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Abstract

Objective: /socitrate dehydrogenase 1/2 (IDH 1/2) mutations define a group of low-grade gliomas (LGGS) that display more favorable prognosis compared with
LGGs without them. Although IDH wild-type (IDHwt) LGGs are classified as low-grade, they almost invariably progress to higher grades and rarely respond
to aggressive treatment regimes. Here, we employed a comparative transcriptomic approach to identify key genes that could significantly contribute to the
aggressive progression of IDHwt LGGs.

Methods: Using The Cancer Genome Atlas LGG cohort data and weighted gene coexpression network analysis methodology, we identified modules that
correlated significantly with clinical features. We focused on modules that correlated with telomerase reverse transcriptase (TERT) promoter mutation status,
as TERT promoter mutations are shared between glioblastomas and oligodendrogliomas, however, with two opposite prognostic outcomes. We selected
module pathways shared between IDH mutant (IDHmt) and IDHwt LGGs and identified genes that were differentially expressed between the two groups.

Results: Several synaptic proteins are down-regulated in IDHwt compared with IDHmt, while GNGI2and VIPR2are up-regulated. Finally, we identified known
drugs that could target many of those genes and therefore could be tested against IDHwt LGGs.

Conclusion: Targeting of multiple candidate genes identified in this study could provide novel approaches toward the treatment of IDHwt LGGs.
Keywords: Low-grade gliomas, IDH 1, differential gene expression analysis, weighted gene co-expression network analysis, therapeutic target

Amag: Izositrat dehidrogenaz 1/2 (IDH 1/2) mutasyonlari, diisiik-gradeli gliomlarin (LGG) daha iyi prognoza sahip bir alt grubunu tanimlar. IDH yabanil-tip
(IDHwt) LGG'ler dustk dereceli olarak siniflandiritmalarina ragmen, neredeyse her zaman daha ytiksek derecelere dogru ilerler ve agresif tedavi rejimlerine
nadiren yanit verirler. Burada, IDHwt LGG'lerin agresif ilerlemesine énemli 6lcide katkida bulunan anahtar genleri belirlemek icin karsilastirmali bir
transkriptomik yaklasim kullandik.
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Yontem: Kanser Genom Atlasi LGG kohort verilerini ve agirlikli gen ortak ifade agi analizi metodolojisini kullanarak, klinik dzelliklerle Gnemti dlcide iligkili
olan modller belirledik. Telomeraz ters transkriptaz (TERT) promot6r mutasyon durumu ile iliskili modullere odaklandik, ciinkii TERT promotér mutasyonlari
glioblastomlar ve oligodendrogliomlar arasinda paylasilsa da, bu iki gliom alttipi zit prognostik dzelliklere sahiptir. IDH mutanti (IDHmt) ve IDHwt LGG'ler
arasinda paylasilan modiil yolaklarini sectik ve iki grup arasinda diferansiyel olarak eksprese edilen genleri belirledik.

Bulgular: Cok sayida sinaptik protein, IDHwt'de IDHmt'ye kiyasla asagi regtile edilirken, GNG12 ve VIPR2 yukari regile edilmektedir. Son asamada ise, bu
genlerin bircogunu hedef alabilecek ve dolayisiyla IDHwt LGG'lere karsi test edilebilecek bilinen ilaclari belirledik.

Sonuc: Bu calismada tanimlanan coklu aday genlerin hedeflenmesi, IDHwt LGG'lerin tedavisine yonelik yeni yaklasimlar saglayabilir.

Anahtar Kelimeler: Diisiik-dereceli gliomlar, IDH 1, diferansiyel gen ekspresyon analizi, agirlikli gen ortak ekspresyon ag analizi, terapdtik hedef

Introduction

Gliomas represent almost 80% of the primary brain
tumors in adults. It constitutes a very heterogeneous
group of neoplasms that differs in the context of age at
diagnosis, location of the tumor, histological subtype, tumor
invasiveness and malignancy, aptness to progression, and
response to therapies. Gliomas have traditionally been
divided into four grades and two groups: Grade I-1I as low-
grade gliomas, and grade llI-IV as high-grade gliomas®.
Grade IV gliomas glioblastomas (GBM) in particular, are the
most common and aggressive form of glioma.

The advances in molecular biology and next-generation
sequencing (NGS) lead to the identification of key molecular
alteration gliomas. Co-deletion of chromosome arms 1p
and 19q (1p/19q codeletion) was the first alteration that was
identified in the 1990s%. It leads to oligodendroglial gliomas,
is a prognostic factor, and a strong determinant of sensitivity
to chemotherapy®. Mutations in isocitrate dehydrogenase
(IDH)1/IDH2 genes are diagnostic and prognostic markers
that were identified for the first time in GBM®?, and later
observed in myeloid malignancies®, cholangiocarcinoma®,
and melanoma® among others"?, They are observed in
>70% of grade II-Ill gliomas [from now on referred to as
lower-grade gliomas (LGGs)] and associated with alterations
in epigenetic marks genome-wide and with altered cellular
metabolism. The third one was two activating mutationsinthe
telomerase reverse transcriptase (TERT) promoter (pTERT)
43 pTERT mutations are observed in primary GBM, as well
as in oligodendrogliomas, and they play an important role
in tumorigenesis by helping tumor cells evade replicative
crisis". Until 2016, central nervous system (CNS) tumors
were traditionally classified based mostly on the histological
features. With better characterization of the molecular
alterations thanks to advances in NGS, a new classification
system was adopted, which takes into account both
histological and molecular features such as IDH mutation

