Quantification of the FLI1 and CXCR4 gene expressions in acute lymphoblastic leukemia (ALL) patients with t(12,21)

Hakan SAVLI¹, Özden HATIRNAZ², Sema SIRMA², Saadet ÖZDEMİR¹, Uğur ÖZBEK²

¹ Basic Sciences of the Faculty of Medicine, Kocaeli University, Kocaeli,

² Institute for Experimental Medicine, Istanbul University, Istanbul, TURKEY

Turk J Haematol 2004;21(2): 87-92

Received: 22.12.2003 Accepted: 16.02.2004

ABSTRACT

The presence of the t(12,21) is associated with good response to therapy in acute lymphoblastic leukemia (ALL) but molecular background of this pathology is not clear. FLI1 gene plays important roles in normal regulation of myeloid hematopoiesis and leukemogenesis. The chemokine receptor CXCR4 gene may play a role in the homing of hematopoietic stem cells. Our aim was to investigate possible relationships between t(12,21) existence and expression changes of these two genes (FLI1, CXCR4) in ALL. Thirty-one ALL patients were investigated. Twenty-one of these patients were t(12,21) carriers. We used the Quantitative Real-Time RT-PCR. Obtained results were compared to normal bone marrow samples of five healthy subjects. Expression differences were not found significant in both groups. Our study was the first attempt to quantify these genes in t(12,21) patients. We conclude that Quantitative RT-PCR is a reliable method for the monitoring of these gene expressions and similar studies should expand to other translocations in haematology.

Key Words: Gene expression, FLI1 protein, CXCR4, RT-PCR.

ÖZET

t(12,21) pozitif akut lenfoblastik lösemide FLI1 ve CXCR4 gen ekspresyonu kantitasyonu

t(12,21) varlığı akut lenfoblastik lösemi (ALL)'de tedaviye iyi yanıtla ilişkilendirilmiştir fakat, bu patolojinin moleküler temeli net değildir. FLI1 geni miyeloid hemopoeziste ve lökomogenezisin normal düzenlenişinde önemli rol oynar. Kemokin reseptörü CXCR4 hematopoietik kök hücrelerin yön tayinlerinde önemli rol oynayabilir. Amacımız t(12,21) varlığıyla bu iki genin (FLI1, CXCR4) anlatım değişiklikleri arasındaki muhtemel ilişkileri ALL'de incelemekti. Otuzbir ALL hastası incelendi. Bu hastaların 21'i t(12,21) taşıyıcısıydı. Kantitatif Gerçek-Za-manlı PCR kullandık. Elde edilen sonuçlar beş sağlıklı kişinin normal kemik iliği örnekleriyle kıyaslandı. Anlatım farklılıkları her iki grupta da istatistiksel olarak anlamlı bulunmadı. Çalışmamız bu genlerin t(12,21) hastalarında kantifikasyonu için ilk girişimdir. Kantitatif Gerçek-Zamanlı PCR bu genlerin taranması için güvenilir bir yöntemdir ve benzer çalışmalar hematolojinin diğer translokasyonlarına doğru genişletilebilir.

Anahtar Kelimeler: Gen ekspresyonu, FLI1 protein, CXCR4, RT-PCR.

INTRODUCTION

The presence of the t(12,21) is associated with good response in ALL. These kind of gene fusions are well known incidents in leukemia while the other genetic changes are less known. Recurrent chromosomal translocations are of relevance in leukemogenesis because they influence the expression of some key regulatory genes, but identities of such genes are not completly clear. Among several newly identified genes, FLI1 and CXCR4 are attractive targets for researchers interested with leukemia. We found that FLI1 gene was down regulated while CXCR4 gene was up regulated during vitamin D dependent differentiation of leukemia cell line HL-60 cells in our previous studies using cDNA array technology^[1]. Role of the FLI1 gene in leukemogenesis and hematopoiesis has been shown also in previous studies of other authors^[2,3]. CXCR4 gene is the receptor of CXC chemokine SDF-1. It has been concluded that CXCR4 is expressed on CD34+ cells including more primitive, pluripotent progenitors, and may therefore play a role in the homing of hematopoietic stem cells^[4,5].

