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Abstract

This study proposes an improved version of the Honey Badger Algorithm
(HBA) for solving clustering problems, called the Clustering Honey
Badger Algorithm (CHBA). The main enhancement involves modeling
the smell intensity using an exponential decay function instead of the
inverse square law. This modification reduces the likelihood of getting
trapped in local optima and improves the algorithm’s exploratory
behavior. CHBA was compared against six state-of-the-art meta-
heuristic algorithms, including the original HBA, on seven benchmark
clustering datasets. The evaluation was based on five common external
performance metrics: accuracy, F-score, precision, sensitivity, and intra-
cluster distance. According to the results, CHBA achieved the highest
performance on datasets such as Cancer (94.86% accuracy), Iris
(93.94% accuracy), and Ecoli (84.52% accuracy). Furthermore,
Friedman test results showed that CHBA consistently ranked first in all
performance metrics, with p-values less than 0.005, indicating
statistically significant superiority. These findings demonstrate that
CHBA is a competitive and reliable clustering algorithm, especially in
complex and imbalanced data scenarios.

Keywords: Honey badger algorithm, Clustering problem, Meta-
Heuristic algorithm, Swarm intelligence.
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Bu ¢alisma, kiimeleme problemlerinin ¢éziimiine yonelik olarak Bal
Porsugu Algoritmasinin (HBA) gelistirilmis bir versiyonu olan
Kiimeleme Bal Porsugu Algoritmasi (CHBA)'y1 onermektedir. Yapilan
temel iyilestirme, avin koku yogunlugunu modellemek igin kullanilan
ters kare yasasi - yerine = eksponansiyel azalma fonksiyonunun
uygulanmasidir. Bu sayede algoritmanin yerel minimumlara takilma
olasiligi azaltilmis ve kesif yetenegi artirlmistir. CHBA, yedi farkl
kiimeleme veri kiimesi iizerinde, orijinal HBA dahil alt1 giincel meta-
sezgisel algoritma ile karsilastirilmistir. Karsilastirmalar dogruluk, F-
skor, keskinlik, duyarlilik ve kiime ici mesafe olmak tizere bes yaygin dis
performans metrigine gére yapilmistir. Elde edilen sonuglara gore,
CHBA, ozellikle Cancer (%94,86 dogruluk), Iris (%93,94 dogruluk) ve
Ecoli (%84,52 dogruluk) veri kiimelerinde en yiiksek basariyi
gostermistir. Ayrica, tiim performans metrikleri icin yapilan Friedman
testinde CHBA'nin ortalama siralama degeri en diistik algoritma oldugu
ve p-dederlerinin tiimiinde <0.005 oldugu gortlmiistiir. Bu bulgular,
CHBA'nin karmasik ve dengesiz veri kiimelerinde kullanilabilecek
rekabet¢i  ve giivenilir bir kiimeleme algoritmasi oldugunu
gostermektedir.

Anahtar kelimeler: Bal porsugu algoritmasi, Kiimeleme problemleri,
Meta sezgisel algoritmalar, Siirii zekasl.

1 Introduction

In data mining, clustering seems to be a significant data analysis
method. This technique, which is named unsupervised learning,
aims to discover the structure of data without predefined class
labels [1]. Clustering aims to assemble objects with similar
characteristics within the same group while it assembles
objects with different characteristics within different ones. This
approach plays a significant role upon making decisions by
revealing out hidden patterns and structures within the
dataset, predicting and diagnosing future values [2].

Recently, techniques of clustering have been widely used in
various research areas. The potential of clustering techniques
has been proven in areas like web analysis [3], management [4],
data science [5], medical diagnosis [6], image segmentation [7],
text mining, networks of wireless sensors [8], and financial
analysis [9]. Specifically, text clustering, specifically, stands out
as an important technique in dividing large sets of text
documents into subsets with similar characteristics [10].
Clustering algorithms could be divided into five main categories
according to their working mechanisms: partitional,
hierarchical, density-based, graph-based, and optimization-
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based algorithms [1]. Among these algorithms, partitional
algorithms are particularly popular because of their linear time
complexity [11]. However, these algorithms have
disadvantages due to being sensitive to initial cluster centers,
having difficulty in partitioning overlapping data, and having
performance degradation in high-dimensional datasets [12],
[13].

