
INTRODUCTION

Excessive inflammatory reactions and,
in particular, neutrophil activation have
been implicated in the pathogenesis of the
acute respiratory distress syndrome
(ARDS) pathogenesis[1-4]. The mechanisms
of such injury are thought to be related to
oxygen free radical production and/or pro-
tease damage to the endothelial cells by ac-
tivated neutrophils[1-9]. In endotoxemia,
there is good evidence that disseminated
intravascular coagulation (DIC) and acute
thromboembolic events, and inappropriate
inflammation, particularly neutrophil acti-
vation into tissues all contribute signifi-
cantly to sepsis-induced injury of various
organs[10-17]. In this context, activated le-
ukocytes decrease their flow velocities and
adhere to the vascular endothelium to

emigrate to the septic focus. The subsequ-
ent release of an array of inflammatory me-
diators, cytotoxic enzymes, and oxygen ra-
dicals may result in reduced capillary per-
fusion that finally leads to the development
of organ dysfunction[1,18-21].

Anti-inflammatory treatment of sepsis is
still debated and inhibitors of the coagulati-
on pathway appear effective. Antithrombin
III (AT-III) is a serine protease inhibitor (ser-
pin). The mechanism of its anti-inflammatory
action is still not well understood. Antith-
rombin (AT) has two potential benefits in the
treatment of sepsis: (1) reducing the severity
of DIC; and (2) decreasing inflammation in
part because of its binding to glycosami-
noglycans (GAGs) on the endothelial cells
and leukocytes[22,23]. It has therefore been
proposed that AT supplementation might be
used to control coagulation distrubances
and improve the clinical consequences of the
sepsis-induced inflammatory syndrome.

This article discusses the results of the
experimental and main clinical studies re-
garding to AT supplementation in sepsis and
sepsis-induced DIC.
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AT-III in SEPSIS INDUCED DIC and
ORGAN FAILURE

Thrombin is a multifunctional serine pro-
tease that only plays a key role in the clotting
cascade by catalyzing the conversion of fibri-
nogen to fibrin, but it also activates a variety
of cell types, including platelets and endothe-
lial cells. Thrombin is a pro-inflammatory
molecule and therefore provides a critical
link between coagulation and inflammation.
Thrombin signaling in endothelial cells re-
sults in increased permeability, recruitment,
and rolling and firm adhesion of leukocytes
through the induction of chemokins, selec-
tins, and members of the immunoglobulin
superfamily[24-26].

Cytokines, releasing of tissue factor, inf-
lammation through thrombin-induced activa-
tion of endothelium, platelets and vascular
smooth muscle in sepsis can directly damage
the vascular endothelium[27,28]. Exacerbation
of pro-inflammatory mediator release, endot-
helial cell injury, tissue factor expression and
thrombin production compromise the micro-
vascular function resulting in DIC, decreased
tissue perfusion and organ failure[29-31].

Blocking DIC by suppression of thrombin
generation has become an accepted target in
treating the multiple organ dysfunction
syndrome of severe sepsis[32]. Coagulation is
initiated by the expression of tissue factor on
endothelial cells and monocytes induced by
endotoxin, tumor necrosis factor (TNF) and
interleukin-1 (IL-1) in sepsis[33]. AT inactiva-
tes thrombin and several serine proteases
including factors IXa, Xa, XIa and XIIa, kal-
likrein, urokinase, tissue plasminogen acti-
vator, plasmin and trypsin[34]. Therefore, na-
tural coagulation inhibitor AT may has bene-
fical effects on organ functions in severe sep-
sis and sepsis-induced DIC.

Experiments in animal models of sepsis
and sepsis-induced DIC have showed that
high dose of AT-III (> 250 IU kg-1) has signi-
ficant positive effect in preventing organ
dysfunction, mortality and DIC[11,12,35-38].

The question that “Why AT-III improves DIC
and decreases mortality only when given at
very high doses”, may be explained by the
following mechanisms: (1) during sepsis, the
activation of the coagulation cascade induces
the generation of considerable of thrombin;
and (2) inactivation of AT at the endothelial
cell surface by elastase released from activa-
ted leukocytes[39].

