Turkish Journal of Cerebrovascular Diseases 2022; 28(3): 172-179 Turk | Cereb Vasc Dis doi: <u>10.5505/tbdhd.</u>2022.43925

ORIGINAL ARTICLE

ÖZGÜN ARASTIRMA

NON-MOTOR SYMPTOMS IN STROKE PATIENTS

Ümit GÖRGÜLÜ¹, Recep DÖNMEZ², Hesna BEKTAS³

¹Ankara City Hospital, Neurology Clinic, Ankara, TÜRKİYE ²Aksaray Training and Research Hospital, Neurology Clinic, Aksaray, TÜRKİYE ³Ankara Yıldırım Bevazıt University Faculty of Medicine, Ankara City Hospital, Neurology Clinic, Ankara, TÜRKİYE

ABSTRACT

INTRODUCTION: Recognition of any symptoms that may develop after stroke improves the quality of life of the patient and their relatives and is associated with a good prognosis. In our study, we aimed to investigate the frequency and characteristics of non-motor symptoms in post-stroke patients.

METHODS: Patients who had a stroke in the last 1 year and recovered well or with mild disability (mRS 0-2) and healthy volunteers as the control group were included in our study. The "Turkish Version of the Non-Motor Symptoms Scale" (NMSÖ-TR) questionnaire consisting of 30 questions was applied to the subjects who met the inclusion criteria, and the results were compared between the two groups.

RESULTS: In our study in which 54 stroke and 116 healthy volunteers were evaluated, the mean age of the stroke group was 59 (36-86) and 39 patients (72.2%) were women. In healthy volunteers, the mean age was 53 (24-77) and 61 (52.6%) were female. The mean NMSS scores were 6 (1-24) in the stroke group and 9 (0-24) in healthy volunteers, and no significant difference was found between the two groups. The most common non-motor symptoms in the stroke group were nocturia (67%), urinary urgency (48%), feeling sad (48%), incomplete bowel emptying (39%), amnesia (37%), Decreased/increased libido (37%), problems with sex (37%). Statistically significant dysphagia (31.5%, p: 0.011) and unpleasant sensation in your legs at night/craving to move (50%, p: 0.041) were detected more frequently in the stroke group.

DISCUSSION AND CONCLUSION: Post-stroke non-motor symptoms can be observed frequently, even if patients show a good recovery process. The treatment process to be guided by the early detection of these symptoms in the rehabilitation process is important for an increase in the quality of life and a better prognosis.

Keywords: Stroke, non-motor symptoms, life quality.

Address for Correspondence: Ümit Görgülü, M.D. Ankara City Hospital, Neurology Clinic, Çankaya, Ankarara, Türkiye E-mail: drumitgorgulu@hotmail.com

Phone: +90 312 552 60 00 Accepted: 30.11.2022

Received: 14.11.2022

ORCID IDs: Ümit Görgülü 0000-0001-7548-1150, Recep Dönmez 0000-0002-6798-701X, Hesna Bektas 0000-0003-3785-3341.

Please cite this article as following: Görgülü Ü, Dönnez R, Bektas H. Non-motor symptoms in stroke patients. Turkish Journal of Cerebrovascular Diseases; 2022; 28(3): 172-179. doi: 10.5505/tbdhd.2022.43925

İNME HASTALARINDA NON-MOTOR SEMPTOMLAR

ÖZ

GİRİŞ ve AMAÇ: İnme sonrası gelişebilecek her türlü semptomun tanınması, hasta ve yakının yaşam kalitesini artırır ve iyi prognozla ilişkilidir. Biz de çalışmamızda inme sonrası hastalardaki non-motor semptomların sıklığını ve özelliklerini araştırmayı amaçladık.

YÖNTEM ve GEREÇLER: Çalışmamıza son 1 yıl içinde inme geçiren, iyi veya hafif engelle (mRS 0-2) iyileşen hastalar ve kontrol grubu olarak sağlıklı gönüllüler alındı. Çalışmaya alınma kriterlerini karşılayan olgulara 30 sorudan oluşan "Non-Motor Semptomlar Ölçeği Türkçe Versiyonu" (NMSÖ-TR) anketi uygulandı ve sonuçlar iki grup arasında karşılaştırıldı.

