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ÖzAbstract

Amaç: Mezenkimal stroma hücreleri (MSH) hematopoezde destek 
rolü oynar, kemik iliği (Kİ) mikroçevresinin parçası olduklarından akut 
lenfoblastik lösemide (ALL) değişikliğe uğrayabilir ve kemoterapötik 
ajanlardan etkilenebilirler. Bu çalışmada, ALL’de tanı anında ve 
tedavide MSH’lerin biyolojik ve fonksiyonel özellikleri ile bunların 
MSH’lerin niteliksel özellikleri üzerine olan etkilerini araştırdık.

Gereç ve Yöntemler: İmmünofenotipik özellikler, klonalite 
değerlendirilmesi ve çoğalma kapasitesi ölçümleri yapıldı. Tanıda 
ve tedavinin değişik evrelerinde MSH süpernatanında apoptotik 
özellikler, hücre döngüsü analizi ve stromal hücre türevi factor-1α ile 
anjiyopoietin-1 düzeyleri değerlendirildi. Kemoterapi olarak Berlin-
Frankfurt-Munster-2000 protokolü uygulandı. Solid tümörü olan ve 
Kİ tutulumu bulunmayan hastaların Kİ örnekleri kontrol grubu olarak 
kullanıldı.

Bulgular: MSH’lerin morfoloji, immünofenotipik profil ve apoptotik 
özellikleri açısından lösemiden etkilenmediği görüldü. Hematopoetik 
hücrelerinin Kİ’de yer değiştirmesi üzerine etkisi olabilen faktörlerinin 
salınımının tanıda, tedavi evrelerine göre upregüle olduğu tespit 
edildi. MSH’ler hastalıktan klonalite ve çoğalma hızı gibi fonksiyonel 
özellikler kapsamında etkilenmekteydi. Bu etkiler tedavi başlanması 
ile duraklamaktaydı. Kemoterapinin incelenen MSH özelliklerinden 
hiçbiri üzerine bir etkisi olmadığı görüldü. 

Sonuç: ALL’si olan çocuklardaki MSH’ler lösemik çevre ile ilişkilerden 
etkilenir, ancak bu fenomen tedavi başlanması ile duraklar ve bu 
çalışmada kemoterapinin bunun üzerine bir etkisi gözlenmemiştir. 

Anahtar Sözcükler: Kemik iliği mikroçevresi, Çocukluk çağı lösemisi, 
Mezenkimal stroma hücreleri, Stromal hücre türevi factor-1α

Objective: Mesenchymal stromal cells (MSCs) have a supportive 
role in hematopoiesis and as components of the bone marrow (BM) 
microenvironment may present alterations during acute lymphoblastic 
leukemia (ALL) and be affected by chemotherapeutic agents. We 
examined the biological and functional characteristics of MSCs in 
ALL diagnosis and treatment and their effect on MSC qualitative 
properties.
Materials and Methods: Immunophenotypic characterization, 
evaluation of clonogenicity, and proliferative capacity were measured. 
Apoptotic features, cell-cycle analysis, and stromal cell-derived factor 
1α and angiopoietin-1 levels in MSC supernatant at diagnosis and 
in different phases of treatment were assessed. Chemotherapy was 
administered according to the Berlin-Frankfurt-Munster-2000 
protocol. BM samples from children with solid tumors without BM 
involvement were used as the control group.
Results: The morphology, the immunophenotypic profile, and the 
apoptotic characteristics of the MSCs were not affected by leukemia. 
The secretion of factors involved in the trafficking of hematopoietic 
cells in the BM seems to be upregulated at diagnosis in comparison 
to the treatment phases. MSCs are influenced by the disease in 
terms of their functional characteristics such as clonogenicity and 
proliferation rate. These effects cease as soon as treatment is initiated. 
Chemotherapy does not seem to exert any effect on any of the MSC 
features examined.
Conclusion: MSCs from children with ALL are affected by their 
interaction with the leukemic environment, but this phenomenon 
ceases upon treatment initiation, while no effect is observed by 
chemotherapy itself.
Keywords: Bone marrow microenvironment, Childhood leukemia, 
Mesenchymal stromal cells, Stromal cell-derived factor 1α
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Introduction 

