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Abstract  Öz 

This study proposes an improved version of the Honey Badger Algorithm 
(HBA) for solving clustering problems, called the Clustering Honey 
Badger Algorithm (CHBA). The main enhancement involves modeling 
the smell intensity using an exponential decay function instead of the 
inverse square law. This modification reduces the likelihood of getting 
trapped in local optima and improves the algorithm’s exploratory 
behavior. CHBA was compared against six state-of-the-art meta-
heuristic algorithms, including the original HBA, on seven benchmark 
clustering datasets. The evaluation was based on five common external 
performance metrics: accuracy, F-score, precision, sensitivity, and intra-
cluster distance. According to the results, CHBA achieved the highest 
performance on datasets such as Cancer (94.86% accuracy), Iris 
(93.94% accuracy), and Ecoli (84.52% accuracy). Furthermore, 
Friedman test results showed that CHBA consistently ranked first in all 
performance metrics, with p-values less than 0.005, indicating 
statistically significant superiority. These findings demonstrate that 
CHBA is a competitive and reliable clustering algorithm, especially in 
complex and imbalanced data scenarios. 

 Bu çalışma, kümeleme problemlerinin çözümüne yönelik olarak Bal 
Porsuğu Algoritmasının (HBA) geliştirilmiş bir versiyonu olan 
Kümeleme Bal Porsuğu Algoritması (CHBA)’yı önermektedir. Yapılan 
temel iyileştirme, avın koku yoğunluğunu modellemek için kullanılan 
ters kare yasası yerine eksponansiyel azalma fonksiyonunun 
uygulanmasıdır. Bu sayede algoritmanın yerel minimumlara takılma 
olasılığı azaltılmış ve keşif yeteneği artırılmıştır. CHBA, yedi farklı 
kümeleme veri kümesi üzerinde, orijinal HBA dahil altı güncel meta-
sezgisel algoritma ile karşılaştırılmıştır. Karşılaştırmalar doğruluk, F-
skor, keskinlik, duyarlılık ve küme içi mesafe olmak üzere beş yaygın dış 
performans metriğine göre yapılmıştır. Elde edilen sonuçlara göre, 
CHBA, özellikle Cancer (%94,86 doğruluk), Iris (%93,94 doğruluk) ve 
Ecoli (%84,52 doğruluk) veri kümelerinde en yüksek başarıyı 
göstermiştir. Ayrıca, tüm performans metrikleri için yapılan Friedman 
testinde CHBA’nın ortalama sıralama değeri en düşük algoritma olduğu 
ve p-değerlerinin tümünde <0.005 olduğu görülmüştür. Bu bulgular, 
CHBA’nın karmaşık ve dengesiz veri kümelerinde kullanılabilecek 
rekabetçi ve güvenilir bir kümeleme algoritması olduğunu 
göstermektedir. 

Keywords: Honey badger algorithm, Clustering problem, Meta-
Heuristic algorithm, Swarm intelligence. 

 Anahtar kelimeler: Bal porsuğu algoritması, Kümeleme problemleri, 
Meta sezgisel algoritmalar, Sürü zekâsı. 

1 Introduction 

In data mining, clustering seems to be a significant data analysis 
method. This technique, which is named unsupervised learning, 
aims to discover the structure of data without predefined class 
labels [1]. Clustering aims to assemble objects with similar 
characteristics within the same group while it assembles 
objects with different characteristics within different ones. This 
approach plays a significant role upon making decisions by 
revealing out hidden patterns and structures within the 
dataset, predicting and diagnosing future values [2]. 
Recently, techniques of clustering have been widely used in 
various research areas. The potential of clustering techniques 
has been proven in areas like web analysis [3], management [4], 
data science [5], medical diagnosis [6], image segmentation [7], 
text mining, networks of wireless sensors [8], and financial 
analysis [9]. Specifically, text clustering, specifically, stands out 
as an important technique in dividing large sets of text 
documents into subsets with similar characteristics [10]. 
Clustering algorithms could be divided into five main categories 
according to their working mechanisms: partitional, 
hierarchical, density-based, graph-based, and optimization-
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based algorithms [1]. Among these algorithms, partitional 
algorithms are particularly popular because of their linear time 
complexity [11]. However, these algorithms have 
disadvantages due to being sensitive to initial cluster centers, 
having difficulty in partitioning overlapping data, and having 
performance degradation in high-dimensional datasets [12], 
[13]. 
Lately, researchers prefer Meta Heuristic Algorithms (MHA) 
more and more in order to solve clustering problems. These 
algorithms have more competitive and effective results 
compared to conventional methods [14]. MHAs are developed 
being inspired by various sources such as human and animal 
behaviors, evolution mechanism of the nature, laws of physics 
[15] 
Various MHAs like Artificial Bee Colony [16], Teacher Learning 
Based Optimization [17], Artificial Chemical Reaction 
Optimization [18], Cuckoo Search [19], Cat Swarm Optimization 
[20], Grey Wolf Optimizer (GWO) [21], Krill Herd Algorithm 
[22], and Water Flow Optimizer [14] are successfully employed 
in order to solve clustering problems. These algorithms have 
various internal mechanisms to have satisfactory solutions and 
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they search the solution space through both the local and global 
searching strategies.  
The popularity of MHAs comes from their advantages like being 
less dependent on the dimension of the problem, solution 
space, limitations, and variants. In addition to that, they also 
have advantages like being able to adapt themselves depending 
on the problem area and having effective mechanisms in 
solving combinatorial and non-linear problems [18]. However, 
these algorithms have some weak points as well. For example, 
in some cases, they may be caught by local optimum or have 
difficulty in finding the global optimum due to their slow 
convergence speed or homogeneous searching behaviour [23], 
[24]. 
In order to overcome such difficulties, researchers apply hybrid 
approaches and adaptive strategies. For example, hybrid 
approaches which combine global and local search aim to 
create a balance between exploration and exploitation [25]. As 
evolutionary hybrid algorithms integrate local searching 
strategies, population management, and learning strategies, 
they enable an effective optimization framework. [26]. 
In brief, clustering techniques in data mining, especially with 
the use of MHAs, increasingly play an important role in 
analysing complex and large-scale datasets. Researches in this 
area focus on improving the performance of algorithms, 
developing new hybrid approaches, and enabling more 
effective solutions in various application domains. Future 
works are likely to focus on further development of these 
algorithms, big data analysis, internet of things, and artificial 
intelligence applications. [27], [28] 
In this study, an improved version of the Honey Badger 
Algorithm (HBA) is proposed in order to solve clustering 
problems. This improved version is named Clustering Honey 
Badger Algorithm (CHBA). The improvement process focuses 
on smell intensity of the prey. HBA consists of a digging phase 
and a honey phase. Smell intensity is an important parameter 
of the digging phase. In HBA, the smell intensity is modelled by 
inverse square law. It means that the smell will fade 
proportionally with distance. However, in the nature, besides 
distance, there are also external factors like wind or rain. In 
order to model all these external factors, this study proposes 
exponential decay method. CHBA, is compared to six MHAs. For 
comparison, six clustering datasets are employed. The data 
allows us to observe that exponential decay method improves 
the premature convergence problem of HBA.  
The structure of the article is as follows: In section 2, 
information on studies regarding clustering problems are 
given. HBA and CHBA are introduced respectively in section 3 
and 4. In section 5, algorithms' performance evaluation criteria 
are presented. Section 6 gives experimental results of CHBA 
and competitor algorithms. Section 7 discusses the results. 