In a large prospective study the incidence
of DIC in sepsis was 16%, in severe sepsis
was 18% and septic shock was 36%[40]. Stu-
dies adressed the possibility that AT supple-
mentation could improve DIC and its clinical
consequences. In these trials, AT-III signifi-
cantly improved the severity or duration of
DIC[41-43]. For example, Blauhut et al obser-
ved a more rapid normalization of coagulati-
on tests, less bleeding and unchanged mor-
tality in the AT-III treated patients compared
with nontreated patients[41]. Fourier et al re-
ported that 100 IU kg-1 loading dose followed
by continuous infusion of 100 IU kg-1 day-1

for 4 days of AT-III significantly reduces the
duration of DIC but nonsignificantly reduces
mortality in septic patients[42]. In a control-
led trial, long term (14 days) and high dose
AT-III supplementation (activity > 120%) mo-
dulated inflammatory mediators and coagu-
lation variables, mainly during the second
week of application[43]. Therefore, following
question is waiting for explanation. Is short
term period of application (4 days) enough ti-
me for the coagulation inhibitor to work ef-
fectively? Therefore we need large multicent-
re trial to draw definitive conclusions about
the indication, and benefical effects of AT-III
in sepsis induced DIC.

NEUTROPHIL RECRUITMENT in
SEPSIS-INDUCED INFLAMMATORY
LUNG INJURY, DOES AT-III INHIBIT IT?

Neumann et al demonstrated that activa-
tion of circulating granulocytes is characteri-
zed by increased production of serine prote-
ases and reactive oxygen metabolites, as well
as elevated expression of circulating granu-
locyte surface macrophage antigen-1 in int-
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raabdominal sepsis induced by colon ascen-
dens stent in mice[44]. They observed that,
expression of macrophage inflammatory pro-
tein-2, cytokine-induced neutrophil chemo-
attractant, macrophage inflammatory prote-
in 1α and E-selectin mRNA markedly incre-
ased in the lung within 3 h following sepsis
induction, whereas up-regulation of IFN-in-
ducible protein 10, macrophage chemotactic
protein-1 and P-selectin was delayed. They
concluded that recruitment of preactivated
neutrophils may be critical for the develop-
ment of inflammatory lung injury during int-
raabdominal sepsis.

The recruitment of leukocytes to the site of
inflammation is a series of sequential steps
beginning with initial contact of leukocytes
with endothelium termed tethering and rol-
ling, which appears to be absolutely critical
for subsequent adhesion and emigration of
leukocytes out of the vasculature[45-47]. Le-
ukocyte rolling is mediated by two endotheli-
al selectins: P-selectin and E-selectin.
Thrombin is a serine protease and is impor-
tant in recruiting leukocytes in various inf-
lammatory conditions including ische-
mia/reperfusion and sepsis[12,48]. There are
a few studies to suggest that thrombin has
the ability to recruit neutrophils by an early
P-selectin and delayed E-selectin pathway in
the initial phase of leukocyte recruitment (le-
ukocyte rolling)[48-53]. Firm adhesion, the se-
cond phase of leukocyte recruitment, can al-
so be induced by thrombin as a result of ra-
pid endothelial platelet-activating factor[54].

In every inflammatory process, the vast
majority of cellular events require nuclear
factor κB (NF-κB) transcriptional activity[55].
NF-κB mobilization is essential for thrombin
mediated VCAM-1-dependent and E-selec-
tin-dependent neutrophil recruitment[53].
The transcriptional regulatory factor NF-κB
is a central participant in modulating the
expression of the immunoregulatory medi-
ators involved in sepsis[56,57]. There is evi-
dence that AT-III potentially blocks the acti-
vation of NF-κB, a transcription factor invol-

ved in immediate early gene activation du-
ring inflammation[58,59]. It should be remem-
bered that NF-κB is an essential component
of normal host defences and that blockade of
the regulatory actions may be severely im-
munosuppresive. For example, mice lacking
the p50 subunit of NF-κB are unable to clear
Listeria monocytogenes effectively and are
more susceptible to infection with Streptococ-
cus pneumoniae[60].