Lately, researchers prefer Meta Heuristic Algorithms (MHA)
more and more in order to solve clustering problems. These
algorithms have more competitive and effective results
compared to conventional methods [14]. MHAs are developed
being inspired by various sources such as human and animal
behaviors, evolution mechanism of the nature, laws of physics
[15]

Various MHAs like Artificial Bee Colony [16], Teacher Learning
Based Optimization [17], Artificial Chemical Reaction
Optimization [18], Cuckoo Search [19], Cat Swarm Optimization
[20], Grey Wolf Optimizer (GWO) [21], Krill Herd Algorithm
[22], and Water Flow Optimizer [14] are successfully employed
in order to solve clustering problems. These algorithms have
various internal mechanisms to have satisfactory solutions and



they search the solution space through both the local and global
searching strategies.

The popularity of MHAs comes from their advantages like being
less dependent on the dimension of the problem, solution
space, limitations, and variants. In addition to that, they also
have advantages like being able to adapt themselves depending
on the problem area and having effective mechanisms in
solving combinatorial and non-linear problems [18]. However,
these algorithms have some weak points as well. For example,
in some cases, they may be caught by local optimum or have
difficulty in finding the global optimum due to their slow
convergence speed or homogeneous searching behaviour [23],
[24].

In order to overcome such difficulties, researchers apply hybrid
approaches and adaptive strategies. For example, hybrid
approaches which combine global and local search aim to
create a balance between exploration and exploitation [25]. As
evolutionary hybrid algorithms integrate local searching
strategies, population management, and learning strategies,
they enable an effective optimization framework. [26].

In brief, clustering techniques in data mining, especially with
the use of MHAs, increasingly play an important role in
analysing complex and large-scale datasets. Researches in this
area focus on improving the performance of algorithms,
developing new hybrid approaches, and enabling more
effective solutions in various application domains. Future
works are likely to focus on further development of these
algorithms, big data analysis, internet of things, and artificial
intelligence applications. [27], [28]

In this study, an improved version of the Honey Badger
Algorithm (HBA) is proposed in order to solve clustering
problems. This improved version is named Clustering Honey
Badger Algorithm (CHBA). The improvement process focuses
on smell intensity of the prey. HBA consists of a digging phase
and a honey phase. Smell intensity is an important parameter
of the digging phase. In HBA, the smell intensity is modelled by
inverse square law. It means that the smell will fade
proportionally with distance. However, in the nature, besides
distance, there are also external factors like wind or rain. In
order to model all these external factors, this study proposes
exponential decay method. CHBA, is compared to six MHAs. For
comparison, six clustering datasets are employed. The data
allows us to observe that exponential decay method improves
the premature convergence problem of HBA.

The structure of the article is as follows: In section 2,
information on studies regarding clustering problems are
given. HBA and CHBA are introduced respectively in section 3
and 4. In section 5, algorithms' performance evaluation criteria
are presented. Section 6 gives experimental results of CHBA
and competitor algorithms. Section 7 discusses the results.

2 Literature

Data clustering has a significant part in big data analysis.
Conventional clustering algorithms may go through difficulties
like being caught by local minimum, slow convergence, or being
overdependent on initial center selection when they face
complex datasets. Therefore, researchers aim to overcome such
problems and to increase the performance of clustering by
using MHAs.

Combining Particle swarm optimization (PSO) and Fuzzy c-
means (FCM) algorithm is a common approach to increase the
clustering performance. Tiwari et al. [29] have succeeded to
overcome the local minimum problem of FCM by developing a
hybrid algorithm named PSO-FCM. This algorithm has

outstanding results in complex image and multimedia data.
Similarly, Al-Behadili [30] has a better balance between
exploration and exploitation by combining Firefly Algorithm
(FA) and Variable Neighborhood Search (VNS). This approach
has improved the limited exploitation ability of FA and enabled
more compact clusters.

In order to reduce the dependency of the K-Means algorithm on
the initial center selection, various approaches have been
proposed. Xia and Liu [31] developed a K-Means algorithm that
is optimized by genetic algorithm and they had a great accuracy
rate of 98.67% on National Basketball Association (NBA)
scoring data. This optimization reduced the number of
iterations of the algorithm as well. Singh and Kumar [32] aimed
to create a balance between local and global mechanisms by
presenting a meta-heuristic clustering algorithm based on Cat
Algorithm. This algorithm increased diversity by using an
improved solution searching equation and an accelerated
speed equation.

In order to evaluate the structures of data clusters and to deal
with categorical data, Kuo et al. [33]proposed Possibilistic
Fuzzy K-Modes (PFKM) algorithm. This algorithm is further
improved by integrating it with the Sine Cosine Algorithm
(SCA), Genetic Algorithm (GA) and PSO. The results suggest that
especially SCA-PFCM outperforms other algorithms.

