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Abstract

Öz

Objective: Isocitrate dehydrogenase 1/2 (IDH 1/2) mutations define a group of low-grade gliomas (LGGs) that display more favorable prognosis compared with 
LGGs without them. Although IDH wild-type (IDHwt) LGGs are classified as low-grade, they almost invariably progress to higher grades and rarely respond 
to aggressive treatment regimes. Here, we employed a comparative transcriptomic approach to identify key genes that could significantly contribute to the 
aggressive progression of IDHwt LGGs. 

Methods: Using The Cancer Genome Atlas LGG cohort data and weighted gene coexpression network analysis methodology, we identified modules that 
correlated significantly with clinical features. We focused on modules that correlated with telomerase reverse transcriptase (TERT) promoter mutation status, 
as TERT promoter mutations are shared between glioblastomas and oligodendrogliomas, however, with two opposite prognostic outcomes. We selected 
module pathways shared between IDH mutant (IDHmt) and IDHwt LGGs and identified genes that were differentially expressed between the two groups. 

Results: Several synaptic proteins are down-regulated in IDHwt compared with IDHmt, while GNG12 and VIPR2 are up-regulated. Finally, we identified known 
drugs that could target many of those genes and therefore could be tested against IDHwt LGGs.

Conclusion: Targeting of multiple candidate genes identified in this study could provide novel approaches toward the treatment of IDHwt LGGs.

Keywords: Low-grade gliomas, IDH 1, differential gene expression analysis, weighted gene co-expression network analysis, therapeutic target

Amaç: İzositrat dehidrogenaz 1/2 (IDH 1/2) mutasyonları, düşük-gradeli gliomların (LGG) daha iyi prognoza sahip bir alt grubunu tanımlar. IDH yabanıl-tip 
(IDHwt) LGG’ler düşük dereceli olarak sınıflandırılmalarına rağmen, neredeyse her zaman daha yüksek derecelere doğru ilerler ve agresif tedavi rejimlerine 
nadiren yanıt verirler. Burada, IDHwt LGG’lerin agresif ilerlemesine önemli ölçüde katkıda bulunan anahtar genleri belirlemek için karşılaştırmalı bir 
transkriptomik yaklaşım kullandık.
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Introduction
Gliomas represent almost 80% of the primary brain 
tumors in adults. It constitutes a very heterogeneous 
group of neoplasms that differs in the context of age at 
diagnosis, location of the tumor, histological subtype, tumor 
invasiveness and malignancy, aptness to progression, and 
response to therapies. Gliomas have traditionally been 
divided into four grades and two groups: Grade I-II as low-
grade gliomas, and grade III-IV as high-grade gliomas(1). 
Grade IV gliomas glioblastomas (GBM) in particular, are the 
most common and aggressive form of glioma. 

The advances in molecular biology and next-generation 
sequencing (NGS) lead to the identification of key molecular 
alteration gliomas. Co-deletion of chromosome arms 1p 
and 19q (1p/19q codeletion) was the first alteration that was 
identified in the 1990s(2). It leads to oligodendroglial gliomas, 
is a prognostic factor, and a strong determinant of sensitivity 
to chemotherapy(3-5). Mutations in isocitrate dehydrogenase 
(IDH)1/IDH2 genes are diagnostic and prognostic markers 
that were identified for the first time in GBM(6,7), and later 
observed in myeloid malignancies(8), cholangiocarcinoma(9), 
and melanoma(10) among others(11,12). They are observed in 
>70% of grade II-III gliomas [from now on referred to as 
lower-grade gliomas (LGGs)] and associated with alterations 
in epigenetic marks genome-wide and with altered cellular 
metabolism. The third one was two activating mutations in the 
telomerase reverse transcriptase (TERT) promoter (pTERT)
(13). pTERT mutations are observed in primary GBM, as well 
as in oligodendrogliomas, and they play an important role 
in tumorigenesis by helping tumor cells evade replicative 
crisis(14). Until 2016, central nervous system (CNS) tumors 
were traditionally classified based mostly on the histological 
features. With better characterization of the molecular 
alterations thanks to advances in NGS, a new classification 
system was adopted, which takes into account both 
histological and molecular features such as IDH mutation 

status and 1p/19q codeletion status(15). These alterations are 
not only important by using a tumor classification but are 
also important markers of patient survival and response 
to therapy. Eckel-Passow et al.(16) showed that in LGGs , the 
patients with only a TERT promoter mutation (considering 
1p/19q-codeletion, IDH mutation, pTERT mutation) showed 
the poorest survival. Patients with IDH and pTERT mutations, 
indicating oligodendroglial histology, have the best survival. 
The Cancer Genome Atlas (TCGA) Research Network(17) has 
created a comprehensive catalog of cancer data at multi-
omics level. TCGA has helped researchers study different 
tumor types at a deeper level, supporting the discovery 
of new biomarkers and helping further understanding of 
the mechanisms related to tumor formation, metastasis, 
subclassification of cancer types, therapy resistance or 
sensitivity, thus contributing to the diagnosis and treatment 
of cancer. Verhaak et al.(18) described a gene-expression-
based system toward the molecular classification of GBMs 
and integrated multi-dimensional genomic data to establish 
patterns of somatic mutations and DNA copy number. Yang 
et al.(19) used a weighted gene coexpression network analysis 
(WGCNA) approach on glioblastoma data to explain the 
underlying molecular mechanisms and identify candidate 
biomarkers. The researchers proposed CPNE6, HAPLN2, 
CMTM3, NMI, CAPG, and PSMB8 as liquid biopsy markers, 
and NUSAP1 and GPR65 as potential prognostic targets 
for gene therapy. Xu(20) identified differentially expressed 
genes (DEGs) between LGG and glioblastoma and proposed 
potential biomarkers and therapeutic targets for gliomas. 
Despite intense efforts over the past few decades, only minor 
improvements for treating diffuse gliomas have been made, 
and no complete cure of patients is still possible. However, it 
became clear that IDH mutant (IDHmt) gliomas, particularly 
those with 1p19q codeletion, have much better survival 
rates and responses to therapy. On the contrast, GBM are 
highly resistant to therapeutic approaches. The extensive 
heterogeneous (intra- and inter-tumoral) nature of GBM and 

Öz

Yöntem: Kanser Genom Atlası LGG kohort verilerini ve ağırlıklı gen ortak ifade ağı analizi metodolojisini kullanarak, klinik özelliklerle önemli ölçüde ilişkili 
olan modüller belirledik. Telomeraz ters transkriptaz (TERT) promotör mutasyon durumu ile ilişkili modüllere odaklandık, çünkü TERT promotör mutasyonları 
glioblastomlar ve oligodendrogliomlar arasında paylaşılsa da, bu iki gliom alttipi zıt prognostik özelliklere sahiptir. IDH mutantı (IDHmt) ve IDHwt LGG’ler 
arasında paylaşılan modül yolaklarını seçtik ve iki grup arasında diferansiyel olarak eksprese edilen genleri belirledik.

Bulgular: Çok sayıda sinaptik protein, IDHwt’de IDHmt’ye kıyasla aşağı regüle edilirken, GNG12 ve VIPR2 yukarı regüle edilmektedir. Son aşamada ise, bu 
genlerin birçoğunu hedef alabilecek ve dolayısıyla IDHwt LGG’lere karşı test edilebilecek bilinen ilaçları belirledik.

Sonuç: Bu çalışmada tanımlanan çoklu aday genlerin hedeflenmesi, IDHwt LGG’lerin tedavisine yönelik yeni yaklaşımlar sağlayabilir.