AT-III can reduce sepsis-induced neut-
rophil recruitment into the lungs[48,49]. Ho-
wever, adhesion may not be the mechanism
of leukocyte recruitment in sepsis-induced
lung injury[38,61]. A number of investigators
demonstrated that unlike most organs, in
the pulmonary vasculature, leukocyte recru-
itment in response to lipopolysaccharide
(LPS), may not be dependent upon selectins
and integrins but perhaps due to physically
trapping in capillaries[62-65]. Uchiba et al,
have postulated that AT-III releases pros-
tacyclin from endothelial cells, inhibits le-
ukocyte recruitment, and thereby protects
the pulmonary vasculature from injury indu-
ced by LPS in rats[61]. Woodman et al, de-
monstrated that neither AT-III pretreatment
nor posttreatment in a feline mesentery ex-
posed to LPS had any effect on LPS-induced
selectin-dependent leukocyte rolling, adhesi-
on, emigration, or microvascular dysfuncti-
on[65]. They explained the discrepancy bet-
ween their results and Uchiba’s results with
the note that, because leukocyte recruitment
in the mesentery is entirely dependent on the
selectins and integrins, it is conceivable that
nonadhesion molecule-dependent leukocyte
recruitment in the lung (neutrophil trapping)
is affected by AT-III via prostacyclin, an
event not seen in the mesentery[61]. Also Ya-
mashiro et al, demonstrated that AT-III tre-
atment significantly inhibits inflammatory
reactions during endotoxin-induced uveitis
in rats, and concluded that AT’s suppressive
effects on P-selectin expression could contri-
bute to the attenuation of leukocyte infiltra-
tion, possibly by inhibiting leukocyte rol-
ling[66].
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ANTI-INFLAMMATORY
PROPERTIES AT-III

The anti-inflammatory activity of AT-III
has been explained by following mecha-
nisms: (1) thrombin inhibition that attenu-
ates PARs-mediated IL-6, IL-8, P-selectin and
PAF synthesis; (2) endothelial cell prostacyc-
lin synthesis that diminishes platelet and ne-
utrophil activation and attachment to endot-
helial cells, decreases pro-inflammatory
cytokine production; and (3) binding to whi-
te cell Syndecan-4 receptor that decreases
neutrophil chemotaxis, cytokine production,
and chemokine receptor expression[67,68].

Interaction of AT-III with heparin-like
GAGs on the endothelial cell surface has be-
en shown to promote the release of pros-
tacyclin from the endothelial cells in vitro and
in vivo[69-72]. Wang et al demonstrated that
plasma concentration of prostacyclin, in the
form of stable product 6-keto prostaglandin
F1α (PGF1α) increases significantly at 2-20 ho-
urs after cecal ligation and perforation (CLP)
in rats. Intravenous administration of 250 U
kg-1 AT-III in rats and in the dog model of
lung transplantation significantly increased
the plasma 6-keto PGF1α levels[72-74]. Altho-
ugh the dose of 250 U kg-1 of AT-III signifi-
cantly prevented the endotoxin-induced pul-
monary vascular injury and coagulation ab-
normalities in rats: the lower doses of AT-III
(50-150 U kg-1) prevented coagulation ab-
normalities, but not pulmonary injury[38].

Cytokines, such as TNF-α, IL-1β, and va-
rious inflammatory mediators derived from
activated leukocytes damage endothelial
cells leading to microcirculatory distruban-
ces[1,75]. The endotoxin induced release of
inflammatory mediators like IL-6, IL-8 and
TNF is controlled by AT in experimental stu-
dies[76-80]. AT-III induces endothelial cell re-
lease of prostacyclin, which inhibits cytoki-
ne production and suppresses leukocyte
and T-cell activation[61,69,70,81-85]. Pros-
tacyclin inhibits synthesis of pro-inflamma-
tory cytokines by a cyclic adenosine monop-
hosphate-mediated process: this attenuates

neutrophil activation, thereby reducing neut-
rophil degranulation, elastase release and to-
xic oxygen radical release[38,69,71]. In additi-
on, the effect is observed primarily at sup-
raphysiologic levels (> 200% normal levels) of
AT[38]. Minamiya et al showed that AT-III re-
duces F-actin formation in neutrophil by
binding GAGs on the neutrophil, thereby re-
ducing neutrophil accumulation in the lung,
which would in turn inhibit oxygen radical
production in the lung of rat[86]. Recent stu-
dies in endotoxin-induced sepsis models de-
monstrate that the interaction of activated le-
ukocytes and lymphocytes with endothelium
in particular cell sticking and transmigration
events, is significantly reduced after admi-
nistration of therapeutic doses of AT[48,87].