In order to overcome the problem of being caught by local
minimum trap, Kushwaha et al. [34] developed
Electromagnetic Field Optimization (EFO) algorithm. The
pulling and pushing mechanisms of EFO help the algorithm
preserve its diversification and reduce its dependence on initial
cluster center selection. This approach, especially in terms of
Rand index (RI), Normalized Mutual Information (NMI) and
Purity metrics, has a better performance compared to
competitor algorithms.

Hashemi et al. [35] used an improved PSO algorithm for the
purpose of reducing the calculation time of big data clustering
optimization. This algorithm is an out product of hybridizing
multi-start pattern reduction mechanism with PSO. This
mechanism includes both a reduction operator that reduces the
calculation time and a multi-start operator that increases the
population diversity and prevents local minimum. Results
suggest that this approach significantly reduces the execution
time of clustering.

Hybrid approaches are generally employed in order to improve
the clustering performance. For example, Mohammadi and
Mobarakeh [36] developed a hybrid algorithm named FA-SOM
by combining Self-Organized Map (SOM) and FA. This algorithm
calculates the initial cluster centers with the help of FA. The
cluster centers determined by FA are used to calculate the
initial weight of SOM. This method has lower Sum of Squared
Error (SSE) and standard deviation.

The K-means Clustering-based Grey Wolf Optimizer (KCGWO),
developed by Premkumar et al. [21], hybridized the traditional
GWO with the K-means algorithm and added dynamic weight
factors to enhance the exploration and exploitation capabilities
of conventional GWO. This approach significantly improved
clustering performance by solving GWO's premature
convergence and local minimum trap problems. While KCGWO
uses K-means concepts to refine initial solutions, it enhances
diversity by adding a dynamic weight factor to maintain the
balance between exploration and exploitation throughout the
optimization process. Comprehensive evaluations on ten
numerical test functions and eight real-world datasets
demonstrated that KCGWO exhibits 34% better performance
compared to the original GWO.



Recent years have witnessed significant developments in
clustering and routing protocols based on meta-heuristic
algorithms for Wireless Sensor Networks (WSNs). The Meta-
heuristic Optimized Cluster head selection-based Routing
Algorithm for WSNs (MOCRAW) protocol, proposed by
Chaurasia et al. [37], has been developed to improve energy
efficiency and network lifetime by utilizing the capabilities of
the Dragonfly Algorithm MHAs. The MOCRAW protocol
employs two sub-processes: the Cluster Head Selection
Algorithm for optimal cluster head selection and the Route
Search Algorithm for optimal route discovery. The protocol
leverages the exploration and exploitation capabilities of the
Dragonfly Algorithm to optimize parameters such as node
density, residual energy, and intra-cluster distance, while
performing optimal path discovery through levy distribution.
Dynamic neighborhood-based approaches too have been used
to improve clustering performance. Zeng et al. [38] developed
a PSO variant named dynamic-neighborhood-based switching
PSO (DNSPSO) which uses a dynamic neighborhood strategy.
The purpose of this algorithm is to remove the premature
convergence problem by determining the best individual and
global positions. In addition, the diversity of PSO is increased by
using a new learning strategy and differential evolution
method.

Finally, Singh [39] employed the Harris Hawk’s Optimization
(HHO) algorithm for data clustering problems and improved
the search pattern of the algorithm by using chaotic sequence
numbers. This approach reduces the dependency on random
numbers and shows superior performance compared to six
state-of-the-art techniques when tested on twelve comparison
datasets.

While existing literature demonstrates that MHAs can provide
potential solutions for clustering problems, several critical gaps
remain unaddressed. Recent studies indicate that traditional
smell intensity modeling in nature-inspired algorithms,
particularly in HBA, relies on oversimplified inverse square law
assumptions. However, real-world environmental factors such
as atmospheric turbulence, humidity gradients, and wind
patterns create non-linear intensity decay patterns that have
not been adequately modeled in clustering contexts.

The proposed CHBA addresses this fundamental limitation by
introducing exponential decay modeling for smell intensity,
representing a comprehensive approach to incorporate
realistic environmental factors in honey badger-based
clustering algorithms. Furthermore, while existing studies
focus on HBA's premature convergence and local minimum
trap problems, the theoretical deficiency in smell intensity
modeling, which is the root cause of these problems, has been
overlooked.