status and 1p/19q codeletion status™. These alterations are
not only important by using a tumor classification but are
also important markers of patient survival and response
to therapy. Eckel-Passow et al."® showed that in LGGs , the
patients with only a TERT promoter mutation (considering
1p/19g-codeletion, IDH mutation, pTERT mutation) showed
the poorest survival. Patients with IDH and pTERT mutations,
indicating oligodendroglial histology, have the best survival.
The Cancer Genome Atlas (TCGA) Research Network™ has
created a comprehensive catalog of cancer data at multi-
omics level. TCGA has helped researchers study different
tumor types at a deeper level, supporting the discovery
of new biomarkers and helping further understanding of
the mechanisms related to tumor formation, metastasis,
subclassification of cancer types, therapy resistance or
sensitivity, thus contributing to the diagnosis and treatment
of cancer. Verhaak et al."¥ described a gene-expression-
based system toward the molecular classification of GBMs
and integrated multi-dimensional genomic data to establish
patterns of somatic mutations and DNA copy number. Yang
et al."? used a weighted gene coexpression network analysis
(WGCNA) approach on glioblastoma data to explain the
underlying molecular mechanisms and identify candidate
biomarkers. The researchers proposed CPNE6, HAPLNZ2,
CMTM3, NMI, CAPG, and PSMB8 as liquid biopsy markers,
and NUSAPI and GPR65 as potential prognostic targets
for gene therapy. Xu® identified differentially expressed
genes (DEGs) between LGG and glioblastoma and proposed
potential biomarkers and therapeutic targets for gliomas.
Despite intense efforts over the past few decades, only minor
improvements for treating diffuse gliomas have been made,
and no complete cure of patients is still possible. However, it
became clear that IDH mutant (IDHmt) gliomas, particularly
those with 1p19q codeletion, have much better survival
rates and responses to therapy. On the contrast, GBM are
highly resistant to therapeutic approaches. The extensive
heterogeneous (intra- and inter-tumoral) nature of GBM and
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their highly invasive and infiltrative characteristics are the
main challenges standing in the way of progress in treating
GBM. While IDH wild-type (IDHwt) LGGs are not high grade,
their survival is dismal, more similar to GBM than they are to
IDHmt LGGs. Here, we performed a comparative analysis of
transcriptomic data from LGG IDHmt and LGG IDHwt cohorts
of TCGA to identify similarities and differences from a co-
expression perspective. We detected gene modules that are
Likely to express simultaneously under different IDH mutation
statuss. We observed correlations between these modules
and the selected clinical features. Next, we determined
which biological features are involved in clinically important
modules by performing enrichment analysis of module
genes using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database. Comparison of pathway -enriched genes
with differentially expressed ones led to a list of candidate
genes that were mapped to pathways shared between
IDHmt and IDHwt, albeit differently between the two groups.
Finally, we screened gene-drug interaction databases to
identify drugs and/or small molecules that could alter the
expression levels of these candidate genes and hence could
be particularly effective against IDHwt LGGs.

Materials and Methods

Data Collection and Preprocessing

Collection and preprocessing of transcriptomic data is
performed using the TCGA Biolinks®?? package, which is
created for integrative analysis with the GDC data. The
relevant samples were searched and downloaded by

"GDCquery” and "GDCdownload" functions respectively.
The samples were prepared by “GDCprepare” function, and
relevant clinical data were extracted from the Large Ranged
Summarized Experiement Object. Gene expression data
(RNA-sequencing) of lower-grade glioma patients were
divided into sub-groups according to IDH mutation status (mt:
mutated; wt: wild type) (Figure 1). The outlier samples were
detected using the average method and manually excluded
(Supplementary Figure 1). Finally, we have created two
different expression matrices and two different data frames
of clinical and molecular characteristics of patients. RNA-
sequencing read counts do not show a normal distribution,
so count data can be modeled with a poisson or negative
binomial distribution®?. Here, we followed the negative
binomial distribution and normalized RNA-sequence data
with the voom methodology®. The genes were filtered with
the quantile method by setting the threshold value to 0.25.
Before starting the analysis, the gene quality was checked.

Construction of the Weighted Gene Co-expression Network

We have constructed scale-free undirected co-expression
networks using the WGCNA package in R?¥. We have used the
“pickSoftThreshold" function to determine the soft threshold
power beta based on the scale-free topology criterion. For
WGCNA, the suggested B value is lowest showing R2>0.80%.
According to the suggested selection criteria, we have picked
beta values as "6" for the TCGA IDHmt cohort and “12" for the
TCGA IDHwt cohort (Supplementary Figure 2). Gene modules
were constructed with a correlation network methodology
(module size: 30, merge cut height: 0.25).

21022 genes Non'nall‘zatlon Sam'ple tree Selected modules
& Filtering outliers
White,
Greenyellow,
IDH mutant 1 outlier Darkgreen
(419 samples) 14983 genes excluded Salmon,
Green,
Lightgreen,
TCGA LGG Biee
(534 samples)
Blue,
: : Green
IDH wild type 5 outliers 2
(94 samples) 7| 14983 genes excluded Tan,
Yellow,
Salmon

Figure 1. Module construction and clinically significant module detection by WGCNA.

WGCNA: Weighted gene co-expression network analysis, TCGA: The Cancer Genome Atlas, LGG: Lower-grade glioma, IDH: Isocitrate

dehydrogenase
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Identification of Clinically Significant Modules

After the module construction the relationship between
module genes and external clinical traits has been observed
using eigengene network methodology. Eigengene is the
summary profile of the module. Basically, eigengenes
were correlated with external traits (features) for the most
significant associations. Originally, there were 110 features
in the TCGA clinical data frame, but we have created a sub-
data frame of 8 features according to the aim of this study.
The features selected for this study are: Chr7gain. Chr10Loss,
Chrl9_20.co.gain, TERT.promoter.status, TERTexpression.
log2, TERTexpression.status, ATRX.status, Telomere.
Maintenance, BRAFV600E.status. For further analysis, we
have detected the modules that show strong positive and
strong negative correlation with the TERT.promoter.status.

