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Abstract

A shear-deformable beam theory is proposed to model the torsional
behavior of laminated beams composed of variable stiffness layers. The
displacement field is derived by expanding mid-surface displacements
in Taylor series in width coordinate and by retaining first-order terms.
Stiffness of the beam is made variable by using curvilinear fibers in
layers. Variable stiffness layers are categorized into three types as
symmetric, asymmetric and anti-symmetric based on their fiber paths.
A displacement-based finite element method is used to solve the
analytical model and to predict rotations of the beam under torsional
load. Beams constructed with symmetric, antisymmetric and
asymmetric variable stiffness layers are investigated for several lay-ups
by both including and neglecting axial displacement terms. Acquired
results are compared with the results of a finite element analysis
software. It is observed that the developed model is working properly
for beams with variable stiffness layers and including axial
displacement terms in calculations improved the model's performance.

Keywords: Variable stiffness, Curvilinear fibers, Torsion, Laminated
beams, Finite element analysis.
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Bu ¢alismada degisken rijitlikli katmanlarindan olusan lamine
kirislerin burulma davranisini modellemek icin bir kiris teorisi
onerilmistir. Yer degistirme alani, orta ylizey yer degistirmelerinin
enine yénde Taylor serisi ile agilmast ve birinci derece terimlerin

elyaflar kullanilarak degisken hale getirilmistir. Degisken rijitlikli
tabakalar elyaf hatlarina gére simetrik, anti-simetrik ve asimetrik
olarak ¢ tipe ayrilmistir. Analitik modeli ¢6zmek ve kirislerin yiik
altinda burulmasini tahmin etmek icin yer degistirme tabanl bir sonlu
eleman yéntemi kullanilmistir. Simetrik, anti-simetrik ve asimetrik
degisken rijitlikli katmanlar ile olusturulan kirisler, calismada 6nemi
vurgulanan eksenel yer degistirme terimlerini dikkate alarak ve ihmal
ederek gesitli katman dizilimleri i¢in incelenmistir. Elde edilen sonuglar,
sonlu elemanlar analiz yaziliminin sonuglart ile karsilastiriimistir.
Gelistirilen modelin degisken rijitlikli katmanlara sahip kirisler igin
diizgtin calistigi ve hesaplamalarda eksenel yer degistirme terimlerinin
modele dahil edilmesinin, modelin performansini artirdigi gérilmiistiir.

Anahtar kelimeler: Degisken rijitlik, Egrisel elyaf, Burulma, Lamine
kiris, Sonlu elemanlar yontemi.

1 Introduction

Today, fiber reinforced composite materials are used in a
variety of fields from military applications to commercial
products where high strength and lightweight is needed.
History of the modern fiber reinforced composites can be dated
to 1930s with the first commercial mass production of glass
fiber [1]. Fiber reinforced structures are exposed to several
types of structural loads during their service time. One of them
is torsional loading especially effective on beam like structures.
Contemporary studies on torsion of prismatic structures can be
traced back to 1850s with Saint Venant's famous study [2].
Vlasov [3] studied on thin-walled isotropic beams under
several loads, and Gjelsvik [4] followed and developed his
studies. Bauld and Tzeng [5] adapted Valsov's study to fiber
reinforced thin-walled beams. Massa and Barbero [6]
developed a methodology for the analysis of thin-walled
composite beams subjected to bending, torque, shear and axial
forces. Johnson [7] studied bending and torsion of anisotropic
laminated beams. Whitney and Kurtz [8] acquired an exact
elasticity solution for the torsion of rectangular plates and
investigated shear stresses. Sankar [9] derived a beam theory
for torsion of composite beams and investigated beams made
up of specially-orthotropic lay-ups. Aldraihem and Wetherhold
[10] investigated the coupled bending and twisting vibration in
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laminated beams depended on Sankar's formulation and
applied finite element method for solution.