BULGULAR: 54 inme ve 116 sağlıklı gönüllünün değerlendirildiği çalışmamızda inme grubunda ortalama yaş 59 (36-86) ve 39 hasta kadındı (%72.2). Sağlıklı gönüllülerde ise ortalama yaş 53 (24-77) ve 61 olgu (%52.6) kadındı. NMSÖ skor ortalamaları inme grubunda 6 (1-24), sağlıklı gönüllülerde 9 (0-24) olup, her iki grup arasında anlamlı farklılık saptanmadı. İnme grubunda en sık gözlenen non-motor semptomlar noktüri (%67), idrara sıkışma (%48), üzgün hissetme (%48), bağırsakların tam boşalamaması (%39), unutkanlık (%37), cinsel istekte azalma/artma (%37), cinsel ilişkiye girmekte zorluktu (%37). İnme grubunda istatistiksel olarak anlamlı derecede disfaji (%31.5, p: 0,011), geceleri bacaklarınızda hoş olmayan duyu hissi/hareket isteği (%50, p: 0,041) daha sık saptandı.

TARTIŞMA ve SONUÇ: İnme sonrası non-motor semptomlar hastalar iyi iyileşme süreci sergileseler bile sıklıkla izlenebilmektedir. Rehabilitasyon sürecinde bu semptomların erken tespiti ile yön verilecek tedavi süreci hayat kalitesinde artış ve daha iyi prognoz için önemlidir.

Anahtar Sözcükler: İnme, non-motor semptomlar, hayat kalitesi.

INTRODUCTION

Annually, more than 12 million people worldwide suffer a stroke. 68% of affected individuals are under the age of 70. Globally, over 101 million people currently living are estimated to have experienced stroke (1). In line with these data, stroke is the second leading cause of death and a major cause of disability worldwide (2). Post-stroke symptoms negatively affect the quality of life of both patients (3) and caregivers (4). In this regard, a rehabilitation process to be guided by the identification of any post-stroke symptoms can directly improve the quality of life of the patient and the patient relatives.

Post-stroke symptoms can be classified as motor and non-motor (pain, mood, sleep, sexual dysfunction, and symptoms related to the gastrointestinal, urinary, and cardiovascular Post-stroke systems). motor and sensorv most symptoms constitute the common complaints by patients (5). Scales developed for diagnosing stroke based on the easy identification of motor symptoms, such as FAST (Face-Arm-Speech-Time), can be shown as an example in this regard (6). Contrary to the focus on motor symptoms, non-motor symptoms (NMS) are often likely to be underdiagnosed or untreated for reasons such as aphasia, neglect, or cognitive impairment. A study evaluating pain in stroke patients reported that more than half of the patients had pain and more than one-third did not

Turkish Journal of Cerebrovascular Diseases 2022; 28(3): 172-179

receive treatment, among which more than twothirds experienced central pain (7).

Among psychiatric complaints, post-stroke depression constitutes one of the most common NMS, occurring in one-third of stroke patients (8). Post-stroke depression is accompanied by anxiety in 39% of female patients and 26% of male patients (9). Dysphagia, associated with an increased risk of aspiration after stroke and stroke-associated mortality, can be observed in half of the patients (10). In addition, constipation can be seen at a rate of 48% (11), sexual dysfunction at 55% (12), sleep disorders at 78% (13), urinary system dysfunction (most commonly nocturia) at 94% (14), left-sided heart failure as a cardiovascular complication secondary to autonomic involvement at 31% (15), and forgetfulness at 25% (16).

Although studies summarized above question post-stroke symptoms, there is no epidemiological study in which NMSs are investigated thoroughly. In our study, we aimed to investigate NMS frequency and characteristics by questioning all NMSs in post-stroke patients.

METHODS

Our study was designed prospectively and conducted in the stroke outpatient clinic of our hospital between March – June 2022. In our study, in which two groups were formed with stroke patients and healthy volunteers, patients with a disease duration of 1-12 months and a diagnosis of ischemic stroke or cerebral hemorrhage who recovered well or with mild disability were included in the patient group. Exclusion criteria for both groups included a previous diagnosis of common neurological diseases (Parkinson's disease, epilepsy, dementia, multiple sclerosis, endocrinological neuromuscular diseases). (diabetes. hypo/hyperthyroidism), diseases psychiatric diseases, or history of drug use (antipsychotic, antidepressant, anticholinergic), and inability to answer questions. In addition, acute-subacute duration (<1 month), diagnosis of different stroke types (transient ischemic attack, subarachnoid, subdural or epidural hemorrhage), aphasia, and moderate or severe disability were also among the exclusion criteria for the stroke group. Age, gender, vascular risk factors [hypertension] (HT), hyperlipidemia (HL), coronary artery disease (CAD), smoking, alcohol], and etiological subtypes of stroke (Bamford classification) were recorded in all patients. The Turkish version of "the Non-Motor Symptoms Ouestionnaire" (NMSO-TR) consisting of 30 questions was applied to all cases (Appendix).