Mesenchymal stromal cells (MSCs) constitute part of the 
bone marrow (BM) microenvironment where the survival, 
proliferation, and differentiation of hematopoietic stem cells 
(HSCs) take place [1]. Despite the large amount of information 
on the nature of MSCs, they have not been fully characterized 
so far. The in vivo counterparts or possibly precursors of culture-
developed MSCs are currently considered to be perivascular 
cells, namely pericytes. These two-cell populations share similar 
properties in terms of marker expression, ability to self-renew, 
and potential to differentiate into multiple cell types such as 
adipocytes, chondrocytes, osteocytes, and myocytes under 
specified culture conditions [2,3].  The BM microenvironment 
is believed to play a pivotal role in the development and 
progression of leukemia [4]; thus, it is reasonable to speculate 
that MSCs may also be involved in the perturbation of 
normal hematopoiesis.  Their putative role in oncogenesis and 
leukemogenesis has not been fully clarified and the results from 
the studies already published are contradictory. In vitro studies 
have shown that MSCs from newly diagnosed adult patients 
with leukemia (acute myeloid leukemia and acute lymphoblastic 
leukemia) are less efficient for supporting normal hematopoietic 
progenitor cell survival and this functional capacity is partially 
restored after chemotherapy [5]. Their implication in childhood 
ALL has only recently being addressed,  revealing that ALL-
MSCs display reduced proliferative capacity and ability to 
support long-term hematopoiesis  in vitro while those isolated 
at diagnosis did not differ from those obtained during 
treatment [6].  The detection of leukemia-associated genetic 
aberrations in MSCs implied a clonal relationship between 
MSCs and leukemia cells in childhood ALL and suggested the 
involvement of MSCs in the pathogenesis of the disease [7].   
Involvement of MSCs in various malignancies via deregulation 
of the secretion of chemokines [8,9,10] implies  that 
they  mediate cell migration and homing [11]. Stromal cell-
derived factor 1α (SDF-1α or CXCL12) was found to retain 
and support the HSCs in the BM via the SDF-1α/CXCR4 axis 
[12,13].  CXCL12 is constitutively secreted by marrow stromal 
cells, being the major source for CXCL12 in adults [14]. Less is 
known about  its  role in hematological malignancies and how 
it could be affected during chemotherapy. The existing studies 
have come to  conflicting  results [8,15]. Angiopoietin-1 (Ang-
1), initially known for its role in both embryonic and postnatal 
angiogenesis, has recently been reported to interact with HSC-
expressed Tie-2 [3,16], enhancing the maintenance of HSCs in a 
quiescent state within the BM, and Ang-1 is thereby part of the 
network regulating the “stemness” of HSCs [17].

MSCs have been considered promising candidates for cell 
therapies and, in view of their potential, there are many ongoing 
studies to understand their properties, mechanisms of action, 
and putative role in hematological malignancies [7,18,19,20]. So 

far MSCs from different sources have been shown to exhibit 
different properties [21]. Moreover, BM MSCs from children 
seem to be different from their adult counterparts [22].

The aim of this study is to characterize MSCs derived from the 
BM of children with ALL at the onset of the disease in order 
to evaluate the leukemic effect, if any, on their biological/
functional properties. In addition, an attempt was made to 
compare this population with the MSCs derived from the BM 
during different treatment phases for the  assessment of  the 
effect of chemotherapy on these features.

Materials and Methods

Patients

BM samples from children with B-lineage ALL and >90% BM 
infiltration at diagnosis, hospitalized from 2006 to 2010 at the 
Department of Pediatric Hematology and Oncology, University 
Hospital of Heraklion, were studied. They included  samples 
at diagnosis (d, n=28), day 15 (d15, n=12), day 33 of 
induction therapy (d33, n=20) when remission was achieved, 
at  intensification-consolidation (consol, n=33), during 
maintenance (maint, n=19) therapy, and at the end of treatment 
(end, n=20), all in remission. MSCs examined at different phases 
of ALL treatment are not necessarily in all cases from the same 
patients.  Patients were treated according to the ALL Berlin-
Frankfurt-Munster-2000 protocol and their risk stratification 
[medium risk (MR) and high risk (HR)] according to the same 
protocol was considered in some of the employed assays.  The 
control group  (n=15)  consisted of BM samples from children 
with solid tumors without BM involvement. Patients’ ages 
ranged from 1.2 to 18 years  (median: 6 years). The study was 
approved by the Ethical Committee of the University Hospital 
of Heraklion.