Statistical Analysis

We have listed the genes from modules of interest and
converted gene names and synonyms to Entrez identifiers.
We used the Database for Annotation, Visualization, and
Integrated Discovery platform to perform enrichment
analysis?®. Functional annotation charts were downloaded.
A summary of the KEGG pathways was curated in table
format for comparison. Due to being enriched in similar
pathways and correlated with the pTERT status inversely, we
have further analyzed IDHwt blue and IDHmt greenyellow
modules by mapping them on KEGG pathway schemes with
a KEGG mapper?. We colored the KEGG objects according to
their involvement status. The components enriched only in
the IDHwt blue module were colored blue; the components
enriched only in the IDHmt greenyellow module were
colored green; the components enriched in both modules
were colored red and the rest of the objects were kept in their
default color.

Differential Gene Expression Analysis

We have performed differential gene expression analysis
between normal tissue and LGG IDHmt samples; normal
tissue and LGG IDHwt samples; LGG IDHmt and LGG
IDHwt samples. Normal samples (solid tissue normal)
were selected from the TCGA GBM cohort since the TCGA
LGG cohort doesnot include normal samples. We used the
“TCGAanalyze_DEA" function in the TCGABiolinks package
using the “exactTest" method. The FDR threshold was set to
0.01 and the absolute logarithmic fold change (LogFC) was
set to 1 to identify DEGs. We have screened DEGs for the
blue module on the normal tissue vs LGG IDHw, and the

greenyellow module on the normal tissue vs LGG IDHmt.
Additionally, we have listed the genes that were enriched in
common pathways between greenyellow and blue modules.
We focused on genes enriched only in the blue module for
the next step as they were observed in different components
of the same pathways.

Drug-gene Interactions

Using the Drug Gene Budger (DGB) tool®, we have screened
drugs that were changing the expression of selected genes
accordingly. We have selected drugs that have inhibitory
or activatory effects on up-regulated or down- regulated
genes, respectively, using the CRowd Extracted Expression of
Differential Signatures dataset®??,

Results

Pre-processing of TCGA LGG RNASeq Dataset and
Construction of Weighted Gene Co-expression Networks

TCGA LGG RNASeq data subgroups based on their IDH
mutation status were preprocessed separately. The TCGA
LGG IDHmt subgroup consisted of 419 patients, and the
TCGA LGG IDHwt subgroup consisted of 94 patients. Both
the expression matrices contained 21,022 genes. After
filtering and normalization steps, 14,893 genes were Left.
We have performed a sample-wise hierarchical clustering
and detected one outlier sample and five outlier samples
in the LGG IDHwt and LGG IDHmt subgroups, respectively.
These outliers were excluded from the expression matrices.
According to the clinical information, there were 92 pTERT-
mutated samples and 143 pTERT wt samples in the IDHmt
subgroup; 36 pTERT-mutated samples and 16 pTERT wt
samples in the IDHwt subgroup that were recorded. pTERT
mutation status was not available for the rest of the samples.
We have constructed weighted gene expression networks
using selected soft-thresholding powers (IDHmt subgroup:
6; IDHwt subgroup: 12). The modules were generated in the
hierarchical clustering tree (dendrogram), and each module
was labeled by different colors (Supplementary Figure
3). There were 28 modules constructed in the LGG IDHmt
cohort, and 14 modules were constructed in the LGG IDHwt
cohort. Genes that havenot been clustered in any module
were collected in “Grey" modules in both cohorts (LGG
IDHmt: 1055 genes, LGG IDHwt: 6314 genes).

Identification of Clinically Significant Modules

After the module construction, we performed a significance
analysis to discover gene modules associated with the
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clinical traits by observing module-trait relationship plots
(Figure 2). We set correlation threshold values above 0.5
and below -0.5 to detect meaningful associations. We
didnot observe any correlations with Chr19_20.co.gain or
BRAFV600E.status features for the LGG IDHmt subgroup.
Hence, these columns are not shown in Figure 2, for
simplicity. For the LGG IDHwt subgroup, blue module (#
of genes: 1622, cor: 0.61, p-val: 2e-10), green module (#
of genes: 655, cor: 0.60, p-val: 5e-10), and tan module (#
of genes: 102, cor: 0.59, p-val: 9e-10) showed a positive
correlation with TERT promoter mutation status. Yellow
module (# of genes: 830, cor: -0.53, p-val: 7e-08) and
salmon module (# of genes: 100, cor: -0.51, p-val: 4e-
07) had negative correlation values that were below the
threshold (Figure 2A). For the LGG IDHmt subgroup,
green module (# of genes: 1032, cor: 0.86, p-val: 8e-124),
salmon module (# of genes: 391, cor: 0.68, p-val: 2e-58),
blue module (# of genes: 1354, cor: 0.54, p-val: 3e-33),
darkgreen module (# of genes: 64, cor: 0.52, pval: 8e-31),
and lightgreen module (# of genes: 106, cor: 0.52, p-val:
2e-30) showed positive correlation with TERT promoter
mutation status. White module (# of genes: 36, cor: -0.64,
p-val: 4e-50) and greenyellow module (# of genes: 538,
cor: -0.57, p-val: 1e-37) showed negative correlation values
that were below the threshold (Figure 2B).