Anahtar Kelimeler: Düşük-dereceli gliomlar, IDH 1, diferansiyel gen ekspresyon analizi, ağırlıklı gen ortak ekspresyon ağ analizi, terapötik hedef
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their highly invasive and infiltrative characteristics are the 
main challenges standing in the way of progress in treating 
GBM. While IDH wild-type (IDHwt) LGGs are not high grade, 
their survival is dismal, more similar to GBM than they are to 
IDHmt LGGs. Here, we performed a comparative analysis of 
transcriptomic data from LGG IDHmt and LGG IDHwt cohorts 
of TCGA to identify similarities and differences from a co-
expression perspective. We detected gene modules that are 
likely to express simultaneously under different IDH mutation 
statuss. We observed correlations between these modules 
and the selected clinical features. Next, we determined 
which biological features are involved in clinically important 
modules by performing enrichment analysis of module 
genes using the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database. Comparison of pathway -enriched genes 
with differentially expressed ones led to a list of candidate 
genes that were mapped to pathways shared between 
IDHmt and IDHwt, albeit differently between the two groups. 
Finally, we screened gene-drug interaction databases to 
identify drugs and/or small molecules that could alter the 
expression levels of these candidate genes and hence could 
be particularly effective against IDHwt LGGs.

Materials and Methods

Data Collection and Preprocessing

Collection and preprocessing of transcriptomic data is 
performed using the TCGA Biolinks(21) package, which is 
created for integrative analysis with the GDC data. The 
relevant samples were searched and downloaded by 

“GDCquery” and “GDCdownload” functions respectively. 
The samples were prepared by “GDCprepare” function, and 
relevant clinical data were extracted from the Large Ranged 
Summarized Experiement Object. Gene expression data 
(RNA-sequencing) of lower-grade glioma patients were 
divided into sub-groups according to IDH mutation status (mt: 
mutated; wt: wild type) (Figure 1). The outlier samples were 
detected using the average method and manually excluded 
(Supplementary Figure 1). Finally, we have created two 
different expression matrices and two different data frames 
of clinical and molecular characteristics of patients. RNA-
sequencing read counts do not show a normal distribution, 
so count data can be modeled with a poisson or negative 
binomial distribution(22). Here, we followed the negative 
binomial distribution and normalized RNA-sequence data 
with the voom methodology(23). The genes were filtered with 
the quantile method by setting the threshold value to 0.25. 
Before starting the analysis, the gene quality was checked. 

Construction of the Weighted Gene Co-expression Network

We have constructed scale-free undirected co-expression 
networks using the WGCNA package in R(24). We have used the 
“pickSoftThreshold” function to determine the soft threshold 
power beta based on the scale-free topology criterion. For 
WGCNA, the suggested β value is lowest showing R2 >0.80(25). 
According to the suggested selection criteria, we have picked 
beta values as “6” for the TCGA IDHmt cohort and “12” for the 
TCGA IDHwt cohort (Supplementary Figure 2). Gene modules 
were constructed with a correlation network methodology 
(module size: 30, merge cut height: 0.25).

Figure 1. Module construction and clinically significant module detection by WGCNA. 

WGCNA: Weighted gene co-expression network analysis, TCGA: The Cancer Genome Atlas, LGG: Lower-grade glioma, IDH: Isocitrate 
dehydrogenase
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Identification of Clinically Significant Modules

After the module construction the relationship between 
module genes and external clinical traits has been observed 
using eigengene network methodology. Eigengene is the 
summary profile of the module. Basically, eigengenes 
were correlated with external traits (features) for the most 
significant associations. Originally, there were 110 features 
in the TCGA clinical data frame, but we have created a sub-
data frame of 8 features according to the aim of this study. 
The features selected for this study are: Chr7gain. Chr10Loss, 
Chr19_20.co.gain, TERT.promoter.status, TERTexpression.
log2, TERTexpression.status, ATRX.status, Telomere. 
Maintenance, BRAF.V600E.status. For further analysis, we 
have detected the modules that show strong positive and 
strong negative correlation with the TERT.promoter.status. 

Statistical Analysis

We have listed the genes from modules of interest and 
converted gene names and synonyms to Entrez identifiers. 
We used the Database for Annotation, Visualization, and 
Integrated Discovery platform to perform enrichment 
analysis(26). Functional annotation charts were downloaded. 
A summary of the KEGG pathways was curated in table 
format for comparison. Due to being enriched in similar 
pathways and correlated with the pTERT status inversely, we 
have further analyzed IDHwt blue and IDHmt greenyellow 
modules by mapping them on KEGG pathway schemes with 
a KEGG mapper(27). We colored the KEGG objects according to 
their involvement status. The components enriched only in 
the IDHwt blue module were colored blue; the components 
enriched only in the IDHmt greenyellow module were 
colored green; the components enriched in both modules 
were colored red and the rest of the objects were kept in their 
default color.

Differential Gene Expression Analysis

We have performed differential gene expression analysis 
between normal tissue and LGG IDHmt samples; normal 
tissue and LGG IDHwt samples; LGG IDHmt and LGG 
IDHwt samples. Normal samples (solid tissue normal) 
were selected from the TCGA GBM cohort since the TCGA 
LGG cohort doesnot include normal samples. We used the 
“TCGAanalyze_DEA” function in the TCGABiolinks package 
using the “exactTest” method. The FDR threshold was set to 
0.01 and the absolute logarithmic fold change (logFC) was 
set to 1 to identify DEGs. We have screened DEGs for the 
blue module on the normal tissue vs LGG IDHw, and the 

greenyellow module on the normal tissue vs LGG IDHmt. 
Additionally, we have listed the genes that were enriched in 
common pathways between greenyellow and blue modules. 
We focused on genes enriched only in the blue module for 
the next step as they were observed in different components 
of the same pathways.

Drug-gene Interactions

Using the Drug Gene Budger (DGB) tool(28), we have screened 
drugs that were changing the expression of selected genes 
accordingly. We have selected drugs that have inhibitory 
or activatory effects on up-regulated or down- regulated 
genes, respectively, using the CRowd Extracted Expression of 
Differential Signatures dataset(29).

Results

Pre-processing of TCGA LGG RNASeq Dataset and 
Construction of Weighted Gene Co-expression Networks

TCGA LGG RNASeq data subgroups based on their IDH 
mutation status were preprocessed separately. The TCGA 
LGG IDHmt subgroup consisted of 419 patients, and the 
TCGA LGG IDHwt subgroup consisted of 94 patients. Both 
the expression matrices contained 21,022 genes. After 
filtering and normalization steps, 14,893 genes were left. 
We have performed a sample-wise hierarchical clustering 
and detected one outlier sample and five outlier samples 
in the LGG IDHwt and LGG IDHmt subgroups, respectively. 
These outliers were excluded from the expression matrices. 
According to the clinical information, there were 92 pTERT-
mutated samples and 143 pTERT wt samples in the IDHmt 
subgroup; 36 pTERT-mutated samples and 16 pTERT wt 
samples in the IDHwt subgroup that were recorded. pTERT 
mutation status was not available for the rest of the samples. 
We have constructed weighted gene expression networks 
using selected soft-thresholding powers (IDHmt subgroup: 
6; IDHwt subgroup: 12). The modules were generated in the 
hierarchical clustering tree (dendrogram), and each module 
was labeled by different colors (Supplementary Figure 
3). There were 28 modules constructed in the LGG IDHmt 
cohort, and 14 modules were constructed in the LGG IDHwt 
cohort. Genes that havenot been clustered in any module 
were collected in “Grey” modules in both cohorts (LGG 
IDHmt: 1055 genes, LGG IDHwt: 6314 genes).