2 Literature 

Data clustering has a significant part in big data analysis. 
Conventional clustering algorithms may go through difficulties 
like being caught by local minimum, slow convergence, or being 
overdependent on initial center selection when they face 
complex datasets. Therefore, researchers aim to overcome such 
problems and to increase the performance of clustering by 
using MHAs. 
Combining Particle swarm optimization (PSO) and Fuzzy c-
means (FCM) algorithm is a common approach to increase the 
clustering performance. Tiwari et al. [29] have succeeded to 
overcome the local minimum problem of FCM by developing a 
hybrid algorithm named PSO-FCM. This algorithm has 

outstanding results in complex image and multimedia data. 
Similarly, Al-Behadili [30] has a better balance between 
exploration and exploitation by combining Firefly Algorithm 
(FA) and Variable Neighborhood Search (VNS). This approach 
has improved the limited exploitation ability of FA and enabled 
more compact clusters. 
In order to reduce the dependency of the K-Means algorithm on 
the initial center selection, various approaches have been 
proposed. Xia and Liu [31] developed a K-Means algorithm that 
is optimized by genetic algorithm and they had a great accuracy 
rate of 98.67% on National Basketball Association (NBA) 
scoring data. This optimization reduced the number of 
iterations of the algorithm as well. Singh and Kumar [32] aimed 
to create a balance between local and global mechanisms by 
presenting a meta-heuristic clustering algorithm based on Cat 
Algorithm. This algorithm increased diversity by using an 
improved solution searching equation and an accelerated 
speed equation. 
In order to evaluate the structures of data clusters and to deal 
with categorical data, Kuo et al. [33]proposed Possibilistic 
Fuzzy K-Modes (PFKM) algorithm. This algorithm is further 
improved by integrating it with the Sine Cosine Algorithm 
(SCA), Genetic Algorithm (GA) and PSO. The results suggest that 
especially SCA-PFCM outperforms other algorithms. 
In order to overcome the problem of being caught by local 
minimum trap, Kushwaha et al. [34] developed 
Electromagnetic Field Optimization (EFO) algorithm. The 
pulling and pushing mechanisms of EFO help the algorithm 
preserve its diversification and reduce its dependence on initial 
cluster center selection. This approach, especially in terms of 
Rand index (RI), Normalized Mutual Information (NMI) and 
Purity metrics, has a better performance compared to 
competitor algorithms. 
Hashemi et al. [35] used an improved PSO algorithm for the 
purpose of reducing the calculation time of big data clustering 
optimization. This algorithm is an out product of hybridizing 
multi-start pattern reduction mechanism with PSO. This 
mechanism includes both a reduction operator that reduces the 
calculation time and a multi-start operator that increases the 
population diversity and prevents local minimum. Results 
suggest that this approach significantly reduces the execution 
time of clustering. 
Hybrid approaches are generally employed in order to improve 
the clustering performance. For example, Mohammadi and 
Mobarakeh [36] developed a hybrid algorithm named FA-SOM 
by combining Self-Organized Map (SOM) and FA. This algorithm 
calculates the initial cluster centers with the help of FA. The 
cluster centers determined by FA are used to calculate the 
initial weight of SOM. This method has lower Sum of Squared 
Error (SSE) and standard deviation. 
The K-means Clustering-based Grey Wolf Optimizer (KCGWO), 
developed by Premkumar et al. [21], hybridized the traditional 
GWO with the K-means algorithm and added dynamic weight 
factors to enhance the exploration and exploitation capabilities 
of conventional GWO. This approach significantly improved 
clustering performance by solving GWO's premature 
convergence and local minimum trap problems. While KCGWO 
uses K-means concepts to refine initial solutions, it enhances 
diversity by adding a dynamic weight factor to maintain the 
balance between exploration and exploitation throughout the 
optimization process. Comprehensive evaluations on ten 
numerical test functions and eight real-world datasets 
demonstrated that KCGWO exhibits 34% better performance 
compared to the original GWO. 
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Recent years have witnessed significant developments in 
clustering and routing protocols based on meta-heuristic 
algorithms for Wireless Sensor Networks (WSNs). The Meta-
heuristic Optimized Cluster head selection-based Routing 
Algorithm for WSNs (MOCRAW) protocol, proposed by 
Chaurasia et al. [37], has been developed to improve energy 
efficiency and network lifetime by utilizing the capabilities of 
the Dragonfly Algorithm MHAs. The MOCRAW protocol 
employs two sub-processes: the Cluster Head Selection 
Algorithm for optimal cluster head selection and the Route 
Search Algorithm for optimal route discovery. The protocol 
leverages the exploration and exploitation capabilities of the 
Dragonfly Algorithm to optimize parameters such as node 
density, residual energy, and intra-cluster distance, while 
performing optimal path discovery through levy distribution. 
Dynamic neighborhood-based approaches too have been used 
to improve clustering performance. Zeng et al. [38] developed 
a PSO variant named dynamic-neighborhood-based switching 
PSO (DNSPSO) which uses a dynamic neighborhood strategy. 
The purpose of this algorithm is to remove the premature 
convergence problem by determining the best individual and 
global positions. In addition, the diversity of PSO is increased by 
using a new learning strategy and differential evolution 
method. 
Finally, Singh [39]  employed the Harris Hawk’s Optimization 
(HHO) algorithm for data clustering problems and improved 
the search pattern of the algorithm by using chaotic sequence 
numbers. This approach reduces the dependency on random 
numbers and shows superior performance compared to six 
state-of-the-art techniques when tested on twelve comparison 
datasets. 
While existing literature demonstrates that MHAs can provide 
potential solutions for clustering problems, several critical gaps 
remain unaddressed. Recent studies indicate that traditional 
smell intensity modeling in nature-inspired algorithms, 
particularly in HBA, relies on oversimplified inverse square law 
assumptions. However, real-world environmental factors such 
as atmospheric turbulence, humidity gradients, and wind 
patterns create non-linear intensity decay patterns that have 
not been adequately modeled in clustering contexts. 
The proposed CHBA addresses this fundamental limitation by 
introducing exponential decay modeling for smell intensity, 
representing a comprehensive approach to incorporate 
realistic environmental factors in honey badger-based 
clustering algorithms. Furthermore, while existing studies 
focus on HBA's premature convergence and local minimum 
trap problems, the theoretical deficiency in smell intensity 
modeling, which is the root cause of these problems, has been 
overlooked. 
CHBA's stochastic exponential decay approach systematically 
models environmental uncertainties, dynamically optimizing 
the algorithm's exploration-exploitation balance. This 
innovation provides superior performance compared to 
traditional HBA and other meta-heuristic algorithms, 
particularly in complex and imbalanced datasets. 
Future research could focus on applying CHBA to large-scale 
datasets, strengthening the honey phase, and optimizing 
transition mechanisms between digging-honey phases. 
Additionally, adapting the proposed exponential decay 
approach to other swarm intelligence algorithms could also be 
an important research area. 