Written permission was obtained from Ankara City Hospital Clinical Researches Ethics Committee (Date: 06.04.2022 Number: E1-22-2530) prior to the study. Our study was carried out in accordance with the "Helsinki Declaration" following research and publication ethics. Also, signed informed consent was obtained from the cases included in the study.

Statistical analysis: All data were analyzed using the statistical package program (SPSS)

Version 17. In the study, descriptive statistics were expressed as categorical variables n (%) and continuous variables as median (min-max).The "Mann Whitney-U test" was used to compare two independent groups. Fisher's Exact Test and Chi-Square test were used to compare categorical variables. p<0.05 level was considered statistically significant.

RESULTS

In our study, in which 54 stroke and 116 healthy volunteers were evaluated, the mean age of the stroke group was 59 (36-86) and 39 (72.2%) patients were female. In healthy volunteers, the mean age was 53 (24-77) and 61 (52.6%) were female. There was a significant difference in age and gender distribution between the two groups. Vascular risk factors, except for CAD, were more common in the stroke group. The type of stroke was ischemic in 50 patients (92.6%) and hemorrhagic in 4 (7.4%) patients. The mean NMSQ score was 6 (1-24) in the stroke group and 9 (0-24) in healthy volunteers, and no significant difference was noted between the two groups (p:0.215) (Table 1). The most common NMSs observed in the stroke group were nocturia (n=36, 67%). urinary incontinence (n=26. 48%). depression (n=26, 48%), incomplete bowel movement (n=21, 39%), forgetfulness (n=20, 37%), decreased/increased sexual desire (n=20, 37%), and difficulty in sexual intercourse (n=20, 37%). In the stroke group, dysphagia (p=0.011) and restless legs syndrome (p=0.041) were observed more frequently at a statistically significant rate. There was no statistically significant complaint at a higher frequency in the control group (Table 2).

	Stroke (n=54)		Control (n=116)		
	%	Median (min-max)	%	Median (min-max)	р
Age		59 (36-86)		53 (24-77)	0.007*
Female/Male	72.2/27.8		52.6/47.4		0.015
Vascular Risk Factors					
НТ	51.9		14.7		<0.001
HL	13		0.9		0.001
CAD	4.3		7.4		0.467
AF	9.3				0.003
Smoking	28		6.8		0.001
Alcohol	9.3		1.8		0.034
Stroke Type İschemia/Hemorrhage	92.6/7.4				
NMSQ score		6 (1-24)		9 (0-24)	0.215*

Chi-square test was used to compare categorical variables. * The "Mann Whitney-U test" was used to compare two independent groups.

Turkish Journal of Cerebrovascular Diseases 2022; 28(3): 172-179

Table 2. Comparison of NMSQ answers of stroke and control group.

	Stroke (n=54)	Control (n=116)		
Sorular	%	%	р	
Stream of saliva	25.9	13.8	0.053	
Taste/Odor Change	9.3	13.8	0.403	
Dysphagia	31.5	14.7	0.011	
Nausea/vomiting	13	16.4	0.565	
Constipation	31.5	28.4	0.586	
Fecal incontinence	14.8	5.2	0.067*	
Feeling of not completely emptying the intestines	38.9	38.8	0.99	
Urinary urgency	48.1	60.3	0.135	
Nocturia	66.7	57.8	0.268	
Pain	33.3	42.2	0.268	
Weight loss	14.8	9.5	0.314	
Forgetfulness	37	49.1	0.14	
Indifference to the surrounding	29.6	36.2	0.4	
Hallucination	5.6	10.3	0.393*	
Lack of attention	33.3	37.9	0.562	
Feeling sad	48.1	56.9	0.287	
Fear/Anxiety/Panic	33.3	37.9	0.562	
Increase/decrease in sexual desire	37	48.3	0.17	
Difficulty having sexual intercourse	37	40.5	0.666	
Vertigo/Dizzy	40.7	50	0.26	
Fall	14.8	20.7	0.362	
Somnolence	13	12.1	0.869	
Difficulty sleeping	29.6	40.5	0.171	
Fearful dreaming	9.3	17.2	0.171	
Falking/acting in sleep	16.7	18.1	0.819	
Restlessness/need to move legs at night	50	33.3	0.041	
Edema in the legs	18.5	25	0.349	
Excessive sweating	25.9	26.7	0.913	
Diplopia	24.1	25	0.896	
Delusion	11.1	9.5	0.742	