AT interacts with cells via binding to
GAGs, in particular those of the membran
protein Syndecan-4[76]. This G protein-coup-
led receptor has been described to mediate fo-
cal adhesion processes and to be involved in
chemotaxis and cell migration[88]. The fact
that, AT’s intact heparin-binding site is cruci-
al to AT’s anti-inflammatory effect has been
demonstrated in different experimental set-
tings[76,89-91]. Kaneider et al demonstrated
that AT directly inhibits chemokine-stimula-
ted migration of monocytes and lymphocytes
via the effects of its heparin-binding site on
cell surface Syndecan-4 by activation of pro-
tein kinase C and Rho signaling[89].

Replacement of AT improves the outcome
of numerous experimental models of gram-
positive and gram-negative bacterial sepsis
and is useful for prevention of organ failure
in animals challenged with endotoxin or bac-
teria and for prevention of ischemia/reperfu-
sion injury[10-12,35,38,65,66,69,81,92-99]. Re-
dens et al, reported that AT-III attenuated the
decrease in apparent lung compliance and
prevented the fall in arterial PO2 in a sheep
model of LPS-induced ARDS[100]. Okajima
and coworkers, published data showing pro-
tection against pulmonary vascular injury
and increase in prostacyclin in LPS-induced
septic rats treatment with AT-III[61,72].
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Uchiba et al, investigated the effect of AT-III
on the activated leukocyte-induced pulmo-
nary vascular injury in rats given endoto-
xin[61]. Intravenous administration of endo-
toxin to rats increased the pulmonary accu-
mulation of neutrophils, and the subsequent
pulmonary vascular injury. In their rat model
of endotoxemia, IV administration of AT-III
(250 U kg-1) reduced leukocyte recruitment
by 20% and the subsequent pulmonary vas-
cular injury. They suggested that AT-III pre-
vents pulmonary vascular injury by inhibi-
ting pulmonary accumulation of neutrophils
and this effect appears to be independent of
the anticoagulant effect, but depends on the
interaction of AT-III with heparin-like GAGs
on the endothelial cell surface that promotes
endothelial prostacyclin release. These obser-
vations suggest that a higher dose of AT-III is
necessary to prevent endothelial cell injury
than is required to inhibit coagulation abnor-
malities. These findings also support the no-
tion that AT-III prevents endotoxin- induced
endothelial cell injury by promoting endothe-
lial release of prostacyclin and thus inhibi-
ting leukocyte activation. Further, it should
be noted that combined use of heparin with
AT-III did not prevent the pulmonary accu-
mulation of neutrophils or pulmonary vascu-
lar injury, probably because heparin binds
AT-III in circulation, thereby preventing AT-
III from interacting with heparin-like GAGs
on the endothelial cell surface.

All these facts raise the possibility that
AT-III prevents organ injury induced by acti-
vated leukocytes in sepsis. Sepsis is a multi-
functional and multi-etiological disease in
human, there could not be a single animal
model which would predict the efficacy of a
given drug. Thus it was recommendation for
sepsis research to: (1) confirm results in in-
dependent laboratories; (2) employ different
animal species; (3) include infection models
with either gram-negative and gram-positive
bacteria; (4) assure that the drug in question
should remain effective after the initiation of
the septic process; and (5) that the animal

studies should provide a therapeutic rationa-
le for the treatment of sepsis[92]. When revi-
ewing the past studies with AT-III in animal
sepsis models it becomes clear that AT-III
fulfills the criteria cited above[92]. Cumulati-
ve evidence proves efficacy of AT-III in diffe-
rent animal species. Previous experimental
studies described the possible mechanisms
of efficacy of AT-III in the treatment of sep-
sis[61,67,68].

