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Abstract
The severe acute respiratory syndrome coronavirus-2, a coronavirus, is known to cause acute respiratory distress syndrome and a range of non-
respiratory effects, particularly in elderly male patients with underlying health conditions such overweight, diabetes, and hypertension. The 
coronavirus disease-2019 sequelae include multiple organ failure and neurological issues, and these prior health issues are linked to endothelial 
dysfunction. Although inhalation is the most frequent mode of infection, this virus has also been discovered in neurons, cerebrospinal fluid, the 
choroid plexus, and meningeal vasculature.
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Öz
Bir koronavirüs olan şiddetli akut solunum yolu sendromu koronavirüsü-2’nin, özellikle obezite, diyabet ve hipertansiyon gibi sağlık sorunları olan 
yaşlı erkek hastalarda akut solunum sıkıntısı sendromuna ve bir dizi solunum dışı sekellere neden olduğu bilinmektedir. Bu sağlık sorunları endotel 
disfonksiyonla bağlantılıdır ve koronavirüs hastalığı-2019 sekelleri, çoklu organ yetmezliği ve nörolojik sorunları içerir. Solunum birincil enfeksiyon 
modu olsa da, bu virüs koroid pleksus ve meningeal arterlerin yanı sıra nöronlar ve beyin omurilik sıvısı dahil olmak üzere çeşitli organlarda 
keşfedilmiştir.
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Introduction
Severe acute respiratory syndrome coronavirus-2 

(SARS-CoV-2) is an infectious disease with an enveloped, 
single-stranded RNA genome that causes severe acute 
respiratory syndrome (1). SARS-CoV-2 spread to more 
than 200 nations and sparked a global epidemic. The 
members of the beta-coronaviriade family, SARS-CoV 
and Middle East respiratory syndrome (MERS-CoV), 
generally lead to upper respiratory tract infections while 

SARS-CoV-2 also causes lower respiratory tract infections 
(2-4). If we characterize the symptoms of SARS-CoV-2 
from mild to severe, it can be characterized as fever, 
chills, difficulty breathing, nausea and/or vomiting. Serious 
symptoms include acute respiratory distress syndrome, 
pneumonia, sepsis, and bacterial infections accompanied 
by viral infections (5). The spike protein has to be cleaved 
by TMPRSS-2 and attach to the angiotensin-converting 
enzyme-2 (ACE-2) receptor in order for SARS-CoV-2 
to invade cells (6). Type-2 pneumocytes in human lungs 

https://orcid.org/0000-0002-3139-8205
https://orcid.org/0000-0003-2556-0760
https://orcid.org/0000-0002-0927-5890
https://orcid.org/0000-0002-7267-3971
https://orcid.org/0000-0002-0777-6499
https://orcid.org/0000-0001-6985-9436
https://orcid.org/0000-0002-5595-7251


Sahin et al. Potential Neuroinvasion Mechanisms of SARS-CoV-2

70

express high levels of ACE-2. The spike protein cut by 
these proteases is divided into 2 parts as S1 and S2. Of 
these parts, the S1 part interacts with ACE-2, and the 
S2 part infects cells by providing cell membrane fusion 
(7). ACE-2 receptor expression in the human body is not 
limited to the lung, but ACE-2 is also found in myocardial 
cells, renal proximal tubule cells, ileal and esophageal 
epithelial cells, and biliary urothelial cells. The presence 
of these receptors also makes these cells a potential target 
(8). In addition, studies showing Neuropilin-1 protein 
as a potential receptor for SARS-CoV-2 are available in 
the literature (9). As a result of the case studies in the 
literature, it has been shown that neurological symptoms 
and neurological diseases occur in COVID infection and 
post-infection status (10-14). According to case studies, 
the neurological findings of SARS-CoV-2 included 
dizziness, acute cerebrovascular illness, headache, reduced 
awareness, and ataxia (11-14). The neurological conditions 
linked to COVID-19 were categorized into five groups: 
encephalopathies, inflammatory central nervous system 
(CNS) conditions, ischemic strokes, peripheral neurological 
issues, and a number of other CNS diseases (11). In this 
review article, we wanted to address the immunological 
reaction and potential neuroinvasion mechanisms against 
other viruses and SARS-CoV-2.