Besides the classical straight fibers, curvilinear fibers are used
to provided additional opportunities in the design and to
improve mechanical performance of composite structures by
the new advances in composite production methods such as
automated fiber placement (AFP), automated tape laying (ATL)
and similar. Kim et. al. developed an experimental setup to
variate orientation of tows by continuously shearing them. [11].
Giirdal and Olmedo [12] acquired closed-form and numerical
solutions for the elastic response of the composite plates with
variable stiffness. While most of the studies on variable
stiffness composites investigate plate and cylinder structures
there is not that much study on beam structures. Zamani et al.
[13] worked on thin-walled beams with bi-convex cross-
section and utilized curvilinear fibers to optimize them.
Recently, the author of the present work, investigated static
behavior of thin-walled composite beams with variable
stiffness and thickness [14] and studied their stress
distributions along hoop direction [15].

In this study, an analytical model is proposed to predict
torsional and flexural behavior of rectangular laminated beams
with variable stiffness layers. The displacement field is
acquired similar to Sankar's approach [9] by expanding shear
deformable laminated plate theory to Taylor series but
different than Sankar additionally axial displacement terms are
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considered. Variable stiffness layers are constructed by using
curvilinear fibers and they are categorized into three groups as
symmetric, asymmetric and anti-symmetric depended on their
shape. The weak formulation of the model is solved by using
custom 3 node 13 DOF beam elements. Acquired results of
several lay-up cases are compared with the results of a FEA
where brick elements are used. Effect of including axial
displacement terms into the formulation and effect of different
shear coefficient values on the torsion results are investigated.

2 Kinematics

2.1 Displacement field

The displacement field of a laminated plate, whose dimensions
are shown in Figure 1, can be expressed as given below by using
first-order shear deformation theory.

u(x;}’:z) :uo(x;}’)+z-ll'x(x'Y) (13)
v(x,y,2) = vo(x,y) + z. ¥, (x,y) (1b)
w(x,y,2) = wo(x,y) (1o)

Figure 1. Dimension of laminated beam.

As proposed by Sankar [9] it is possible to expand the
displacements given above in Taylor series with respect to the
y-axis to investigate torsional-flexural behavior of a laminated
beam. By taking zeroth and first-order terms of y in the
expansion the assumed displacements given in equations
(2a-c) can be acquired as a sum of mid-surface displacement
and rotation functions of the beam.

u(x,y,2) = U(x) + 3. F(x) + z[¢, (x) + y. a(x)] (2a)
v(x,y,2) = V(x) +y.G(x) + z[p, (x) + y. B(x)] (2b)
w(x,y,z) = W(x) +y.T(x) (2¢)

Here U and F represent in-plane displacements of the beam in
the x-direction, ¢, and @ represent the rotation of the cross-
section about the y-axis, V and G represent in-plane
displacements of the beam in the y-direction, ¢, and S
represent the rotation of the x-z plane about the x-axis, W and
T represent the transverse displacement and the twisting angle
of the beam centerline, respectively. The displacement and
rotation functions of the assumed displacements are shown in
Figure 2 in detail.

2.2 Assumptions

The displacements in y-direction (vo =0—-V =G =0) and
the normal and the shear strains in the y-direction are
neglected (¢, =0-p8=0 and y,=0->¢, =-T). But
different from the Sankar's assumptions the displacements in
the x-direction (Uand F) are kept. By applying these

assumptions, the displacement field takes the form given in
equations (3a-c).

u=U+y.F+z[p,+y.al (3a)
v=-zT (3b)
w=W+y.T (39)
S i o 7
I ‘U() y.(?(;) h‘V(x)
YF(x)

Figure 2. Displacements and rotations of the beam.