Enrichment Analysis for Modules of Interest

Table 1 gives a summary of the KEGG pathway enrichment
results. These results indicate that, in the IDHwt cohort,
modules that are negatively correlated with the pTERT
status (pTERT-) are enriched in immune -related pathways
and those positively correlated (pTERT+) with the pTERT
status are enriched in synaptic and glutamatergic
pathways. In the IDHmt cohort, modules that are negatively
correlated with the pTERT (pTERT-) status are enriched
in cellular differentiation and proliferation, and synaptic
pathways. Modules that are positively correlated with
the pTERT status (pTERT+) are enriched in metabolomic
and immune-related pathways. Interestingly blue module
from the IDHwt cohort and greenyellow module from the
IDHmt cohort are enriched in similar pathways, but their
correlations with pTERT status are in opposite directions.
We have investigated common pathways in KEGG to
better understand the similarities and differences. We
have identified 13 common pathways between the IDHmt
greenyellow module and the IDHwt blue module related
to synaptic pathways (Table 2). In the "Glutamatergic
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Figure 2A. Module-Trait relationships plot for LGG IDHmt
samples

LGG: Lower-grade glioma, IDHmt: Isocitrate dehydrogenase
mutated, Chr: Chromosome, g: Gain, L: loss, exp: Expression,
TERTp: Telomerase Reverse Transcriptase promoter, ATRX:
Alpha-thalassemia/mental retardation, X-linked, BRAFV600E:
mutation of the BRAF gene in which valine (V) is substituted
by glutamic acid (E) at amino acid 600, upper numbers show
Pearson correlation, and lower numbers show p-values
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Synapse” pathway, glutamate ionotropic receptor NMDA
type subunits were annotated in both modules, but in the
IDHwt blue module, glutamate ionotropic receptor AMPA
type subunit 1 (GRIAI) was also annotated. Glutamate
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Figure 2B. Module-Trait relationships plot for LGG IDHwt
samples

LGG: Lower-grade glioma, IDHwt: Isocitrate dehydrogenase
wild-type, Chr: Chromosome, g: Gain, L: Loss, exp: Expression,
TERTp: Telomerase Reverse Transcriptase promoter, ATRX:
Alpha-thalassemia/mental retardation, X-linked, BRAFV600E:
mutation of the BRAF gene in which valine (V) is substituted
by glutamic acid (E) at amino acid 600, upper numbers show
Pearson correlation, and lower numbers show p-values

metabotropic receptors were annotated in both the blue
and greenyellow modules, but GRM2 was annotated only
in the IDHwt blue module. Other than GRM2, G protein
alpha subunits (i1, i3 and ol) and adenylate cyclases
(ADCYI, ADCY5) were also enriched in the IDHwt blue
module. Cell migration and proliferation are promoted
by glutamate receptors by allowing Ca?* entrance into the
cells (Supplementary Figure 4A).

When adenylate cyclase is activated by G-protein-
coupled receptors, it turns on PKA. This interaction also
happens within the mitochondria in the “Retrograde
endocannabinoid signaling” pathway (Supplementary
Figure 4B). We observed potassium channel proteins in the
retrograde endocannabinoid signaling pathway, GABAergic
synapse, and cholinergic synapse pathways in the IDHwt
blue module (Supplementary Figure 4C).

Differentially Expressed Genes

We have identified 3025 and 2804 genes that were
differentially expressed in the LGG IDHmt subtype and
in the LGG IDHwt subtype compared to normal samples,
respectively. In addition we have identified 1958 genes that
were differentially expressed in the LGG IDHwt subtype
compared to the LGG IDHmt subtype. Screening the selected
modules for the DEGs returned 206 and 984 genes for the
IDHmt pTERT- greenyellow module and IDHwt pTERT+
blue module, respectively. We further identified 146 genes
that were common between normal vs. IDHwt and IDHmt vs
IDHwt DEGs. Fifty-three of these 146 DEGs were upregulated
and 93 of them were downregulated.

The lowest LogFC value was observed for the GRIN3A gene
(IDHmt vs IDHwt -1.96; normal vs IDHwt -2.95) and the
highest LogFC value was observed for the HPD gene (IDHmt
vs IDHwt 2.01; normal vs IDHwt 6.53). Interestingly, the logFC
values for the IDHmt vs IDHwt and normal vs IDHwt groups
were not very different for downregulated genes, but there
were significant differences for upregulated genes. We have
listed 182 genes in the IDHwt blue module and 54 genes
in the IDHmt greenyellow module, which were enriched in
common pathways; 143 and 27 of them were differentially
expressed, respectively. 22 of 182 blue module genes were
differentially expressed between IDHmt and IDHwt samples.
15 of 22 genes were also differentially expressed between
normal vs IDHwt samples (Table 3).
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Table 1. KEGG pathway enrichment of the selected modules

