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Interleukin-2 Immunotherapy for Advanced Cancer
İleri evre kanser tedavisinde interlökin-2 immünoterapisi
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Abstract

Interleukin-2 (IL-2) was the first approved immunotherapy to show efficacy in advanced cancer. 13–20% of patients 
with metastatic renal cell carcinoma and metastatic melanoma receiving high-dose IL-2 treatment showed objective 
clinical responses, some enduring for up to 20 years and more. However, the use of IL-2 immunotherapy was hampered 
by the short in vivo half-life of IL-2, dose-dependent toxicity and stimulation of immunosuppressive regulatory T 
cells. Recent efforts have explored the biology of IL-2 and its receptors to generate improved IL-2 formulations. Such 
IL-2 formulations provide targeted and potent stimulation of selected lymphocyte subsets, and they include IL-2/
anti-IL-2 monoclonal antibody complexes (briefly, IL-2 complexes), IL-2 muteins, and versions of IL-2 bound to 
polyethylene glycol or other molecules. In this article, we review the use of IL-2 for cancer immunotherapy, and discuss 
the preclinical and translational aspects of IL-2 complexes and their potential for the treatment of advanced cancer.
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Öz

Interlökin-2 (IL-2), ileri evre kanser vakalarında etkisi kanıtlanan ve tedavi için onaylanan ilk immünoterapi 
stratejisidir. Yüksek doz IL-2 tedavisi gören metastatik renal hücreli karsinom ve metastatik melanom hasarının 
%13–20’sinde tedaviye objektif yanıt alınmış ve hastaların bir bölümünde hastalıksız sağkalım 20 yılı aşmıştır. 
Ancak, IL-2 immünoterapisinin kullanımı, in vivo yarı-ömrünün kısa olması, doza bağlı toksisite ve immünosupresif 
düzenleyici T hücrelerinin stimülasyonu nedeniyle yaygınlaşmamıştır. IL-2 ve IL-2 reseptörlerindeki ilerleyen güncel 
çalışmalar sonucunda, geliştirilmiş IL-2 formülasyonları üretilmiştir. Bu formülasyonlar, IL-2/anti-IL-2 monoklonal 
antikor kompleksleri (kısaca, IL-2 kompleksleri), IL-2 muteinleri ve IL-2’nin polietilen glikol ve benzeri moleküllere 
bağlanmasını içermekte ve seçilmiş lenfosit alt-gruplarının selektif ve güçlü stimülasyonunu sağlamaktadır. Bu 
makalede, IL-2’nin kanser immünoterapisindeki rolü özetlenmekte ve IL-2 komplekslerinin klinik-öncesi çalışmaları 
ile kanser tedavisindeki potansiyeli tartışılmaktadır.
Anahtar Kelimeler: Interlökin-2 (IL-2), immünoterapi, ileri evre kanser, tümör immünolojisi
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The Biology of IL-2

Interleukin-2 (IL-2) has been one of the most studied cytokines since its discovery as a T cell 
growth factor in 1976. IL-2 is a four α-helical bundle cytokine that belongs to the family of 
common gamma chain (gc, also termed CD132) cytokines.[1–3] In resting conditions, IL-2 
is produced at low levels predominantly by CD4+ T helper (Th) cells.[2] Upon activation of 
the immune system, IL-2 concentrations can rise significantly due to increased secretion 
by CD4+ Th cells, CD8+ T cells, natural killer (NK) cells, NKT cells, dendritic cells, and 
mast cells.[4–6] IL-2 production by activated T cells results only in a transient accumulation 
of IL-2 because such production becomes transcriptionally repressed by negative feedback 
loops, among others by the action of B lymphocyte-induced maturation protein 1 
(Blimp1).[3,7] Blimp1 is activated by IL-2, which in turn binds to the IL-2 promoter 
region to inhibit IL-2 transcription.[8] Antigen-experienced (i.e., memory) T cells express 
low levels of Blimp1 and are able to produce IL-2 when re-stimulated, while terminally-
differentiated effector T cells upregulate Blimp1 expression upon prolonged antigen 
stimulation thus losing their ability of IL-2 production.[9,10]
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IL-2 exerts its actions on its target cells by binding to 
two different signaling IL-2 receptor (IL-2Rs) complexes, 
termed dimeric and trimeric IL-2Rs.[11] Dimeric IL-2Rs 
are comprised of the gc and IL-2Rβ chain (also called 
CD122), whereas trimeric IL-2Rs consist of the gc, 
CD122, and IL-2Rα chain (also termed CD25). Although 
CD25 is dispensable for signaling, it enhances the binding 
affinity of IL-2 to the dimeric complex of CD122 and gc 
by 10–100 fold.[12] Upon binding of IL-2 to its receptor, 
the IL-2-IL-2R complex is internalized and IL-2, CD122 
and gc are degraded, whereas CD25 is recycled back to 
the cell membrane.[13] IL-2R signaling depends on the 
cytoplasmic tails of CD122 and gc and occurs via three 
major intracellular pathways, namely, (i) Janus kinase 
(JAK)-signal transducer and activator of transcription 
(STAT), (ii) phosphoinositide 3-kinase (PI3K)-AKT, and 
(iii) mitogen-activated protein kinase (MAPK) pathway.
[11] Monomeric IL-2Rs, comprising only CD25, also exist 
in membrane-bound or soluble forms. Since CD25 is 
not involved in signaling these receptors are thought to 
function as scavengers for IL-2, reducing free IL-2 levels 
or trans-presenting bound IL-2 to effector T cells.[2,14]