Fisher's Exact Test and Pearson Chi-Square* test were used.

DISCUSSION AND CONCLUSION

Stroke is an important global public health problem of the 21st century, both due to its high mortality and morbidity and associated poststroke disability (1). Studies showing the negative effects of stroke on patients and caregivers point out the importance of early effective rehabilitation (17). However, they mostly focus on motor impairments, which occur at a high rate of 82% following stroke (18). In our study, we investigated the NMSs that may be associated with the quality of life and prognosis in post-stroke patients.

Gastrointestinal symptoms (excessive salivation, dysphagia, constipation, incomplete bowel movement, and symptoms such as nocturia, weight loss, restless legs syndrome, and delusion were more frequently observed among stroke patients. This frequency was also statistically significant in dysphagia and restless legs syndrome. The degree of post-stroke symptoms correlates with the rate of ischemic cerebral blood flow (19). Therefore, each patient may develop a

Turkish Journal of Cerebrovascular Diseases 2022; 28(3): 172-179

different degree of symptoms depending on the affected brain area and the severity of the stroke. In addition, symptoms can be observed more prominently in the acute-subacute period following stroke and in elderly patients (7,8). The limited number of patients in our study, and the inclusion of only healthy or mildly disabled, middle-aged, and chronic cases may have contributed to the insignificance of other NMSs in question.

Although some NMSs were observed more frequently in the control group, it was not statistically significant. Even in an illness such as Parkinson's, in which NMSQ is applied and NMSs are observed more prominently, some symptoms emerged at a higher rate in the control group (20), which may be attributed to the fact that NMSs such as GIS, sleep and mood disorders are common in the normal population, and that they are undiagnosed and untreated especially when mild (21-23).

GIS is among the systems that can be

significantly affected after a stroke, the pathophysiology of which is caused by the disruption of the connections between the central nervous system and the GIS. Aspiration during a swallow exam, bilateral hemisphere infarction, stroke severity (NIHSS>12), use of bolts, use of anticholinergic drugs, need for toilet assistance, advanced age, and middle cerebral artery infarction constitutes independent risk factors for post-stroke GIS complications (24). GIS symptoms such as dysphagia (30-70%), constipation (7-55.2%), bleeding (1.5-7.8%), fecal incontinence (5-40%), excessive saliva, and delayed bowel movement can be observed after stroke (25-34). In our study, the risk of GIS symptoms was not assessed due to the absence of examination to evaluate swallowing, the inclusion of patients only with good functionality, the exclusion of imaging findings, and anticholinergic drug use being an exclusion criterion. In addition, bleeding associated with GIS symptoms was not included in the NMSQ questions. However, all of the GIS symptoms questioned were more common in the stroke group. This frequency was statistically significant in terms of dysphagia and nearly significantly higher in terms of increased salivation, which is one of the indirect symptoms

of dysphagia. Available studies have shown that dysphagia can be observed in more than half of stroke patients, increasing the risk of malnutrition, dehydration, aspiration pneumonia, and death (10). Our results, on the other hand, showed that even stroke patients with a good prognosis can exhibit these symptoms twice as high compared to healthy individuals when examined without using additional testing or diagnostic methods. In stroke, dysphagia occurs with the disruption of the connections of the motor cortex and/or motor fibers with the brainstem and/or cranial nerves due to supratentorial and/or brainstem damage (35). It is most commonly seen in strokes affecting the middle cerebral vascular area, with a higher incidence in hemorrhagic stroke (36). Lateral medullary syndrome (Wallenberg's syndrome), associated with the vascular area of vertebral arteries and/or posterior inferior cerebellar arteries, is typically a brainstem vascular syndrome (37). The affected arterial vascular territories were out of the scope of our study. Since the number of hemorrhagic stroke patients was as few as 4, no comparison could be made

with ischemic stroke patients in terms of the prevalence of dysphagia.