IDH mutation PTERT st.a tus Module Term p-value Bonferroni
status (correlation)
_hsaO40(_30:Cytok|ne—cytokme receptor | 5 soc 19 229E-08
interaction
hsa04064:NF-kappa B signaling 8.00E-08 2 46E-05
pathway
Yellow hsa04620:Toll-like receptor signaling 168E-06 0.0005
pathway
hsa0465Q:Natu ral killer cell mediated 2 28E-06 0.0007
cytotoxicity
hsa04062:Chemokine signaling 2 62E-06 0.0008
) pathway
Negative hsa05235:PD-L1 i d PD-1
$a05235:PD-L1 expression and PD-1 |, 15 0.8196
checkpoint pathway in cancer
hsa04660:T -cell receptor signaling 0.0161 0.9265
pathway
Salmon hsa04630:JAK-STAT signaling 0.0501 0.9997
pathway
hsa04662:B -cell receptor signaling 0.0663 0.9999
pathway
h‘sa04‘625:C-type lectin receptor 0.0997 0.9999
signaling pathway
hsa04621:NOD-Like receptor signaling 161E-10 134E-08
pathway
hsa04622:RIG-I-Like receptor 6.66E-06 0.0006
signaling pathway
Wildtype hsa04625:C-type lecti t
Tan 5aba020--Lype Lectin receptor 0.0052 0.3486
signaling pathway
hsa04620:Toll-Llike receptor signaling 0.0052 03486
pathway
hsa04062:Chemokine signaling 0.0399 0.9658
pathway
hsa04724:Glutamatergic synapse 1.07E-06 0.0003
hsa04921:0xytocin signaling pathway | 3.44E-06 0.0009
hsa04022:cGMP-PKG signaling 4.03E-05 0.0116
Positive Green pathway
hsa04010:MAPK signaling pathway 4.49E-05 0.0129
hsa04725:Cholinergic synapse 0.0004 0.1027
hsa04728:Dopaminergic synapse 0.0005 0.1226
hsa04721:Synaptic vesicle cycle 1.19E-18 3.77E-16
hsa04727:GABAergic synapse 5.60E-13 1.77E-10
hsa04724:Glutamatergic synapse 3.30E-11 1.04E-08
hsa04723:Retrograde B B
Blue endocannabinoid signaling 264E-11 1.78E-08
hsa04728:Dopaminergic synapse 5.40E-10 1.71E-07
hsaO4089:Neuro§ctive ligand- 8.20E-10 2 59E-07
receptor interaction
hsa04024:cAMP signaling pathway 9.60E-08 3.03E-05
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Table 1. Continued

IDH mutation PTERT st:a tus Module Term p-value Bonferroni
status (correlation)
hgaO5202:Tran§cr|pt|onal 0.0537 0.9903
misregulation in cancer
White hsa04024:cAMP signaling pathway | 0.0682 0.9974
hsa04014:Ras signaling pathway 0.0765 0.9988
hsa04724:Glutamatergic synapse 2.11E-08 4.87E-06
Negative hsa04080:Neuroactive ligand- 3.42E-06 0.0008
receptor interaction
hsa04721:Synaptic vesicle cycle 6.58E-06 0.0015
Greenyellow -
hsa04727:GABAergic synapse 0.0001 0.0294
hsaO4723:ReFrograQe . 0.0004 0.0825
endocannabinoid signaling
hsa04725:Cholinergic synapse 0.0032 0.5218
hsa00100:Steroid biosynthesis 0.0031 0.6146
hsa01100:Metabolic pathways 0.0220 0.9990
hsaOOZSO:VaUne, Legcme and 0.0374 0.9999
Green isoleucine degradation
hsa00250:Alanine, gspartate, and 0.0416 0.9999
glutamate metabolism
hsa05231:Choline metabolism in 0.0692 0.9999
cancer
hsa04146:Peroxisome 0.0001 0.0312
Mutant hsa05022:Pathways of
neurodegeneration - multiple 0.0569 0.9999
Salmon diseases
hsa04330:Notch signaling pathway 0.0954 1
hsa04392:H|ppo signaling pathway - 0.0998 1
multiple species
Positive hsa040§O:Cytok|ne—cytokme receptor 181F-09 5 83E-07
interaction
hsa04064:NF-kappa B signaling 6.13E-09 1.98E-06
pathway
Blue hsa04662:B -cell receptor signaling 6.13E-08 1L97E-05
pathway
hsa04621:NOD-like receptor signaling 3.70E-07 0.0001
pathway
hsa04620:Toll-Llike receptor signaling 439E-07 0.0001
pathway
Darkgreen hsa03010:Ribosome 5.58E-11 3.23E-09
hsa04015:Rapl signaling pathway 0.0075 0.7415
hsa01100:Metabolic pathways 0.0270 0.9927
Lightgreen hsa04921:0xytocin signaling pathway | 0.0615 0.9999
hsa04218:Cellular senescence 0.0634 0.9999
hsa04390:Hippo signaling pathway 0.0644 0.9999

IDH: Isocitrate dehydrogenase, pTERT: Telomerase reverse transcriptase promoter, KEGG: Kyoto Encyclopedia of Genes and Genomes
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Table 2. Common pathways between the IDH mutant (IDHmt) greenyellow module and IDH wild-type (IDHwt) blue module

IDHmMt_greenyellow_pTERT- IDHwt_blue_pTERT+

Term Count | % p-value | Term Count % p-value

hsa04724:Glutamatergic synapse | 16 3.0246 | 0.0000 2;;24721@ naptic vesicle 36 22402 |0

hsa04080:Neuroactive ligand- 24 45369 | 0.0000 | hsa04727:GABAergic synapse | 32 19913 |0

receptor interaction

hsa04721:Synaptic vesicle cycle 1 20794 | 00000 | N1s304724:Glutamatergic 34 21157 |0
synapse

hsa04727:GABAergic synapse 10 18904 |00p01 | Nsa04723Retrograde 39 24269 |0
endocannabinoid signaling

hsaO4723:Re_trogra(_je _ 12 22684 0.0004 hsa04728:Dopaminergic 35 21780 0.0000

endocannabinoid signaling synapse

hsa04725:Cholinergic synapse 9 17013 | 00032 | 1sa04080:Neuroactive ligand- | ¢ 40448 | 0.0000
receptor interaction

hsa04726:Serotonergic synapse 9 17013 | 00036 | Nsa047i3Circadian 29 1.8046 | 0.0000
entrainment

hsa04360:Axon guidance 1 20793 | 00064 | N5304024:cAMP signaling 43 26757 | 0.0000
pathway

hsa04024:cAMP signaling pathway | 12 2.2684 0.0089 hsa04725:Cholinergic synapse | 27 1.6801 0.0000

h‘sa04_O70:Phosphat|dyL|nosmol 6 11342 0.0606 h‘sa04_070:Phosphat|dyL|nosmol 2 13690 0.0000

signaling system signaling system

hsa04713:Circadian entrainment | 6 11342 | 00606 | Ns304726:Serotonergic 2% 14935 | 0.0000
synapse

hsa04728:Dopaminergic synapse 7 1.3233 0.0686 hsa04360:Axon guidance 30 1.8668 0.0002

hsaOO33Q:Arg|mne and proline 4 0.7561 0.0952 hsaOO33Q:Arg|mne and proline 9 05600 0.0441

metabolism metabolism

pTERT-: Negatively correlated modules with TERT promoter status; pTERT+ : Positively correlated modules with TERT promoter status