In this study our aim was to investigate possible relationships between t(12,21) existence and expression changes of FL11 and CXCR4 genes in 31 ALL patients. Twenty-one of these patients were t(12,21) carriers. We used Quantitative Real-Time RT-PCR (LightCycler, Roche Diagnostics GmbH, Germany). Obtained results were compared to normal bone marrow samples of the five healthy subjects. To our knowledge, our study was the first attempt to quantification of FL11 and CXCR4 genes in t(12,21) patients by Quantitative Real-Time RT-PCR.

MATERIALS and METHODS

Our study is based on total RNA samples extracted from bone marrow aspirates of 31 ALL patients. Twenty-one of these patients were t(12,21) carriers. All translocations were detected for diagnostic purposes in Genetics Department of Institute for Experimental

Medicine, Istanbul University by RT-PCR analysis. Spesific data of all patients were shown in Table 1. Patient control group was consisted of pooled bone marrow aspirates from 5 healthy volunteer donors. Cells from bone marrow aspirates were isolated by ficoll-hypaque centrifugation. Total RNA was extracted by using guanidium thiocyanatephenol-chloroform extraction method as previously described^[6]. RNA samples were treated with DNase I and Quantitative Real-Time PCR analysis were performed as we described previously^[1,7]. Standard curves were obtained by using of serial dilutions of the β_2 microglobulin gene. Sequences of gene-specific primers were CCGCTTCTACCCCAATGACT and GCGAAGAAAGCCAGGATGAG for CXCR4. CCACACTGGTGACACAGGAG, TCTTTGACACTCAATCGTGAGGA for FLI1. TGGGTTTCATCAATCCGACAT, CACGGCAGGCATACTCATCTT for B2-microglobulin genes. The obtained gene expression values were normalised using housekeeping gene β_2 -microglobulin levels. Melting curve analysis and gel electrophoresis of the products validated the reactions. SPSS Student's t-test were used for statistical analysis.

RESULTS

FLI1 and CXCR4 gene expressions were investigated in 31 ALL patients. Twenty-one of these patients were t(12,21) carriers. Obtained results were shown in Table 1. These results were compared to normal bone marrow samples of five healthy subjects. FLI1 gene ratios were 0.0600, 0.19000, 0.24000, 0.19000, 0.23000 and CXCR4 ratios were 1.7600, 1.15000, 1.10000, 0.76000, 1.30000 for normal bone marrow samples of five healthy subjects, 1 to 5 respectively. SPSS Student's t-test were used for statistical analysis. In t(12,21) patient samples FLI1 (p= 0.251) and CXCR4 (p= 0.190) expression differences were not found significant. These genes also were not found significant in non translocated patient samples, FLI1 (p= 0.759) and CXCR4 (p= 0.291). Amplification reactions demonstrating the gradual reducti-