CHBA's stochastic exponential decay approach systematically
models environmental uncertainties, dynamically optimizing
the algorithm's exploration-exploitation balance. This
innovation provides superior performance compared to
traditional HBA and other meta-heuristic algorithms,
particularly in complex and imbalanced datasets.

Future research could focus on applying CHBA to large-scale
datasets, strengthening the honey phase, and optimizing
transition mechanisms between digging-honey phases.
Additionally, adapting the proposed exponential decay
approach to other swarm intelligence algorithms could also be
an important research area.

3 Honey badger algorithm

In this section, the mathematical model of HBA is introduced.
HBA consists of exploration and exploitation stages. Therefore,
it could be perceived as a global optimization algorithm. HBA is
as follows.

Step 1: Initialization phase

While initiating HBA, the number of honey badgers should be
determined (N: the number of honey badgers). The locations of
honey badgers are determined according to this number. The
locations are calculated by the following equation (Eqn. (1)).

x; =1lb; + 1y X (ubl- - lbl‘), 1)
7, is a random number [0, 1]

Where, x; represents solution cluster with N element while i.
represents the solution. In other words, i. stands for the
location of the honey badger. ub; and Ib; respectively, represent
the upper and lower limitations of search space.

Step 2: Defining intensity (I)

Intensity is related to the distance between the honey badger
and prey and concentration strength of the prey. I; is the smell
intensity of the prey. The higher the smell intensity is the
quicker the movement is. This case is modelled by inverse
square law in HBA. The smell intensity is calculated by the
following equation (Eqn. (2-4)).

S
I,: =1r, X Fdiz, (2)
5 is a random number [0, 1]
S = (x; = xi41)? (3)
d; = Xprey — Xi (4)

Where, S is concentration power, d; represents the distance
between the prey and the honey badger.

Step 3: Update density factor

Intensity factor (a) is used to make the transition between
exploration and exploitation. «a is generated depending on the
iteration. The more the iteration increases, the lower the value
of agets. a is calculated by using the equation below (Eqn. (5)).

-t
aszexp( ),

max
tmax = maximum number of iteration

(5)

Where t is iteration, t,,,, is maximum iteration, and C is a
constant and greater than 1 (C = 2).

Step 4: Escaping from local optimum

In HBA, there is an F operator in order to prevent search agents
from being caught by the local minimum. This F operator has
the values of -1 and 1 under certain circumstances. F changes
the direction of the search according to these values.

Step 5: Updating the agents’ positions

This section introduces how the locations of honey badgers are
updated. In HBA, locations are updated in two stages. These two
stages are explained as follows.

Step 5-1: Digging phase

At this stage, to hunt, honey badgers follow a route similar to
the shape of a cardioid. The mathematical model of digging
process is as follows (Eqn. (6) and Eng. (7)).

Xnew = Xprey + F X B X I X Xppey +
F X1y xaxd; X|cos(2mr,) X [1 — cos(2mrs)]|
F= 1, Ts < 0.5
= {—1, re > 0.5

(6)

14 is a random number [0,1] (7)



Where X,,,,,, is the new location of the honey badger. Xprey 1S
the location of the prey. In other words, global is the best
location. 8 represents the ability of honey badgers to find food.
(B > 1,default = 6). d; is the distance between the prey and
the honey badgers. 13, 1, ve r5 are random numbers between 0
and 1. F is a flag that changes the direciton of the search.

The performance of digging process depends on smell intensity
(1), the distance between the prey and the honey badger (d;),
and the impact factor that changes by the iteration ().
Moreover, F, which changes the direction of the search, has an
impact upon digging performance.

Step 5-2: Honey phase

Honey badgers follow honeyguide birds. Honey phase is
developed being inspired by this following process. The
mathematical model of honey phase is given below (Eqn. (8)).

Xnew = Xprey + F X717 X a X d;, )
r7 is a random number [0, 1]

Where, Xy, is the new location of the honeybager. x,.,, is the
location of the prey. d;, @, and F are calculated using
respectively Eqn. (4), Eqn. (5), and Eqn. (7) In honey phase, it
could be suggested that HBA conducts the search in a location
close to Xprey-

4 Clustering honey badger algorithm

In this section, Clustering Honey Badger Algorithm (CHBA) is
introduced. Smell intensity is a significant parameter that
affects the performance of the algorithm as it is a constituent of
digging process. In preliminary tests, HBA is applied to the
clustering problems and the results are saved. It is observed
that digging phase, in particular, is caught by local minimum
traps and are not able to improve the results. Hence, it is
considered that the smell intensity causes HBA to be caught in
local minimums.