Identification of Clinically Significant Modules

After the module construction, we performed a significance 
analysis to discover gene modules associated with the 
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clinical traits by observing module-trait relationship plots 
(Figure 2). We set correlation threshold values above 0.5 
and below -0.5 to detect meaningful associations. We 
didnot observe any correlations with Chr19_20.co.gain or 
BRAF.V600E.status features for the LGG IDHmt subgroup. 
Hence, these columns are not shown in Figure 2, for 
simplicity. For the LGG IDHwt subgroup, blue module (# 
of genes: 1622, cor: 0.61, p-val: 2e-10), green module (# 
of genes: 655, cor: 0.60, p-val: 5e-10), and tan module (# 
of genes: 102, cor: 0.59, p-val: 9e-10) showed a positive 
correlation with TERT promoter mutation status. Yellow 
module (# of genes: 830, cor: -0.53, p-val: 7e-08) and 
salmon module (# of genes: 100, cor: -0.51, p-val: 4e-
07) had negative correlation values that were below the 
threshold (Figure 2A). For the LGG IDHmt subgroup, 
green module (# of genes: 1032, cor: 0.86, p-val: 8e-124), 
salmon module (# of genes: 391, cor: 0.68, p-val: 2e-58), 
blue module (# of genes: 1354, cor: 0.54, p-val: 3e-33), 
darkgreen module (# of genes: 64, cor: 0.52, pval: 8e-31), 
and lightgreen module (# of genes: 106, cor: 0.52, p-val: 
2e-30) showed positive correlation with TERT promoter 
mutation status. White module (# of genes: 36, cor: -0.64, 
p-val: 4e-50) and greenyellow module (# of genes: 538, 
cor: -0.57, p-val: 1e-37) showed negative correlation values 
that were below the threshold (Figure 2B).

Enrichment Analysis for Modules of Interest

Table 1 gives a summary of the KEGG pathway enrichment 
results. These results indicate that, in the IDHwt cohort, 
modules that are negatively correlated with the pTERT 
status (pTERT-) are enriched in immune -related pathways 
and those positively correlated (pTERT+) with the pTERT 
status are enriched in synaptic and glutamatergic 
pathways. In the IDHmt cohort, modules that are negatively 
correlated with the pTERT (pTERT-) status are enriched 
in cellular differentiation and proliferation, and synaptic 
pathways. Modules that are positively correlated with 
the pTERT status (pTERT+) are enriched in metabolomic 
and immune-related pathways. Interestingly blue module 
from the IDHwt cohort and greenyellow module from the 
IDHmt cohort are enriched in similar pathways, but their 
correlations with pTERT status are in opposite directions. 
We have investigated common pathways in KEGG to 
better understand the similarities and differences. We 
have identified 13 common pathways between the IDHmt 
greenyellow module and the IDHwt blue module related 
to synaptic pathways (Table 2). In the “Glutamatergic 

Figure 2A. Module-Trait relationships plot for LGG IDHmt 
samples

LGG: Lower-grade glioma, IDHmt: Isocitrate dehydrogenase 
mutated, Chr: Chromosome, g: Gain, L: loss, exp: Expression, 
TERTp: Telomerase Reverse Transcriptase promoter, ATRX: 
Alpha-thalassemia/mental retardation, X-linked, BRAF.V600E: 
mutation of the BRAF gene in which valine (V) is substituted 
by glutamic acid (E) at amino acid 600, upper numbers show 
Pearson correlation, and lower numbers show p-values
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Synapse” pathway, glutamate ionotropic receptor NMDA 
type subunits were annotated in both modules, but in the 
IDHwt blue module, glutamate ionotropic receptor AMPA 
type subunit 1 (GRIA1) was also annotated. Glutamate 

metabotropic receptors were annotated in both the blue 
and greenyellow modules, but GRM2 was annotated only 
in the IDHwt blue module. Other than GRM2, G protein 
alpha subunits (i1, i3 and o1) and adenylate cyclases 
(ADCY1, ADCY5) were also enriched in the IDHwt blue 
module. Cell migration and proliferation are promoted 
by glutamate receptors by allowing Ca2+ entrance into the 
cells (Supplementary Figure 4A).

When adenylate cyclase is activated by G-protein-
coupled receptors, it turns on PKA. This interaction also 
happens within the mitochondria in the “Retrograde 
endocannabinoid signaling” pathway (Supplementary 
Figure 4B). We observed potassium channel proteins in the 
retrograde endocannabinoid signaling pathway, GABAergic 
synapse, and cholinergic synapse pathways in the IDHwt 
blue module (Supplementary Figure 4C). 

Differentially Expressed Genes

We have identified 3025 and 2804 genes that were 
differentially expressed in the LGG IDHmt subtype and 
in the LGG IDHwt subtype compared to normal samples, 
respectively. In addition we have identified 1958 genes that 
were differentially expressed in the LGG IDHwt subtype 
compared to the LGG IDHmt subtype. Screening the selected 
modules for the DEGs returned 206 and 984 genes for the 
IDHmt pTERT- greenyellow module and IDHwt pTERT+ 
blue module, respectively. We further identified 146 genes 
that were common between normal vs. IDHwt and IDHmt vs 
IDHwt DEGs. Fifty-three of these 146 DEGs were upregulated 
and 93 of them were downregulated.

The lowest logFC value was observed for the GRIN3A gene 
(IDHmt vs IDHwt -1.96; normal vs IDHwt -2.95) and the 
highest logFC value was observed for the HPD gene (IDHmt 
vs IDHwt 2.01; normal vs IDHwt 6.53). Interestingly, the logFC 
values for the IDHmt vs IDHwt and normal vs IDHwt groups 
were not very different for downregulated genes, but there 
were significant differences for upregulated genes. We have 
listed 182 genes in the IDHwt blue module and 54 genes 
in the IDHmt greenyellow module, which were enriched in 
common pathways; 143 and 27 of them were differentially 
expressed, respectively. 22 of 182 blue module genes were 
differentially expressed between IDHmt and IDHwt samples. 
15 of 22 genes were also differentially expressed between 
normal vs IDHwt samples (Table 3).

Figure 2B. Module-Trait relationships plot for LGG IDHwt 
samples

LGG: Lower-grade glioma, IDHwt: Isocitrate dehydrogenase 
wild-type, Chr: Chromosome, g: Gain, L: Loss, exp: Expression, 
TERTp: Telomerase Reverse Transcriptase promoter, ATRX: 
Alpha-thalassemia/mental retardation, X-linked, BRAF.V600E: 
mutation of the BRAF gene in which valine (V) is substituted 
by glutamic acid (E) at amino acid 600, upper numbers show 
Pearson correlation, and lower numbers show p-values
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Table 1. KEGG pathway enrichment of the selected modules