Innate and Adaptive Immune Reaction Against 
SARS-CoV-2

Innate Immune Reaction Against SARS-CoV-2
When viruses infect a cell, they stimulate the immune 

response with pattern recognition receptors (15). Viral 
pathogenic motifs are sensed by pattern recognition 
receptors. The recognition of viruses by the immune system 
varies according to their genomic structure. According 
to the genomic structure of viruses, they have different 
receptors for DNA and RNA (16-18). Some of these 
receptors can recognize both RNA and DNA (19). Toll 
like receptor (TLR)-7 and TLR-8, located on endosomes, 
which are one of the entry routes of RNA viruses (ssRNA 
and dsRNA) into the cell, recognize viruses with genomes 
in the ssRNA and dsRNA structure (20). Viral RNA is 
recognized by cytosolic RNA receptors and activates RIG-
1, MDA-5, LGP-2 and cGAS/STING pathway (21,22). 
By this recognition of RNA viruses, various pathways 
are stimulated and transcription factors are activated. 
These transcription factors are NF-κB, AP-1, IRF-3 and 
IRF-7. NF-κB and AP-1 transcription factors pass into the 
nucleus and provide transcription of chemokines (CCL2 
and CXCL8) and cytokines [tumor necrosis factor (TNF) 
and interleukin (IL)-1] to activate and amplify the adaptive 
part of the immune system. IRF-3 and IRF-7 transcription 

factors pass into the nucleus and provide transcription 
of type-1 interferons, which are very important for the 
antiviral immune response (23,24). Type-1 interferons 
inhibit viral replication in the antiviral immune response, 
prevent the spread of the virus at an early stage and 
interrupt the communication of the cell with other cells 
at a later stage. Patients may have problems such as 
weariness, weakness, and coughing as a result of this 
process (25). Existing studies showing the suppression of 
type-1 interferon response during SARS-CoV-2 infection 
are available in the literature (Figure 1) (26).

Humoral Immune Reaction Against SARS-CoV-2
In viral infections, the humoral immune response is 

provided by the formation of neutralizing antibodies that 
can neutralize viruses, as in other infections. Some of the 
neutralizing antibody-producing B cells transform into 
memory cells and provide long-term protection by reducing 
the risk of reinfection in patients as a result of viral 
eradication (27). On average, on the fourth day of the illness 
in SARS-CoV-2 infection, an immune reaction is produced 
against N (nucleocapsid), one of the structural proteins of 
the virus (28,29). Immunofluorescence and ELISA-based 
screenings showed that specific antibodies against SARS-
CoV in the immunoglobulin G (IgG) structure were present 
for 2 years. Immunoglobulin M (IgM) produced from B 
cells and plasmablasts acutely in the infection reached its 
peak level on the 9th day and the class change from IgM to 
IgG type was observed in the second week of the disease 
(27,29,30). It was still detected 6 years after SARS-CoV 
infection, but such long-term data for SARS-CoV-2 are not 
yet available in the literature (31).

T-Cell Immune Reaction Against SARS-CoV-2
The T cell-based antiviral immune response is based 

on the killing of the infected cell as a result of MHC-I 
dependent presentation of epitopes of the pathogen. With 
MHC- I, intracellular pathogens are cleared and T cells are 
enabled to recognize the pathogen (32). As a result of the 
eradication of the infective agent, T cells also transform 
into memory T cells and provide a faster adaptive immune 
response against the infective agent for a certain period of 
time. In SARS-CoV-2 infection, CD8+ T cells have been 
shown to be stronger than the response to CD4+ T cells in 
a study on 128 patients (20,33). IFN-γ, TNF-α, IL-2 and 
IL-12 released from T-helper 1 cells enable the activation 
of cytotoxic CD8+ T cells (34-36). It has been demonstrated 
that the B cell response to SARS-CoV-2 is weaker than 
the T cell reaction to the nucleocapsid protein (37). It has 
been proven that peripheral blood mononuclear cells from 
patients still show an immune response to the nucleocapsid 
protein even after 10 years (Figure 2) (31,38-40).
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The central and/or peripheral neurological systems can 
be infected by viruses in a number of ways. The brain tissue 
is protected by the blood-brain barrier and increases the 
selectivity of the material to be taken into the brain tissue 
(41). SARS-CoV-2 primarily infects type-2 pneumocytes 
in the lungs in humans, but since viral spread is in droplets, 
it can be transmitted from any mucosal surface or open 
wounds (42).