Available studies have revealed a close relationship between stroke and sleep disorders (SD). In a study evaluating 200 stroke patients in terms of sleep disorders, SD was found in 78% of the patients, with 42% being severe, 20% moderate, and 16% moderate-severe, which is independent of the type of stroke and localization (13). Apnea is the most common sleep disorder associated with stroke and is seen in more than half of stroke patients (38). A bidirectional relationship exists between sleep disorders and stroke. In addition to the high prevalence of SD in stroke patients; sleep apnea (39) increases the risk of stroke twice as much while other SDs increase the risk at a rate of 20%. Therefore, they are involved in the cryptogenic etiology of stroke (40). Its pathogenesis involves oxidative stress secondary to increased sympathetic activity associated with SD, increased inflammation and prothrombotic factors, endothelial dysfunction, atherosclerosis, and arrhythmia. This bidirectional relationship is also associated with the fact that patients often present with vascular risk factors such as obesity, diabetes, hypertension, and heart rhythm disorders, which are risk factors for stroke, as is the case with sleep apnea. Other nonapnea sleep disorders frequently accompanying stroke include REM sleep behavior disorder. periodic limb movement disorder (PLMD), restless legs syndrome (RLS), and insomnia. In our study, the feeling of restlessness in the legs at nighttime or an increase in the desire to move the legs while resting, suggesting RLS and PLMD, were found significantly higher. No significant difference was noted in other questioned insomnia, parasomnia (fearful dreaming, sleep talking or movement), and somnolence symptoms. In addition, the fact that the investigation of the fundamental symptoms of sleep apnea (snoring, witnessed apnea, and excessive daytime sleepiness) was limited to somnolence and acted as a hindrance in terms of detection.

RLS and PLMD are usually observed as concurrent sleep disorders (80-90%) (41). Their pathophysiology involves a disruption in the dopaminergic system in the brain stem due to the positive response they exert against dopaminergic drugs (42). In a study evaluating post-stroke RLS and PLMD in the literature, the lesion was found to be most commonly located in the pons (43). In

Turkish Journal of Cerebrovascular Diseases 2022; 28(3): 172-179

another study in which 137 stroke patients were evaluated. RLS was found in 12.7% of the patients. with the lesion being located in the basal ganglia/corona radiata at 30%, pons at 22%, thalamus at 14%, internal capsule at 12.5% and cortical at 1.9%. The results of this study suggest that subcortical lesion sites such as the pyramidal pathway and basal ganglia-brainstem axis, which are involved in motor functions and sleep-wake cycles, may lead to RLS symptoms in patients after ischemic stroke (44). In addition, frequent occurrences of post-stroke iron deficiency and anemia, major secondary causes of RLS, may play a role in the etiology. The results of our study have some limitations as we did not evaluate brain imaging and laboratory (iron, etc.) parameters and did not include any sleep tests.

One of the points that should be kept in mind is that further improvement can be observed in motor functions with the treatment of NMS, which has been proved in randomized controlled studies in which SSRIs are used in the treatment of depression (45-47). In our study, dopamine agonists are the first-line treatment in patients with RLS and PLMD with a significant frequency (48). Currently, there is no established medical treatment for dysphagia. Various treatment modalities, including a therapy team, are recommended, such as behavioral therapy, acupuncture, electrical or magnetic stimulation, and medications (49,50).

In conclusion, post-stroke NMS can be observed frequently, even if the patients exhibit a good recovery process. The treatment process, which will be guided by the early detection of these symptoms during rehabilitation, bears great importance in terms of increased quality of life and a better prognosis. There are some limitations in our study. The limited number of cases in the stroke group, the significant difference in age and gender between the groups, the failure to evaluate the relationship between stroke severity at admission, the duration of stroke diagnosis and symptoms, and the lack of imaging findings and treatment methods are among these limitations. Lastly, the NMSQ-TR scale we used is an adapted scale for Parkinson's disease, therefore a new scale should be developed for stroke patients with prospective studies to be conducted in this regard.