IDH mutation 
status

pTERT status 
(correlation) Module Term p-value Bonferroni

Wildtype

Negative

Yellow

hsa04060:Cytokine-cytokine receptor 
interaction

2.37E-10 7.29E-08

hsa04064:NF-kappa B signaling 
pathway

8.00E-08 2.46E-05

hsa04620:Toll-like receptor signaling 
pathway

1.68E-06 0.0005

hsa04650:Natural killer cell mediated 
cytotoxicity

2.28E-06 0.0007

hsa04062:Chemokine signaling 
pathway

2.62E-06 0.0008

Salmon

hsa05235:PD-L1 expression and PD-1 
checkpoint pathway in cancer

0.0106 0.8196

hsa04660:T -cell receptor signaling 
pathway

0.0161 0.9265

hsa04630:JAK-STAT signaling 
pathway

0.0501 0.9997

hsa04662:B -cell receptor signaling 
pathway

0.0663 0.9999

hsa04625:C-type lectin receptor 
signaling pathway

0.0997 0.9999

Positive

Tan

hsa04621:NOD-like receptor signaling 
pathway

1.61E-10 1.34E-08

hsa04622:RIG-I-like receptor 
signaling pathway

6.66E-06 0.0006

hsa04625:C-type lectin receptor 
signaling pathway

0.0052 0.3486

hsa04620:Toll-like receptor signaling 
pathway

0.0052 0.3486

hsa04062:Chemokine signaling 
pathway

0.0399 0.9658

Green

hsa04724:Glutamatergic synapse 1.07E-06 0.0003

hsa04921:Oxytocin signaling pathway 3.44E-06 0.0009

hsa04022:cGMP-PKG signaling 
pathway

4.03E-05 0.0116

hsa04010:MAPK signaling pathway 4.49E-05 0.0129

hsa04725:Cholinergic synapse 0.0004 0.1027

hsa04728:Dopaminergic synapse 0.0005 0.1226

Blue

hsa04721:Synaptic vesicle cycle 1.19E-18 3.77E-16

hsa04727:GABAergic synapse 5.60E-13 1.77E-10

hsa04724:Glutamatergic synapse 3.30E-11 1.04E-08

hsa04723:Retrograde 
endocannabinoid signaling

5.64E-11 1.78E-08

hsa04728:Dopaminergic synapse 5.40E-10 1.71E-07

hsa04080:Neuroactive ligand-
receptor interaction

8.20E-10 2.59E-07

hsa04024:cAMP signaling pathway 9.60E-08 3.03E-05
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Table 1. Continued

IDH mutation 
status

pTERT status 
(correlation) Module Term p-value Bonferroni

Mutant

Negative

White

hsa05202:Transcriptional 
misregulation in cancer

0.0537 0.9903

hsa04024:cAMP signaling pathway 0.0682 0.9974

hsa04014:Ras signaling pathway 0.0765 0.9988

Greenyellow

hsa04724:Glutamatergic synapse 2.11E-08 4.87E-06

hsa04080:Neuroactive ligand-
receptor interaction

3.42E-06 0.0008

hsa04721:Synaptic vesicle cycle 6.58E-06 0.0015

hsa04727:GABAergic synapse 0.0001 0.0294

hsa04723:Retrograde 
endocannabinoid signaling

0.0004 0.0825

hsa04725:Cholinergic synapse 0.0032 0.5218

Positive

Green

hsa00100:Steroid biosynthesis 0.0031 0.6146

hsa01100:Metabolic pathways 0.0220 0.9990

hsa00280:Valine, leucine and 
isoleucine degradation

0.0374 0.9999

hsa00250:Alanine, aspartate, and 
glutamate metabolism

0.0416 0.9999

hsa05231:Choline metabolism in 
cancer

0.0692 0.9999

Salmon

hsa04146:Peroxisome 0.0001 0.0312

hsa05022:Pathways of 
neurodegeneration - multiple 
diseases

0.0569 0.9999

hsa04330:Notch signaling pathway 0.0954 1

hsa04392:Hippo signaling pathway - 
multiple species

0.0998 1

Blue

hsa04060:Cytokine-cytokine receptor 
interaction

1.81E-09 5.83E-07

hsa04064:NF-kappa B signaling 
pathway

6.13E-09 1.98E-06

hsa04662:B -cell receptor signaling 
pathway

6.13E-08 1.97E-05

hsa04621:NOD-like receptor signaling 
pathway

3.70E-07 0.0001

hsa04620:Toll-like receptor signaling 
pathway

4.39E-07 0.0001

Darkgreen hsa03010:Ribosome 5.58E-11 3.23E-09

Lightgreen

hsa04015:Rap1 signaling pathway 0.0075 0.7415

hsa01100:Metabolic pathways 0.0270 0.9927

hsa04921:Oxytocin signaling pathway 0.0615 0.9999

hsa04218:Cellular senescence 0.0634 0.9999

hsa04390:Hippo signaling pathway 0.0644 0.9999

IDH: Isocitrate dehydrogenase, pTERT: Telomerase reverse transcriptase promoter, KEGG: Kyoto Encyclopedia of Genes and Genomes
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Table 2. Common pathways between the IDH mutant (IDHmt) greenyellow module and IDH wild-type (IDHwt) blue module

IDHmt_greenyellow_pTERT- IDHwt_blue_pTERT+

Term Count % p-value Term Count % p-value

hsa04724:Glutamatergic synapse 16 3.0246 0.0000
hsa04721:Synaptic vesicle 
cycle

36 2.2402 0

hsa04080:Neuroactive ligand-
receptor interaction

24 4.5369 0.0000 hsa04727:GABAergic synapse 32 1.9913 0

hsa04721:Synaptic vesicle cycle 11 2.0794 0.0000
hsa04724:Glutamatergic 
synapse

34 2.1157 0

hsa04727:GABAergic synapse 10 1.8904 0.0001
hsa04723:Retrograde 
endocannabinoid signaling

39 2.4269 0

hsa04723:Retrograde 
endocannabinoid signaling

12 2.2684 0.0004
hsa04728:Dopaminergic 
synapse

35 2.1780 0.0000

hsa04725:Cholinergic synapse 9 1.7013 0.0032
hsa04080:Neuroactive ligand-
receptor interaction

65 4.0448 0.0000

hsa04726:Serotonergic synapse 9 1.7013 0.0036
hsa04713:Circadian 
entrainment

29 1.8046 0.0000

hsa04360:Axon guidance 11 2.0793 0.0064
hsa04024:cAMP signaling 
pathway

43 2.6757 0.0000

hsa04024:cAMP signaling pathway 12 2.2684 0.0089 hsa04725:Cholinergic synapse 27 1.6801 0.0000

hsa04070:Phosphatidylinositol 
signaling system

6 1.1342 0.0606
hsa04070:Phosphatidylinositol 
signaling system

22 1.3690 0.0000

hsa04713:Circadian entrainment 6 1.1342 0.0606
hsa04726:Serotonergic 
synapse

24 1.4935 0.0000

hsa04728:Dopaminergic synapse 7 1.3233 0.0686 hsa04360:Axon guidance 30 1.8668 0.0002

hsa00330:Arginine and proline 
metabolism

4 0.7561 0.0952
hsa00330:Arginine and proline 
metabolism

9 0.5600 0.0441

pTERT- : Negatively correlated modules with TERT promoter status; pTERT+ : Positively correlated modules with TERT promoter status

Table 3. IDH wild-type blue module pathway-enriched DEGs

logFC.Normal.vs. 
IDHwt. Normal IDHwt logFC.IDHmt.vs. 