Peripheral Route
It is possible to cause central nervous system infections 

or inflammation in the tissues of the central nervous 
system by being carried retrograde by neurons of Nervous 
Olfactorius with fila olfactoria in cavitas nasalis located 
in the cribriform palate, which is the first of the 12 cranial 
nerves found in the human nose. In a study conducted 
by Garg (43) on 114 patients with COVID-19, it was 
determined that there was a 54% loss of smell (44). The 
reason for the loss of taste in COVID-19 patients is 

Figure 1. The sensing of viral ssRNA by pattern recognizing receptors.

Figure 2. T cell mediated immune response against SARS-CoV-2.
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still unclear. As an alternative pathway, the virus, which 
adheres to mucosal surfaces, can also infect the parts of 
the trigeminal nerve and the central nervous system (45). 
There are 3 nerves involved in the perception of taste in 
humans, and these cranial nerves are the facial nerve, 
vagal nerve, and glossopharyngeal nerve (46). This can 
be carried retrograde via the cranial nerves and cause 
neuroinflammation and/or neuroinfections in the human 
central nervous system. Although it is still not clear in 
some case studies and literature, the possibility of SARS-
CoV-2 damage to these three nerves, which causes loss 
of taste, has been mentioned (43,44). The nerve endings 
of these cranial nerves are in the solitary tract. Since the 
solitary tract is close to the respiratory center, infection of 
the respiratory center may be the reason why some patients 
progress more severely than others (47,48).

Hematogenous Route
The blood-brain barrier and/or the blood-cerebrospinal 

fluid barrier, which are different layers that protect the 
brain, must be crossed in hematogenous dissemination 
for the disease to spread throughout the human central 
nervous system (43). In patients with COVID-19, IL-6 
level is quite high compared to physiological conditions, 
and high IL-6 levels may affect the spread of the virus to 
the central nervous system by disrupting the integrity of the 
blood-brain barrier (49). There are 3 important mechanisms 
for spread through the blood-brain barrier: Transcellular 
spread (50), paracellular spread (51) and Trojan Horse 
(antibody dependent mechanism) (52). In addition, alveolar 
macrophages, which are monocyte-derived cells, carry the 
ACE-2 receptor, which is the receptor for the virus. Since 
there is active inflammation in the human lung, these cells 
can reach the central nervous system via blood (53). In 
the transcellular pathway, it may spread to the brain tissue 
as a result of infecting epithelial cells belonging to the 
blood-brain barrier (50). Immunohistochemical studies 
show that the ACE-2 receptor is found in all tissues of the 
human body. In paracellular pathway, on the other hand, it 
spreads between cells due to exogenous and endogenous 
factors, the integrity of the blood-brain barrier, that is, the 
destruction of adhesion bonds between cells (51). Another 
important mechanism in hematogenous spread is that non-
neutralizing antibodies are infected with monocytes and/or 
lymphocytes and/or as a result of ineffective phagocytosis 
(52). As a consequence of ineffective phagocytosis of 
SARS-CoV-2, they can reach other tissues within the 
cell and infect in this way (53,54). Non-neutralizing 
antibodies may develop as a result of the inappropriate 
immune response against viruses. When non-neutralizing 
antibodies bind to the virus, they are phagocytosed by the 
antibody (55). The phagocytosed viruses are transported to 
peripheral tissues by immune cells (Figure 3) (55).

Digestive Tract Route
We have indicated that ACE-2, the SARS-CoV-2 

cell entrance receptor, is not exclusively prevalent in 
respiratory epithelium (56). The ACE-2 receptor can also 
be found in intestinal cells (57) of the 1099 COVID-19 
patients who experienced digestive problems (vomiting and 
diarrhea) (58). In a study using single cell RNA sequencing 
technology, it was discovered that the expression of the 
ACE-2 receptor in colon cells was inversely related to 
viral transcription, protein translation, humoral immunity, 
phagocytosis, and complement, and positively correlated 
with viral infection and innate and adaptive immunity 
(59). SARS-CoV-2 can interact with intestinal ACE-2, 
causing the epithelial cell barrier to be destroyed, the 
synthesis of inflammatory cytokines to be increased, 
intestinal absorption to be reduced, and the formation of 
intestinal mucosa to be increased (60). Furthermore, the 
inflammatory reaction might have deleterious effect on gut 
flora and trigger aggregation development (61,62). After 
replication, the virus may infiltrate local peripheral neurons 
and move to the CNS through its neurons (63). Herpes 
simplex viruses can migrate from the dorsal root ganglia 
to the nerve terminals of the enteric nerve system in the 
intestines (63). Although there is no clear evidence that 
SARS-CoV-2 may have entered the central nervous system 
retrogradely via the vagus nerve’s digestive division, the 
compromised intestinal environment may have disrupted 
the integrity of the blood brain barrier via immunological, 
neurological, and humoral pathways, allowing the virus to 
access the central nervous system (63,64).