2.3  Strain field

The strains are calculated by using infinitesimal strain theory
as given below.

ou
exzazU'+y.F’+z[¢,'(+y.a"] (4a)
av
€y:£:0 (4b)
ow
SZ:E: (4’C)
Ju 0dv ,
}/xy=$+a=F+Z[a—T] (53)
ou ow
= — _— ! ! 5b
Vxz 9z " ox G+ W' +yla+T'] (5b)
_8v+6w_0 s
L PR (50)

2.4 Governing equations
Total potential energy of the system is acquired as sum of strain
energy and external work.

Miotar = strain + Wexe (6)

In this study stiffness and thickness of the beam depend on the
y-axis as will be explained in Section-2.5. Thus, the variation of
the stiffness and thickness must be considered while
integrating strain energy equation as given below.

b h()
1tz =2
Hstrain = 2 , o _@[ngx + TxyVxy (7)
2 2

+ ‘L'xz)/xz] dz dy dx

By substituting equations (4a,5a,5b) into equation (7) the
strain energy equation is expanded as;

h(y)

1tz 2
Htraim = Ejo LELM{GX[U, + yF' + z(¢py + ya,)]
2 2
+ Tyy[F + z(a = T")] (8)
+ Tzl + W'

+y(a+ T} dz dy dx

Then equation (8) is rearranged by expressing force and
moment resultants as given below;
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b
1 (k2
Ustrain = Ef fb{Nxx(Y)[U’ +yF']+ ny(y)F
0 J—
2

+ Ly () [¢x + ya'] 9
+ ny(}’)[a -T']

+ QW + W’

+y(a+ T} dy dx

where Ny, (¥), Nyy(y) and Q,(y) are force resultants, L,,(y)
and Ly, (y) are moment resultants along thickness as shown in
Figure 3 and given in equations (10a-e).

h)
Nex () = [ 2y 0x dz (10a)
2
h@)
ny(}’) = f_@‘[xy dz (10b)
2
h»)
Lxx(y) = f_@z- Oy dz (10C)
2
h»)
Ley@) = [ i) 2-Txy dz (10d)
2
h»)
Q) = [ i Tz dz (10e)
2

Finally strain energy can be expressed as given below in terms
so called beam forces and moments (force and moment
resultants across the cross-section) which are given in
equations (12a-h).

1 (L _ _ _ _
Hstrain = Ef [NxU’ + NxF’ + nyF + QX{W, + ¢x}
0

~ _ ~ 11
+ Q0 {a+T'}+ My + Mya' (1)

+ Myyfa — T} dx
where () terms indicate the force resultants and (A) or (M)

terms indicate the moment resultants across the cross-section
as shown below;

b
N, = f_ngxx(Y)dy (122)
_ b
Ne = [2 7. Nex ) dly (12b)
_ b
Nyy = [ Nuy@)dy (122)
My = [ Lex () dy (12d)
Mx = f_;gy Ly (y) dy (12e)
Mxy = f_EEny(Y) dy (12f)
Qx = % Q:()dy (12g)
0x = [%y.0x()dy (12h)

The external work is done by distributed transverse load
q,(x,y) can be expressed as;

Were = — [y [%la,(x,y).w] dy dx (13)

By substituting equation (3c¢) into equation (13) the work done
by external loads is rearranged as;

Wire = — [13,00. W + §,(0).T] dx (14)
Where;
3,(0) = [% q,(x, y)dy (15a)
3,(x) = [%y.q,(x,y)dy (15b)

The weak formulation is acquired by equating the variation of
the total potential energy to zero,

OMiorar = 6lserain + 6 Wexe = 0 (16)

and integrating varied quantities by parts;

L
f [Nx8U + (N) — Nyyy)SF + Q16W + (Qy — My, )ST
0
+ (5, — G.)80, 17
+ (My — Qx — Myy)8a + qy. 8U
+ Gy 0W +§,.6T] dx =0
Equilibrium equations and natural boundary conditions are

expressed as given in Table 1 by collecting coefficients of varied
quantities in the weak formulation.