3  Honey badger algorithm 

In this section, the mathematical model of HBA is introduced. 
HBA consists of exploration and exploitation stages. Therefore, 
it could be perceived as a global optimization algorithm. HBA is 
as follows. 
Step 1: Initialization phase 
While initiating HBA, the number of honey badgers should be 
determined (N: the number of honey badgers). The locations of 
honey badgers are determined according to this number. The 
locations are calculated by the following equation (Eqn. (1)). 
 

𝑥𝑖 = 𝑙𝑏𝑖 + 𝑟1 × (𝑢𝑏𝑖 − 𝑙𝑏𝑖), 
𝑟1 𝑖𝑠 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 [0, 1] 

(1) 

 
Where, 𝑥𝑖  represents solution cluster with N element while 𝑖. 
represents the solution. In other words, 𝑖. stands for the 
location of the honey badger. 𝑢𝑏𝑖  and 𝑙𝑏𝑖  respectively, represent 
the upper and lower limitations of search space. 
Step 2: Defining intensity (I) 
Intensity is related to the distance between the honey badger 
and prey and concentration strength of the prey. 𝐼𝑖  is the smell 
intensity of the prey. The higher the smell intensity is the 
quicker the movement is. This case is modelled by inverse 
square law in HBA. The smell intensity is calculated by the 
following equation (Eqn. (2-4)). 
 

𝐼𝑖 = 𝑟2 ×
𝑆

4𝜋𝑑𝑖
2, 

𝑟2 𝑖𝑠 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 [0, 1] 

(2) 

𝑆 = (𝑥𝑖 − 𝑥𝑖+1)2 (3) 
𝑑𝑖 = 𝑥𝑝𝑟𝑒𝑦 − 𝑥𝑖  (4) 

 
Where, 𝑆 is concentration power, 𝑑𝑖  represents the distance 
between the prey and the honey badger. 
Step 3: Update density factor 
Intensity factor (𝛼) is used to make the transition between 
exploration and exploitation. 𝛼 is generated depending on the 
iteration. The more the iteration increases, the lower the value 
of 𝛼gets. 𝛼 is calculated by using the equation below (Eqn. (5)). 
 

𝛼 = 𝐶 × exp (
−𝑡

𝑡𝑚𝑎𝑥
),  

𝑡𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 
(5) 

 
Where 𝑡 is iteration, 𝑡𝑚𝑎𝑥 is maximum iteration, and 𝐶 is a 
constant and greater than 1 (𝐶 = 2). 
Step 4: Escaping from local optimum 
In HBA, there is an F operator in order to prevent search agents 
from being caught by the local minimum. This F operator has 
the values of -1 and 1 under certain circumstances. F changes 
the direction of the search according to these values. 
Step 5: Updating the agents’ positions 
This section introduces how the locations of honey badgers are 
updated. In HBA, locations are updated in two stages. These two 
stages are explained as follows. 
Step 5-1: Digging phase 
At this stage, to hunt, honey badgers follow a route similar to 
the shape of a cardioid. The mathematical model of digging 
process is as follows (Eqn. (6) and Enq. (7)). 
 

𝑥𝑛𝑒𝑤 = 𝑥𝑝𝑟𝑒𝑦 + 𝐹 × 𝛽 × 𝐼 × 𝑥𝑝𝑟𝑒𝑦 + 

𝐹 × 𝑟3 × 𝛼 × 𝑑𝑖 × |cos(2𝜋𝑟4) × [1 − cos(2𝜋𝑟5)]| 
(6) 

𝐹 = {
1, 𝑟6 ≤ 0.5

−1, 𝑟6 > 0.5
, 𝑟6 𝑖𝑠 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 [0, 1] (7) 
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Where 𝑥𝑛𝑒𝑤 , is the new location of the honey badger. 𝑥𝑝𝑟𝑒𝑦 is 

the location of the prey. In other words, global is the best 
location. 𝛽 represents the ability of honey badgers to find food. 
(𝛽 > 1, 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = 6). 𝑑𝑖  is the distance between the prey and 
the honey badgers. 𝑟3, 𝑟4 ve 𝑟5 are random numbers between 0 
and 1. 𝐹 is a flag that changes the direciton of the search. 
The performance of digging process depends on smell intensity 
(𝐼), the distance between the prey and the honey badger (𝑑𝑖), 
and the impact factor that changes by the iteration (𝛼). 
Moreover, F, which changes the direction of the search, has an 
impact upon digging performance. 
Step 5-2: Honey phase 
Honey badgers follow honeyguide birds. Honey phase is 
developed being inspired by this following process. The 
mathematical model of honey phase is given below (Eqn. (8)). 
 