Smell intensity modelling is a critical component that directly
affects the performance of CHBA. The inverse square law (Eqn.
(2)) used in the original HBA assumes that smell intensity
decreases linearly with distance. While this approach is
physically valid for phenomena such as sound and light
propagation, it is not realistic for scent dispersion in nature. In
real-world conditions, the diffusion of odour molecules is
significantly influenced by environmental factors such as wind
speed, atmospheric turbulence, humidity levels, and
temperature gradients. These factors lead to nonlinear and
stochastic decay patterns in smell intensity. The proposed
exponential decay method (Eqn. (9)) has been developed to
model these realistic environmental conditions more
accurately.

le; = Se "%, g is a random number [0,1] 9
S =(x; — Xi41) (10)
d,: = Xprey — Xi (11)

Where Ie; is the smell intensity. Xy, is the location of the prey,
x; is the location of the honey badger. S is the concentration
strength. d; represents the distance between the prey and the
honey badger. The random parameter rg € [0,1] simulates the
stochastic effects of environmental factors. Different values of
this parameter influence the algorithm’s exploration-
exploitation balance as follows:

-rg— 0: Smell intensity decreases slowly, resulting in a wider
exploration area.

-rg = 1: Smell intensity decreases rapidly, leading to a narrower
exploitation area.

This exponential model enables the algorithm to avoid local
minimum traps, particularly during the digging phase, and
effectively addresses the problem of premature convergence. .
The smell intensity graphic that the two methods generate
depending on the location is given in Figure 1.

A Inverse Square Law - Exponential Decay

— Inverse Square Law
— Exponential Decay

Smell Intensity

0 1 2 3
Distance

Figure 1. Comparison of the inverse square law and the
exponential decay method

The density factor (a) that enables the transition between
exploration and exploitation is calculated by the equation
below (Eqn. (12)).

—t
a=CX exp( ),
tmax (12)
tmax = maximum number of iteration

Where t is iteration, t,,,4, is maximum iteration, C is a constant
and greater than 1. (C = 2).

The equation of digging phase is given below (Eqn. (13) and
Eqn. (14)).

Xnew = Xprey + F X B X 1e X Xprey +
F X 19X axd; X |cos(2mryo) X [1 — cos(2mry1)]|
112 < 0.5
1, 112 > 0.5

(13)

115 is a random number [0,1] (14)

Where X, is the new location of the honey badger. x,.,, is the
location of the prey. In other words, it is the global best location.
B represents the ability of honey badgers to find food.
(B > 1,default = 6). 19, 119 and r;4 are random numbers that
ranges between 0 and 1. F is a flag changing the direction of the
search.

The equation of honey phase is below (Eqn. (15)).

xnew.= Xprey + F X113 X a xd;, (15)
713 IS @ random number [0, 1]

Where, x,.,, is the new location of the honey badger.
The selection of key parameters in CHBA is based on both
theoretical  foundations and extensive  preliminary
experiments:

3 parameter (3=6): This parameter represents the foraging
ability of honey badgers and is adopted from the original HBA
study [40]. Preliminary tests evaluated 3 values in the range [4,
8], and it was observed that =6 provides the most balanced
exploration-exploitation performance for clustering problems.
C parameter (C=2): This constant is used in the calculation of
the density factor. Ensuring that C>1 guarantees that the
algorithm performs exploration in the early iterations and
switches to exploitation in later stages. The value C=2 allows



the a factor to decrease appropriately throughout the
iterations.

rg parameter (rg € [0,1]): This random parameter in the
exponential decay method is regenerated at each iteration. This
stochastic approach increases diversity in the algorithm’s
search behavior and prevents local minimum traps caused by
deterministic dynamics.

Maximum number of iterations (tmax=500): This value is chosen
to provide sufficient time for exploration and convergence. In
clustering problems, 500 iterations offer an adequate time
window for the algorithm to reach optimal solutions.

The pseudocode of CHBA is presented in Algorithm 1.