Methods are described in more detail in the Appendix 
(Supplementary Materials and Methods).

BM Mononuclear Cells (MNCs) Isolation and MSC Culture and 
Expansion

BM MNCs, following Ficoll-Hypaque separation (1077 g/mL; 
Lymphoprep, Nycomed, Oslo, Norway), were cultured in a-MEM 
as described previously for MSC development [22]. MSCs were 
maintained for up to five passages. Assays were performed at 
any of P1 to P4 depending on the cell availability.

Immunophenotyping Evaluation

Phenotypic characterization of MSCs was performed by flow 
cytometry at various passages using  hematopoietic cell and 
MSC-specific monoclonal antibodies (BD Biosciences, San Jose, 
CA, USA).  One hundred thousand  cells were stained with the 
markers as described previously  [23].  At least 10,000 events 
were acquired for each analysis.
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Cell Doubling Time (DT)

DT was calculated according to the formula DT=t/n=t×log(2)/log 
(cells harvested/cells inoculated), where t  is the time between 
initial plating and harvest for the respective passage.

Colony Forming Units-Fibroblast (CFU-F) Formation

At day 0, 1x105 MNCs were seeded in each well of a 24-well plate 
(in triplicate) in the absence of fibroblast growth factor-2 (FGF-
2). At subsequent passages, MSCs were plated in 20-cm2 petri 
plates at a concentration of 10 cells/cm2  (in duplicate).  The 
colonies that developed were categorized according to their 
size as small (S), medium (M), and large (L, highly proliferating) 
CFU-F. The sum of all sizes is denoted as CFU-F.

Cell-Cycle Analysis - Apoptosis

MSCs at either P2 or P3 were stained with propidium iodide in 
order to estimate the percentage of cells in each phase of the 
cell cycle.  Cell-cycle analysis was performed using WinMDI 
software version 2.8 [24].

Apoptotic MSCs at passages P2 and P4 were detected by flow 
cytometry and 7-amino-actinomycin D (7-AAD; Sigma, St. 
Louis, MO, USA) staining [25].

Detection of SDF-1α and Ang-1 (ELISA)

A quantitative sandwich enzyme-linked immunosorbent assay 
technique (ELISA) was employed for the determination of both 
SDF-1α and Ang-1 (R&D Systems, Minneapolis, MN, USA) in the 
supernatant of MSCs at any of P1 to P3 cultures (and of MNCs 
at d0) within the leukemia group only, at diagnosis, and during 
treatment phases following the instructions of the manufacturer.

Statistical Analysis

Results are expressed as mean ± standard error of the mean 
mean (SEM). Differences between groups were assessed using 
the nonparametric Mann-Whitney  U-test and  p-values lower 

than 0.05 were considered as statistically significant. Analysis 
was performed using SPSS 18.0 (SPSS Inc., Chicago, IL, USA).

Results

Morphology and Immunophenotypic Profile

BM MSCs from all groups were expanded until the fifth passage 
and all displayed the characteristic spindle-shape morphology. 
Immunophenotypic assays at P2 and  P4 did not identify any 
differences among groups. MSCs at diagnosis expressed CD90 
(99.67±0.09%), CD105 (97.39±0.72%), CD146 (59.55±2.84%), 
CD29 (99.1±0.12%), CD44 (98.07±1.39%), CD95 (90.25±2.85%), 
and CD73 (99.4±0.4%), while there was no expression of 
hematopoietic markers such as CD34, CD45, and CD14. The same 
immunophenotypic profile was also observed at all treatment 
phases and in the control group.

Growth Rate of MSCs (DT)

MSCs within  the MNC fraction (d0) at diagnosis reached 
confluency in approximately 20.71±1.24 days, whereas at the 
end of chemotherapy they required 15.10±0.63 days. The DT at 

Figure 1. Days required for mesenchymal stromal cells in the 
mononuclear cells fraction (d0) to reach confluency. The doubling 
time at diagnosis differs from that of the phases of chemotherapy 
(p: d15=0.042, d33=0.007, consol=0.001, maint=0.022, end=0.002) 
and of the control (p=0.011). This defect subsides with the 
progression of culture (*: ss in comparison to the d group).