Dimeric IL-2Rs are expressed by memory CD8+ T and 
NK cells at high levels and by naïve CD8+ T and memory 
CD4+ T cells at intermediate levels.[11] Following T cell 
receptor (TCR) stimulation, CD8+ T cells transiently 
upregulate CD25, thus expressing the high affinity trimeric 
receptor. In steady state, thymus-derived CD4+ fork head 
box p3 (Foxp3)+ T regulatory cells (Tregs) constitutively 
express high levels of CD25 and intermediate levels of 
CD122 and gc.

[15,16] Type 2 innate lymphoid cells and B 
cells also express functional trimeric IL-2Rs and expand 
upon stimulation with IL-2.[17–20] Furthermore, the 
trimeric IL-2Rs are expressed by nonimmune cells, such as 
pulmonary endothelial cells, which have been reported to 
contribute to the toxic adverse effects seen with high-dose 
(HD) IL-2 immunotherapy.[21] The physiological role of 
IL-2R expression by endothelial cells is unknown, but 
we hypothesized that leakiness in endothelial cells upon 
triggering of their IL-2Rs by locally produced IL-2 could 
allow the transition of intravascular leukocytes to sites 
of inflammation and infection.[2,11] Monomeric CD25 
is expressed by dendritic cells,[22,23] where it can trans-
present bound IL-2 to CD25 low T cells early during T cell 
activation.[24]

The low levels of IL-2 present at the steady state are 
crucial for the development and survival of CD4+ CD25 

high Tregs.
[25,26] Since Tregs do not produce IL-2, they depend 

on paracrine IL-2 production.[27] This dependency of 
Tregs is also well illustrated in mice lacking IL-2, CD25, 
or CD122, all of which suffer from systemic 
autoimmunity.[28–30] The adoptive transfer of wild-
type Tregs is able to rescue the phenotype of CD25-/-and 
CD122-/-mice.[31,32]

The role of IL-2 for CD8+ T cells is subtler and becomes 
evident during CD8+ T cell responses. IL-2 signaling is 
required for efficient primary and secondary expansion 
of CD8+ T cells, as well as the stimulation of resting 
memory T cells and NK cells.[33] Moreover, the persistence 
and intensity of IL-2 signaling plays a major role in 
the differentiation of recently-activated CD8+ T cells 
during primary expansion. Cells that sustain high CD25 
expression are exposed to strong IL-2 signals and, together 
with repetitive TCR stimulation, become effector cells that 
are short-lived due to exhaustion or activation-induced 
cell death. Cells that show only transient upregulation 
of CD25 following activation are subjected to less IL-2 
signaling and differentiate into central memory CD8+ T 
cells. These cells are long-lived and can home to secondary 
lymphoid organs owing to their expression of L-selectin 
(CD62L) and CCR7.[34–36]