Algorithm 1. Pseudo code of CHBA

Set parameters tp,q., N, 5, C.
Initialize population with random positions.
Evaluate the fitness of each honey badger position x;using
objective function and assign to f;, i € [1,2, ..., N].
Save best position x;,¢, and assign fitness to fyrey
while t < t,,,, do
Update the decreasing factor a using Eqn. (12)
fori =1to N do
Calculate the intensity I; using Eqn. (9)
ifr < 0.5 then
Update the position x,,,, using Eqn. (13)
else
Update the position x,,,, using Eqn. (15)
end if
Evaluate new position and assign to f,ew
if few < f; then
Xi = Xnews fi = fnew
end if
if fyrey < fprey then
Xprey = Xnew» finrey = frew
end if
end for
end while
Return x,,..,

5 Performance evaluation criteria

5.1 Accuracy evaluation

Accuracy is related to the comparison of the label that the
algorithms assign to an object to the real label of that object.
Accuracy is defined as the ratio of the number of successful
assignments to the total number of assignments in the dataset.
It is one of the most popular external measurements. For an
algorithm to be acknowledged successful, the accuracy
parameter is expected to be high. Accuracy is calculated by the
Eqn. (16).

num.of correct data objects identified

Accuracy = (16)

total number of data objects

5.2 F-score evaluation

F-score is one of the commonly used external measurements
that is used to compare the success of the algorithms. Having a
high F-score indicates that there is a good clustering. F-score is
calculated by the harmonic mean of precision and recall. F-
score is calculated by Eqn. (17).

F _ 2 X Precision X Recall (17)
score = Precision + Recall

5.3 Precision evaluation

F-score Precision is an important external metric used in
evaluating clustering performance. Precision measures the
ratio of data objects within a cluster that actually belong to that
cluster. In other words, it indicates how many of the examples
assigned to a cluster by the algorithm are correctly classified.
Precision is calculated for a specific cluster using the following
formula (Eqn. (18)):

Precisi True Positive (18)
recision =
True Positive + False Positive

Where True Positive represents the number of examples
correctly assigned to that cluster, and False Positive represents
the number of examples incorrectly assigned to that cluster. A
high precision value indicates that the algorithm is reliable in
cluster assignment.

5.4 Sensitivity evaluation

F-score Sensitivity, also known as recall, is another crucial
external metric for clustering performance evaluation.
Sensitivity measures the algorithm's ability to correctly identify
and assign data objects that truly belong to a specific cluster. It
represents the proportion of actual cluster members that are
successfully detected and assigned to the correct cluster by the
algorithm. Sensitivity is calculated for a specific cluster using
the following formula (Eqn. (19)):

True Positive

(19)

Sensitivity =
y True Positive + False Negative

Where True Positive represents the number of examples
correctly assigned to the cluster, and False Negative represents
the number of examples that actually belong to the cluster but
were incorrectly assigned to other clusters. A high sensitivity
value indicates that the algorithm has good detection capability
and successfully captures most of the examples that belong to
each cluster.

5.5 Friedman test

To wvalidate the statistical significance of performance
differences between algorithms, the Friedman test is employed.
The Friedman test is a non-parametric statistical test used for
comparing multiple algorithms across multiple datasets. It is
particularly suitable for clustering performance evaluation as it
does not assume normal distribution of the data and can handle
ties in rankings.

The test statistic follows a chi-square distribution with (k-1)
degrees of freedom, where k is the number of algorithms. A p-
value less than 0.05 indicates statistically significant
differences between algorithms, allowing us to reject the null
hypothesis and conclude that the observed performance
differences are not due to random chance.

The Friedman test results are reported alongside the
performance comparisons in Table 7, Table 8, Table 9, Table 10
and

Table 11 providing statistical validation for the superiority of
the proposed CHBA algorithm.



6 Results and discussion

In this section, the results of the proposed CHBA are compared
to the results of six popular MHAs. The algorithms picked for
comparison are Grey Wolf Optimizer (GWO) [41], Artificial
Rabbits Optimization (ARO) [42], Arithmetic Optimization
Algorithm (AOA) [43], Marine Predators Algorithm (MPA) [44],
Whale Optimization Algorithm (WOA) [45], Honey Badger
algorithm (HBA) [40]. The reason why these algorithms are
picked is that they are commonly used in the literature and
their validity is proved. MHAs are highly sensitive to initial
parameters. Therefore, adjusting these parameters is a delicate
process. The parameter adjustments of the algorithms in their
original articles are made in a detailed way. The values of initial
parameters of the algorithms used in this study are taken from
their original articles. The values of initial parameters of the
algorithms are given in Table 1.