 Table 1. Doubling time of mesenchymal stromal cells of all groups in the different passages (P1-P5).

P1 P2 P3 P4 P5

d 3.30±0.41 3.07±0.58 4.20±0.80 5.37±1.06 4.75±0.95

d15 2.39±0.31 5.49±1.18 4.80±1.22 3.83±0.97 3.82±0.69

d33 2.57±0.24 2.86±0.35 3.47±0.42 3.85±0.61 3.82±0.41

Consol 2.59±0.19 2.72±0.23 3.24±0.30 4.12±0.61 4.50±0.93

Maint 3.44±0.53 5.98±1.17 3.57±0.49 3.18±0.52 4.21±0.50

End 2.49±0.20 2.59±0.25 2.57±0.32 3.41±0.38 3.73±0.40

CTL 2.34±0.11 3.03±0.31 2.42±0.25 4.41±1.07 4.47±2.13

Data are expressed as mean ± standard error of mean. CTL: Cytotoxic lymphocyte



22

Genitsari S, et al: MSCs in Childhood ALL Turk J Hematol 2018;35:19-26

diagnosis was statistically different compared to all the phases 
of treatment (Figure 1). At subsequent passages, DT was similar 
among all groups  (Table 1). This finding indicates that MSCs 
present in the MNC fraction at diagnosis, which was mainly 
constituted of lymphoblasts, expanded more slowly compared 
to treatment phases and the control group, but this defect 
subsided with the progression of culture (more advanced P). No 
difference was observed among all passages in all other studied 
groups. As the culture progressed, DT increased in all groups and 
the control.

CFU-F Development

At day 0, the CFU-F formation at diagnosis appeared to be impaired 
compared to the other groups (Figure 2), a result attributed to the 
lower number of the medium and the large-sized colonies. The 
impaired clonogenicity of MSCs at the time of diagnosis was a 

constant finding, observed at subsequent passages as well (Table 
2). Culture progression resulted in lower colony development, 
the control included, and this became statistically significant at 
the later passages (P1 vs. P4 or P5, p<0.001). MSCs at diagnosis 
formed fewer small, medium, and large colonies compared to all 
other groups. Larger colonies prevailed at early passages, while 
at the later ones, the CFU-F population consisted of mainly small 
colonies (Supplementary Figure 1).

Cell-Cycle Analysis - Apoptosis

Most of the MSCs were in quiescence, presenting a higher 
percentage of cells in the G0G1 phase compared to the control 
group (Figure 3). The study of apoptosis in all phases of disease 
and treatment at P2 and P4 confirmed the stability of BM-MSCs 
under long-term culture expansion through serial passages. 
Spontaneous apoptosis was detected at P2 and it did not change 
at P4 in all groups (Table 3).

SDF-1α and Ang-1

SDF-1α in the MSC supernatants at diagnosis was variably 
expressed (median: 5334.63 pg/mL, range: 1066.70-22,480.86 pg/mL) 

Figure 2. Colony forming units-fibroblast development of 
mesenchymal stromal cells in the mononuclear cells fraction (d0) 
from all studied groups. The number of colonies at diagnosis is 
lower than that of the other groups (d vs. end, control: p<0.0001). 
Culture progression resulted in lower colony development, 
becoming significant at the later passages.

Data are expressed as mean ± SEM (*: p<0.05 compared to 
diagnosis).

CFU-F: Colony forming units. 

Figure 3. Analysis of the cell-cycle phases. Most of the 
mesenchymal stromal cells are in quiescence as the highest 
percentage of cells are in the G0G1 phase.

Data are expressed as mean ± SEM.

Table 2. Colony forming units-fibroblast development of mesenchymal stromal cells from all studied groups (P1-P5).

P1 P2 P3 P4 P5

d 26.80±2.79 21.39±3.63 19.61±4.69 23.59±3.45 19.46±3.55

d15 45.08±5.72* 34.96±5.44* 37.73±6.01* 17.59±3.48 7.82±2.21

d33 38.52±3.52* 41.40±2.87* 32.06±3.51* 21.11±2.90 17.11±2.41

Consol 47.10±3.10* 34.47±2.68* 26.78±2.30* 24.83±3.33 27.94±3.25

Maint 46.15±3.28* 33.63±3.99* 31.93±2.63* 26.50±3.32 15.12±2.02

End 48.34±4.43* 41.23±4.48* 34.20±4.28* 24.50±3.52 29.00±3.30

CTL 57.27±4.47* 43.53±3.71* 37.38±5.40* 35.67±3.2* 38.83±6.05*

Data are expressed as mean ± standard error of mean.
*Statistical significance in comparison to the d group, CTL: Cytotoxic lymphocyte
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and did not differ in comparison with the treatment phases. Its 
levels were higher in the HR group compared to the MR group 
(HR=9205.77±2721.82, MR=6686.11±4006.34, p=0.021).