Table 1. Equilibrium equations and Natural boundary

conditions
Equilibrium Eq.s Natural B.C.s
8U: Ni+3q,=0 (18a) N,SU =0 (19a)
8F: Ny =Ny =0 (18b) N,6F =0 (19b)
swW: Qx+d,=0 (18¢c) QW =0 (19¢)
ST: Q%= My +3,=0 (184) _(gx ~My) 8T (194
Sy M,-0Q,=0 (18e) My, 8¢y =0 (19¢)
Sa: My—0,— My =0 (18f) My 6a =0 (196)

2.5 Variable stiffness layers

Stiffnesses of composite layers reinforced with continuous
fibers depend on the orientation of the fibers. Orientation
variation of the fibers can be controlled by placing curvilinear
fibers to follow a specific path. So, stiffness of a layer
constructed with curvilinear fibers will vary spatially. To
implement variable stiffness layers to the developed model first
the variable stiffness layers are defined with three parameters
(69, 61 and 6,) on a { — n plane and a private name is given for
each configuration of these three parameters. Then these
named layers are aligned and mapped to the desired section
and layer of the laminated beam. An example of this procedure
is shown in Figure 3.

The orientation angle of curvilinear fibers is linearly varied and
defined depended on { axis as;

(61— 00).7 + 64,
(6, — 6.0+ 04,

-1<7<0

0<{<1 (20)

0¢) = {
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g ope, Alignment & Mapping “‘ [
7 ———— —of 1~ Lay-Up of Beam
1 1e- Frodefined Tayers: = i\ [-A/:A/3B/3C/3C]
0, Layer-A <20/70/20> ‘\ or
g \ [-A/*A/3B/45/-45]
/] \‘ 7

\‘ Layer-B <20/90/160>
in
> ( Sy

/ //
/% Layer-C <45>

Const. Stiffness

Figure 3. Alignment & mapping of variable stiffness layers.

And the function describing the fiber path (shape of curvilinear
fiber) which is having the orientation angle variation expressed
above is acquired as given below.

For-1<{<0;
— In[cos((8 — 61).C + 90 — 6,)] + In[cos(90 — 8,)]  (21a)
n) = -
0 —0)
© 180
For0<{<1;
n@®
— ln[cos((91 —0,).0+90— 91)] + In[cos(90 — 0,)] (21b)
(6, —6,)
™77180
where 6,,6; and 8, expresses the orientations at { = —1,

origin and { = 1 respectively. 6,, 8, and 6, can be chosen
between 0° and 180° as a clock-wise angle from n(+) direction
to the orientation of fiber path. Any combination of 8,, 6, and
0, parameters are called as configuration and shown by
( 6,/ 61/ 6,) notation.

Production of variable stiffness layers with curvilinear fibers is
not discussed in this paper, methods such as automated fiber
placement (AFP), automated tape laying (ATL), Continuous
tow shearing method [15] can be used for this purpose. It is
assumed that the variable stiffness layers do not have any gap
or overlap and the curved fibers are placed by shifting the fiber
path along 7 axis. This makes the stiffness of the layer constant
along n axis and varying along { axis. Producing the layers with
the curved fibers causes the thickness to change in the layers
depending on the orientation variation. The thickness variation
of the layer is modelled similar to [11] as given below:

b
c0s(8(Q) — Brer)

where 0, is the orientation where the thickness of the layer
equals the original thickness hy.

h@© = (22)

The { —n plane can be aligned with (x,y,z) local coordinate
system by matching {-axis with y-axis and n-axis with the x-
axis. By flipping { —n plane alignment of variable stiffness
layers can be done in four different ways as presented in Figure

4. Symbolic presentation of alignments for layer-a are

expressed with (('ga, where (+) means default (not flipped)

direction, and (-) means reversed (flipped) direction of the
corresponding axis.

1

~
s
<
o
o
%
W il
<
~
e
I+
*
.
<

v;;.—i;g;;zzm..-» 00 4 a ‘Q -a
0 = 0(Qu 0y = =00 0 =000 0yl = 000

Figure 4. Mapping variable stiffness layer a to k" layer of the
laminated beam. (_Tb <y< S) and (-1 < ¢ <1).

