ARCHIVES OF THE TURKISH SOCIETY OF CARDIOLOGY

Fat, Fit, or Myth?

Şişman mı? İdeal kilolu mu? Hepsi hikaye mi?

Obesity is the most dreadful pandemic of the 21st century and it is a major threat to cardiovascular (CV) health. Adipose tissue and its distribution in the body play an important role in the development of CV disease (CVD). Metabolic syndrome (MetS) is a pathological condition characterized by abdominal obesity, insulin resistance, hypertension, and hyperlipidemia. Together with obesity, the prevalence of MetS is increasing worldwide every year. Turkish women are the most obese compared to their counterparts when 56 countries in the European Society of Cardiology are taken into account and also abdominal obesity is more prominent in them.^[1]

Increased visceral adipose tissue (VAT) is known to play an important role in the development of MetS. MetS is accepted as a systemic manifestation of adipose tissue disease. Epicardial fat (EF) is part of the VAT located around the heart and correlates with intra-abdominal VAT independently and accurately. EF volume is not only associated with coronary artery disease (CAD) but also with vulnerable plaque components, and it may have a role in the development of acute coronary syndromes.^[2-7] EF is quantifiable, modifiable and metabolically active and can be considered as an endocrine organ having both local and systemic effects. When EF is enlarged, it increases the risk of CVD and also contributes to the development of MetS. Measurement of EF thickness (EFT) is thought to be an easy and powerful potential diagnostic tool in assessing CV and metabolic risk and also, it can be a therapeutic target.^[2,3] Magnetic resonance imaging is now the gold standard for the measurement of EFT and computed tomography (CT) can also be used instead but these are costly and CT requires exposure to radiation. Measuring EFT via two-dimensional transthoracic echocardiography, just like in the current study, is a noninvasive, readily available, accurate inexpensive, and a reproducible technique.^[4]

Previous studies have demonstrated a significant correlation between increased EF and all-cause mortality, incident heart failure and stroke, and an inverse association with cardiorespiratory fitness.^[8-9]

In the study by Ersan Demirci et al,^[10] the effect of weight loss and reversal of MetS on EFT is explored in a group of obese women scheduled for a 1-year weight reduction program, including a personally-arranged diet and exercise. There are 2 major findings of this study; first, the EFT decreased significantly with weight loss, second and may be more important, the decrease in EFT is significantly higher in subjects that reversed MetS with weight loss. The reversal of MetS is also found to be an independent predictor of EFT reduction in this study.

Although significant weight reduction is achieved at 1-year of follow-up, the women in the study group are still in the obese range (Body mass index:

EDITORIAL COMMENT EDITÖRYAL YORUM

Asiye Ayça Boyacı, M.D. 匝

Clinic of Cardiology, Ankara City Hospital, Ankara, Turkey

Corresponding Author: Asiye Ayça Boyacı ⊠ aycaboyaci@yahoo.com

Cite this article as: Boyacı AA. Fat, Fit, or Myth?. Turk Kardiyol Dern Ars 2022;50:46-7.

DOI: 10.5543/tkda.2022.21324

©(1)S=

Content of this journal is licensed under a Creative Commons Attribution – NonCommercial–NoDerivatives 4.0 International License. 37.17±5.94 vs. 31.61±5.55 kg/m²). The women with weight-loss and reversed MetS may be a select group of obese individuals described as the metabolically healthy obese (MHO), characterized by absence of metabolic disturbances and who seemed to be spared from complications of obesity. MHO status is not comparable to metabolically healthy normal weight (MHNW) status and can be categorized as an intermediate group between MHNW and metabolically unhealthy obese.^[11] Cumulative data regarding the increased risk of type 2 diabetes and CVD among MHO individuals compared to that in MHNW individuals suggests that MHO is not a benign condition.^[12,13]

In summary, the current study offers important insights into the emerging role of weight-loss and EFT reduction in patients with obesity and MetS. This study also reminds us about the gaps of knowledge in EFT, basically the lack of the standardized definitions and upper limits of normal. For the future, it would really be interesting to know if the type of intervention in reducing obesity may modify the amount of EFT and also the role of EFT reduction in the prognosis of patients with MetS and obesity.