Table 3. IDH wild-type blue module pathway-enriched DEGs

Il‘[’)?_lcht'_N°rmaL"s' Normal IDHwt Ilg?_Ivat'.'DHmt"’s' IDHmt IDHwt

SLCIA6 -2.2365 989.8 234.4494 -1.1974 5145239 234.4494
GRIA2 -1.4941 15266 5026.5056 -1.0580 11873.9067 5026.5056
PLCBI -1.4048 5828.6 2446.4719 -1.0379 4828.8660 2446.4719
GNGI2 2.2310 1181.8 6309.8539 15414 2087.4952 6309.8539
GRIN3A -2.9484 1916.6 2721124 -1.9578 1032.8684 2721124
SSTRI -2.4319 2161.4 449.9550 -1.2700 1018.7297 449.9551
SSTR2 -2.5210 2055 399.4607 -1.7434 1284.4665 399.4607
CHRNA4 -1.6524 20516 749.1685 -1.0276 1409.4377 749.1685
GABRB3 -2.2102 9864.4 2436.4719 -1.0300 4725.7607 2436.4719
GABRA3 -2.1735 1813.8 444.5843 -15058 1251.0909 444.5843
PDYN 21334 5622.8 1506.6517 11126 645.9139 1506.6517
VIPR2 2.3059 329.6 1830.6180 -1.5287 4821.8445 1830.6180
CHRM4 -2.3974 334.2 70.5056 -1.022 136.3301 70,5056
ATP6VIG2 -2.0278 13698.6 3727.4045 -1.0769 7554.8421 3727.4045
GNAL -2.2018 2163.6 530.2809 -1.0779 1077.7105 530.2809

DEGs: Differentially expressed genes, IDHmt: Isocitrate dehydrogenase mutated, IDHwt: Isocitrate dehydrogenase wild-type, LogFC: log-fold change. Genes that were
enriched in the IDH wild-type blue module, but not in the IDH mutant greenyellow module are shown in bold.
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Drug-gene Interactions

Among the 15 genes that were common between normal vs
IDHmt and IDHmt vs IDHwt DEGs, 6 of them were enriched
only in the blue module: GRIA2, PLCB1, GNGI2, GABRA3,
PDYN, and GNAL. We excluded PDYN as its expression pattern
was not suitable for our hypothesis. GNGI2 was upregulated
at IDHwt samples compared with IDHmt and normal
samples, whereas the others were downregulated. We have
listed inhibitory drugs / small molecules for GNGI2 and
activatory drugs / small molecules for GRIA2, PLCBI, GNGI2,
GABRA3, and GNAL. Since GNGI2 was the most interesting
candidate target, we have compared listed drugs for GNGI12
with drugs targeting other candidates (Table 4). As cisplatin,
imatinib, vanadium pentoxide, and vemurafenib affect the
expression of four out of five listed genes (including GNG12),
these compounds were identified as potential therapeutics.

Discussion

Despite the efforts toward better understanding and treating
gliomas in the last decades, many questions need to be
answered and a great need for new treatments. In this study,
we aimed to understand co-expressional dissimilarities,
as well as shared pathways, between LGG IDHmt and LGG
IDHwt subgroups. Although both subgroups are classified
under the low-grade glioma category, their progression and
survival times are extremely different. Among LGGs, the
most favorable survival rate is observed when /DH1/2 and
pTERT mutations are present together with 1p19q codeletion
(IDHmt / pTERTWt / 1p19g-codeleted), and the worst survival
rate is observed when only pTERT mutation is present
(IDHwt / pTERTmutant / 1p19g-intact)“6%. Here, we focused
on the transcriptomic basis of these discrepancies with a
co-expressional perspective to explore related biological

Table 4. Drug-gene interaction table for IDH wild -type blue module pathway-enriched DEGs

Drug Name

GRIA2

PLCBI GABRA3 GNAL

1,25 dihydroxyvitamin d X

4-hydroxynonenal X

Adenosine triphosphate X

Alfacalcidol X

Aminolevulinic acid X

Androstanolone

Aplidin

Apratoxin a

Bexarotene

Bisphenol a

Cediranib

Cetuximab

Chlorpyrifos

Cisplatin

Clinafloxacin

Cytarabine

Diclofenac

Doxorubicin

X X [ X [ X | X | X [ X | X | X [ X |X | X |X |X

Doxycycline

Estradiol X

Harman X

Imatinib X

Interferon beta-la X

Interferon gamma-1b

Mesalazine

X | X | X

Metformin
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Table 4. Continued

Drug Name GNGI2 GRIA2 PLCBI GABRA3 GNAL

Nickel

Px4032

Puromycin, ec50, 1 d

Puromycin, ec50, 5 d

Resveratrol

Sapphyrin pci-2050

X | X | X [ X | X | X | X

Tibolone

Triiodothyronine-(13c6) hydrochloride (t3
thyronine)

>

Trovafloxacin

Vanadium pentoxide

X

X
Vemurafenib X
Vx X

Y15 X

DEGs: Differentially expressed genes, Drugs that affect the expression of % genes, including GNG12, are shown in bold.