IDHwt. IDHmt IDHwt

SLC1A6 -2.2365 989.8 234.4494 -1.1974 514.5239 234.4494

GRIA2 -1.4941 15266 5926.5056 -1.0580 11873.9067 5926.5056

PLCB1 -1.4048 5828.6 2446.4719 -1.0379 4828.8660 2446.4719

GNG12 2.2310 1181.8 6309.8539 1.5414 2087.4952 6309.8539

GRIN3A -2.9484 1916.6 272.1124 -1.9578 1032.8684 272.1124

SSTR1 -2.4319 2161.4 449.9550 -1.2700 1018.7297 449.9551

SSTR2 -2.5210 2055 399.4607 -1.7434 1284.4665 399.4607

CHRNA4 -1.6524 2051.6 749.1685 -1.0276 1409.4377 749.1685

GABRB3 -2.2102 9864.4 2436.4719 -1.0300 4725.7607 2436.4719

GABRA3 -2.1735 1813.8 444.5843 -1.5058 1251.0909 444.5843

PDYN -2.1334 5622.8 1506.6517 1.1126 645.9139 1506.6517

VIPR2 2.3059 329.6 1830.6180 -1.5287 4821.8445 1830.6180

CHRM4 -2.3974 334.2 70.5056 -1.022 136.3301 70.5056

ATP6V1G2 -2.0278 13698.6 3727.4045 -1.0769 7554.8421 3727.4045

GNAL -2.2018 2163.6 530.2809 -1.0779 1077.7105 530.2809

DEGs: Differentially expressed genes, IDHmt: Isocitrate dehydrogenase mutated, IDHwt: Isocitrate dehydrogenase wild-type, logFC: log-fold change. Genes that were 
enriched in the IDH wild-type blue module, but not in the IDH mutant greenyellow module are shown in bold.
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Drug-gene Interactions

Among the 15 genes that were common between normal vs 
IDHmt and IDHmt vs IDHwt DEGs, 6 of them were enriched 
only in the blue module: GRIA2, PLCB1, GNG12, GABRA3, 
PDYN, and GNAL. We excluded PDYN as its expression pattern 
was not suitable for our hypothesis. GNG12 was upregulated 
at IDHwt samples compared with IDHmt and normal 
samples, whereas the others were downregulated. We have 
listed inhibitory drugs / small molecules for GNG12 and 
activatory drugs / small molecules for GRIA2, PLCB1, GNG12, 
GABRA3, and GNAL. Since GNG12 was the most interesting 
candidate target, we have compared listed drugs for GNG12 
with drugs targeting other candidates (Table 4). As cisplatin, 
imatinib, vanadium pentoxide, and vemurafenib affect the 
expression of four out of five listed genes (including GNG12), 
these compounds were identified as potential therapeutics.

Discussion
Despite the efforts toward better understanding and treating 
gliomas in the last decades, many questions need to be 
answered and a great need for new treatments. In this study, 
we aimed to understand co-expressional dissimilarities, 
as well as shared pathways, between LGG IDHmt and LGG 
IDHwt subgroups. Although both subgroups are classified 
under the low-grade glioma category, their progression and 
survival times are extremely different. Among LGGs, the 
most favorable survival rate is observed when IDH1/2 and 
pTERT mutations are present together with 1p19q codeletion 
(IDHmt / pTERTwt / 1p19q-codeleted), and the worst survival 
rate is observed when only pTERT mutation is present 
(IDHwt / pTERTmutant / 1p19q-intact)(16,30). Here, we focused 
on the transcriptomic basis of these discrepancies with a 
co-expressional perspective to explore related biological 

Table 4. Drug-gene interaction table for IDH wild -type blue module pathway-enriched DEGs

Drug Name GNG12 GRIA2 PLCB1 GABRA3 GNAL

1,25 dihydroxyvitamin d x

4-hydroxynonenal x x x

Adenosine triphosphate x x x

Alfacalcidol x

Aminolevulinic acid x x

Androstanolone x

Aplidin x x

Apratoxin a x

Bexarotene x x

Bisphenol a x x x

Cediranib x x

Cetuximab x

Chlorpyrifos x x

Cisplatin x x x x

Clinafloxacin x

Cytarabine x

Diclofenac x x x

Doxorubicin x x x

Doxycycline x

Estradiol x x

Harman x

Imatinib x x x x

Interferon beta-1a x

Interferon gamma-1b x x

Mesalazine x x

Metformin x x
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pathways and their components, and to extract information 
about mechanisms correlated with selected clinical features. 
Previously, CNS tumors were classified based on histology. 
The advancements in the NGS technologies allowed the 
researchers to profile tumor tissues at the molecular 
level, revealing the importance of such aberrations. In 
gliomas specifically, IDH mutation status was found to 
be a deterministic aberration (biomarker) and likely the 
earliest oncogenic change during gliomagenesis. While 
IDHmt gliomas respond well to therapies, IDHwt gliomas 
have dismal prognosis and eventually progress to GBM(31-33). 
Understanding the differences between the two groups will 
not only provide more insights into the disease mechanisms, 
but also help designing novel and more effective therapies 
to prevent cancer progression. We applied a weighted gene 
co-expression analysis approach and identified modules 
correlated with clinical features of interest. The “Chr7gain. 
Chr10Loss” and “BRAF.V600E.status” clinical features 
showed correlations only with the IDHwt subtype (Figure 
2A, B). Chr7p gain and loss of Chr10q are hallmarks of GBM 
and likely indicate a subgroup within IDHwt LGGs that are 
destined to progress to the classical type of glioblastoma. 
Ozawa et al.(34) computationally identified PDGFA (chr7) 
and PTEN (chr10) as driving initial nondisjunction events 
in non-GCIMP GBM. PDGFA mediates signaling pathways 
in the regulation of growth and survival of the cells, and 
PTEN codes for an enzyme that plays a role in tumor 
suppression. BRAF gene produces B-raf protein, which is 
involved in direct cell growth(35). V600E stands for the amino 

acid substitution at position 600 [from valine (V) to glutamic 
acid (E)](36). BRAF.V600E status is identified as a key driver 
in certain brain tumors and tumor metastasis (pilocytic 
astrocytomas, pleomorphic xanthoastrocytoma, ganglioma, 
and glioblastoma)(37). As pTERT mutations are present in 
both oligodendrogliomas and GBM, two tumor types with 
opposite prognoses, we decided to identify similarities and 
differences between IDHwt and IDHmt LGGs with respect to 
the pTERT mutation status and selected modules of interest 
accordingly. We applied enrichment analysis for modules 
whose correlation value was above 0.5 or below -0.5 (Table 
1). IDHwt yellow and salmon modules, which are negatively 
correlated with pTERT status, were enriched in immune 
-related pathways. On the other hand, the IDHmt blue module, 
which is enriched in immune -related pathways, showed a 
positive correlation with pTERT status. The immune system 
is a major component of the tumor microenvironment and is 
central to tumor progression and invasion. This observation 
reflects differences in the immune response to IDHwt and 
IDHmt tumors and could be explained by differences in 
tumor antigens, effects of 2-hydroxyglutarate on immune 
cells, or modulation of tumor-associated immune responses 
by different oncogenic processes in two tumor types, among 
others. IDHwt modules (green and blue) that were positively 
correlated with pTERT were enriched in synaptic pathways. 
On the other hand, in the IDHmt subgroup, the greenyellow 
module was enriched in synaptic pathways and negatively 
correlated with the pTERT status. We identified 13 common 
pathways between the IDHwt pTERT+ blue module and the 

Table 4. Continued

Drug Name GNG12 GRIA2 PLCB1 GABRA3 GNAL

Nickel x

Plx4032 x x x

Puromycin, ec50, 1 d x x

Puromycin, ec50, 5 d x

Resveratrol x

Sapphyrin pci-2050 x

Tibolone x

Triiodothyronine-(13c6) hydrochloride (t3 
thyronine)

x x

Trovafloxacin x

Vanadium pentoxide x x x x

Vemurafenib x x x x

Vx x

Y15 x

DEGs: Differentially expressed genes, Drugs that affect the expression of ⅘ genes, including GNG12, are shown in bold.
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IDHmt pTERT- greenyellow module (Table 2). We observed 
that different sub-components of these pathways were 
enriched in the blue module compared to the greenyellow 
module. Glutamatergic synapse, circadian entrainment, 
and dopaminergic synapse pathways were particularly 
interesting, as α-amino-3-hydroxy-5-methylisoxazole- 
4-propionic acid (AMPA) glutamate receptor (AMPAR) 
and PKC/ERK signaling pathways are involved in the blue 
module, but not in the greenyellow module (Supplementary 
Figures 4A, E, F). AMPA receptors play a role in the glioma 
growth(38).

