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JAK-STAT Pathway
The Janus kinase (JAK) and signal transducer and 

activator of transcription (STAT) signaling pathway is one of 
the most important examples of signal transduction from the 
cell membrane to the nucleus. Many cytokines, hormones, 
and growth factors use the JAK-STAT signaling pathway to 
initiate cellular responses. This particular pathway consists 
of JAK and STAT molecules (1). Briefly, binding of a 
cytokine to the corresponding receptor activates JAKs (a 
tyrosine kinase), which then phosphorylate themselves and 
the bound receptors to recruit inactive STAT monomers. 
After binding, the STATs are phosphorylated and dimerized. 
The dimeric STATs then go to the nucleus, where they bind 
specific DNA sequences and activate gene transcription (2).

There are four JAKs [JAK1, JAK2, JAK3, tyrosine 
kinase 2 (TYK2)] and seven STATs (STAT1, STAT2, STAT3, 
STAT4, STAT5A, STAT5B, STAT6) responsible for various 
cytokine signaling (3). The importance of JAKs and STATs 
has increased with the discovery of new genes involved 
in inborn errors of immunity (4). The delicate balance of 
these molecules is much more pronounced in regulating 

immune deficiency and excessive immune response that 
occurs in various diseases. Pathogenic variants can cause 
loss-of-function (LOF), gain-of-function (GOF), dominant-
negative function (DN), or haploinsufficiency (HI) of the 
encoded gene (5). To date, LOF and GOF variants have 
been described in STAT1, STAT2, STAT3, STAT5B (6), and 
more recently in STAT6 (7-10).

STAT1 Gain of Function Disease
STAT1 is the first STAT identified in the biological 

system and is involved in type I [interferon (IFN)-α, 
IFN-β], type II (IFN-γ), type III (IFN-λ) interferons, and 
interleukin (IL)-27 signaling pathways (4,11). Following 
viral infection, IFN-α and IFN-β bind to their receptor 
(IFNR), activating JAK1 and TYK2 (5). JAK1 and TYK2 
then lead to the formation of STAT1/STAT2 heterodimers. 
The binding of these heterodimers to Interferon regulatory 
factor 9 (IRF9, also previously known as p48) leads to the 
forming of the IFN-stimulated genes (ISG)-3 complex. 
Subsequently, The ISG-3 complex migrates to the nucleus, 
binds the type I interferon-stimulated response element, 
and activates gene transcription (12). On the other hand, 
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STAT1 homodimers form the IFN-γ-activated factor (GAF) 
complex, which binds to IFN-g activated sequences (GAS) 
involved in the up-or down-regulation of ISGs and IFN-
regulated genes (IRGs) (Figure 1A). After activation, 
tightly regulated proteins like protein tyrosine phosphatases 
and suppressors of cytokine signaling (SOCS) repress the 
activity of the JAK-STAT pathway (13).

STAT1 GOF mutations result in an exaggerated STAT1 
response upon stimulation with IFN-α, IFN-β, IFN-γ, or 
IL-27 due to hyperphosphorylation of STAT1 or delayed 
STAT1 dephosphorylation (10,13). In addition to the 
overtranscription of STAT1-inducible genes, the generation 
of IL-17-producing T-cells via STAT1 is also impaired. 
Expression of PD-L1 on naïve T-cells requires IL -27, and 
overexpression of PD-L1 could impair the differentiation 
of naïve T-cells into Th17 cells (Figure 1B). Another 
possible explanation could be the deficient function of 
STAT3 due to abnormal activation of STAT1 in response to 
IL-6, IL-21, and IL-23 (14).

The genetic mutations have been described in the DNA 
binding domain (DBD), coiled-coil domain (CCD), linker 
domain, and SH2 domain (15).

While certain mechanism is related to 
hyperphosphorylation or delayed dephosphorylation, 
previous studies suggest that premature nuclear import with 
normal phosphorylation/dephosphorylation rate, increased 
nuclear accumulation, decreased mobility, or immobility in 
the nucleus leads to STAT1 hyperactivation (16).

Chronic mucocutaneous candidiasis (CMC) is one of the 
major symptoms in patients with STAT1 GOF mutation, and 

the lifetime risk of CMC is almost 100% (15). In addition 
to CMC, other bacterial and viral infections may also occur 
(Table 1). Patients may experience recurrent/severe upper 
and lower respiratory tract infections (URTI and LRTI, 
respectively), leading to bronchiectasis. Mycobacterial 
infections may also be among the infectious agents (17,18). 
Impaired response to IFN-γ is thought to be responsible 
for mycobacterial susceptibility (17,18). Autoimmune and 
autoinflammatory diseases may occur in nearly 40% of 
patients. Deficient quantitative and qualitative humoral 
immunodeficiencies have been reported. The inadequate 
B-cell response may be due to impaired IL-21 dependent 
STAT3 signaling (19).