IL-2 Immunotherapy

Due to its potent immune stimulatory effects on T and 
NK cells, IL-2 was investigated as an immunotherapy for 
advanced malignancies already shortly after its discovery. 
Initial studies in mice demonstrated the potential of IL-2 
to enhance the endogenous anti-tumor immune response 
to achieve tumor regression.[37] Subsequently, IL-2 was 
tested in clinical trials for metastatic renal cell carcinoma 
and metastatic melanoma. Treatment regimens with HD 
IL-2 (600’000–720’000 international units per kg of body 
weight per infusion, every 8 hours for up to 14 cycles) 
led to objective clinical responses in 13–16% (with 4–7% 
complete responses) of metastatic renal cell carcinoma 
patients and in 14–20% (with 5–9% complete responses) 
of metastatic melanoma patients. Even though only some 
patients showed clinical responses to HD IL-2 treatment, 
the responses were remarkably durable, some lasting for 
20 years and more.[38–41] Based on these results, the United 
States Food and Drug Administration approved HD IL-2 
for the treatment of metastatic renal cell carcinoma and 
metastatic melanoma in 1992 and 1998, respectively.
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IL-2 therapy in patients with advanced melanoma has 
also been tested in combination with various approaches, 
including peptide vaccination, immune checkpoint 
inhibitors (such as ipilimumab), interferon (IFN)-α, 
chemotherapy (cisplatin, vinblastine and dacarbazine), 
and adoptive cell transfer (ACT). Vaccination studies 
resulted in contradictory reports ranging from no effect 
to significant improvements, [40,42–44] while co-treated 
with ipilimumab, IFN-α and chemotherapy failed to 
show any additive effect.[45,46] Combination of IL-2 with 
ACT demonstrated the most promising results in the 
clinic.[37] The stimulatory effects of IL-2 on T cell growth 
and survival enabled the ex vivo culturing of T cells isolated 
from tumors. T cells infiltrating solid tumors are enriched 
in tumor-antigen specific T cells that can be used for ACT 
following IL-2-mediated in vitro expansion.[47] Moreover, 
co-administration of HD IL-2 with ACT was used to 
improve the proliferation and survival of transferred T 
cells in patients. As this therapeutic strategy developed, 
the combination of HD IL-2 and ACT following 
lymphodepletion was found to be the most effective 
treatment, resulting in an objective response rate of up to 
72% in metastatic melanoma patients.[37] However, this 
approach is performed in a few centers thus benefitting 
only a limited number of patients.

Despite the above-mentioned benefits of IL-2 
immunotherapy, the use of IL-2 for advanced cancer is 
hampered by several factors, such as the short half-life of 
IL-2, dose-dependent IL-2-related adverse effects, and 
the stimulation of immunosuppressive Tregs by IL-2.[11] 
The half-life of IL-2 in vivo is measured in minutes, as 
IL-2 is rapidly cleared by the renal system.[37] The half-life 
of IL-2 can be prolonged by different strategies, such as 
coupling IL-2 to large proteins.[48] Administration of HD 
IL-2 leads to endothelial cell damage resulting in vascular 
leak syndrome (VLS), which causes severe side effects in 
various organs, including pulmonary edema, renal failure, 
and liver cell damage.[49,50] The pathomechanism of IL-2-
mediated toxicity has been proposed to hinge, firstly, on 
damage of endothelial cells by the direct interaction and 
toxic effect of IL-2 with trimeric IL-2Rs on them,[21,51] 
followed by the secretion of pro-inflammatory cytokines 
and vasoactive mediators by stimulated T cells and NK 
cells.[11,52,53] IL-2-mediated toxicity is dose-dependent, 
and decreasing the dose of IL-2 to 72’000 international 
units per kg of body weight causes significantly less 
adverse effects. However, such reduction in the dose of 
IL-2 is also accompanied with a significant loss of anti-

tumor efficacy.[54] IL-2 is expected to stimulate effector T 
cells and NK cells only, once the high-affinity IL-2Rs of 
Tregs are saturated with IL-2, thus necessitating high IL-2 
doses (Figure 1). CD25+ immunosuppressive cells in turn 
curtail the anti-tumor activities of IL-2-stimulated CD8+ 
T cells and NK cells, among others. In order to overcome 
these drawbacks, selective stimulation of effector immune 
cells is necessary which can be achieved by complexing 
IL-2 with certain anti-IL-2 monoclonal antibodies (mAb), 
as outlined in the next section.