Our results showed that GNG12 (up-regulated), GNAL, 
GABRA3, GRIA2, and PLCB1 (down-regulated) genes were 
enriched in the IDHwt blue module, but not in the IDHmt 
greenyellow module. Most of the genes were down-regulated 
(except GNG12) in normal vs. LGG IDHmt and normal vs 
IDHwt comparisons.

GNG12 is a member of the G-protein family and it plays a 
role in cellular functions such as cell division, differentiation, 
and metastasis(39,40). Liu et al.(41) showed that the proliferation 
and migration of glioma cells were correlated with GNG12 
expression. Our results indicate that GNG12 expression 
is lowest in normal samples followed by IDHmt gliomas 
and it was the highest in IDHwt gliomas. GNAL encodes a 
stimulatory G protein alpha subunit. A study by Zhang et 
al. (42) related GNAL expression levels with gliomas. They 
identified 24 genes, including GNAL, that are related to glioma 
grade and prognosis. The expression of GNAL was inversely 
correlated with the glioma grade. Our results show that GNAL 
expression is the lowest in IDHwt gliomas followed by IDHmt 
gliomas and normal samples. Another interesting finding 
in the glutamatergic synapse pathway is the involvement of 
PKC/ERK pathway through phospholipase C beta 1 (PLCB1). 
PLCB1 is correlated with glioma grade and plays a role in 
maintaining a normal or less aggressive glioma phenotype(43). 
We observed that PLCB1 was downregulated in the IDHwt 
subgroup. Patil et al.(44) showed that GABRA3 expression was 
down-regulated in LGGs compared to normal samples and it 
was the lowest in GBMs. They evaluated TCGA and Cancer Cell 
Line Encyclopedia glioma data from a global RNA-editome 
perspective and found that exogenously produced and edited 
GABRA3 effectively prevented glioma cells from migration 
and invasion, but the unedited GABRA3 did not. High-grade 
gliomas release high concentrations of glutamate and 
enhance their malignant(45,46) and invasive behavior(47,48). Our 
results showed that GRIA2 (Glutamate Ionotropic Receptor 
AMPA Type Subunit 2) was enriched in the blue module but 

not in the greenyellow module. Differential gene expression 
analysis showed that this gene is down-regulated in IDHwt 
LGGs compared with IDHmt LGGs and normal samples (Table 
3). In parallel with our results, van Vuurden et al.(49) showed 
that expression of AMPA receptor (GRIA1-4) was decreased by 
glioma grade (normal>LGG>GBM). The subunit encoded by 
GRIA2 is contingent on RNA editing and it is thought to make 
the channel impermeable for Ca2+ (50). Ca2+ concentration 
is important in the intracellular space as it excites Ca2+-
dependent signal transduction pathways such as AKT(51), 
ERK/MAP kinase(52), and PKA(53), which are involved in cell 
proliferation and migration. Ramaswamy et al.(54) showed that 
AMPA-R enhances the invasion in GBM and ERK signaling 
affects the expression of calcium-permeable AMPA-R. 
Lu et al.(55) suggested PLCB1 as a candidate biomarker for 
high -grade gliomas. They showed a correlation between 
PLCB1 expression and the patient survival; an inverse 
correlation between PLCB1 expression and the pathological 
grade of glioma. Our results indicated a decrease in the 
expression of the PLCB1 in normal samples compared with 
the IDHmt subtype, and the lowest expression was in the 
IDHwt subtype. To summarize, the expression patterns of 
these candidate genes seem to promote a more GBM-like 
phenotype (aggressive behavior). Using the DGB tool, we 
listed small molecules/drugs that affect the expression 
levels of these candidate genes. We searched for inhibitory 
drugs for the expression of GNG12 and activator drugs for 
GNAL, GABRA3, GRIA2, and PLCB1 (Table 4). We noticed that 
cisplatin, imatinib, vanadium pentoxide and vemurafenib 
affect the expression of four out of the five listed genes. Wang 
et al.(56) showed active performance and acceptable toxicity 
of the combined treatment of cisplatin and temozolomide in 
recurrent GBMs. Enríquez Pérez et al.(57) showed that cisplatin 
treatment was beneficial in the treatment of GL261 glioma-
bearing C57BL/6 mice, but not GL261-bearing NOD-scid 
IL2rγnull (NSG) mice. However, the combination of cisplatin 
with immunotherapy did not yield improved survival. 
Ferrari et al.(58) proposed a new platinum-based prodrug as 
an alternative for cisplatin and its analogs and showed its 
effectiveness in the U251 cell line. Holdhoff et al.(59) showed 
that imatinib increases the radiosensitivity in human GBM by 
disturbing the autocrine PDGF/PDGFR loop. We are not aware 
of any study of vanadium pentoxide treatment for glioma; 
however, Das et al.(60) reported proliferation inhibition of 
different cancer cell lines (B16F10, A549, and PANC1) which 
were treated with vanadium pentoxide nanoparticles (V2O5 
NPs: 30-60 nm). Additionally, they showed a significant 
improvement in the survival of melanoma-bearing C57BL6/J 
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mice after treatment with V2O5 NPs compared to untreated 
tumor bearing mice. Vemurafenib is a selective inhibitor of 
BRAFV600; Kaley et al.(61) reported results of the VE-BASKET 
study, in which patients with BRAFV600-mutant gliomas 
received vemurafenib daily; they reported that the efficacy 
of vemurafenib varies qualitatively by histologic subtype. 
Nicolaides et al.(62) showed that vemurafenib has promising 
anti-tumor activity in recurrent or progressive BRAFV600E-
positive pediatric gliomas with manageable toxicity (Phase I 
results, Phase II ongoing). Del Bufalo et al.(63) also suggested 
vemurafenib as a treatment option for pediatric low-grade 
gliomas carrying BRAFV600E. We also propose these drugs, 
alone or in combination, as possible treatments specifically 
for IDHwt LGGs. 

Study Limitations

In this study, we used publicly available RNA-seq data from 
a well-characterized cohort. While the number of samples 
was quite high for the IDHmut LGG group, it was much lower 
for the IDHwt-pTERTwt subgroup, with 16 samples. Another 
limitation was related to the interrogation of possible drug 
candidates that could target many genes in our candidate 
gene list. As drug-gene interaction data were available for 
cell lines from cancers other than gliomas, we had to rely on 
such data. With the possible generation of similar data for 
glioma cell lines, we can be able to overcome this limitation 
and determine how it compared to our current findings.

Conclusion
In this study, we have determined potential therapeutic target 
candidates for IDHwt LGGs. Although these targets need to 
be validated experimentally, with the help of computational 
analyses, our study prioritizes potential targets for further 
investigation.

Acknowledgments

Fadime Öztoprak acknowledges TÜBİTAK 2211-C, YÖK 
100/2000, and KYK scholarship programs. Computational 
analyses reported in this paper were partially performed at 
TUBITAK ULAKBIM, High Performance and Grid Computing 
Center (TRUBA resources). Yavuz Oktay is supported by the 
GEBIP young investigator award of the Turkish Academy 
of Sciences (TÜBA). This study was supported by TUBITAK 
grant 117Z981.

Ethics
Ethics Committee Approval: This study does not require 
ethics committee approval. 

Informed Consent: N/A

Peer-review: Externally peer-reviewed.

Authorship Contributions
Concept: F.Ö., Z.I., Y.O., Design: F.Ö., Z.I., Y.O., Data Collection 
or Processing: F.Ö., Z.I., Analysis or Interpretation: F.Ö., Z.I., 
Y.O., Literature Search: F.Ö., Y.O., Writing: F.Ö., Z.I., Y.O.