Turkish Journal of Cerebrovascular Diseases 2022; 28(3): 172-179

REFERENCES

- 1. https://www.worldstroke.org/assets/downloads/WSO_Gl obal_Stroke_Fact_Sheet.pdf
- Mira K, Andreas L. Global burden of stroke. In: Seminars in neurology. Semin Neurol 2018; 38(2): 208-211.
- Ramos-Lima MJM, Brasileiro IDC, Lima TL, et al. Quality of life after stroke: Impact of clinical and sociodemographic factors. Clinics 2018; 73: e418.
- 4. Gorgulu Ü, Polat U, Kahraman B, et al. Factors affecting the burden on caregivers of stroke survivors in Turkey. Medical Science and Discovery 2016; 3(4): 159-165.
- Kothari R, Sauerbeck L, Jauch E et al. Patients' awareness of stroke signs, symptoms, and risk factors. Stroke 1997; 28(10): 1871–1875.
- https://www.stroke.org/en/about-stroke/strokesymptoms
- Widar M, Samuelsson L, Karlsson-Tivenius S, et al. Longterm pain conditions after a stroke. Journal of Rehabilitation Medicine 2002; 34(4): 165-170.
- Hackett ML, Pickles K. Part I: Frequency of depression after stroke: An updated systematic review and meta-analysis of observational studies. Int J Stroke 2014; 9(8): 1017–1025.
- 9. Burvill PW, Johnson GA, Jamrozik KD, et al. Prevalence of depression after stroke: the Perth Community Stroke Study. Br J Psychiatry 1995; 166(3): 320-327.
- Banda KJ, Chu H, Kang X, et al. Prevalence of dysphagia and risk of pneumonia and mortality in acute stroke patients: A meta-analysis. BMC geriatrics 2022; 22(1): 1-10.
- 11. Li J, Yuan M, Liu Y, et al. Incidence of constipation in stroke patients: a systematic review and meta-analysis. Medicine, 2017; 96(25): e7225.
- 12. Kimura M, Murata Y, Shimoda K, et al. Sexual dysfunction following stroke. Comprehensive Psychiatry 2001; 42(3): 217-222.
- 13. Pasic Z, Smajlovic D, Dostovic Z, et al. Incidence and types of sleep disorders in patients with stroke. Medical Archives 2011; 65(4): 225-227.
- 14. Akkoç Y, Bardak AN, Ersöz M, et al. Post-stroke lower urinary system dysfunction and its relation with functional and mental status: A multicenter cross-sectional study. Topics in Stroke Rehabilitation 2019; 26(2): 136-141.
- Jimenez-Ruiz A, Racosta JM, Kimpinski K, et al. Cardiovascular autonomic dysfunction after stroke. Neurological Sciences 2021; 42(5): 1751-1758.
- van der Flier WM, Skoog I, Schneider JE, et al. Vascular cognitive impairment. Nature Reviews Disease Primers 2018; 4: 18003.
- 17. Chuluunbaatar E, Chou YJ, Pu, C. Quality of life of stroke survivors and their informal caregivers: A prospective study. Disability and Health Journal 2016; 9(2): 306-312.
- Rathore S, Hinn A, Cooper L, et al. Characterization of incident stroke signs and symptoms: Findings from the atherosclerosis risk in communities study. Stroke; A journal of cerebral circulation. 2002; 33(11): 2718–2721.
- Schaller BJ, Graf R, Jacobs AH. Pathophysiological changes of the gastrointestinal tract in ischemic stroke. Am J Gastroenterol 2006; 101(7): 1655-1665.
- Yu B, Xiao ZY, Li JZ, et al. Study of an integrated non-motor symptoms questionnaire for Parkinson's disease. Chinese medical journal 2010; 123(11): 1436-1440.