The Lymphatic and/or Cerebrospinal Fluid Pathways
There is a dense lymphatic network in the mucosal 

system of the human eye, mouth, and tracheal bronchi. 
Lymphatic networks belonging to the mucosal system can 
be invaded by SARS-CoV-2 (64-66). SARS-CoV, one of the 

Figure 3. The mechanism of antibody dependent enhancement.
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earlier variants of the virus, has been found in human and 
animal investigations to infect hilar lymphatic system and 
intestinal root lymph nodes (67,68). It has been shown that 
when peripheral lymph nodes are infected, SARS-CoV-2, 
is likely to enter the bloodstream and infect end organs 
(69). Brain tissue has its own circulation and selective 
membrane system to fulfill its physiological function. Under 
physiological conditions, cerebral solutes move along the 
glymphatic pathway in the interstitial fluid and cerebrospinal 
fluid (70). Cerebrospinal fluid from the subarachnoid space 
flows into the brain through the perivascular spaces and 
maintains osmotic balance with the interstitial fluid. This 
fluid movement enables the brain tissue to perform its 
physiological function (71,72). Brain tissue may develop 
brain edema in various pathological conditions. Including 
stroke, tumor, traumatic brain injury, and infections (73). 
One of the main causes of cerebral edema, which can cause 
serious damage to the morphology, structure and function of 
the brain, is viral infections (74). Disruption of this structure 
may also cause viral infectious agents to invade the brain 
tissue (75). This might mean that the virus penetrates into the 
brain through a compromised blood-brain barrier in severely 
and critically sick individuals, aggravating neurological 
symptoms, compromising awareness, and perhaps causing 
deleterious impact on cardiorespiratory region in the brain 
(76). In a case study, in a patient with acute necrotizing 
encephalitis due to SARS-CoV-2 infection, SARS-CoV-2 
RNA was found in cerebrospinal fluid (CSF) after 19 days 
following the onset of symptoms after two PCR tests were 
reported as negative. He was determined to have an acute 
necrotizing encephalopathy linked to COVID-19. Despite 
the fact that the patient’s CSF monocyte and protein levels 
were only minimally elevated and hence never entered a 
hyperinflammatory state, his cerebral function deteriorated 
to the point of coma (77).

Summary
When SARS-CoV-2 infects a human cell, a cellular and 

humoral immune response, which is a part of the innate 
immune system and adaptive immune system, is elicited. 
In the clinic of the disease, cytokine storms accompanying 
respiratory distress and systemic hypoxia can be seen in 
patients with severe cases. Such findings are likely to cause 
the virus to infect the brain. The virus’s path to the brain 
may be primarily determined by the virus’s transmission 
pathway and the location of its intracellular receptors. 
The vascular route to the brain is potentially fast, but it 
can only infect brain tissue if the illness has advanced 
to a certain point and the BBB is broken. Furthermore, 
neuronal retrograde transport is quite sluggish in the 
peripheral nerve channel. SARS-CoV-2 can infiltrate and 
grow quickly in olfactory sensory neurons. Furthermore, 
earlier research suggests that coronaviruses may infiltrate 

peripheral nerve terminals before entering the brain via a 
transsynaptic transfer. Given its proximity to the brain’s 
center, the olfactory nerve pathway may be the primary 
route for the virus to reach the brain in the early stages 
of infection. To prevent the virus from contacting and 
infiltrating the human body, certain precautions, like 
wearing a mask and practicing hand cleanliness, as well 
as modern medical interventions, are needed. For early 
identification and quick care of neurological problems, 
clinical physical examination of the nervous system, 
detection of viral RNA in CSF, early antiviral medication, 
fast endotracheal intubation, and mechanical respiratory 
support should be indicated. Based on the consequences of 
the human corona-virus pandemic, long-term psychosocial 
and neurological rehabilitation should not be disregarded 
(78,79).
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