Conflict of Interest: No conflict of interest was declared by 
the authors.

Financial Disclosure: This study was supported by TUBITAK 
grants 214S097 and 117Z981.

References
1. Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of 

tumours of the central nervous system. Neuropathol 2007;114:97-109. 

2. Reifenberger J, Reifenberger G, Liu L, James CD, Wechsler W, 
Collins VP. Molecular genetic analysis of oligodendroglial tumors 
shows preferential allelic deletions on 19q and 1p. Am J Pathol 
1994;145:1175-90.

3. Jenkins RB, Blair H, Ballman KV, et al. A t(1;19)(q10;p10) mediates the 
combined deletions of 1p and 19q and predicts a better prognosis of 
patients with oligodendroglioma. Cancer Res 2006;66:9852-61. 

4. Cairncross G, Wang M, Shaw E, et al. Phase III trial of chemoradiotherapy 
for anaplastic oligodendroglioma: long-term results of RTOG 9402. J 
Clin Oncol 2013;31:337-43. 

5. van den Bent MJ, Brandes AA, Taphoorn MJ, et al. Adjuvant procarbazine, 
lomustine, and vincristine chemotherapy in newly diagnosed anaplastic 
oligodendroglioma: long-term follow-up of EORTC brain tumor group 
study 26951. J Clin Oncol 2013;31:344-50. 

6. Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of 
human glioblastoma multiforme. Science 2008;321:1807-12. 

7. Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N 
Engl J Med 2009;360:765-73. 

8. Marcucci G, Maharry K, Wu YZ, et al. IDH1 and IDH2 gene mutations 
identify novel molecular subsets within de novo cytogenetically normal 
acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin 
Oncol 2010;28:2348-55. 

9. Amary MF, Bacsi K, Maggiani F, et al. IDH1 and IDH2 mutations are 
frequent events in central chondrosarcoma and central and periosteal 
chondromas but not in other mesenchymal tumours. J Pathol 
2011;224:334-43. 

10. Shibata T, Kokubu A, Miyamoto M, Sasajima Y, Yamazaki N. Mutant IDH1 
confers an in vivo growth in a melanoma cell line with BRAF mutation. 
Am J Pathol 2011;178:1395-402. 

11. Amary MF, Damato S, Halai D, et al. Ollier disease and Maffucci 
syndrome are caused by somatic mosaic mutations of IDH1 and IDH2. 
Nat Genet 2011;43:1262-5. 

12. Pansuriya TC, van Eijk R, d’Adamo P, et al. Somatic mosaic IDH1 and 
IDH2 mutations are associated with enchondroma and spindle cell 
hemangioma in Ollier disease and Maffucci syndrome. Nat Genet 
2011;43:1256-61. 



113

Öztoprak et al. Identification of IDH Wild-type LGGs Target Genes

13. Vinagre J, Pinto V, Celestino R, et al. Telomerase promoter mutations 
in cancer: an emerging molecular biomarker? Virchows Arch 
2014;465:119-33. 

14. Killela PJ, Reitman ZJ, Jiao Y, et al. TERT promoter mutations occur 
frequently in gliomas and a subset of tumors derived from cells with 
low rates of self-renewal. Proc Natl Acad Sci 2013;110:6021-6. 

15. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health 
Organization Classification of Tumors of the Central Nervous System: a 
summary. Acta Neuropathol 2016;131:803-20. 

16. Eckel-Passow JE, Lachance DH, Molinaro AM, et al. Glioma Groups 
Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. N Engl 
J Med 2015;372:2499-508. 

17. Cancer Genome Atlas Research Network. Comprehensive genomic 
characterization defines human glioblastoma genes and core pathways. 
Nature 2008;455:1061-8. 

18. Verhaak RG, Hoadley KA, Purdom E, et al. Integrated genomic analysis 
identifies clinically relevant subtypes of glioblastoma characterized by 
abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010;17:98-
110. 

19. Yang Q, Wang R, Wei B, et al. Candidate Biomarkers and Molecular 
Mechanism Investigation for Glioblastoma Multiforme Utilizing 
WGCNA. Biomed Res Int 2018;2018:4246703. 

20. Xu B. Prediction and analysis of hub genes between glioblastoma and 
low-grade glioma using bioinformatics analysis. Medicine (Baltimore) 
2021;100:e23513. 

21. Colaprico A, Silva TC, Olsen C, et al. TCGAbiolinks: an R/Bioconductor 
package for integrative analysis of TCGA data. Nucleic Acids Res 
2016;44:e71. 

22. de Torrenté L, Zimmerman S, Suzuki M, Christopeit M, Greally JM, 
Mar JC. The shape of gene expression distributions matter: how 
incorporating distribution shape improves the interpretation of cancer 
transcriptomic data. BMC Bioinformatics 2020;21:562. 

23. Law CW, Chen Y, Shi W, Smyth GK. voom: Precision weights unlock 
linear model analysis tools for RNA-seq read counts. Genome Biol 
2014;15:R29.

24. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation 
network analysis. BMC Bioinformatics 2008;9:559. 

25. Zhang B, Horvath S. A general framework for weighted gene co-
expression network analysis. Stat Appl Genet Mol Biol 2005;4:Article17. 

26. Sherman BT, Hao M, Qiu J, et al. DAVID: a web server for functional 
enrichment analysis and functional annotation of gene lists 
(2021 update). Nucleic Acids Res 2022;50:W216-21. 

27. Kanehisa M, Sato Y, Kawashima M. KEGG mapping tools for uncovering 
hidden features in biological data. Protein Sci 2022;31:47-53. 

28. Wang Z, He E, Sani K, Jagodnik KM, Silverstein MC, Ma’ayan A. Drug 
Gene Budger (DGB): an application for ranking drugs to modulate a 
specific gene based on transcriptomic signatures. Bioinformatics 
2019;35:1247-8. 

29. Wang Z, Monteiro CD, Jagodnik KM, et al. Extraction and analysis of 
signatures from the Gene Expression Omnibus by the crowd. Nat 
Commun 2016;7:12846. 

30. Ostrom QT, Cioffi G, Gittleman H, et al. CBTRUS Statistical Report: 
Primary Brain and Other Central Nervous System Tumors Diagnosed in 
the United States in 2012-2016. Neuro Oncol 2019;21:v1-v100.

31. Gelman SJ, Naser F, Mahieu NG, et al. Consumption of NADPH for 2-HG 
Synthesis Increases Pentose Phosphate Pathway Flux and Sensitizes 
Cells to Oxidative Stress. Cell Rep 2018;22:512-22. 

32. Nobusawa S, Watanabe T, Kleihues P, Ohgaki H. IDH1 mutations as 
molecular signature and predictive factor of secondary glioblastomas. 
Clin Cancer Res 2009;15:6002-7. 

33. Ohgaki H, Dessen P, Jourde B, et al. Genetic pathways to glioblastoma: 
a population-based study. Cancer Res 2004;64:6892-9.

34. Ozawa T, Riester M, Cheng YK, et al. Most human non-GCIMP 
glioblastoma subtypes evolve from a common proneural-like precursor 
glioma. Cancer Cell 2014;26:288-300. 

35. Sithanandam G, Kolch W, Duh FM, Rapp UR. Complete coding sequence 
of a human B-raf cDNA and detection of B-raf protein kinase with 
isozyme specific antibodies. Oncogene 1990;5:1775-80.

36. Davies H, Bignell GR, Cox C,. Mutations of the BRAF gene in human 
cancer. Nature 2002;417:949-54. 

37. Kaley T, Touat M, Subbiah V, et al. BRAF Inhibition in BRAFV600-Mutant 
Gliomas: Results From the VE-BASKET Study. J Clin Oncol 2018;36:3477-
84. 