- 21. Ohayon MM. Prevalence and comorbidity of sleep disorders in general population. La Revue du praticien 2007; 57(14): 1521-1528.
- Hermens ML, van Hout HP, Terluin B, et al. The prognosis of minor depression in the general population: a systematic review. General Hospital Psychiatry 2004; 26(6): 453-462.
- Mayer EA, Craske M, Naliboff BD. Depression, anxiety, and the gastrointestinal system. Journal of Clinical Psychiatry 2001; 62(Suppl): 28-37.
- 24. Ji R, Wang D, Shen H, et al. Interrelationship among common medical complications after acute stroke: pneumonia plays an important role. Stroke 2013; 44(12): 3436-3444.
- Schaller BJ, Graf R, Jacobs AH. Pathophysiological changes of the gastrointestinal tract in ischemic stroke. Am J Gastroenterol 2006; 101(7): 1655-1665
- Paciaroni M, Mazzotta G, Corea F, et al. Dysphagia following stroke. Eur Neurol 2004;51(3):162–167.
- 27. Flowers HL, Skoretz SA, Streiner DL, et al. MRI-based neuroanatomical predictors of dysphagia after acute ischemic stroke: A systematic review and meta-analysis. Cerebrovasc Dis 2011; 32(1): 1–10.
- Su Y, Zhang X, Zeng J, et al. New-onset constipation at acute stage after first stroke: Incidence, risk factors, and impact on the stroke out come. Stroke 2009; 40(4): 1304–1309.
- 29. Ingeman A, Andersen G, Hundborg HH, et al. Processes of care and medical complications in patients with stroke. Stroke 2011; 42(1): 167–172.
- 30. Harari D, Coshall C, Rudd AG, et al. New-onset fecal incontinence after stroke: Prevalence, natural history, risk factors, and impact. Stroke 2003; 34(1): 144–150.
- Brittain K, Perry S, Shaw C, et al. Isolated urinary, fecal, and double incontinence: Prevalence and degree of soiling in stroke survivors. J Am Geriatr Soc 2006; 54(12): 1915– 1919.
- 32. Nakayama H, Jørgensen HS, Pedersen PM, et al. Prevalence and risk factors of incontinence after stroke. The Copenhagen Stroke Study. Stroke 1997; 28(1): 58–62.
- O'Donnell MJ, Kapral MK, Fang J, et al. Gas trointestinal bleeding after acute ischemic stroke. Neurology 2008; 71(9): 650–655.
- 34. Hsu HL, Lin YH, Huang YC, et al. Gastrointestinal hem orrhage after acute ischemic stroke and its risk factors in Asians. Eur Neurol 2009; 62(4): 212–218.
- Gordon C, Hewer RL, Wade DT. Dysphagia in acute stroke. BMJ 1987; 295(6595): 411–414.
- Paciaroni M, Mazzotta G, Corea F, et al. Dysphagia following stroke. European Neurology 2004; 51(3): 162-167.
- 37. Batelli SC, Delap T. Lateral medullary infarct presenting as acute dysphagia. Acta oto-laryngologica 2001; 121(3): 419-420.
- Dong R, Dong Z, Liu H, et al. Prevalence, risk factors, outcomes, and treatment of obstructive sleep apnea in patients with cerebrovascular disease: A systematic review. Journal of Stroke and Cerebrovascular Diseases 2018; 27(6): 1471-1480.
- Li M, Hou WS, Zhang XW, et al. Obstructive sleep apnea and risk of stroke: A meta-analysis of prospective studies. Int J Cardiol 2014; 172(2): 466–469.

- 40. Huang WS, Tsai CH, Lin CL, et al. Nonapnea sleep disorders are associated with subsequent ischemic stroke risk: A nationwide, population-based, retrospective cohort study. Sleep Med 2013; 14(12): 1341–1347.
- 41. Montplaisir J, Boucher S, Poirier et al. Clinical, polysomnographic, and genetic characteristics of restless legs syndrome: A study of 133 patients diagnosed with new standard criteria. Mov Disord 1997; 12(1): 61– 65.
- Vignatelli L, Billiard M, Clarenbach P, et al. EFNS guidelines on management of restless legs syndrome and periodic limb movement disorder in sleep. Eur J Neurol 2006; 13(10): 1049–1065.
- 43. Woo HG, Lee D, Hwang KJ, et al. Post-stroke restless leg syndrome and periodic limb movements in sleep. Acta Neurologica Scandinavica 2017; 135(2): 204-210.
- 44. Lee SJ, Kim JS, Song IU, et al. Poststroke restless legs syndrome and lesion location: Anatomical considerations. Movement Disorders 2009: 24(1): 77-84.
- 45. Chollet F, Tardy J, Albucher J, et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): A randomised placebo-controlled trial. The Lancet Neurology 2011; 10(2): 123–130.
- 46. Schneider CL, Majewska AK, Busza A, et al. Selective serotonin reuptake inhibitors for functional recovery after stroke: Similarities with the critical period and the role of experience-dependent plasticity. J Neurol 2021; 268(4): 1203-1209.
- Mortensen JK, Andersen G. Potential role of selective serotonin reuptake inhibitors in improving functional outcome after stroke. CNS Drugs 2018; 32(10): 895–903.
- 48. Aurora RN, Kristo DA, Bista SR, et al. The treatment of restless legs syndrome and periodic limb movement disorder in adults - An update for 2012: Practice parameters with an evidence-based systematic review and meta-analyses: An American Academy of Sleep Medicine Clinical Practice Guideline. Sleep 2012; 35(8): 1039-1062.
- Geeganage C, Beavan J, Ellender S, et al. Interventions for dysphagia and nutritional support in acute and subacute stroke. Cochrane Database Syst Rev 2012; 10: CD000323.
- Bath PMW, Lee H. Cochrane systematic review of interventions for dysphagia in acute stroke. Int J Stroke 2014; 9: 22.

