
    print(f" AUROC: {kfold mean auroc:.4f} ± {kfold std auroc:.4f}")
    print(f" Accuracy: {kfold mean acc:.4f} ± {kfold std acc:.4f}")
    print(f"\nFinal Validation (Held-out):")
    print(f" AUROC: {val results['auroc']:.4f}")
    print(f" Accuracy: {val results['accuracy']:.4f}")
    log message(f"\n K-FOLD vs FINAL VALIDATION COMPARISON")
    log message(f"{'='*60}")
    log message(f"K-Fold Cross Validation (Average \pm Std):")
    log_message(f" AUROC: {kfold_mean_auroc:.4f} ± {kfold std auroc:.4f}")
    log_message(f" Accuracy: {kfold_mean_acc:.4f} ± {kfold_std_acc:.4f}")
    log message(f"\nFinal Validation (Held-out):")
    log_message(f" AUROC: {val_results['auroc']:.4f}")
    log message(f" Accuracy: {val results['accuracy']:.4f}")
    # Generalization analysis
    auroc diff = kfold mean auroc - val results['auroc']
     acc diff = kfold mean acc - val results['accuracy']
    print(f"\nGeneralization Analysis:")
    print(f" AUROC difference (K-fold - Final): {auroc diff:.4f}")
    print(f" Accuracy difference (K-fold - Final): {acc diff:.4f}")
    log message(f"\nGeneralization Analysis:")
    log message(f" AUROC difference (K-fold - Final): {auroc diff:.4f}")
```

```
log message(f" Accuracy difference (K-fold - Final): {acc diff:.4f}")
    if abs(auroc diff) < 0.03 and abs(acc diff) < 0.03:
       elif abs(auroc diff) < 0.05 and abs(acc diff) < 0.05:
       generalization_msg = " ▼Good generalization. Model is reliable."
    elif abs(auroc diff) < 0.10 and abs(acc diff) < 0.10:
       generalization msg = " ! Fair generalization. Some performance drop expected."
       generalization msg = " X Poor generalization. Significant performance variability."
    print(generalization msg)
    log message(generalization msg)
    final auroc = val results['auroc']
    # Create comprehensive final summary
    final summary = {
       'timestamp': CURRENT TIMESTAMP,
       'dataset info': {
         'total samples': len(train labels) + len(test labels) + len(val labels),
         'train samples': len(train labels),
         'test samples': len(test labels),
         'validation samples': len(val labels),
         'train percentage': 70.0,
         'test percentage': round((len(test labels) / (len(train labels) + len(test labels) +
len(val labels))) * 100, 1),
         'validation percentage': round((len(val labels) / (len(train labels) + len(test labels) +
len(val_labels))) * 100, 1)
       },
       'configuration': {
         'model complexity': model complexity,
         'learning rate': learning rate,
         'max epochs': max epochs,
         'use kfold': use kfold,
         'k folds': k folds
       'kfold performance': {
         'mean auroc': float(kfold mean auroc),
         'std auroc': float(kfold std auroc),
         'mean accuracy': float(kfold mean acc),
         'std accuracy': float(kfold std acc),
         'best fold': {
            'fold number': int(best fold idx + 1),
            'auroc': float(fold results['auroc'][best fold idx]),
            'accuracy': float(fold results['accuracy'][best fold idx]),
            'f1 score': float(fold results['f1 score'][best fold idx])
       'final validation': {
         'auroc': float(val results['auroc']),
         'accuracy': float(val results['accuracy']),
```

```
'f1 score': float(val results['f1 score']),
         'precision': float(val results['precision']),
         'recall': float(val results['recall']),
         'mcc': float(val results['mcc'])
       'generalization analysis': {
          'auroc difference': float(auroc diff),
         'accuracy difference': float(acc diff),
          'generalization assessment': generalization msg.strip()
       }
     }
    save results summary(final summary, "comprehensive final summary")
  else:
    model = create model(complexity=model complexity, learning rate=learning rate)
    history = train model(model, train data, train labels, test data, test labels, max epochs)
    val_results, _, _ = evaluate_validation set(model, val data, val labels, "Validation")
    final auroc = val results['auroc']
  # Final summary
  print(f"\n COMPREHENSIVE FINAL RESULTS:")
  print(f"{'='*60}")
  print(f"Dataset Information:")
  print(f" Total samples: {len(train labels) + len(test labels) + len(val labels)}")
  print(f" Train: {len(train labels)} samples (70.0%)")
  print(f" Test: {len(test labels)} samples ({(len(test labels) / (len(train labels) + len(test labels)
+ len(val labels))) * 100:.1f}%)")
  print(f" Validation: {len(val labels)} samples ({(len(val labels) / (len(train labels) +
len(test labels) + len(val labels))) * 100:.1f\%)")
  if use kfold:
    print(f"\nK-Fold Cross Validation Results:")
    print(f" Mean AUROC: {kfold mean auroc:.4f} ± {kfold std auroc:.4f}")
    print(f" Mean Accuracy: \{kfold mean acc: .4f\} \pm \{kfold std acc: .4f\}")
    print(f'') Best Fold: {best fold idx + 1} (AUROC:
{fold results['auroc'][best fold idx]:.4f})")
  print(f"\nFinal Validation Performance:")
  print(f" Final AUROC: {final auroc:.4f}")
  print(f" Final Accuracy: {val results['accuracy']:.4f}")
  print(f" Final F1-Score: {val results['f1 score']:.4f}")
  print(f" Final Precision: {val results['precision']:.4f}")
  print(f" Final Recall: {val results['recall']:.4f}")
  print(f" Final MCC: {val results['mcc']:.4f}")
  # Log the same information
  log message(f"\n COMPREHENSIVE FINAL RESULTS:")
  log message(f"{'='*60}")
  log message(f"Dataset Information:")
  log_message(f" Total samples: {len(train_labels) + len(test_labels) + len(val_labels)}")
  log message(f" Train: {len(train labels)} samples (70.0%)")
```

```
log message(f" Test: {len(test labels)} samples ({(len(test labels) / (len(train labels) +
len(test labels) + len(val labels))) * 100:.1f\%)")
  log message(f" Validation: {len(val labels)} samples ({(len(val labels) / (len(train labels) +
len(test labels) + len(val labels))) * 100:.1f\%)")
  if use kfold:
    log message(f"\nK-Fold Cross Validation Results:")
    log message(f" Mean AUROC: {kfold mean auroc: .4f} \pm {kfold std auroc: .4f}")
    log message(f" Mean Accuracy: {kfold mean acc:.4f} \pm {kfold std acc:.4f}")
    log message(f'' Best Fold: {best fold idx + 1} (AUROC:
{fold results['auroc'][best fold idx]:.4f})")
  log message(f"\nFinal Validation Performance:")
  log message(f" Final AUROC: {final auroc:.4f}")
  log_message(f" Final Accuracy: {val_results['accuracy']:.4f}")
  log message(f" Final F1-Score: {val results['f1 score']:.4f}")
  log_message(f" Final Precision: {val_results['precision']:.4f}")
  log message(f" Final Recall: {val results['recall']:.4f}")
  log message(f" Final MCC: {val results['mcc']:.4f}")
  print(f"\n All results saved to: {OUTPUT DIR}")
  print(" Analysis Complete!")
  log message(f"\n All results saved to: {OUTPUT DIR}")
  log message(" Analysis Complete!")
```