Patients may present with an immune dysregulation- 
polyendocrinopathy- enteropathy X-linked (IPEX)-like 
syndrome that includes type 1 diabetes, autoimmune 
thyroiditis, and immune cytopenia despite normal Treg cell 
numbers and function (20). Interestingly, no autoantibodies 
to IFN-α, IL-17, and IL-22 were found. Almost one-third 
of patients have autoimmune features (Table 1), and the 
reason for the autoimmunity remains to be elucidated. 
One hypothesis is that increased IFN-α levels may cause 
autoimmunity, as has been observed in patients receiving 
IFN-α therapy (20,21). It has also been reported that gene 
transcription is increased in interferon-stimulated genes 
(22). Despite normal Treg cell numbers and function, 
secretion of the anti-inflammatory IL-10 and production 
of induced Treg cells may be impaired, similar to STAT5b 
deficiency (23). Impaired differentiation of circulating 
T follicular helper (Tfh) cells has been demonstrated 

Figure 1. JAK-STAT1 pathways and related immune mechanism of low Th17 cells. (A) STAT1 homodimeric structure forms the IFN-γ-activated factor 
(GAF) complex, which binds to IFN-γ-activated sequences (GAS) involved in the up-or down-regulation of interferon-stimulated genes. (B) Defective 
differentiation of naïve T-cells to Th17 cells due to increased PD-L1 expression in STAT1 GOF patients. Created with BioRender.com.
STAT: Signal transducer and activator of transcription, GOF: Gain-of-function, IFN: Interferon
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in STAT1 GOF patients, similar to STAT3 LOF, IL-10 
LOF, and IL21R LOF patients. In addition to impaired 
humoral immune responses, these abnormal Tfh subsets 
may cause increased IFN-γ signaling responsible for 
autoimmunity and autoinflammation (24). It has also been 
hypothesized that although Treg cell numbers and functions 
are preserved, overactivation of STAT1 may cause Tregs 
to differentiate into Th1-like cells, resulting in functional 
IL-10 deficiency (23). These patients also tend to develop 
vascular abnormalities such as aneurysms, particularly in 
the cerebral vasculature and are susceptible to multiple 
diseases (19). Malignancies have been reported in patients 
with esophageal candidiasis, particularly squamous cell 
carcinoma (21).

The immunologic phenotype may include low CD4+ and 
CD8+ T-cells, low B-cells, low memory B-cells, low NK 
cells, and reduced NK cell cytotoxicity. Immunoglobulin 
concentrations may be normal, reduced, or increased, 
and poor antibody response has also been described in 
the patients (21). Intrinsic B-cell defects may contribute 
to poor antibody responses. Naive B cells from patients 
with STAT1 GOF mutation respond poorly to IL-21, 
which plays a central role in B-cell differentiation, isotype 
switching, and affinity maturation (25). Increased apoptosis 
of B-cells was also noted by Romberg et al. (14). The 

reason for the decreased NK cell functions is thought to be 
STAT1-induced SOCS1-mediated suppression of STAT5, 
which is involved in terminal NK cell differentiation and 
NK cell toxicity, as has also been observed with STAT3 
GOF mutations (26). Thus, NK cell dysfunction could 
contribute to the susceptibility to viral infection observed 
in patients with STAT1 GOF mutations. Another possibility 
is that increased PD-L1 expression impairs CD4+ and CD8+ 
T-cells against viruses (27).

The leading causes of death are severe infections (38%), 
cancer (24%), and cerebral hemorrhage due to aneurysms 
(15%) (28). These are also risk factors for poor outcomes. 
Most patients require antifungal treatment because 
of CMC and invasive fungal infections. Antibacterial 
prophylaxis and immunoglobulin replacement therapies 
are also commonly used to prevent bacterial infections. 
Immunosuppressive treatment may be required to control 
non-infectious manifestations (19). Hematopoietic stem 
cell transplantation (HSCT) has been performed in several 
patients with poor control of infections and autoimmune 
manifestations (17,29). Although it has been proposed as 
a curable treatment option, graft failure and transplant-
related mortality have been reported after transplantation, 
probably in association with augmented IFN responses, 
which could be controlled by using JAK inhibitors as a 
bridge therapy (26).