As far as Ang-1 expression is concerned, in the two cell 
subpopulations of MNCs and MSCs, our results showed that, 
similar to SDF-1α, stromal cells secreted statistically significant 
higher amounts of this growth factor (Figure 4). No difference 
was found in the comparison of diagnosis with treatment 
groups.

Discussion 

MSCs are described as fibroblast-like cells, displaying a 

characteristic spindle shape, and all of our cells exhibited this 

feature.  As  in vitro  culture progresses,  cells enter senescence 

and MSCs become larger with irregular and flat shapes [26], not 

observed in our samples. Our source though was the BM of 
children, albeit leukemic BM, and our culture was followed up 
to P5 [27].

Supplementary Figure 1. Colony forming units-fibroblast (CFU-F) colonies of large (L), medium (M), and small (S) size at the initial (P1) 
and last (P5) passages of the study. Larger colonies prevail at early passages while at the later ones the CFU-F population consists of 
mainly small colonies.

Table 3. Spontaneous apoptosis, evaluated by flow cytometry after 7-amino-actinomycin D staining of mesenchymal stromal 
cells at diagnosis and during treatment at passages 2 and 4 (P2, P4).

Study group P2 (%) P4 (%)

A D A D

d 4.92±2.38 2.5±0.94 3.47±0.97 2.37±1.15

d15 2.48±0.86 1.97±1.21 2.82±0.65 1.97±1.21

d33 2.65±0.59 1.07±0.56 1.42±0.27 0.52±0.25

Consol 2.01±0.45 1.4±0.38 2.2±0.32 1.05±0.21

Maint 1.97±0.38 0.97±0.57 1.2±0.65 1.67±1.2

End 2.94±0.93 3.78±1.33 1.62±0.77 1.45±1.02

CTL 1.75±0.29 0.58±0.16 0.92±0.37 0.27±0.14

Values are expressed as mean ± standard error of mean.  
A: Apoptotic cells, D: dead cells, CTL: Cytotoxic lymphocyte
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MSCs from all groups at different  passages were  highly 
expressing MSC-related markers and lacking the hematopoietic 
markers, as proposed by the International Society for Cell 
Therapy [28,29].  This  indicates  that the MSC cultures were 
homogeneous, in agreement with Conforti et al. [6], and neither 
disease nor treatment had any influence on them. Clonogenicity 
and proliferation potential were lower at diagnosis and decreased 
as the culture progressed, in partial agreement with the only study, 
so far, examining the characteristics of pediatric ALL-MSCs [6]. 
The lowest number of colonies was developed  at 
diagnosis. Although this result does not stand alone to support 
that it is an intrinsic defect (because of the effect of the disease on 
MSCs) rather than a quantitative one, due to the lower frequency 
of MSCs in BM infiltrated by leukemic cells combined, with the 
fact that it continues to be seen in subsequent passages, where 
the same number of MSCs are used to initiate the culture, it is 
more suggestive of the hypothesis that the microenvironment 
(as expressed by BM MSCs) is also affected by the leukemic 
process. This result favors the observation of Conforti et al. [6] 

that leukemic cells do not confer to MSCs any preferential ability 
to proliferate, but they rather promote a deficient capacity, 
opposing the hypothesis that MSC populations might be crucial 
for the efficient promotion of the survival and proliferation of 
blasts [30]. Treatment does not affect the clonogenicity as the 
number of colonies produced at any time-point is similar to that 
of the controls. Another factor involved in colony development 
is the duration of the culture. Interestingly,  the decrease of 
colony number throughout passages is more profound in large- 
and medium-sized colonies. Considering that large colonies 
derive from more primitive cells, it becomes obvious that older 
cultures contain more mature MSCs. Altogether, the above 
indicate that the presence of leukemia cells at diagnosis, but 
not chemotherapeutic agents, modifies BM-MSC properties.