𝑥𝑛𝑒𝑤 = 𝑥𝑝𝑟𝑒𝑦 + 𝐹 × 𝑟7 × 𝛼 × 𝑑𝑖 ,  

𝑟7 𝑖𝑠 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 [0, 1] 
(8) 

 
Where, 𝑥𝑛𝑒𝑤  is the new location of the honeybager. 𝑥𝑝𝑟𝑒𝑦 is the 

location of the prey. 𝑑𝑖 , 𝛼, and 𝐹 are calculated using 
respectively Eqn. (4), Eqn. (5), and Eqn. (7) In honey phase, it 
could be suggested that HBA conducts the search in a location 
close to 𝑥𝑝𝑟𝑒𝑦 . 

4 Clustering honey badger algorithm 

In this section, Clustering Honey Badger Algorithm (CHBA) is 
introduced. Smell intensity is a significant parameter that 
affects the performance of the algorithm as it is a constituent of 
digging process. In preliminary tests, HBA is applied to the 
clustering problems and the results are saved. It is observed 
that digging phase, in particular, is caught by local minimum 
traps and are not able to improve the results. Hence, it is 
considered that the smell intensity causes HBA to be caught in 
local minimums.  
Smell intensity modelling is a critical component that directly 
affects the performance of CHBA. The inverse square law (Eqn. 
(2)) used in the original HBA assumes that smell intensity 
decreases linearly with distance. While this approach is 
physically valid for phenomena such as sound and light 
propagation, it is not realistic for scent dispersion in nature. In 
real-world conditions, the diffusion of odour molecules is 
significantly influenced by environmental factors such as wind 
speed, atmospheric turbulence, humidity levels, and 
temperature gradients. These factors lead to nonlinear and 
stochastic decay patterns in smell intensity. The proposed 
exponential decay method (Eqn. (9)) has been developed to 
model these realistic environmental conditions more 
accurately. 
 

𝐼𝑒𝑖 = 𝑆𝑒−𝑟8𝑑𝑖 , 𝑟8 𝑖𝑠 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 [0, 1] (9) 
𝑆 = (𝑥𝑖 − 𝑥𝑖+1) (10) 
𝑑𝑖 = 𝑥𝑝𝑟𝑒𝑦 − 𝑥𝑖  (11) 

 
Where 𝐼𝑒𝑖  is the smell intensity. 𝑥𝑝𝑟𝑒𝑦  is the location of the prey, 

𝑥𝑖  is the location of the honey badger. 𝑆 is the concentration 
strength. 𝑑𝑖  represents the distance between the prey and the 
honey badger. The random parameter 𝑟8 ∈ [0,1] simulates the 
stochastic effects of environmental factors. Different values of 
this parameter influence the algorithm’s exploration–
exploitation balance as follows: 
-𝑟8→ 0: Smell intensity decreases slowly, resulting in a wider 
exploration area. 

-𝑟8 → 1: Smell intensity decreases rapidly, leading to a narrower 
exploitation area. 
This exponential model enables the algorithm to avoid local 
minimum traps, particularly during the digging phase, and 
effectively addresses the problem of premature convergence. .  
The smell intensity graphic that the two methods generate 
depending on the location is given in Figure 1. 

 
Figure 1. Comparison of the inverse square law and the 

exponential decay method 

The density factor (𝛼) that enables the transition between 
exploration and exploitation is calculated by the equation 
below (Eqn. (12)). 

𝛼 = 𝐶 × exp (
−𝑡

𝑡𝑚𝑎𝑥
),  

𝑡𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 
(12) 

 
Where 𝑡 is iteration, 𝑡𝑚𝑎𝑥 is maximum iteration, 𝐶 is a constant 
and greater than 1. (𝐶 = 2). 
The equation of digging phase is given below (Eqn. (13) and 
Eqn. (14)). 
 

𝑥𝑛𝑒𝑤 = 𝑥𝑝𝑟𝑒𝑦 + 𝐹 × 𝛽 × 𝐼𝑒 × 𝑥𝑝𝑟𝑒𝑦 + 

𝐹 × 𝑟9 × 𝛼 × 𝑑𝑖 × |cos(2𝜋𝑟10) × [1 − cos(2𝜋𝑟11)]| 
(13) 

𝐹 = {
1, 𝑟12 ≤ 0.5

−1, 𝑟12 > 0.5
, 𝑟12 𝑖𝑠 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 [0, 1] (14) 

 
Where 𝑥𝑛𝑒𝑤  is the new location of the honey badger. 𝑥𝑝𝑟𝑒𝑦 is the 

location of the prey. In other words, it is the global best location. 
𝛽 represents the ability of honey badgers to find food. 
(𝛽 > 1, 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = 6). 𝑟9, 𝑟10 and 𝑟11 are random numbers that 
ranges between 0 and 1. 𝐹 is a flag changing the direction of the 
search. 
The equation of honey phase is below (Eqn. (15)). 
 

𝑥𝑛𝑒𝑤 = 𝑥𝑝𝑟𝑒𝑦 + 𝐹 × 𝑟13 × 𝛼 × 𝑑𝑖 , 

 𝑟13 𝑖𝑠 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 [0, 1] 
(15) 

 
Where, 𝑥𝑛𝑒𝑤  is the new location of the honey badger. 
The selection of key parameters in CHBA is based on both 
theoretical foundations and extensive preliminary 
experiments: 
β parameter (β=6): This parameter represents the foraging 
ability of honey badgers and is adopted from the original HBA 
study [40]. Preliminary tests evaluated β values in the range [4, 
8], and it was observed that β=6 provides the most balanced 
exploration–exploitation performance for clustering problems. 
C parameter (C=2): This constant is used in the calculation of 
the density factor. Ensuring that C>1 guarantees that the 
algorithm performs exploration in the early iterations and 
switches to exploitation in later stages. The value C=2 allows 



 

5 
 

the α factor to decrease appropriately throughout the 
iterations. 
r₈ parameter (r₈ ∈ [0,1]): This random parameter in the 
exponential decay method is regenerated at each iteration. This 
stochastic approach increases diversity in the algorithm’s 
search behavior and prevents local minimum traps caused by 
deterministic dynamics. 
Maximum number of iterations (tmax=500): This value is chosen 
to provide sufficient time for exploration and convergence. In 
clustering problems, 500 iterations offer an adequate time 
window for the algorithm to reach optimal solutions. 
The pseudocode of CHBA is presented in Algorithm 1. 
 