	t(12,21)	(%) BCD	Sex	Age	WBC	FAB	Phenotype	Immunophenotype	FLI1 ratio	CXCR4 ratio
	Positive	83	5	5	na	L1	Common preB	CD10, 19, HLADR	0.00700	1.64000
	Positive	95	f	6	2600	L1	Common preB	CD10, 19, HLADR	0.21000	18.00000
	Positive	54	٤		8500	L1	Common preB	CD10, 19, HLADR	0.14000	16.00000
	Positive	97	f	3.5	23.000	L1	Common B	CD 10, 19, 20, HLADR, CD7	0.04900	1.37000
	Positive	98	f	Ŋ	6200	L2	Common preB	CD34, 10, 19, 22, 3, HLADR	0.06400	2.30000
	Positive	94	f	4	3000	L1	Common preB	CD 10, 19, 20, 22, HLADR	0.01600	44.30000
	Positive	87	f	6	22.000	L2	Common B-ALL	CD10, 19, 20, 22, HLADR	0.04000	12.90000
	Positive	65	f	Г	4100	L3	B-ALL	slg	0.02400	1.11000
	Positive	98	E	4	8500	L2	CALLA(+) B-ALL	CD3, 75, 7, 10, 19, 22, HLADR	0.00800	1.50000
	Positive	86	f	3	15.200	L1	Common ALL	па	0.00500	123.00000
_	Positive	100	E	4.5	15.400	L2	CALLA(+) B-ALL	CD10, 19, 34, HLADR	0.01400	1.70000
2	Positive	100	f	ŝ	25.000	L1	CALLA(+) B-ALL	CD10, HLADR	0.04500	20.00000
\sim	Positive	98	٤	3.5	5000	L1	CALLA(+) preB	CD3, 5, 7, 13, 10, 19, 22, 34, 45	0.00010	1.07000
	Positive	88	E	4	13.300	L1	Common ALL	CD10, 19, HLADR	0.57000	4.80000
10	Positive	89	f	3	1900	L2	CALLA(+) preB	CD10, 19, 34, 45, Ki67	0.00700	63.00000
.0	Positive	97	E	4	8700	L1	CALLA(+) B-ALL	CD3, 10, 22, 19, 5, 7, 45, HLADR	0.41000	7.20000
	Positive	96	E	10	50.000	L2	Common B-ALL	na	0.09000	1.90000
ŝ	Positive	79	E	ß	13.000	L2	PreB-ALL	na	0.00600	119.00000
6	Positive	na	na	na	na	na	na	na	0.29000	10.50000
	Positive	na	na	na	na	na	na	na	0.06000	4.70000

Pati-		(%)							FLI1	CXCR4
ent	t(12,21)	BCD	Sex	Age	WBC	FAB	Phenotype	Immunophenotype	ratio	ratio
1	Positive	na	na	na	na	na	na	na	0.16000	20.70000
22	Negative	100	÷	. 	140.000	L1	Common B-ALL	CD3, 10, 19, 20, HLADR	0.11000	27.00000
3	Negative	06	f	12	78.000	L3	CALLA(+) preB	CD10, 19, 22, 45, HLADR	2.34000	1.25000
4	Negative	78	f	2	37.000	L1	Common > B SALL	CD10, HLADR, CD2, CD7	0.00007	1.64000
5	Negative	63	÷	2.5	10.600	L1	CALLA(+) B-ALL	na	0.01700	0.61000
9	Negative	56	E	12	10.500	L2	T-ALL	CD5, 7	0.11400	7.40000
	Negative	70	٤	12	30.000	L1	T-cell ALL	na	0.03600	7.70000
8	Negative	78	٤	3	26.600	L1	Common ALL	CD10, 20, HLADR	0.00100	651.00000
6	Negative	94	E	Ŋ	254.000	L1	Common ALL	CD19, 20, HLADR	0.17000	733.00000
0	Negative	100	f	~	48.500	L1	CALLA(+) B-ALL	CD10, 19, 22, 45, HLADR	0.03600	4.52000
	Negative	na	na	na	na	na	na	na	0.03000	26.00000

on in fluoresence as temperature increases. The rapid falls indicates the spesific products that melts at spesific temperatures as 86°C for CXCR4, 85.5°C for FL11 and 81°C for β_2 -microglobulin. Gene specific amplifications were demonstrated with melting curve data (Figure 1).

DISCUSSION

Ets family members have been shown to play an important role in several signal transduction pathways^[2]. Human FLI1 gene is an Ets family member and involved in malignancies. Up-regulation of FLI1 affects normal lymphoid cell function and apoptosis^[8,9].