Cell-cycle analysis revealed that most of the MSCs are in quiescence 
while about 20% of the cells of the control group are at the 
S phase,  compared to less than 10% of the rest of the groups. 
Further analysis is required in order to fully clarify this difference 
found under identical culture conditions. Apoptosis remained 
unaltered throughout passages, a finding reported for BM-MSCs 
from children with benign hematological disorders [26]. Conforti 
et al. [6] reported different results, but they evaluated apoptosis 
for many passages and reported data for the latest one (P18).

Finally, we evaluated the levels of SDF-1α and Ang-1, 
recently revealed as major regulators in the crosstalk between 
hematopoietic progenitors and their microenvironment [31,32]. 
Data reporting the expression of SDF-1α by BM MSCs in patients 
with hematological malignancies are limited. SDF-1α in the 
supernatant of MSCs at diagnosis of ALL was slightly increased 
compared to that from treatment phases, although this difference 
was not statistically verified. Interestingly, HR patients exhibited 
higher levels compared to the MR ones, a difference no longer 
occurring upon treatment initiation. Reduced extracellular 
levels of SDF-1α were assessed in hematological malignancies of 
adults  [33,34]. Others  found increased SDF-1α secretion from 
MSCs at diagnosis in adolescents and young adults with ALL, 
reversed by chemotherapy [6]. In pediatric patients with acute 
leukemia, SDF-1α serum levels differed depending on whether 
they were evaluated in PB or BM serum (decreased expression) or 
MSC supernatants at diagnosis (decrease not evident) compared 
to the remission and control groups [15]. The above, combined 
with our findings, further support the notion that leukemic cells 
do not affect CXCL12 production and the decrease reported in 
serum cannot be attributed to the productive capacity of MSCs.

We  found that the lowest amount of Ang-1 was expressed 
in MSC culture supernatant from diagnosis, albeit not 
statistically differently from treatment phases.  There is one 
more study to date, on the effect of Ang-1 in childhood ALL 
[35], in which the authors claimed similar findings in the MSC 
supernatant and low levels of Ang-1 and Ang-2 in BM serum 
at diagnosis. Nevertheless, other factors such as age-related 

Figure 4. The stromal cell-derived factor-1α (SDF-1α) and 
angiopoietin-1 (Ang-1) expressions by both mesenchymal 
stromal cells (MSCs) and mononuclear cells (MNCs) at diagnosis 
and treatment. Stromal cells secrete higher amounts of both 
these factors. A) Variability in their expression was noticed at 
diagnosis, which became more uniform in treatment phases. B) 
No difference in angiopoietin-1 levels between diagnosis and 
treatment groups.

MSC: Mesenchymal stromal cell, MNC: mononuclear cell, Ang-1: 
angiopoietin-1, SDF-1α: stromal cell-derived factor-1α.



25

Genitsari S, et al: MSCs in Childhood ALLTurk J Hematol 2018;35:19-26

post-transcriptional effect on the expression of proteins or the 
exposure of BM MSCs to fetal bovine serum and FGF-b [36] 
have to be taken into consideration in order to fully exploit the 
role of these molecules in leukemia.

Study Limitation

A limitation of our study is that the samples examined at 
different phases of ALL are not necessarily from the same patients 
longitudinally. This approach ensures a reasonable number of 
samples within a reasonable timeframe for each group for a 
rather rare pediatric entity and hence a stronger statistical result.

Conclusion

In conclusion, biological characteristics and functional properties 
of MSCs are affected at the onset of leukemia. Most defects persist 
throughout passages. MSCs recover after treatment initiation and 
remission achievement and are not affected by chemotherapy. 
Their secretory profile remains unaltered by the disease.  The 
summing of these data clearly indicates that any effect on MSCs 
from the leukemic clones in childhood ALL is transient and ceases 
upon treatment initiation. A standard hurdle in the comparison of 
our data to other studies continues to be the diversity of working 
protocols used for MSC cultures and further evaluation.
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Appendix: Supplementary Materials and Methods
BM MNC Isolation and MSC Culture and Expansion