Conflict of interest: None.

REFERENCES

- Ural D, Kılıçkap M, Göksülük H, Karaaslan D, Kayıkçıoğlu M, Özer N, et al. Data on prevalence of obesity and waist circumference in Turkey: Systematic review, meta-analysis and meta-regression of epidemiological studies on cardiovascular risk factors [Article in Turkish]. Turk Kardiyol Dern Ars 2018;46:577-90. [Crossref]
- Villasante-Fricke AC, Iacobellis G. Epicardial adipose tissue: Clinical biomarker of cardio-metabolic risk. Int J Mol Sci 2019;20:5989-6000. [Crossref]
- Berg G, Miksztowicz V, Morales C, Barchuk M. Epicardial adipose tissue in cardiovascular disease. Adv Exp Med Biol 2019;1127:131-43. [Crossref]

- Oacobellis G, Ribaudo MC, Assael F, Vecci E, Tiberti C, Zappatereno A, et al. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: A new indicator of cardiovascular risk. J Clin Endocrinol Metab 2003;88:5163-8. [Crossref]
- Rexrode KM, Carey VJ, Hennekens CW, Walters EE, Colditz GA, Stampfer MJ, et al. Abdominal adiposity and coronary heart disease in women. JAMA 1998;280:1843–8. [Crossref]
- Folsom AR, Kushi LH, Anderson KE, Mink PJ, Olson JE, Hong CP, et al. Associations of general and abdominal obesity with multiple health outcomes in older women: the Iowa Women's Health Study. Arch Intern Med 2000;160:2117-28. [Crossref]
- Peiris AN, Sothmann MS, Hoffmann RG, Hennes MI, Wilson CR, Gustafson AB, et al. Adiposity, fat distribution, and cardiovascular risk. Ann Intern Med 1989;110:867-72. [Crossref]
- Kim MK, Tanaka K, Kim MJ, Matsuo T, Tomita T, Ohkubo H, et al. Epicardial fat tissue: Relationship with cardiorespiratory fitness in men. Med Sci Sports Exerc 2010;42:463-9. [Crossref]
- Shah RV, Anderson A, Ding J, Budoff M, Rider O, Petersen SE, et al. Pericardial, but not hepatic, fat by CT is associated with CV outcomes and structure: the Multi-Ethnic Study of Atherosclerosis. J Am Coll Cardiol Imag 2017;10:1016-27. [Crossref]
- Ersan Demirci D, Demirci D, Eke RN. Reversal of metabolic syndrome with weight loss decreases epicardial fat more than weight loss alone in women with obesity. Turk Kardiyol Dern Ars 2022;50:48-56. [Crossref]
- 11. Kim HS, Jung CH. Metabollically healthy obesity: is it really a benign condition? J Obes Metab Syndr 2021;30:1-3.[Crossref]
- Stefan N, Haring HU, Hu FB, Schulze MB. Metabolically healthy obesity: epidemiology, mechanisms, and clinical implications. Lancet Diabetes Endocrinol 2013;1:152-62.
 [Crossref]
- Kramer CK, Zinman B, Retnakaran R. Are metabolically healthy overweight and obesity benign conditions? A systematic rewiev and meta-analysis. Arch Intern Med 2013;159:758-69. [Crossref]

ABBREVIATIONS

CAD	Coronary artery disease
СТ	Computed tomography
CV	Cardiovascular
CVD	Cardiovascular disease
EF	Epicardial fat
EFT	Epicardial fat thickness
MetS	Metabolic syndrome
MHNW	Metabolically healthy normal weight
МНО	Metabolically healthy obese
VAT	Visceral adipose tissue