FL11 gene may have an important role on tumorogenesis in fusion forms with other genes. There are other previous quantification studies of the FL11 gene in literature but most of these studies belong to the quantification of the EWS-FL11 fusion in Ewing's sarcoma family tumors. Some of them introduced the question of whether EWS-FL11 gene fusion type might serve as a prognostic molecular indicator in this group of patients^[10-12].

On the other hand, Levanon et al have found that, the FL11 homologous sequence contains a breakpoint of the t(11;22) translocation associated with Ewing's tumors, and may have a similar function in RUNX1^[13].

In the literature, it has been concluded that CXCR4 is expressed on CD34+ including more primitive, pluripotent progenitors, and may therefore play a role in the hematopoietic stem cells. CXCR4 expression is critical for the biological effects of SDF-1. The exact role of SDF is not very clear. It has been suggested that SDF-1 activates distinct signalling pathways that may mediate cell growth, migration and transcriptional activation and may contribute to leukemic marrow infiltration, by increased CXCR4 expression^[4,5,14].

Figure 1. Melting curve analysis demonstrating the gradual reduction in fluoresence as temperature increases. The falls off at 86°C for CXCR4, 85.5°C for FLI1 and 81°C for β_2 -microglobulin indicates the spesific products that melts at this temperature.

There are many different methods for quantification of the gene expression including nested RT-PCR, northern blotting, cDNA array, RNAse protection assay. These technologies are valuable methods but have many problems as low sensitivity, high cost or long time requirements for the detection. Quantitative-Real-Time RT-PCR is most sensitive, rapid and reliable approach compared to conventional methods and cDNA array technology^[15-19]. Normalization of the amplification product is the main problem of the Quantitative RT-PCR. Quantification errors are easily obtained by variation in the amount of starting material between different samples. The main approach for minimizing these errors is using a cellular RNA as an internal reference. The ideal gene used for normalisation should be expressed at a constant level in different tissues at all stages of development, and should not be affected by any type of diseases^[19]. β_2 -microglobulin sequences have been defined very reliable for haematological experiments^[20]. For this reason, we used β_2 -microglobulin as an internal controls for normalization our quantification results.

Based on our findings Quantitative Real-Time RT-PCR method should be considered as an approach to the gene statement analysis in haematology and here we propose an optimised strategy for FLI1 and CXCR4 gene detection. Larger studies are required to assess the impact of our approach in FLI1 and CXCR4 gene expression analysis in leukemogenesis. We conclude that Quantitative RT-PCR is a reliable method for the monitoring of these genes and similar studies should expand to other translocations in haematology.

REFERENCES

- Savli H, Aalto Y, Nagy B, Knuutila B, Pakkala S. Gene expression analysis of 1,25(OH)2D3 dependent differentiation of HL-60 cells- a cDNA array study. Br J Haematol 2002;118:1065-70.
- Yang BS, Hauser CA, Henkel G, Colman MS, Van Beveren C, Stacey KJ, Hume DA, Maki RA, Ostrowski MC. Ras-mediated phosphorylation of a con-

served threonine residue enhances the transactivation activities of c-Ets1 and c-Ets2. Mol Cell Biol 1996;16:538-47.