Algorithm 1. Pseudo code of CHBA 

Set parameters 𝑡𝑚𝑎𝑥, 𝑁, 𝛽, 𝐶. 
Initialize population with random positions. 
Evaluate the fitness of each honey badger position 𝑥𝑖using 
objective function and assign to 𝑓𝑖 , 𝑖 ∈ [1,2, … , 𝑁]. 
Save best position 𝑥𝑝𝑟𝑒𝑦 and assign fitness to 𝑓𝑝𝑟𝑒𝑦 

while 𝑡 ≤ 𝑡𝑚𝑎𝑥 do 
   Update the decreasing factor 𝛼 using Eqn. (12) 
   for 𝑖 = 1 𝑡𝑜 𝑁 do 
      Calculate the intensity 𝐼𝑖  using Eqn. (9) 
      if 𝑟 ≤ 0.5 then 
         Update the position 𝑥𝑛𝑒𝑤  using Eqn. (13) 
      else 
         Update the position 𝑥𝑛𝑒𝑤  using Eqn. (15) 
      end if 
      Evaluate new position and assign to  𝑓𝑛𝑒𝑤  
      if 𝑓𝑛𝑒𝑤 ≤ 𝑓𝑖  then 
         𝑥𝑖 = 𝑥𝑛𝑒𝑤 , 𝑓𝑖 = 𝑓𝑛𝑒𝑤  
      end if 
      if 𝑓𝑝𝑟𝑒𝑦 ≤ 𝑓𝑝𝑟𝑒𝑦  then 

         𝑥𝑝𝑟𝑒𝑦 = 𝑥𝑛𝑒𝑤 , 𝑓𝑝𝑟𝑒𝑦 = 𝑓𝑛𝑒𝑤  

      end if 
   end for 
end while 
Return 𝑥𝑝𝑟𝑒𝑦 

 

5 Performance evaluation criteria 

5.1 Accuracy evaluation 

Accuracy is related to the comparison of the label that the 
algorithms assign to an object to the real label of that object. 
Accuracy is defined as the ratio of the number of successful 
assignments to the total number of assignments in the dataset. 
It is one of the most popular external measurements. For an 
algorithm to be acknowledged successful, the accuracy 
parameter is expected to be high. Accuracy is calculated by the 
Eqn. (16). 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚. 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑑𝑎𝑡𝑎 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑜𝑏𝑗𝑒𝑐𝑡𝑠
 (16) 

5.2 F-score evaluation 

F-score is one of the commonly used external measurements 
that is used to compare the success of the algorithms. Having a 
high F-score indicates that there is a good clustering. F-score is 
calculated by the harmonic mean of precision and recall. F-
score is calculated by Eqn. (17). 
 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (17) 

 

5.3 Precision evaluation 

F-score Precision is an important external metric used in 
evaluating clustering performance. Precision measures the 
ratio of data objects within a cluster that actually belong to that 
cluster. In other words, it indicates how many of the examples 
assigned to a cluster by the algorithm are correctly classified. 
Precision is calculated for a specific cluster using the following 
formula (Eqn. (18)): 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
True Positive

True Positive + False Positive
 (18) 

 
Where True Positive represents the number of examples 
correctly assigned to that cluster, and False Positive represents 
the number of examples incorrectly assigned to that cluster. A 
high precision value indicates that the algorithm is reliable in 
cluster assignment. 

5.4 Sensitivity evaluation 

F-score Sensitivity, also known as recall, is another crucial 
external metric for clustering performance evaluation. 
Sensitivity measures the algorithm's ability to correctly identify 
and assign data objects that truly belong to a specific cluster. It  
represents the proportion of actual cluster members that are 
successfully detected and assigned to the correct cluster by the 
algorithm. Sensitivity is calculated for a specific cluster using 
the following formula (Eqn. (19)): 
 

Sensitivity =
True Positive

True Positive + False Negative
 (19) 

 
Where True Positive represents the number of examples 
correctly assigned to the cluster, and False Negative represents 
the number of examples that actually belong to the cluster but 
were incorrectly assigned to other clusters. A high sensitivity 
value indicates that the algorithm has good detection capability 
and successfully captures most of the examples that belong to 
each cluster. 

5.5 Friedman test 

To validate the statistical significance of performance 
differences between algorithms, the Friedman test is employed. 
The Friedman test is a non-parametric statistical test used for 
comparing multiple algorithms across multiple datasets. It is 
particularly suitable for clustering performance evaluation as it 
does not assume normal distribution of the data and can handle 
ties in rankings. 
The test statistic follows a chi-square distribution with (k-1) 
degrees of freedom, where k is the number of algorithms. A p-
value less than 0.05 indicates statistically significant 
differences between algorithms, allowing us to reject the null 
hypothesis and conclude that the observed performance 
differences are not due to random chance. 
The Friedman test results are reported alongside the 
performance comparisons in Table 7, Table 8, Table 9, Table 10 
and  
Table 11 providing statistical validation for the superiority of 
the proposed CHBA algorithm. 
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6 Results and discussion 

In this section, the results of the proposed CHBA are compared 
to the results of six popular MHAs. The algorithms picked for 
comparison are Grey Wolf Optimizer (GWO) [41], Artificial 
Rabbits Optimization (ARO) [42], Arithmetic Optimization 
Algorithm (AOA) [43], Marine Predators Algorithm (MPA) [44], 
Whale Optimization Algorithm (WOA) [45], Honey Badger 
algorithm (HBA) [40]. The reason why these algorithms are 
picked is that they are commonly used in the literature and 
their validity is proved. MHAs are highly sensitive to initial 
parameters. Therefore, adjusting these parameters is a delicate 
process. The parameter adjustments of the algorithms in their 
original articles are made in a detailed way. The values of initial 
parameters of the algorithms used in this study are taken from 
their original articles. The values of initial parameters of the 
algorithms are given in Table 1. 
 
Table 1. Parameter values of CHBA and competing algorithms 

Algorithms Parameters Tmax/N 

GWO 𝑎 = 2 

500/50 

ARO − 
AOA 𝛼 = 5, 𝜇 = 0.5 

MPA 
𝑈 =  0 𝑜𝑟 1, 𝑝 = 0.5, 𝐹𝐴𝐷𝑠 = 0.2 
𝑅 =  𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑒𝑐𝑡𝑜𝑟 [0, 1],  

WOA 
𝑙 = −1 𝑜𝑟 1, 𝑟 = 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑒𝑐𝑡𝑜𝑟 [0, 1],  
𝑎 = 𝑙𝑖𝑛𝑒𝑎𝑟 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 [2, 0] 

HBA 𝛽 = 6, 𝐶 = 2, 𝑟1, … , 𝑟7 = [0,1] 𝑟𝑎𝑛𝑑𝑜𝑚 
CHBA 𝛽 = 6, 𝐶 = 2, 𝑟8, … , 𝑟13 = [0,1] 𝑟𝑎𝑛𝑑𝑜𝑚 

 
The proposed CHBA and competitor algorithms are applied to 
six clustering dataset. Clustering datasets are received from UCI 
data base. Metrics about the datasets are given in Table 2. The 
experiments are carried out on a computer that has 64 GB RAM 
and WINDOWS operating system with CORE I9 processor. 
Algorithms are coded in the language of Python. The iteration 
number of all the algorithms are set to be 500 and 30 
independent running results are saved. 
 