pathways and their components, and to extract information
about mechanisms correlated with selected clinical features.
Previously, CNS tumors were classified based on histology.
The advancements in the NGS technologies allowed the
researchers to profile tumor tissues at the molecular
level, revealing the importance of such aberrations. In
gliomas specifically, /DH mutation status was found to
be a deterministic aberration (biomarker) and likely the
earliest oncogenic change during gliomagenesis. While
IDHmt gliomas respond well to therapies, IDHwt gliomas
have dismal prognosis and eventually progress to GBM®-33,
Understanding the differences between the two groups will
not only provide more insights into the disease mechanisms,
but also help designing novel and more effective therapies
to prevent cancer progression. We applied a weighted gene
co-expression analysis approach and identified modules
correlated with clinical features of interest. The “Chr7gain.
ChrlOLoss" and "BRAFV600E.status" clinical features
showed correlations only with the IDHwt subtype (Figure
2A, B). Chr7p gain and loss of Chrl0q are hallmarks of GBM
and likely indicate a subgroup within IDHwt LGGs that are
destined to progress to the classical type of glioblastoma.
Ozawa et al.®¥ computationally identified PDGFA (chr7)
and PTEN (chrl0) as driving initial nondisjunction events
in non-GCIMP GBM. PDGFA mediates signaling pathways
in the regulation of growth and survival of the cells, and
PTEN codes for an enzyme that plays a role in tumor
suppression. BRAF gene produces B-raf protein, which is
involved in direct cell growth®. V600E stands for the amino
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acid substitution at position 600 [from valine (V) to glutamic
acid (E)]®®. BRAFV60OE status is identified as a key driver
in certain brain tumors and tumor metastasis (pilocytic
astrocytomas, pleomorphic xanthoastrocytoma, ganglioma,
and glioblastoma)®”. As pTERT mutations are present in
both oligodendrogliomas and GBM, two tumor types with
opposite prognoses, we decided to identify similarities and
differences between IDHwt and IDHmt LGGs with respect to
the pTERT mutation status and selected modules of interest
accordingly. We applied enrichment analysis for modules
whose correlation value was above 0.5 or below -0.5 (Table
1). IDHwt yellow and salmon modules, which are negatively
correlated with pTERT status, were enriched in immune
-related pathways. Ontheotherhand, the IDHmtblue module,
which is enriched in immune -related pathways, showed a
positive correlation with pTERT status. The immune system
is a major component of the tumor microenvironment and is
central to tumor progression and invasion. This observation
reflects differences in the immune response to IDHwt and
IDHmt tumors and could be explained by differences in
tumor antigens, effects of 2-hydroxyglutarate on immune
cells, or modulation of tumor-associated immune responses
by different oncogenic processes in two tumor types, among
others. IDHwt modules (green and blue) that were positively
correlated with pTERT were enriched in synaptic pathways.
On the other hand, in the IDHmt subgroup, the greenyellow
module was enriched in synaptic pathways and negatively
correlated with the pTERT status. We identified 13 common
pathways between the IDHwt pTERT+ blue module and the
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IDHmt pTERT- greenyellow module (Table 2). We observed
that different sub-components of these pathways were
enriched in the blue module compared to the greenyellow
module. Glutamatergic synapse, circadian entrainment,
and dopaminergic synapse pathways were particularly
interesting, as  a-amino-3-hydroxy-5-methylisoxazole-
4-propionic acid (AMPA) glutamate receptor (AMPAR)
and PKC/ERK signaling pathways are involved in the blue
module, but not in the greenyellow module (Supplementary
Figures 4A, E, F). AMPA receptors play a role in the glioma
growth®,

Our results showed that GNGI2 (up-regulated), GNAL,
GABRA3, GRIA2, and PLCBI (down-regulated) genes were
enriched in the IDHwt blue module, but not in the IDHmt
greenyellow module. Most of the genes were down-regulated
(except GNGI2) in normal vs. LGG IDHmt and normal vs
IDHwt comparisons.

GNGI2 is a member of the G-protein family and it plays a
role in cellular functions such as cell division, differentiation,
and metastasis®4?, Liu et al.“*? showed that the proliferation
and migration of glioma cells were correlated with GNGI2
expression. Our results indicate that GNGI2 expression
is lowest in normal samples followed by IDHmt gliomas
and it was the highest in IDHwt gliomas. GNAL encodes a
stimulatory G protein alpha subunit. A study by Zhang et
al. “2 related GNAL expression levels with gliomas. They
identified 24 genes, including GNAL, that are related to glioma
grade and prognosis. The expression of GNAL was inversely
correlated with the glioma grade. Our results show that GNAL
expression is the lowest in IDHwt gliomas followed by IDHmt
gliomas and normal samples. Another interesting finding
in the glutamatergic synapse pathway is the involvement of
PKC/ERK pathway through phospholipase C beta 1 (PLCBI).
PLCBI is correlated with glioma grade and plays a role in
maintaininganormal or less aggressive glioma phenotype®?,
We observed that PLCBI was downregulated in the IDHwt
subgroup. Patil et al.“? showed that GABRA3 expression was
down-regulated in LGGs compared to normal samples and it
was the lowest in GBMs. They evaluated TCGA and Cancer Cell
Line Encyclopedia glioma data from a global RNA-editome
perspective and found that exogenously produced and edited
GABRA3 effectively prevented glioma cells from migration
and invasion, but the unedited GABRA3 did not. High-grade
gliomas release high concentrations of glutamate and
enhance their malignant“*#® and invasive behavior®, Qur
results showed that GRIA2 (Glutamate lonotropic Receptor
AMPA Type Subunit 2) was enriched in the blue module but