Table 1. Clinical features in STAT1 GOF mutations
Clinical features Mechanism

Infections

Bacterial
Staphylococcus aureus, Streptococcus spp., Pseudomonas 
aeruginosa, Haemophilus Influenzae

• Impaired Tfh differentiation
• Defective IL-21 response
• Increased B-cell apoptosis

Viral 
Herpes simplex virus, Varicella zoster virus, 
Cytomegalovirus, Epstein-Barr virus

• Defective NK cell differentiation and NK cell toxicity
• Increased PD-L1 expression

Fungal
Candida albicans, Cryptococcus spp., Pneumocystis 
jirovecii, Aspergillus spp., Penicillium marneffei 
(invasive), Mucormycosis, Coccidioidomycosis, and 
Histoplasmosis

• Defective development of Th17 cells (impaired IL-17A, 
IL-17F and IL-22 signaling) due to increased Th17 
suppressors (IFN-α/β, IFN-γ, and IL-27)
• Over expression of PD-L1 may impair the differentiation of 
naïve T-cells to Th17 cells
• Decreased functioning of STAT3 secondary to abnormal 
STAT1 activation

Mycobacterial
Tuberculous (Mycobacterium tuberculosis) or non-
tuberculous (Mycobacterium avium, BCG vaccine etc.) • Impaired IFN-II related immune response

Autoimmunity and 
autoinflammation

Cytopenia, hypothyroidism, type 1 DM, vitiligo, alopecia, 
psoriasis, systemic lupus erythematosus
Crohn disease, ulcerative colitis

• Increased transcription of interferon stimulated genes
• Functional IL-10 deficiency
• Abnormal Tfh cell subsets and functions

Malignancies
Squamous cell carcinoma (on CMC basis), papillary 
thyroid cancer, melanoma, lymphoma, leukemia, prostate 
cancer

• Defective NK cells due to impaired STAT5 signaling

Other
Aneurysms
Enamel defect
Delayed dental shedding

• The plausible mechanism for aneurysm susceptibility could 
be mycotic translocation

STAT: Signal transducer and activator of transcription, GOF: Gain-of-function, IL: Interleukin, IFN: Interferon, CMC: Chronic mucocutaneous candidiasis, NK: 
Natural killer, BCG:  Bacillus Calmette-Guérin
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Among the JAK inhibitors, ruxolitinib has been used 
as a treatment modality to cure CMC and autoimmune 
manifestations. Ruxolitinib has been shown to reverse 
STAT1 hyperactivation by suppressing ligand binding, 
thereby improving Th1 and Tfh responses (30,31). 
However, exacerbation of fungal infections has also been 
reported in one patient as a treatment failure (30). Recently, 
ruxolitinib has been successfully administered as bridging 
therapy before HSCT to control disease (26).

STAT3 Gain of Function Disease
Activating germline mutations in STAT3 were first 

described by Flanagan et al. (32) in patients with early-onset 
autoimmunity. In later publications, the clinical phenotype 
was expanded to include IPEX-like disease as in the first 
article (32), autoimmune lymphoproliferative syndrome 
(ALPS), and STAT5b deficiency-like phenotype (Table 
2) (33,34). The most pronounced manifestations were 
autoimmune cytopenia, lymphoproliferation, short stature, 
interstitial lung disease, and recurrent infections (32-34). 
Decreases in switched memory B-cells, NK cells, dendritic 
and plasmacytoid cells, and hypogammaglobulinemia were 
noted in the majority of patients (33,34). Hyperactivation 
of STAT3 has not been shown to be related to either 
cytokine-induced hyperphosphorylation or delayed 
dephosphorylation, but rather, it is thought to be an intrinsic 
defect (33,34). Furthermore, the imbalanced STAT3/STAT5 
signaling decreases phospho-STAT5, reducing Treg cells. 
The diminished Tregs is also attributed to increased IL-6 
signaling (33).

With the advance of high throughput DNA sequencing, 
many disorders come to the scan caused by different 
mutations leading to opposite functions in the same molecule. 
In contrast to STAT3-GOF, dominant-negative STAT3 
mutations cause Hiper-IgE syndrome (AD-HIES). The 
clinical manifestations of AD-HIES include immunologic 
(i.e., recurrent bacterial and fungal infections, formation of 
cold abscesses) and non-immunologic (connective tissue 
abnormalities) features (35). Interestingly, most of our 
findings on the functions of STAT3 come from extensive 

investigations of different cytokine responses in patients’ 
cells that helped elucidate the proper intracellular STAT3 
signaling. On the other hand, somatic activating STAT3 
mutations have been associated with T-cell and NK-cell 
large granular cell leukemia (36).