IL-2/anti-IL-2 mAb Complexes

IL-2/anti-IL-2 mAb complexes consist of IL-2 bound to a 
specific mAb that can direct the cytokine to cells expressing 
the dimeric or the trimeric IL-2R. CD8+ T cells and NK 
cells are preferentially stimulated by IL-2 complexed to 
CD122-biased mAbs, such as S4B6 or JES6–5H4 for 
murine IL-2 and NARA1 or MAB602 for human IL-2 
(Figure 1).[55–57] Seven daily injections of mice with IL-2/
S4B6 complexes showed 20 to 100-fold expansion of 
CD8+ T cells, particularly CD44 high CD122 high memory-
phenotype CD8+ T cells, while CD4+ Foxp3+ Tregs were 
only increased by 2- to 5-fold.[55] IL-2/S4B6 complexes 
where shown to interfere with the interaction of IL-2 with 
CD25, thus disfavoring the binding and consumption of 
IL-2 by CD25+ cells.[11] These effects are further enhanced 
by an extended in vivo half-life of IL-2 by its association 
with a full mAb, in this case S4B6, leading to a significant 
increase in IL-2 availability for effector T cells and NK 
cells.[56] Moreover, decreased binding of IL-2 complexes to 
CD25+ endothelial cells reduced endothelial cell damage 
and VLS.[21,56]

The above-mentioned advantages make IL-2/S4B6 
complexes a promising strategy for treatment of advanced 
malignancies. Several studies using various preclinical 
cancer models, such as B16-F10 melanoma, MC38 colon 
carcinoma, LLC-1 Lewis lung carcinoma, BCL1 B cell 
leukemia, MCA205 sarcoma, and TRAMP-C1 prostate 
carcinoma have demonstrated potent anti-tumor effects 
of IL-2 complexes alone or in combination with other 
therapies, including a Toll-like receptor ligand, an agonist 
anti-OX40 mAb, ACT, and peptide vaccination.[21,58–63]

Recently, a CD122-directed anti-human IL-2 antibody, 
termed NARA1, has been generated and characterized.[57] 
As determined by its crystal structure, the binding site 
of NARA1 overlaps with the CD25-binding epitope 
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of IL-2. Therefore, when IL-2 is bound to NARA1, 
forming hIL-2/NARA1 complexes, association of IL-2 
with CD25 and hence the trimeric IL-2R is disfavored. 
In line with studies on murine IL-2/S4B6 complexes, 
injection of hIL-2/NARA1 complexes to mice resulted 
in vigorous proliferation and expansion of CD8+ T cells 
and NK cells, while counts of CD4+ CD25+ Foxp3+ 
Tregs increased only minimally. In preclinical studies, 
hIL-2/NARA1 complexes displayed robust anti-tumor 
properties in syngeneic B16-F10 melanoma, both in the 
intradermal and the metastatic pulmonary model. Also, 
in the Tyr: : N-RasQ61K Ink4a-/-spontaneous melanoma 
model, tumor-free survival was increased in animals 
receiving hIL-2/NARA1 complex treatment, which 
showed reduced counts of skin melanoma nodules and 
lung metastases at the time of sacrifice. The anti-tumor 
response was dependent on CD8+ T cells, which were 
increased in numbers in tumor-draining lymph nodes 
and within the tumor. The ratio of intratumoral Tregs to 

CD8+ T cells was in favor of CD8+ T cells. CD8+ T cells 
isolated from tumors efficiently produced IFN-g and 
expressed low levels of immune checkpoint molecules, 
including programmed cell death protein-1 (PD-1), 
T cell immunoglobulin and mucin domain-3 (TIM-3), 
and lymphocyte activation gene-3 (LAG-3), along with 
high expression of CD62L and CD44, all indicative 
of functional memory T cells (Figure 2).[57] Moreover, 
the combination of hIL-2/NARA1 complexes with an 
inhibitor of the histone methyltransferase enhancer of 
zeste homolog 2 (Ezh2) resulted in superior tumor control, 
compared to monotherapy, in several mouse models 
of melanoma,[64] including the Tyr::N-RasQ61K Ink4a-/-

spontaneous melanoma model, RIM-3 melanoma (which 
is a tumor cell line derived from Tyr::N-RasQ61K Ink4a-

/-mice),[65] and the intradermal B16-F10 model. This 
was due to reversing of adaptive resistance mechanisms 
to tumor immunotherapy by Ezh2 inhibition, thereby 
maintaining the tumor cells in an immunogenic state.[64]

Figure 1. Stimulation of immune cells by IL-2 and 
IL-2 complexes.