CLINICAL STUDIES with AT-III in
HUMAN SEPSIS

Experimental studies support the use of
high doses of AT concentrates, a therapeutic
regimen in sepsis. However, there is no clear
documentation in the clinical setting that AT
might have benefical effects because of its
anti-inflammatory properties. This issue was
adressed in a study by Inthorn et al only[93].
They demonstrated that AT-III supplementa-
tion is associated with a significant improve-
ment in respiratory, liver, and renal failures,
with a concomitant decreases in some inf-
lammatory markers such as selectin and in-
tercellular adhesion molecule-1 in severe
septic patients.

Baudo et al studied 120 patients with se-
vere sepsis and postoperative complications:
55 patients had septic shock[101]. There was
no differences in over-all survival between
the placebo and AT-III treated patients. The
probability of survival was 30% in the AT-III
treated group, vs. 17% in the placebo group
(p< 0.05). Fourrier et al, demonstrated that
the duration of septic shock-induced DIC
was shortened significantly by high dose of
AT-III concentrates compared to that of the
placebo group[42]. And they also demonstra-
ted that mortality was reduced nonsignifi-
cantly by 44% in septic patients treated with
high dose of AT-III. Ilias et al, compared the
continuous infusion and intermittent bolus
dose of AT-III treatment in severe sepsis[102].
The serum AT-III levels during the treatment
phase (96 h) ranged from 168% to 212% in
the intermittent bolus group and from 188%
to 232% in the continuous infusion group.
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28-days all-cause mortality was 30% (43%
intermittent group: 21% continuous infusion
group). The mean probability of dying accor-
ding to the SAPS II was 48%. Eisele et al,
compared the results of AT-III and placebo
group in 42 severely septic patients[103].
They obtained nonsignificant 39% reduction
in 30-days all-cause mortality in AT-III tre-
ated group. Patients treated with AT-III de-
monstrated a better resolution of pre-exis-
ting organ failures and lower incidence of
new organ failures during the observation
period. Resolution of pre-existing respiratory
dysfunction in AT-III and placebo group was;
63% and 33% on days 1 and 2: 13% and 0%
on day 7: and 57% and 17% on day 30, res-
pectively. A meta-analysis of 4 placebo-cont-
rolled double blind trials (total 122 patients)
documented a 22% nonsignificant decrease
in the mortality rate in the AT-III treated sep-
sis patients[103]. These results supported the
need for a phase III multicentre trial studying
patients with severe sepsis (Table 1).

The KyberSept Trial was a major interna-
tional phase 3 clinical placebo-controlled
and double-blind study which enrolled 2314
patients[104]. It was performed to determine
the efficacy of high dose AT-III in patients
with severe sepsis in 211 contributing cen-
ters worldwide. In this study, the all-cause
mortality at 28 days in the primary efficacy
group of high dose AT was not significantly
different from placebo group (38.9% vs
38.7% respectively). In the subgroup of pati-
ents who did not receive concomitant hepa-
rin during 4-day treatment phase (n= 698),
the 28-day mortality was insignificantly lo-
wer in the AT-III group (37.8%), than in the
placebo group (43.6%). This trend became
significant after 90 days (n= 686, 44.9% for
AT-III group vs 52.5% for placebo group).
The authors suggested that there was some
evidence to suggest a treatment benefit of
AT-III in the subgroup of patients not rece-
iving concomitant heparin. This suggestion
supports the notion that AT-III has anti-inf-
lammatory effects when used without hepa-
rin. Also experimental data, mentioned abo-

ve, have shown that heparin blocks the anti-
inflammatory effects of AT-III.

In the KyberSept Trial, the 28 days morta-
lity in subgroups who had lower baseline se-
rum AT levels (< 60%) was higher than the
subgroup who had higher baseline serum AT
levels (≥ 60%)[104]. The 28 days mortality in
the subgroup of placebo treated patients who
had baseline serum AT levels < 60% was
47.5% and who had ≥ 60% was 28.5%. Altho-
ugh the 28 days mortality in the subgroups of
AT-III treated patients who had baseline se-
rum AT-III levels < 60% was 46.2% and who
had ≥ 60 was 29.1%. These data suggests that
lower baseline serum AT-III levels correlated
with higher 28 days mortality rate in severe
sepsis. The mortality rate in the AT-III treated
patients who did not receive concomitant hepa-
rin and had baseline serum AT-III level ≥ 60%
was unclear in the KyberSept Trial.