Table 2. Characteristics of seven benchmark clustering 
datasets from UCI repository 

Datasets Clusters Instances Features 

Cancer 2 683 9 
Iris 3 150 4 
CMC 3 1473 9 
Wine 3 178 13 
Vowel 6 871 3 
Glass 6 214 9 
Ecoli 8 336 7 

 
In Table 3, the results of all algorithms based on accuracy 
performance metric are given. The proposed algorithm is the 
most successful one in the datasets of Cancer, Iris, CMC, Wine, 
and Vowel. In Glass dataset, ARO is the most competitive one. 
The performance of HBA is weaker than AOA and MPA in Iris 
dataset while it is weaker than ARO in CMC, Wine, and Vowel 
datasets. The results of CHBA indicates that the method 
suggested for improving HBA is successful. In datasets, ARO has 
consistent results. This case could be explained through the fact 
that it does not have an initial parameter. Not having initial 
parameter could ease the process of adaptation to problems. 
 

Table 3. Accuracy performance comparison of CHBA against 
six meta-heuristic algorithms across seven datasets 

Dataset 
Algorithms 
GWO ARO AOA MPA WOA HBA CHBA 

Cancer 92.56 91.4 90.96 92.52 92.47 94.32 94.86 
Iris 89.78 90.42 93.16 92.47 89.91 92.08 93.94 
CMC 40.23 46.13 38.46 42.75 41.22 44.56 46.33 
Wine 71.83 73.30 68.44 70.74 69.46 72.89 73.36 
Vowel 88.72 88.97 79.81 78.23 77.45 88.63 89.21 
Glass 62.43 67.88 59.84 63.60 61.78 66.58 59.16 
Ecoli 76.19 83.04 71.43 66.07 82.74 82.44 84.52 

 
In Table 4, F-scored based results of all the algorithms are 
given. The proposed algorithm is the most successful one in 
Cancer, Iris, CMC, Wine, and Vowel datasets. In Glass dataset, 
Aro is the optimizer with the best results. Even though CHBA is 
not the most successful algorithm in Glass dataset, it has better 
F-score than HBA in all the datasets. Besides, CHBA, along with 
MPA, is the second-best optimizer in Glass dataset with 0.592 
F-score. In clustering problems, it should be kept in mind that 
F-score is a better measurement than accuracy [1]. 
 
Table 4. F-score performance comparison of CHBA against six 

meta-heuristic algorithms across seven datasets 

Dataset 
Algorithms 
GWO ARO AOA MPA WOA HBA CHBA 

Cancer 0.948 0.926 0.873 0.842 0.914 0.945 0.952 
Iris 0.779 0.785 0.780 0.782 0.779 0.790 0.792 
CMC 0.491 0.490 0.456 0.464 0.456 0.486 0.495 
Wine 0.523 0.525 0.517 0.518 0.523 0.527 0.529 
Vowel 0.652 0.649 0.650 0.649 0.650 0.649 0.654 
Glass 0.580 0.604 0.586 0.592 0.589 0.590 0.592 
Ecoli 0.723 0.741 0.566 0.590 0.598 0.676 0.778 

 
Table 5 presents the results of all algorithms based on the 
precision performance metric. The proposed algorithm 
achieved the most successful results in Cancer, Iris, CMC, Wine,  
Vowel, and Ecoli datasets. In the Glass dataset, ARO was the 
algorithm with the best performance. CHBA's precision values 
were higher than HBA across all datasets. This indicates that 
CHBA's reliability in cluster assignment is better compared to 
HBA. Since the precision metric measures how many of the 
examples assigned to a cluster actually belong to that cluster, it 
can be concluded that CHBA has a lower rate of incorrect cluster 
assignments. The ARO algorithm generally exhibited the 
second-best performance except for the Glass dataset, which 
can be explained by its parameter-free structure's ability to 
adapt to problems. 
 

Table 5. Precision performance comparison of CHBA against 
six meta-heuristic algorithms across seven datasets 

Dataset 
Algorithms 
GWO ARO AOA MPA WOA HBA CHBA 

Cancer 0.813 0.899 0.834 0.884 0.852 0.878 0.920 
Iris 0.949 0.966 0.927 0.944 0.962 0.942 0.972 
CMC 0.396 0.414 0.342 0.381 0.363 0.403 0.428 
Wine 0.703 0.708 0.632 0.652 0.650 0.703 0.739 
Vowel 0.744 0.778 0.699 0.733 0.684 0.773 0.788 
Glass 0.532 0.619 0.528 0.555 0.551 0.602 0.559 
Ecoli 0.704 0.682 0.614 0.598 0.651 0.624 0.742 
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Table 6 presents the results of all algorithms based on the 
sensitivity performance metric. The proposed CHBA algorithm 
achieved the highest sensitivity values in Cancer, Iris, CMC, 
Wine, Vowel, and Ecoli datasets. In the Glass dataset, the ARO 
algorithm provided the best results. Since the sensitivity metric 
indicates how successfully the algorithm can detect examples 
belonging to a specific cluster, CHBA's high sensitivity values 
reveal that the algorithm has strong detection capability. CHBA 
obtained higher sensitivity values than HBA across all datasets, 
demonstrating that the exponential decay method improves the 
algorithm's exploration capability. Particularly in imbalanced 
datasets (CMC, Glass, Ecoli), CHBA's sensitivity performance 
shows that the algorithm can successfully detect minority 
classes as well. 
 