Ethics

Ethics Committee Approval: The study was approved by Ankara City Hospital Clinical Researches Ethical Committe (Date: 06.04.2022, Number: E1-22-2530).

Informed Consent: The authors declared that informed consent was obtained from all cases included in the study.

Authorship Contributions: Surgical and Medical Practices: ÜG, RD, HB. Concept: ÜG, RD, HB. Design: ÜG, RD, HB. Data Collection or Processing: ÜG, RD, HB. Analysis or Interpretation: ÜG, RD, HB. Literature Search: ÜG, RD, HB. Writing: ÜG, RD, HB.

Copyright Transfer Form: Copyright Transfer Form was signed by all authors.

Peer-review: Internally peer-reviewed.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study received no financial support.

Türk Beyin Damar Hastalıkları Dergisi 2022; 28(3): 172-179

Appendix. The "Turkish Version of the Non-Motor Symptoms Scale" (NMSÖ-TR) Que		
1- Did you have stream of saliva during the day?	YES	NO
2- Is there a change or loss in taste or smell?	YES	NO
3- Have you encountered difficulty in swallowing food and drinks or choking?	YES	NO
4- Have you had nausea or vomiting?		
5- Did you encounter constipation (less than 3 stools per week) or stool output	YES	NO
difficulties?		
6- Have you experienced fecal incontinence?	YES	NO
7- Did you feel that your bowels were not completely emptied when you came out of the toilet?	YES	NO
8- Do you feel that you have enough urine to take it to the toilet?	YES	NO
9- Do you regularly urinate at night?	YES	NO
10- Do you suffer from unexplained pain?	YES	NO
11- Do you have unexplained weight loss?	YES	NO
12- Do you have difficulty remembering events that happened before or things you did or any complaints such as forgetting?	YES	NO
13- Have you lost interest in the events or things happening around you?	YES	NO
14- Do you hears sounds or sees images that you know are not real?	YES	NO
15- Do you have difficulty concentrating?	YES	NO
16- Do you feel sad?	YES	NO
17- Do you feel scared, anxious or panicked?	YES	NO
18- Do you feel an increase or decrease in sexual desire?	YES	NO
19- Do you have difficulty in having sexual intercourse?	YES	NO
20- Do you have dizziness, feeling of lightheadedness when getting up from	YES	NO
sitting or lying position?		
21- Did you fall?	YES	NO
22- Did you have staying awake while working, driving or eating?	YES	NO
23- Do you have difficulty falling asleep or staying asleep at night?	YES	NO
24- Have you had intense, vivid or frightening dreams?	YES	NO
25- Do you talk or move while asleep?	YES	NO
26- Do you feel an unpleasant sensation in your legs at night or feel the need to	YES	NO
move your legs while resting?		
27- Is there swelling in your legs?	YES	NO
28- Have you had excessive sweating?	YES	NO
29- Have you had double vision?	YES	NO
30- Does some things seem to have happened to you even though others say they are not?	YES	NO
Total:		1

Appendix. The "Turkish Version of the Non-Motor Symptoms Scale" (NMSÖ-TR) Questionnaire.

Copyright © 2022 by Turkish Cerebrovascular Diseases Society Turkish Journal of Cerebrovascular Diseases 2022; 28(3): 172-179