Table 1. Parameter values of CHBA and competing algorithms

Algorithms Parameters Tmax/N
GWO a=2

ARO -

AOA a=5u=05

U= 0o0rl,p=05FADs =0.2

MPA R = uniform random vector [0,1], 500/50
l=—1o0r1,7v = random vector [0, 1],

WOA a = linear reduction [2,0]

HBA B=6C=2r1,..,15=[01] random

CHBA B=6,C=21g,..,13 =[01] random

The proposed CHBA and competitor algorithms are applied to
six clustering dataset. Clustering datasets are received from UCI
data base. Metrics about the datasets are given in Table 2. The
experiments are carried out on a computer that has 64 GB RAM
and WINDOWS operating system with CORE 19 processor.
Algorithms are coded in the language of Python. The iteration
number of all the algorithms are set to be 500 and 30
independent running results are saved.

Table 2. Characteristics of seven benchmark clustering
datasets from UCI repository

Datasets Clusters Instances Features
Cancer 2 683 9

Iris 3 150 4

CMC 3 1473 9

Wine 3 178 13
Vowel 6 871 3

Glass 6 214 9

Ecoli 8 336 7

In Table 3, the results of all algorithms based on accuracy
performance metric are given. The proposed algorithm is the
most successful one in the datasets of Cancer, Iris, CMC, Wine,
and Vowel. In Glass dataset, ARO is the most competitive one.
The performance of HBA is weaker than AOA and MPA in Iris
dataset while it is weaker than ARO in CMC, Wine, and Vowel
datasets. The results of CHBA indicates that the method
suggested for improving HBA is successful. In datasets, ARO has
consistent results. This case could be explained through the fact
that it does not have an initial parameter. Not having initial
parameter could ease the process of adaptation to problems.

Table 3. Accuracy performance comparison of CHBA against
six meta-heuristic algorithms across seven datasets

Algorithms

GWO ARO AOA MPA WOA HBA CHBA
Cancer 92.56 914 90.96 92.52 92.47 94.32 94.86
Iris 89.78 90.42 93.16 92.47 89.91 92.08 93.94
CMC 40.23 46.13 38.46 42.75 41.22 44.56 46.33
Wine 71.83 73.30 68.44 70.74 69.46 72.89 73.36
Vowel 88.72 88.97 79.81 78.23 77.45 88.63 89.21
Glass 62.43 67.88 59.84 63.60 61.78 66.58 59.16
Ecoli 76.19 83.04 71.43 66.07 82.74 82.44 84.52

Dataset

In Table 4, F-scored based results of all the algorithms are
given. The proposed algorithm is the most successful one in
Cancer, Iris, CMC, Wine, and Vowel datasets. In Glass dataset,
Aro is the optimizer with the best results. Even though CHBA is
not the most successful algorithm in Glass dataset, it has better
F-score than HBA in all the datasets. Besides, CHBA, along with
MPA, is the second-best optimizer in Glass dataset with 0.592
F-score. In clustering problems, it should be kept in mind that
F-score is a better measurement than accuracy [1].

Table 4. F-score performance comparison of CHBA against six
meta-heuristic algorithms across seven datasets

Algorithms

GWO ARO AOA MPA WOA HBA CHBA
Cancer 0.948 0.926 0.873 0.842 0.914 0.945 0.952
Iris 0.779 0.785 0.780 0.782 0.779 0.790 0.792
CMC 0.491 0.490 0.456 0.464 0.456 0.486 0.495
Wine 0.523 0.525 0.517 0.518 0.523 0.527 0.529
Vowel  0.652 0.649 0.650 0.649 0.650 0.649 0.654
Glass 0.580 0.604 0.586 0.592 0.589 0.590 0.592
Ecoli 0.723 0.741 0.566 0.590 0.598 0.676 0.778

Dataset

Table 5 presents the results of all algorithms based on the
precision performance metric. The proposed algorithm
achieved the most successful results in Cancer, Iris, CMC, Wine,
Vowel, and Ecoli datasets. In the Glass dataset, ARO was the
algorithm with the best performance. CHBA's precision values
were higher than HBA across all datasets. This indicates that
CHBA's reliability in cluster assignment is better compared to
HBA. Since the precision metric measures how many of the
examples assigned to a cluster actually belong to that cluster, it
can be concluded that CHBA has a lower rate of incorrect cluster
assignments. The ARO algorithm generally exhibited the
second-best performance except for the Glass dataset, which
can be explained by its parameter-free structure's ability to
adapt to problems.