Table 6. Sensitivity performance comparison of CHBA against 

six meta-heuristic algorithms across seven datasets 

Dataset 
Algorithms 
GWO ARO AOA MPA WOA HBA CHBA 

Cancer 0.855 0.892 0.908 0.866 0.843 0.937 0.944 
Iris 0.964 0.944 0.928 0.917 0.929 0.929 0.990 
CMC 0.417 0.427 0.396 0.397 0.385 0.429 0.479 
Wine 0.722 0.745 0.705 0.711 0.720 0.709 0.774 
Vowel 0.815 0.842 0.784 0.745 0.737 0.836 0.865 
Glass 0.607 0.611 0.554 0.617 0.547 0.625 0.606 
Ecoli 0.811 0.743 0.601 0.553 0.776 0.743 0.816 

 
Intra-cluster distance represents the total distance between 
each data point within a cluster and the central point of that 
cluster.  
Table 12 presents intra-cluster distances that the proposed 
algorithm and the competitor algorithms have out of clustering 
datasets. Intra-cluster distances’ being small as the data are 
close to the center of the cluster is a desired case. In the best 
value metric, CHBA is the most successful one in Cancer, Iris, 
Wine, Vowel and Ecoli datasets. In Glass dataset, ARO is the 
algorithm with the most successful result. In the mean value 
metric, there seems to be a similar case. In the intra-cluster 
distance metric, CHBA outperforms HBA in all datasets. This 
could be explained through the fact that CHBA does not get 
caught in local minimum traps. Moreover, ARO outperforms 
HBA. This could be explained through the fact that ARO has a 
structure that is able to adapt to problems, as explained earlier. 
While comparing algorithms, it is not enough to compare only 
the results of the problems. The results should be statistically 
meaningful. Therefore, the accuracy, F-score, and intra-cluster 
distance metrics of the proposed algorithm and the competitor 
algorithms are evaluated according to the average rank values 
of the Friedman test. Table 7 indicates the rank values which 
are calculated by considering the accuracy criterion of all the 
algorithms. The last row of the table shows the average success 
rank of the algorithms in all datasets. CHBA is the algorithm 
with the best clustering performance in the all the datasets. 
ARO and HBA have similar performances. AOA and WOA are the 
least successful optimizers. 
 
Table 7. Friedman test statistical ranking results for accuracy 

metric across seven datasets with p-values 

Dataset 
Algorithms  

GWO ARO AOA MPA WOA HBA CHBA p-value 

Cancer 3 6 7 4 5 2 1 1.484E-5 

Iris 7 5 2 3 6 4 1 3.393E-6 

Dataset 
Algorithms  

GWO ARO AOA MPA WOA HBA CHBA p-value 

CMC 6 2 7 4 5 3 1 2.387E-5 

Wine 4 2 7 5 6 3 1 1.211E-3 

Vowel 3 2 5 6 7 4 1 1.259E-3 

Glass 4 1 6 3 5 2 7 4.726E-5 

Ecoli 5 2 6 7 3 4 1 3.419E-3 

Avg. 4.57 2.86 5.71 4.57 5.29 3.14 1.86  

 

Table 8 shows the average rank values which are calculated by 
considering the F-score of all the algorithms. In the last row of 
the table, there is the average success ranks of all the algorithms 
for all the datasets. ARO is the second with 3.33 score and HBA 
is the third best optimizer with 3.50 score. AOA is the least 
successful algorithm according to F-score. 

 

Table 8. Friedman test statistical ranking results for F-score 
metric across seven datasets with p-values 

Dataset 
Algorithms  

GWO ARO AOA MPA WOA HBA CHBA p-value 

Cancer 2 4 6 7 5 3 1 1.384E-4 

Iris 6.5 3 5 4 6.5 2 1 2.184E-3 

CMC 2 3 6.5 5 6.5 4 1 4.411E-4 

Wine 4.5 3 7 6 4.5 2 1 2.152E-4 

Vowel 2 6 3.5 6 3.5 6 1 2.419E-3 

Glass 7 1 6 2.5 5 4 2.5 3.628E-5 

Ecoli 3 2 7 6 5 4 1 2.028E-3 

Avg. 3.86 3.14 5.86 5.21 5.14 3.57 1.21  

 
Table 9 shows the average rank values calculated according to 
the precision metric. Based on the average success ranking 
across all datasets, CHBA achieved the best clustering 
performance with an average rank of 1.29. The ARO algorithm 
ranked second with an average rank of 2.00, while HBA was the 
third most successful algorithm with an average rank of 3.71. 
The AOA algorithm was the least successful algorithm in terms 
of the precision metric with an average rank of 6.57. CHBA's 
achievement of statistically significant p-values (p < 0.05) 
across all datasets confirms that its superiority in precision 
performance is not due to random chance. Particularly, the very 
low p-values in Cancer (p=2.187E-5) and Iris (p=1.415E-4) 
datasets reveal that CHBA has strong statistical significance in 
terms of precision. 
 
Table 9. Friedman test statistical ranking results for precision 

metric across seven datasets with p-values 

Dataset 
Algorithms  

GWO ARO AOA MPA WOA HBA CHBA p-value 

Cancer 7 2 6 3 5 4 1 2.187E-5 

Iris 4 2 7 5 3 6 1 1.415E-4 

CMC 4 2 7 5 6 3 1 3.148E-3 

Wine 3 2 7 5 6 3 1 3.746E-4 

Vowel 4 2 6 5 7 3 1 8.423E-5 

Glass 6 1 7 4 5 2 3 2.581E-3 

Ecoli 2 3 6 7 4 5 1 1.074E-3 

Avg. 4.29 2.00 6.57 4.86 5.14 3.71 1.29  
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Table 10 presents the average rank values calculated according 
to the sensitivity metric. In the average success ranking across 
all datasets, CHBA demonstrates the superior sensitivity 
performance with an average rank of 1.57. The ARO algorithm 
ranks second with an average rank of 3.00, while HBA ranks 
third with an average rank of 3.14. WOA and AOA algorithms 
exhibited the lowest performance in terms of sensitivity with 
an average rank of 5.57. According to the Friedman test results, 
the p-values obtained across all datasets are less than 0.05, 
indicating that the sensitivity differences between algorithms 
are statistically significant. The p-values in CMC dataset 
(3.296E-5) and Ecoli dataset (2.619E-4) are particularly low, 
demonstrating that CHBA's superiority in sensitivity 
performance is based on strong statistical foundations. 
 