- Denicourt C, Edouard E, Rassart E. Oncogene activation in myeloid leukemias by Graffi murine leukemia virus proviral integration. J Virol 1999;73: 4439-42.
- Möhle R, Bautz F, Rafii S, Moore MAS, Brugger W, Kanz L. The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 1998;9:4523-30.
- Ganju RK, Brubaker SA, Meyer J, Dutt P, Yang Y, Qin S, Newman W, Groopman JE. The alpha-chemokine, stromal cell-derived factor-1alpha, binds to the transmembrane G-protein-coupled CXCR-4 receptor and activates multiple signal transduction pathways. J Biol Chem 1998;273:23169-78.
- Chomczynsky P, Sacchi N. Single step metod of RNA isolation by acide guanidium thiocyonate-phenol chloroform extraction. Annal Biochem 1987; 162-56.
- Savli H, Karadenizli A, Kolayli F, Gundes S, Ozbek U, Vahaboglu H. Expression stability of six housekeeping genes: a proposal for resistance gene quantification studies of *Pseudomonas aeruginosa* by realtime quantitative RT-PCR. J Med Microbiol 2003;52:403-8.
- Klemsz MJ, Maki RA, Papayannopoulou T, Moore J, Hromas R. Characterization of the ets oncogene family member, FLI-1. J Biol Chem 1993;268:5769-73.
- Zhang L, Eddy A, Teng YT, Fritzler M, Kluppel M, Melet F, Bernstein A. An immunological renal disease in transgenic mice that overexpress FLI-1, a member of the ets family of transcription factor genes. Mol Cell Biol 1995;15:6961-70.
- Aryee DN, Sommergruber W, Muehlbacher K, Dockhorn-Dworniczak B, Zoubek A, Kovar H. Variability in gene expression patterns of ewing tumor cell lines differing in EWS-FLI1 fusion type. Lab Invest 2000;80:1833-44.
- de Alava E, Kawai A, Healey JH, Fligman I, Meyers PA, Huvos AG, Gerald WL, Jhanwar SC, Argani P, Antonescu CR, Pardo-Mindan FJ, Ginsberg J, Womer R, Lawlor ER, Wunder J, Andrulis I, Sorensen PH, Barr FG, Ladanyi M. EWS-FLI1 fusion transcript structure is an independent determinant of prognosis in Ewing's sarcoma. J Clin Oncol 1998;16: 1248-55.

- Zoubek A, Dockhorn-Dworniczak B, Delattre O, Christiansen H, Niggli F, Gatterer-Menz I, Smith TL, Jurgens H, Gadner H, Kovar H. Does expression of different EWS chimeric transcripts define clinically distinct risk groups of Ewing tumor patients? J Clin Oncol 1996;14:1245-51.
- Levanon D, Glusman G, Bangsow T, Ben-Asher E, Male DA, Avidan N, Bangsow C, Hattori M, Taylor TD, Taudien S, Blechschmidt K, Shimizu N, Rosenthal A, Sakaki Y, Lancet D, Groner Y. Architecture and anatomy of the genomic locus encoding the human leukemia-associated transcription factor RUNX1/AML1. Gene 2001;262:23-33.
- Mohle R, Schittenhelm M, Failenschmid C, Bautz F, Kratz-Albers K, Serve H, Brugger W, Kanz L. Functional response of leukaemic blasts to stromal cellderived factor-1 correlates with preferential expression of the chemokine receptor CXCR-4 in acute myelomonocytic and lymphoblastic leukaemia. Br J Haematol 2000;110:563-72.
- Parker RM, Barnes NM. mRNA: detection by in situ and northern hybridization. Method Mol Biol 1999; 106:247-83 (Review).
- Ferre F. Quantitative or semi-quantitative PCR: reality versus myth. PCR Methods Appl 1992;2:1-9.
- Funaki NO, Tanaka J, Itami A, Kasamatsu T, Ohshio G, Onodera H, Monden K, Okino T, Imamura M. Detection of colorectal carcinoma cells in circulating peripheral blood by reverse transcription-polymerase chain reaction targeting cytokeratin-20 mRNA. Life Sci 1997;60:643-52.
- Kwok S, Higuchi R. Avoiding false positives with PCR. Nature 1989;339:237-8.
- Karge WH, Schaefer EJ, Ordovas JM. Quantification of mRNA by polymerase chain reaction (PCR) using an internal standard and a nonradioactive detection method. Methods Mol Biol 1998;110:43-61 (Review).
- Lion T. Current recommendations for positive controls in RT-PCR assays. Leukemia 2001;15:1033-7.

Address for Correspondence:

Uğur ÖZBEK, MD

Institute for Experimental Medicine (DETAE), Istanbul University Vakif Guraba Cad Çapa, 34280, İstanbul, TURKEY

e-mail: uozbek@istanbul.edu.tr