38. Venkataramani V, Tanev DI, Strahle C, et al. Glutamatergic synaptic input 
to glioma cells drives brain tumour progression. Nature 2019;573:532-8. 

39. Morishita R, Nakayama H, Isobe T, et al. Primary structure of a gamma 
subunit of G protein, gamma 12, and its phosphorylation by protein 
kinase C. J Biol Chem 1995;270:29469-75. 

40. Asano T, Morishita R, Ueda H, Kato K. Selective association of G protein 
beta(4) with gamma(5) and gamma(12) subunits in bovine tissues. J Biol 
Chem 1999;274:21425-9. 

41. Liu R, Liu Z, Zhao Y, et al. GNG12 as A Novel Molecular Marker for the 
Diagnosis and Treatment of Glioma. Front Oncol 2022;12:726556. 

42. Zhang D, Zhao J, Han C, Liu X, Liu J, Yang H. Identification of hub genes 
related to prognosis in glioma. Biosci Rep 2020;40:BSR20193377. 

43. Ratti S, Marvi MV, Mongiorgi S, et al. Impact of phospholipase C β1 in 
glioblastoma: a study on the main mechanisms of tumor aggressiveness. 
Cell Mol Life Sci 2022;79:195. 

44. Patil V, Pal J, Mahalingam K, Somasundaram K. Global RNA editome 
landscape discovers reduced RNA editing in glioma: loss of editing of 
gamma-amino butyric acid receptor alpha subunit 3 (GABRA3) favors 
glioma migration and invasion. PeerJ 2020;8:e9755. 

45. Rzeski W, Turski L, Ikonomidou C. Glutamate antagonists limit tumor 
growth. Proc Natl Acad Sci 2001;98:6372-7.

46. Yoshida Y, Tsuzuki K, Ishiuchi S, Ozawa S. Serum-dependence of AMPA 
receptor-mediated proliferation in glioma cells. Pathol Int 2006;56:262-
71.

47. Takano T, Lin JH, Arcuino G, Gao Q, Yang J, Nedergaard M. Glutamate 
release promotes growth of malignant gliomas. Nat Med 2001;7:1010-5.

48. Ishiuchi S, Tsuzuki K, Yoshida Y, et al. Blockage of Ca(2+)-permeable 
AMPA receptors suppresses migration and induces apoptosis in human 
glioblastoma cells. Nat Med 2002;8:971-8. 

49. van Vuurden DG, Yazdani M, Bosma I, et al. Attenuated AMPA receptor 
expression allows glioblastoma cell survival in glutamate-rich 
environment. PLoS One 2009;4:e5953. 

50. Barbon A, Barlati S. Glutamate receptor RNA editing in health and 
disease. Biochemistry (Mosc) 2011;76:882-9.

51. Ishiuchi S, Yoshida Y, Sugawara K, et al. Ca2+-permeable AMPA 
receptors regulate growth of human glioblastoma via Akt activation. J 
Neurosci 2007;27:7987-8001. 

52. Wiegert JS, Bading H. Activity-dependent calcium signaling and ERK-
MAP kinases in neurons: a link to structural plasticity of the nucleus 
and gene transcription regulation. Cell Calcium 2011;49:296-305. 

53. Danbolt NC. Glutamate uptake. Prog Neurobiol 2001;65:1-105. 

54. Ramaswamy P, Dalavaikodihalli Nanjaiah N, Prasad C, Goswami K. 
Transcriptional modulation of calcium-permeable AMPA receptor 
subunits in glioblastoma by MEK-ERK1/2 inhibitors and their role in 
invasion. Cell Biol Int 2020;44:830-7. 



114

J Tepecik Educ Res Hosp 2023;33(1):100-19

55. Lu G, Chang JT, Liu Z, Chen Y, Li M, Zhu JJ. Phospholipase C Beta 1: a 
Candidate Signature Gene for Proneural Subtype High-Grade Glioma. 
Mol Neurobiol 2016;53:6511-25. 

56. Wang Y, Kong X, Guo Y, Wang R, Ma W. Continuous dose-intense 
temozolomide and cisplatin in recurrent glioblastoma patients. 
Medicine (Baltimore) 2017;96:e6261. 

57. Enríquez Pérez J, Fritzell S, Kopecky J, Visse E, Darabi A, Siesjö P. The 
effect of locally delivered cisplatin is dependent on an intact immune 
function in an experimental glioma model. Sci Rep 2019;9:5632. 

58. Ferrari B, Roda E, Priori EC, et al. A New Platinum-Based Prodrug 
Candidate for Chemotherapy and Its Synergistic Effect With 
Hadrontherapy: Novel Strategy to Treat Glioblastoma. Front Neurosci 
2021;15:589906. 

59. Holdhoff M, Kreuzer KA, Appelt C, et al. Imatinib mesylate radiosensitizes 
human glioblastoma cells through inhibition of platelet-derived growth 
factor receptor. Blood Cells Mol Dis 2005;34:181-5. 

60. Das S, Roy A, Barui AK , et al. Anti-angiogenic vanadium pentoxide 
nanoparticles for the treatment of melanoma and their in vivo toxicity 
study. Nanoscale 2020;12:7604-21. 

61. Kaley T, Touat M, Subbiah V, et al. BRAF Inhibition in BRAFV600-Mutant 
Gliomas: Results From the VE-BASKET Study. J Clin Oncol 2018;36:3477-
84. 

62. Nicolaides T, Nazemi KJ, Crawford J, et al. Phase I study of vemurafenib 
in children with recurrent or progressive BRAFV600E  mutant brain 
tumors: Pacific Pediatric Neuro-Oncology Consortium study (PNOC-
002). Oncotarget 2020;11:1942-52. 

63. Del Bufalo F, Ceglie G, Cacchione A, et al.  BRAF  V600E Inhibitor 
(Vemurafenib) for  BRAF  V600E Mutated Low Grade Gliomas. Front 
Oncol 2018;8:526.

Supplementary Figure 1. Sample clustering of TCGA LGG IDHmt samples by average methodology A) IDHmt samples, B) IDHwt 
samples

TCGA: The Cancer Genome Atlas, LGG: Lower-grade glioma, IDHmt: Isocitrate dehydrogenase mutated, IDHwt: Isocitrate dehydrogenase 
wild-type, e: 10^, branches reflect the patient barcodes

A)

B)
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Supplementary Figure 2. Network topology analysis for soft-thresholding powers. A) IDHmt samples, B) IDHwt samples

IDHmt: Isocitrate dehydrogenase mutated, IDHwt: Isocitrate dehydrogenase wild-type

A)

B)
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Supplementary Figure 3. Hierarchical clustering of genes with module colors A) IDHmt samples, B) IDHwt samples

IDHmt: Isocitrate dehydrogenase mutated, IDHwt: Isocitrate dehydrogenase wild-type

A)

B)
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E)

F)

Supplementary Figure 4. Selected common KEGG pathway schemes of the IDHwt pTERT- blue module and IDHmt pTERT+ 
greenyellow module. A) Glutamatergic synapse, B) Retrograde endocannabinoid signaling, C) GABAergic synapse, D) Cholinergic 
synapses, E) Circadian entrainment, F) Dopaminergic synapse

IDHmt: Isocitrate dehydrogenase mutated, IDHwt: Isocitrate dehydrogenase wild-type, pTERT: Telomerase Reverse Transcriptase 
promoter. Pathway sub-components colored in blue are enriched in the blue module but not in the greenyellow module; pathway 
sub-components colored in green are enriched in the greenyellow module but not in blue module; pathway sub-components 
colored in red are enriched in both modules