Table 10. Friedman test statistical ranking results for 
sensitivity metric across seven datasets with p-values 

Dataset 
Algorithms  

GWO ARO AOA MPA WOA HBA CHBA p-value 

Cancer 6 4 3 5 7 2 1 3.846E-4 

Iris 2 3 6 7 4 4 1 4.271E-4 

CMC 4 3 6 5 7 2 1 3.296E-5 

Wine 3 2 7 5 4 6 1 5.753E-4 

Vowel 4 2 5 6 7 3 1 3.461E-3 

Glass 4 3 6 2 7 1 5 4.914E-3 

Ecoli 2 4 6 7 3 4 1 2.619E-4 

Avg. 3.57 3.00 5.57 5.29 5.57 3.14 1.57  

 
Table 11 indicates the average rank values which are calculated 
by considering the intra-cluster distances of CHBA and 
competitor algorithms. CHBA is the best optimizer according to 
both the best value metric and the average value metric. 
According to the best value metric, ARO is the second and GWO 
is the third best algorithm. For the average value metric, ARO is 
the second and the HBA is the third best optimizer. The 
Friedman test results show a statistically significant p-value of 
2.713E-4 (p < 0.005), confirming that the observed differences 
in intra-cluster distance performance between algorithms are 
not due to random chance and that CHBA's superiority in 
minimizing intra-cluster distances is statistically validated. 

 

Table 11. Friedman test statistical ranking results for intra-
cluster distance metric across seven datasets with p-values 

Algorithms 
Ranking based 
on average 

Ranking based 
on best 

GWO 4.43 4.14 
ARO 2 2.29 
AOA 5.43 5 
MPA 5 4.57 
WOA 5.57 5.57 
HBA 4.43 5 
CHBA 1.14 1.29 

p-value: 2.713E-4   

 
While these statistical results statistically confirm the 
superiority of CHBA over competing algorithms, analysis of the 
underlying reasons for this performance difference is also 
important. 
The superior performance of CHBA can be attributed to several 
key technical improvements: 

• Enhanced Smell Intensity Modelling 
The exponential decay method (Equation 9) provides a more 
realistic representation of environmental factors compared to 
HBA's inverse square law (Equation 2). While inverse square 
law assumes linear intensity reduction with distance, 
exponential decay captures the stochastic nature of real-world 
scent propagation affected by wind turbulence, atmospheric 
conditions, and humidity variations. This results in more 
diverse search patterns and prevents premature convergence. 

• Improved Exploration-Exploitation Balance 
The stochastic parameter r₈ ∈ [0,1] in the exponential model 
dynamically adjusts the search radius. When r₈→0, the 
algorithm maintains wider exploration areas, while r₈→1 
focuses on intensive exploitation. This adaptive mechanism 
allows CHBA to automatically balance between global and local 
search based on the problem landscape. 

• Prevention of Local Minimum Traps 
Traditional HBA's deterministic intensity calculation often 
leads to repetitive search patterns around the same regions. 
CHBA's stochastic exponential approach generates varying 
intensity values even for identical distances, creating escape 
mechanisms from local optima and enabling discovery of global 
solutions. 

• Enhanced Convergence Characteristic 
The exponential model's mathematical properties ensure 
smoother convergence compared to the abrupt changes in 
HBA's inverse square method, particularly in complex 
clustering landscapes with irregular cluster boundaries and 
overlapping data distributions. 
 

 

Table 12. Intra-cluster distance performance comparison showing best and mean values for CHBA and competing algorithms 

Dataset  GWO ARO AOA MPA WOA HBA CHBA 

Cancer 
Best 3108.462 2964.876 3026.186 2989.758 3076.472 2974.876 2964.647 
Mean 3245.362 2970.128 3032.758 2995.461 3107.563 2994.643 2967.874 

Iris 
Best 97.0283 96.698 96.847 97.142 97.462 97.175 96.642 
Mean 97.285 96.9238 97.044 97.492 97.599 97.253 96.763 

CMC 
Best 5617.846 5538.462 5746.374 5532.855 5673.492 5549.184 5534.749 
Mean 5849.463 5672.184 5973.171 5698.163 5712.841 5687.942 5662.219 

Wine 
Best 16330.182 16332.516 16583.467 16469.263 16486.591 16364.758 16304.402 
Mean 16366.843 16361.728 16676.481 16491.946 16520.137 16402.403 16334.184 

Vowel 
Best 149846.3 149782.2 150461.5 150467.3 151742.9 150763.5 149489.6 
Mean 150023.6 150018.5 150703.2 150602.5 152011.2 151236.1 149869.7 
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Glass 
Best 219.481 217.415 219.472 224.486 220.648 221.794 218.284 
Mean 221.472 218.179 222.99 227.634 224.948 223.576 219.973 

Ecoli 
Best 27.493 25.212 28.882 28.163 25.146 28.882 24.181 
Mean 28.351 26.371 30.214 29.826 26.212 29.915 25.816 

 

7 Conclusion 

This study introduces a novel meta-heuristic approach called 
the Clustering Honey Badger Algorithm (CHBA), designed to 
solve clustering problems. CHBA replaces the inverse square 
law used in the classical Honey Badger Algorithm (HBA) with 
an exponential decay model that more realistically accounts for 
environmental factors in scent propagation. This modification 
helps the algorithm overcome issues of premature convergence 
and entrapment in local optima. 
CHBA was evaluated on seven clustering datasets and 
compared with six well-known meta-heuristic algorithms, 
including GWO, ARO, AOA, MPA, WOA, and the original HBA. 
Performance was assessed using five external metrics: 
accuracy, F-score, precision, sensitivity, and intra-cluster 
distance. The results show that CHBA achieved the highest 
performance in most datasets across all metrics. Furthermore, 
statistical analyses using the Friedman test yielded p-values 
below 0.005 for all metrics, confirming that CHBA's superiority 
is statistically significant rather than due to chance. 
Despite its strengths, CHBA has certain limitations. The 
algorithm has only been tested on single-objective clustering 
problems and static datasets. Additionally, no adaptive 
mechanism has been integrated to automatically tune its 
parameters during execution. 
Future studies may focus on adapting CHBA to multi-objective 
clustering scenarios, extending its applicability to dynamic or 
streaming datasets, and developing self-adaptive versions with 
automatic parameter control. Further improvements may also 
involve enhancing components such as the honey phase or 
hybridizing CHBA with local search strategies to improve 
convergence speed and overall performance. 
In conclusion, CHBA stands out as a competitive alternative in 
the field of meta-heuristic clustering, particularly due to its high 
performance and statistically validated superiority on complex 
and imbalanced datasets. Author contribution statement 
In this study, Author 1 focused on forming the idea, conducting 
experimental studies, evaluating the results, contributing to the 
literature review, spelling, and checking the article's content. 
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