Depicted are CD122 high (in blue; e.g., CD8+ T cells 
or NK cells) versus CD25 high CD122 intermediate 
immune cells (in green; e.g., CD4+ regulatory T 
cells, Tregs) stimulated by low-dose IL-2, high-dose 
IL-2, or IL-2 complexes. The constitutive and high 
CD25 expression on Tregs endows them with a 
selective advantage for the binding of available 
IL-2. Thus at low IL-2 doses, most of the cytokine is 
bound and consumed by CD25 high cells, whereas 
CD8+ T and NK cells are less affected by these 
concentrations. With higher doses of IL-2, once 
Tregs are saturated, CD8+ T and NK cells can bind 
the remaining cytokine. By contrast, association 
of IL-2 with a CD122-biased anti-IL-2 monoclonal 
antibody, such as NARA1 (in dark blue), leads to 
the formation of IL-2 complexes, in which IL-2 is 
preferentially directed to CD122 high immune cells, 
such as CD8+ T cells and NK cells, leading to their 
preferential stimulation and expansion.

Low-dose IL-2

High-dose IL-2

IL-2 complexes
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Concluding Comments

The ability of IL-2 to strongly activate and program CD8+ 
T cells can be harnessed for cancer immunotherapy. The 
setbacks of IL-2 therapy such as the short in vivo half-
life and the stimulation of immunosuppressive CD25+ 
regulatory cells and endothelial cells has inspired the 
development of improved IL-2 formulations. These 
strategies rely on selective stimulation of IL-2Rs that are 
differently expressed on CD8+ T cells and NK cells versus 
Tregs. Association of IL-2 with specific anti-IL-2 antibodies 
not only directs IL-2 to selected IL-2Rs but also increases 

its potency (Figure 2).[55–57] Other strategies of selective IL-2 
immunotherapy consist in the design of IL-2 muteins where 
specific amino acid substitutions are introduced to favor 
or disfavor the binding of IL-2 to certain IL-2R subunits 
(reviewed in[11]). These IL-2 muteins, however, appear to 
be immunogenic, thus eliciting anti-drug antibodies that 
interfere with the activity of IL-2 muteins.[11] This is not 
the case with hIL-2/NARA1 complexes, which use natural 
IL-2. Clinical testing will determine the benefits of hIL-2/
NARA1 complexes, given either alone or in combination 
with other immunotherapies, anti-cancer therapies, or 
epigenetic modifier drugs.

Figure 2. IL-2 complex immunotherapy.

CD8+ T (blue) and NK (red) cells are able to identify 
and attack melanoma cells. NK cells sense a 
lack of major histocompatibility complex class 
I (MHC-I) molecules on melanoma cells, which 
triggers the degranulation of effector molecules 
causing lysis and/or apoptosis of melanoma cells. 
CD8+ T cells recognize, via their T cell receptors 
(TCR), tumor antigens presented by MHC-I 
molecules on the surface of melanoma cells, 
leading to the release of cytotoxic molecules, 
such as perforin and granzyme B. Conversely, 
suppressive immune cells are also present 
in the tumor microenvironment, including 
regulatory T cells (Tregs; green) and myeloid-
derived suppressor cells (not shown). These 
cells secrete immunosuppressive cytokines, 
such as IL-10 and transforming growth factor 
(TGF)-β, and express inhibitory molecules, such 
as cytotoxic T-lymphoctye antigen 4 (CTLA-4), 
which altogether limit effector functions of CD8+ 
T cells and NK cells. Moreover, the anti-tumor 
activity of CD8+ T cells is also regulated by the 
expression of inhibitory receptors, among others 
by programmed cell death protein-1 (PD-1). 
The interaction with its ligand PD-L1, which 
can be expressed by melanoma cells, inhibits 
T cell activity. High-dose IL-2 immunotherapy 
stimulates CD8+ T cells and NK cells as well as Tregs. 
IL-2 complexes preferentially increase counts 
and activity of CD8+ T cells and NK cells over Tregs, 
leading to prolonged immune mediated tumor 
control. Moreover, CD8+ T cells also appear fitter 
upon IL-2 complex stimulation, as determined 
by increased degranulation and decreased 
expression of PD-1 and other inhibitory receptors.
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