Pettila et al evaluated the predictive value
of plasma AT-III concentration in 100 criti-
cally ill patients with suspected sepsis[105].
Admission plasma AT-III concentrations was
different significantly between hospital survi-
vors and nonsurvivors (66% percentage of
normal and 46% percentage of normal, res-
pectively). However, in prediction of hospital
mortality rate, the discriminative power of
admission plasma AT-III concentration was
poor and was not independently associated
with hospital mortality rate.

Rublec et al evaluated the effects of AT-III
treatment on quality of life data measured for
up to 90 days during the follow-up phase of
the KyberSept Trial[106]. They found that,
among all sepsis survivors in the trial, there
is a significant advantage on some attributes
of quality of life in the AT-III subgroup of pa-
tients who did not receive heparin as compa-
red with the corresponding placebo group. I
suggest that this quality of life improvement
in AT-III subgroup who did not receive con-
comitant heparin may be related to organ
preservation effects of AT-III caused by its
anti-inflammatory effects, and may be sug-
gestive of a potential treatment benefit.
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CONCLUSION

Cytokines and various inflammatory me-
diators derived from activated leukocytes da-
mage endothelial cells leading to microcircu-
latory disturbances[75]. The number of AT
binding sites per macrovascular and micro-
vascular endothelial cell has been estimated
at approximately 50.000 and up to 500.000,
respectively[107]. This shows the potential
importance of AT for the microcirculation.

In many animal studies, a single bolus
dose of AT-III was administered before sepsis
induction, and acts when inflammatory cyto-
kine levels begin to rise[10,100,108]. In these
studies, AT-III pretreatment improved organ
dysfunctions and survival rate. Interestingly,
in the animal model of sepsis, AT-III impro-
ved survival if given before endotoxin injecti-
on, but not after the endotoxin infusion[109].
In clinical studies, AT-III was started with a
bolus dose and then continuous infusion in
severe septic patients[103,104,110]. Most sep-
tic patients had decreasing cytokine levels at
the time of AT-III treatment, suggesting a
transition from a pro-inflammatory to hypo-
inflammatory state[111]. There is a proof in
clinical setting that AT-III might have benefi-
cal effects based on its anti-inflammatory
properties: Inthorn et al demonstrated that
AT-III supplementation in severe septic pati-
ents was associated with a significant impro-
vement in respiratory, liver and renal
dysfunction with concomitant decrease in
some inflammatory markers such as selectin
and intercellular adhesion molecule-1[93].

Esmon tried to explain the discrepancy bet-
ween the clinical and experimental studies re-
garding to AT-III supplementation in sepsis
as[111]:

1. Most animal studies are performed
acutely in young healthy animals, where as a
significant percentage of the clinical populati-
on is elderly with many secondary complica-
tions (e.g. diabetes, high blood pressure etc.),

2. In animal studies AT-III is administe-
red before or during the very early stages of

sepsis, when inflammatory cytokine levels
are still rising,

3. In contrast, current treatment strategi-
es are started when most patients are switc-
hing from a pro-inflammatory cytokine res-
ponse to an anti-inflammatory response,

4. AT-III is administered at a late stage
and under very different conditions in hu-
man sepsis than it is during efficacy testing
in animal models.

Taken together, I suggest that, in a clini-
cal setting, early diagnosis of septic episode
or impending sepsis with immediate AT-III
replacement would be of some importance to
achieve beter outcome.

To my opinion, there is still need for
comparative studies in order to determine
the effects of AT-III on the inflammatory
markers and patients survival when given
in the early (pro-inflammatory) and late
(hypo-inflammatory) stage of sepsis. Large
multicentre trial is required to draw defini-
tive conclusions about the indication, and
benefits of AT-III in sepsis induced DIC and
related organ failure. Some questions is wa-
iting for explanation: (1) what is the thera-
peutic value of long term AT-III supplemen-
tation (> 4 day) in sepsis?; (2) is it possible
and necessary to work anti-inflammatory
effects of AT-III in septic patients? Finally, I
concluded that because of AT-III has comp-
lex interactions with host coagulopatic and
systemic inflammatory responses in sepsis,
the impact of these interactions and therape-
utic implications of administiration of AT-III
need further clarification.
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