not in the greenyellow module. Differential gene expression
analysis showed that this gene is down-regulated in IDHwt
LGGs compared with IDHmt LGGs and normal samples (Table
3). In parallel with our results, van Vuurden et al.“? showed
that expression of AMPA receptor (GRIAI-4) was decreased by
glioma grade (normal>LGG>GBM). The subunit encoded by
GRIAZ2 is contingent on RNA editing and it is thought to make
the channel impermeable for Ca? (50). Ca?* concentration
is important in the intracellular space as it excites Ca*-
dependent signal transduction pathways such as AKT®Y,
ERK/MAP kinase®?, and PKA®?, which are involved in cell
proliferation and migration. Ramaswamy et al.®* showed that
AMPA-R enhances the invasion in GBM and ERK signaling
affects the expression of calcium-permeable AMPA-R.
Lu et al.®® suggested PLCBI as a candidate biomarker for
high -grade gliomas. They showed a correlation between
PLCBI expression and the patient survival; an inverse
correlation between PLCBI expression and the pathological
grade of glioma. Our results indicated a decrease in the
expression of the PLCBI in normal samples compared with
the IDHmt subtype, and the lowest expression was in the
IDHwt subtype. To summarize, the expression patterns of
these candidate genes seem to promote a more GBM-like
phenotype (aggressive behavior). Using the DGB tool, we
listed small molecules/drugs that affect the expression
levels of these candidate genes. We searched for inhibitory
drugs for the expression of GNGI2 and activator drugs for
GNAL, GABRA3, GRIA2, and PLCBI (Table 4). We noticed that
cisplatin, imatinib, vanadium pentoxide and vemurafenib
affect the expression of four out of the five listed genes. Wang
et al.®® showed active performance and acceptable toxicity
of the combined treatment of cisplatin and temozolomide in
recurrent GBMs. Enriquez Pérez et al.®” showed that cisplatin
treatment was beneficial in the treatment of GL261 glioma-
bearing C57BL/6 mice, but not GL261-bearing NOD-scid
[L2rynull (NSG) mice. However, the combination of cisplatin
with immunotherapy did not yield improved survival.
Ferrari et al.®® proposed a new platinum-based prodrug as
an alternative for cisplatin and its analogs and showed its
effectiveness in the U251 cell line. Holdhoff et al.®® showed
that imatinib increases the radiosensitivity in human GBM by
disturbing the autocrine PDGF/PDGFR loop. We are not aware
of any study of vanadium pentoxide treatment for glioma;
however, Das et al.®® reported proliferation inhibition of
different cancer cell lines (B16F10, A549, and PANCI1) which
were treated with vanadium pentoxide nanoparticles (V205
NPs: 30-60 nm). Additionally, they showed a significant
improvement in the survival of melanoma-bearing C57BL6/J
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mice after treatment with V205 NPs compared to untreated
tumor bearing mice. Vemurafenib is a selective inhibitor of
BRAFV600; Kaley et al.®" reported results of the VE-BASKET
study, in which patients with BRAFV600-mutant gliomas
received vemurafenib daily; they reported that the efficacy
of vemurafenib varies qualitatively by histologic subtype.
Nicolaides et al.®? showed that vemurafenib has promising
anti-tumor activity in recurrent or progressive BRAFV600E-
positive pediatric gliomas with manageable toxicity (Phase |
results, Phase Il ongoing). Del Bufalo et al.®¥ also suggested
vemurafenib as a treatment option for pediatric low-grade
gliomas carrying BRAFV600E. We also propose these drugs,
alone or in combination, as possible treatments specifically
for IDHwt LGGs.

Study Limitations

In this study, we used publicly available RNA-seq data from
a well-characterized cohort. While the number of samples
was quite high for the IDHmut LGG group, it was much lower
for the IDHwt-pTERTwt subgroup, with 16 samples. Another
Llimitation was related to the interrogation of possible drug
candidates that could target many genes in our candidate
gene list. As drug-gene interaction data were available for
cell Llines from cancers other than gliomas, we had to rely on
such data. With the possible generation of similar data for
glioma cell lines, we can be able to overcome this limitation
and determine how it compared to our current findings.

Conclusion

In this study, we have determined potential therapeutic target
candidates for IDHwt LGGs. Although these targets need to
be validated experimentally, with the help of computational
analyses, our study prioritizes potential targets for further
investigation.
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Supplementary Figure 1. Sample clustering of TCGA LGG IDHmt samples by average methodology A) IDHmt samples, B) IDHwt
samples

TCGA: The Cancer Genome Atlas, LGG: Lower-grade glioma, IDHmt: Isocitrate dehydrogenase mutated, IDHwt: Isocitrate dehydrogenase
wild-type, e: 107, branches reflect the patient barcodes
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Supplementary Figure 2. Network topology analysis for soft-thresholding powers. A) IDHmt samples, B) IDHwt samples
IDHmt: Isocitrate dehydrogenase mutated, IDHwt: Isocitrate dehydrogenase wild-type
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Supplementary Figure 3. Hierarchical clustering of genes with module colors A) IDHmt samples, B) IDHwt samples

IDHmt: Isocitrate dehydrogenase mutated, IDHwt: Isocitrate dehydrogenase wild-type
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Supplementary Figure 4. Selected common KEGG pathway schemes of the IDHwt pTERT- blue module and IDHmt pTERT+
greenyellow module. A) Glutamatergic synapse, B) Retrograde endocannabinoid signaling, C) GABAergic synapse, D) Cholinergic
synapses, E) Circadian entrainment, F) Dopaminergic synapse

IDHmt: Isocitrate dehydrogenase mutated, IDHwt: Isocitrate dehydrogenase wild-type, pTERT: Telomerase Reverse Transcriptase
promoter. Pathway sub-components colored in blue are enriched in the blue module but not in the greenyellow module; pathway
sub-components colored in green are enriched in the greenyellow module but not in blue module; pathway sub-components
colored in red are enriched in both modules
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