After mapping elements of A(y), B(y), D(y) matrices can be
calculated depending on variable 0 (y), as given below:

Ay(y) = qu,(e(y)k) () —mea())  (@233)
N
1
Bi,-(y)=52 25600 (B0 —nt )  (@230)

N
1
Dy =3 ) 4y (MO -1,) (239
k=1

here n; (y) terms will be depended on the thickness variation
of layers. Ass(y) is scaled by multiplying itself with shear
correction factor (X). Effects of different values of shear
correction factor are investigated and discussed in the
numerical results section.

2.6 Classification of variable stiffness layers

Variable stiffness layers defined by equations (20, 21) can be
classified based on the shape of the fiber path as symmetric and
antisymmetric corresponding to the cases of < 8; =909, 6, =
180° — 6, > and <6, = 6, > respectively. All the other
remaining configurations of 6y, 6; and 6, will give an
asymmetric variable stiffness layer. Each of these three types of
variable stiffness layers are illustrated in Figure 5.

Tn ?'1 6,26, tn 8.
0,290 ! ¥
e,
; | [ e ald E 1 4 5
(O L
| 1 1
(a) Symmetric (b) Antisymmetric (c) Asymmetric

Figure 5. Classification of variable stiffness layers by fiber path
shape.

2.7 Constitutive equations

The constitutive relations between stresses and strains of the
beam composed of variable stiffness layers can be defined as
follows, where stiffness elements are variable along y-axis
dependent on the variable fiber orientation angle 6(y).

k

[ ‘711(9(3/)) ‘715(9(3/)) 0 &y
{ } = ‘716(9(3/)) ‘756(9(3/)) 0 -{ny} (24)

ss(6()) Yz

The constitutive relations can be obtained by substituting first
equation (24) into equations (10a-e) then equations (10a-e)
into equations (12a-h) as given below;

Txy
Txz

0 0
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N,

i (Y

_* | F

II\%y | ¢F, |

iy =[ei,4]8x8.i b f (25)
Mxy |V|(;_T(;;

— "+ »

O koc+T’J

x
where [e;;] matrix is called as beam stiffness matrix and
elements of the beam stiffness matrix are presented in
appendix-A.

If U and F displacements are ignored and taken as zero the first
three row and column of [e;;] matrix vanishes and the size of
the matrix reduces to 5 by 5. And also if D;; and Ass is constant
e45 and esg will vanish and the formulation reduces to the form
proposed by Sankar [9].

In the formulation, it is seen that the W displacement is directly
coupled with the ¢, displacement, and similarly a is coupled
with T. But the deflection (W) and the rotation (7)) will not be
coupled unless e,s or e,g is different than zero. For layers
having variable stiffness and thickness the value of e,5 or e;g
will depend on the configuration, alignment and lay-up of
variable stiffness layers.

2.8 Finite element formulation

The solution of the developed model is achieved by using a
displacement-based finite element method by using 3-node 13-
DOF finite beam elements shown in Figure 6. Displacement
terms are discretized as given in equations (26a-f) where W
displacement is represented with 3 nodes and others with 2
nodes. Shape function S, is selected as three node linear
interpolation function and other shape functions are selected as
two node linear interpolation function.

U= Z Sy U; (26a)
W= isw.wi (26¢)
T= Zn: Sr.T; (26d)
¢ = qu,- ¢ (26e)

The constitutive relations given in equation (25) is submitted
into the weak formulation presented in equation (17) and by
the use of discretized displacements given above the following
finite element formulation is acquired.

(k]. {u} = {f} (27)

[k11 kiz kiz ki Kgs k16] U; (fU\

| K2 Kaz Kas Kzs  Kog| (Fi] | 0]

| ksz kss kss Kse| {Wi} _ 4fw}

l Ksa Kis Kae | T fr (28)
| sym Kss k56| l bi l l 0 J

l k66J k(xij 0

where [K] is local stiffness matrix, {u} is local displacement
vector and {f} is local force vector. Elements of [k] and {f} are
presented in terms of elements of [e;;] beam stiffness matrix as
are given in appendix-B.