STAT3 is a transcription factor involved in various 
cytokine signaling, including interferons, IL-2, IL-6, IL-7, 
IL-10, IL-12, IL-15, IL-21, IL-23, and IL-27. STAT3 
plays a central role in cell survival, proliferation, and 
differentiation. Upon binding of cytokines to their 
receptors, JAKs are activated, which in turn phosphorylate 
STAT3, leading to its migration to the nucleus, where it 
further binds to DNA sequences (37). Unlike STAT1 GOF, 
hyperphosphorylation of STAT3 was not detected even 
after cytokine stimulation. Therefore, it is also difficult 
for patients carrying STAT3 variants to be determined as 
GOF. It is more likely that GOF variants cause a prolonged 
activation state (37). In some patients, increased DNA 
binding and nuclear retention have been suggested as 
mechanisms (38).

In search of the underlying mechanisms leading to 
the clinical phenotype, SOCS3 has been shown to play a 
critical role in regulating other STATs. Hyperactivation of 
STAT3 leads to increased SOCS3 activity, which acts as a 
negative regulator of the other STAT molecules, such as 
STAT5, involved in growth hormone signaling (38). After 
stimulating STAT3 GOF molecules, an increase in IL-10 
and BCL-3 and a decrease in CXCL8 were demonstrated. It 
was hypothesized that increased expression of pro-survival 
genes might contribute to a defect in apoptosis responsible 
for the ALPS-like phenotype (39). Therefore, increased 
double-negative T-cells (DNT) observed in patients with 
lymphoproliferation and autoimmune cytopenia may 
support this hypothesis.

In addition to its role in the downstream pathway 
of growth hormone, STAT5 is also important for Treg 
differentiation and functions. Decreased Treg levels have 
been demonstrated in many STAT3 GOF patients (33,34). 
The reason for autoimmunity was associated with defective 
Tregs in some patients, although there were also patients 
with normal Treg number and function with autoimmune 
features (33,34).

STAT3 plays an important role in B-cell functions. 
IL-10 and IL-21 as STAT3-activating cytokines are potent 
B-cell activators and are involved in B-cell proliferation, 
class switching, and differentiation (40). Both cytokines 
have been found to be impaired in STAT3 LOF patients 
(40). Conversely, increased B-cell activity was not 
detected in STAT3 GOF patients. Patients generally exhibit 
hypogammaglobulinemia and decreased numbers of switch 
memory B-cells. As for antibody-mediated autoimmunity 
in these patients, B-cell tolerance appears to be impaired 
(32,34).

Table 2. Consequences of STAT3 hyperactivation

IPEX syndrome-like 
features

• Early onset autoimmunity 
• Eczema
• Enteropathy

ALPS-like features
• Autoimmune cytopenia
• Lymphoproliferation (hepatosplenomegaly, 
lymphadenopathy)

STAT5b deficiency 
like features

• Postnatal growth failure
• Short stature
• Lymphocytic interstitial lung disease

Recurrent infections • Bacterial, viral, fungal, opportunistic and 
mycobacterial

STAT: Signal transducer and activator of transcription, ALPS:  Autoimmune 
lymphoproliferative syndrome
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A genotype-phenotype correlation was not demonstrated, 
although some phenotypes were clustered in some domains. 
Endocrinopathies were more pronounced in the SH2, CCD, 
and DBD domains, whereas lymphoproliferative disorders 
were more common in the CCD and N-terminal domain 
variants. Patients with N-terminal domain variants were 
found to have better survival than patients with SH2 
domain variants, who had the poorest survival (41).

Immunosuppressive treatment is the mainstay of 
therapy with respect to the state of immune dysregulation 
seen in most patients. In addition to steroids, sirolimus, 
mycophenolate mofetil, and rituximab have been used 
with partial success. Antibacterial prophylaxis and 
immunoglobulin substitution may be useful to prevent 
infectious complications (37,41). Given the hyperactivated 
state of the disease, control of upstream signals seems 
logical. Jakinibs have been used in many patients who were 
already unresponsive to conventional immunosuppressants. 
Ruxolitinib and tofacitinib were able to reverse autoimmune 
complications such as enteropathy, autoimmune cytopenia, 
and interstitial lung disease in many patients (30,42,43). 
IL-6 blockade was particularly successful in arthritis and 
interstitial lung disease in combination with Jakinibs (33). 
HSCT may be a therapeutic option in cases refractory to 
immunosuppressants and with poor disease control. Very 
few data on HSCT have been published, showing a survival 
rate of almost 62% (41).

Finally, there are still unanswered questions about 
immune system dysregulation in STAT1 and STAT3 GOF 
mutations. However, we know that GOF is not always the 
opposite of LOF, as summarized in this review. Further 
studies are needed to explore these intriguing puzzles.
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