BM MNCs, following separation with Ficoll-Hypaque (1077 g/mL; Lymphoprep, 
Nycomed, Oslo, Norway), were cultured in a-MEM without nucleotides in the presence 
of 10% lot-selected fetal calf serum (Invitrogen Ltd., Paisley, UK) as described previously 
[21]. They were seeded at a concentration of 5x104 cells/cm2 in the presence of 1 ng/
mL FGF-2 (FGF-2; Abcys SA, Paris, France). A complete medium change was performed 
twice a week. When layers became confluent at ~90%, cells were detached using 0.25% 
trypsin/1 mM EDTA (Invitrogen Ltd.) and then replated at a concentration of 1x103 cells/
cm2 (passage 1, P1). MSCs were maintained in culture for up to five passages. Assays 
were performed at any of P1 to P4 depending on the cell availability.

Immunophenotyping Evaluation 

Phenotypic characterization of MSCs was performed by flow cytometry at various 
passages using the following monoclonal antibodies: CD105-phycoerythrin (PE) 
CD146-PE, CD73-PE CD29-fluorescein isothiocyanate (FITC), CD44-FITC, CD90-FITC, 
CD14-FITC, CD45-FITC, CD34-PE, and CD95-FITC (BD Biosciences, San Jose, CA, USA). 
One hundred thousand cells were stained with the markers as described previously [21]. 
At least 10,000 events were acquired for each analysis. 

Cell-Cycle Analysis - Apoptosis 

MSCs, at either P2 or P3, after detachment by trypsinization (trypsin/EDTA 0.25%) were 
centrifuged at 150 x g for 10 min at 4 °C and washed with PBS. In order to estimate the 
percentage of cells in each phase of the cell cycle, 1x106 MSCs were stained with 1 mL 
of propidium iodide staining solution (50 µg/mL propidium iodide, 1 mg/mL RNAse in 
PBS without Ca++/Mg++, pH 7.4) for 30 min at room temperature. After the acquisition 
of at least 10,000 events for each sample, cells were gated according to forward vs. 
side scatter (FSC/SSC) characteristics. Cell-cycle analysis was performed using WinMDI 
software, version 2.8 [22]. 

Apoptotic MSCs at passages P2 and P4 were detected by flow cytometry and 7-amino-
actinomycin D (7-AAD; Sigma, St. Louis, MO, USA) staining [23]. They were initially 

gated according to their morphology (FSC/SSC). Then a scattergram was generated by 
combining FSC with 7-AAD fluorescence to quantitate 7-AADnegative (alive), 7-AADlow 

(early apoptotic), and 7-AADhigh (late apoptotic/dead) cells.

Cell DT

DT was calculated according to the formula DT=t/n=t×log(2)/log (cells harvested/cells 
inoculated), where t is the time between initial plating and harvest for the respective 
passage.

CFU-F Formation

At day 0.1x105 MNCs were seeded in each well of a 24-well plate (in triplicate) in the 
absence of FGF-2. At subsequent passages, MSCs were plated in 20-cm2 petri plates 
at a concentration of 10 cells/cm2 (in duplicate). Following 14 days of culture at 37 °C 
and 5% CO2, CFU-F was quantified after staining with Giemsa stain and categorized 
according to size as small CFU-F (S: <50 cells), medium CFU-F (M: 50-500 cells), and 
large CFU-F (highly proliferating; L: >500 cells). The sum of CFU-F of all sizes is denoted 
as CFU-F. 

Detection of SDF-1α and Ang-1 (ELISA)

A quantitative sandwich ELISA was employed for the determination of both SDF-1α 
and Ang-1 in the supernatant of MSCs at any of P1 to P3 cultures (and of MNCs at 
d0) within the leukemia group only. All subgroups were examined for the evaluation 
of these factors through the whole course of the disease, diagnosis, and treatment. The 
ELISA kits were purchased from R&D Systems, and the instructions of the manufacturer 
were followed. More specifically, 100 µL for SDF-1α (50 µL for Ang-1) of standard or 
sample per well was added and incubated for 2 h at room temperature on a shaker. 
After well aspiration and washing, 200 µL of the corresponding conjugate was added. 
Incubation was continued for 2 h further under the same conditions. After washing, 
200 µL of substrate solution was added to each well for 30 min at room temperature 
and then 50 µL of stop solution terminated the reaction. The optical density of each 
well was determined at 450 nm with wavelength correction at 570 nm.