3 Numerical results

In this section, fixed free beams composed of symmetric,
antisymmetric and asymmetric variable stiffness layers are
investigated. The beams are constructed by using four variable
stiffness layers and loaded with a torsional load of 5 Nm at the
free tip. Rotation of the free tip is calculated for several lay-up
cases with the developed model both including and ignoring (U
and F) displacement functions. Also, the effect of two different
shear correction factor values (K=5/6 and K=1/6) are
investigated. For validation, results of the developed model are
compared with the results of a finite element analysis by using
20-node brick elements with reduced integration where the
beam is modeled with 750 x 100 x 4 elements. Orientation
angles and thicknesses of each layer of each brick elements are
adjusted to imitate orientation and thickness variation of
variable stiffness layers. Material properties of the carbon-
epoxy composite used at the layers are given in Table 2 and
dimensions of the investigated beams are shown in Figure 7.
The original thickness (hy) of each variable stiffness layer is
taken as 1 mm.

Table 2. Mechanical properties of composite material.

Eq E, Gy V12
145 [GPa] 10 [GPa] 5 [GPa] 032

Figure 7. Loading case.

In the following figures results are labeled as “FEA” for brick
element based finite element analysis, as “Present (K=1/6)" for
present calculation where U and F displacements are included
and K is chosen as 1/6, as “Present (K=5/6)" for present
calculation where U and F displacements are included and K is
chosen as 5/6 and as“Present (U=F=0)" for present
calculation where U and F displacements are neglected and K is
chosen as 5/6, respectively.
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3.1 Beams with symmetric variable stiffness layers

As presented in Section 2.6 a symmetric variable stiffness layer
can be defined by taking 8;=90° and 8, = 180° — §,. The beam
which is constructed by using the “symmetric variable stiffness
layer-A” with [fA/7A/TA/7A] lay-up is investigated by
increasing 8, from 5° to 85° by a step of 5°. The axial rotation
results of the free tip are given in Figure 8.

3.2 Beams with antisymmetric variable stiffness layers

Similar to the previous case, this time by using an
antisymmetric variable stiffness layer, the beam with [1B/1B/
1B/1B] lay-up is investigated by increasing 8, from 5° to 85°
by a step of 5°. The antisymmetric variable stiffness layer-B
used in lay-ups is defined by taking 8, = 8, and 8; = 90° — 8,
The axial rotation results of the free tip are given in Figure 9
for[£B/7B/tB/7B] lay-up case.

Symmetric [TA/7A/TA/7A]
1st Layer 2nd Layer 3rd Layer 4th Layer

N A | L e A
A 1051800, | £/ | sA |
-

| &

0.4|

0.3]

0.21

Rotation [rad]

—— FEA
- Present (K=1/6)
x Present (K=5/6)
=== Present (U=F=0)

0.14

0.0~ 1 : = z : :
5 15 25 35 45 55 65 75 85
6o

Figure 8. Rotation of free tip for [1A/7A4/1A/7A] lay-up with
symmetric variables stiffness layers.

Antisymmetric [ { B/ B/ 1B/ B]

1st Layer “91:9‘) 2nd Layer 3rd Layer 4th Layer

0.07
— 0.06
=
Il
£
= 0.05
g
Z 0.04
3
=}
4 0.03 ’ iy FEA
i Present (K=1/6) \
e/ %o Present (K=5/6) \;-‘
0.02 ‘ ===+ Present (U=F=0) ‘
5 15 25 35 a5 55 65 75 85
e0

Figure 9. Rotation of free tip for [1B/3B/B/1B] lay-up with
antisymmetric variables stiffness layers.

3.3 Beams with asymmetric variable stiffness layers

Any other selection of 6,, 6; and 8, expect symmetric and
antisymmetric configurations will cause an asymmetric
variable stiffness layer configuration. In this section two
different beams composed of asymmetric variable stiffness
layers with [1C/57C/$C/5C] and [IC/*C/1C/%C] lay-up cases
are investigated, where last lay-up case is a non-classical lay-up
where the layers are flipped around {-axis or n-axis as
presented previously in Figure 4. The asymmetric variable
stiffness layer-C used in lay-ups is defined by taking 8, = 90° —
0, and 6; = 45°. The axial rotation results of the free tip are

given in Figures 10 and 11, respectively for [1C/7C/1C/3C]
and [IC/*C/%C/%C] lay-up cases. At [£C/3C/%C/3C] lay-up
case a weak coupling between rotation and deflection is
observed.

3.4 Discussion of results

It is seen at Figures 8-11 that calculated results have same
characteristics with FEA results. At Figure 8 torsion increases
as 6, increase. Taking 8, = 45° makes both 8, and 6, to be
equal to 45° and gives conventional straight fibers for layers B
and C. It is also seen that at Figures 9-11 torsion takes its
maximum value for 8, = 45° then gradually descends towards
both left and right. It must be noted that the variation of
thickness is effective as well as the variation of stiffness on the
behavior of the beam.

Including U-F displacements terms in calculations improved
the model's performance expect [1A/7A/TA/7A] lay-up case
(Figure 8) where both calculated results with and without U-F
terms have similar values. In all calculations almost the same
torsional results with FEA results are acquired by taking shear
correction factor as 1/6 instead of classic 5/6 value.

Asymmetric [} C/C/1C/:C]

1st Layer ™ 2nd '&Yj" 3rd Layer 4th Layer

0,=90-0,
0,=45 I :C :C
+ ! | ; ; {
e, 'iC ‘ iC
! .

Rotation [rad]

Deflection [mm]

.\\

—e— FEA

X Z - Present (K=1/6)
\I—-I“ % Present (K=5/6)

=151 '-Ef’ ==&~ Prosent (U=F~0)
5 15 25 35 a5 55 65 75 85

o

Figure 10. Rotation and deflection of free tip for [£C/3C/$C/
+C] lay-up with symmetric variables stiffness layers.

Asymmetric [$C/*C/$C/*C]

istLayer [
,=90-8,

2nd Layer 3rd Layer 4th Layer

6,=45

Rotation [rad]

S 15 25 35 a5 3 65 75 85
6

Figure 11. Rotation of free tip for [£C/*C/ZC/*C] lay-up with
symmetric variables stiffness layers.

23



Pamukkale Univ Muh Bilim Derg, 28(1), 18-25, 2022
M.G. Giinay

The e, or e,4 terms are acquired as zero for [TA/7A/1A/7A],
[tB/:iB/%tB/7B] and [{C/*C/fC/*C] lay-up cases and any
coupling between rotation and displacement does not occur for
these calculations as expected and previously discussed in
section 2.7. On the other hand, for [£C/3C/%C/7C] lay-up case
(Figure 10) e, and e,g terms are not zero and a weak coupling
between rotation and displacement is observed.

4 Conclusion

An analytical model is developed to investigate the torsional
behavior of beams composed of variable stiffness layers.
Variable stiffness layers are categorized into three groups as
symmetric, antisymmetric and asymmetric. Fixed free beams
are constructed by using three type of variable stiffness layers
proposed and loaded with a torsional load at the free end. The
rotation and deflection values of the free end are acquired with
the developed model by including and neglecting axial
displacement terms (U and F). The model proposed by Sankar
can be achieved as a special case of the present model when the
axial displacement terms are ignored. The results of the present
model are compared with the results of a finite element analysis
where brick elements are used. It is observed that including
axial displacement terms (U and F) in calculations is increased
model's performance.
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Appendix A

Elements of beam stiffness matrix [e;;].
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Other terms are zero.

Appendix B

Elements of local stiffness matrix [k;;] and local force vector

3.

£
k11 ZJ- 611.51',.5{, dx
0
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Other terms are zero.
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