Table 5. Precision performance comparison of CHBA against
six meta-heuristic algorithms across seven datasets

Algorithms

GWO ARO AOA MPA WOA HBA CHBA
Cancer  0.813 0.899 0.834 0.884 0.852 0.878 0.920
Iris 0.949 0.966 0.927 0.944 0.962 0.942 0.972
CMC 0.396 0.414 0.342 0.381 0.363 0.403 0.428
Wine 0.703 0.708 0.632 0.652 0.650 0.703 0.739
Vowel 0.744 0.778 0.699 0.733 0.684 0.773 0.788
Glass 0.532 0.619 0.528 0.555 0.551 0.602 0.559
Ecoli 0.704 0.682 0.614 0.598 0.651 0.624 0.742

Dataset




Table 6 presents the results of all algorithms based on the
sensitivity performance metric. The proposed CHBA algorithm
achieved the highest sensitivity values in Cancer, Iris, CMC,
Wine, Vowel, and Ecoli datasets. In the Glass dataset, the ARO
algorithm provided the best results. Since the sensitivity metric
indicates how successfully the algorithm can detect examples
belonging to a specific cluster, CHBA's high sensitivity values
reveal that the algorithm has strong detection capability. CHBA
obtained higher sensitivity values than HBA across all datasets,
demonstrating that the exponential decay method improves the
algorithm's exploration capability. Particularly in imbalanced
datasets (CMC, Glass, Ecoli), CHBA's sensitivity performance
shows that the algorithm can successfully detect minority
classes as well.

Table 6. Sensitivity performance comparison of CHBA against
six meta-heuristic algorithms across seven datasets

Algorithms

GWO ARO AOA MPA WOA HBA CHBA
Cancer  0.855 0.892 0.908 0.866 0.843 0.937 0.944
Iris 0964 0.944 0.928 0.917 0.929 0.929 0.990
CMC 0.417 0.427 0.396 0.397 0.385 0.429 0.479
Wine 0.722 0.745 0.705 0.711 0.720 0.709 0.774
Vowel 0.815 0.842 0.784 0.745 0.737 0.836 0.865
Glass 0.607 0.611 0.554 0.617 0.547 0.625 0.606
Ecoli 0.811 0.743 0.601 0.553 0.776 0.743 0.816

Dataset

Intra-cluster distance represents the total distance between
each data point within a cluster and the central point of that
cluster.

Table 12 presents intra-cluster distances that the proposed
algorithm and the competitor algorithms have out of clustering
datasets. Intra-cluster distances’ being small as the data are
close to the center of the cluster is a desired case. In the best
value metric, CHBA is the most successful one in Cancer, Iris,
Wine, Vowel and Ecoli datasets. In Glass dataset, ARO is the
algorithm with the most successful result. In the mean value
metric, there seems to be a similar case. In the intra-cluster
distance metric, CHBA outperforms HBA in all datasets. This
could be explained through the fact that CHBA does not get
caught in local minimum traps. Moreover, ARO outperforms
HBA. This could be explained through the fact that ARO has a
structure that is able to adapt to problems, as explained earlier.
While comparing algorithms, it is not enough to compare only
the results of the problems. The results should be statistically
meaningful. Therefore, the accuracy, F-score, and intra-cluster
distance metrics of the proposed algorithm and the competitor
algorithms are evaluated according to the average rank values
of the Friedman test. Table 7 indicates the rank values which
are calculated by considering the accuracy criterion of all the
algorithms. The last row of the table shows the average success
rank of the algorithms in all datasets. CHBA is the algorithm
with the best clustering performance in the all the datasets.
ARO and HBA have similar performances. AOA and WOA are the
least successful optimizers.

Table 7. Friedman test statistical ranking results for accuracy
metric across seven datasets with p-values

Algorithms

GWO ARO AOA MPA WOA HBA CHBA p-value
Cancer 3 6 7 4 5 2 1 1.484E-5
Iris 7 5 2 3 6 4 1 3.393E-6

Dataset

Algorithms
Dataset

GWO ARO AOA MPA WOA HBA CHBA p-value
CMC 6 2 7 4 5 3 1 2.387E-5
Wine 4 2 7 5 6 3 1 1.211E-3
Vowel 3 2 5 6 7 4 1 1.259E-3
Glass 4 1 6 3 5 2 7 4.726E-5
Ecoli 5 2 6 7 3 4 1 3.419E-3
Avg. 4,57 2.86 5.71 457 529 3.14 1.86

Table 8 shows the average rank values which are calculated by
considering the F-score of all the algorithms. In the last row of
the table, there is the average success ranks of all the algorithms
for all the datasets. ARO is the second with 3.33 score and HBA
is the third best optimizer with 3.50 score. AOA is the least
successful algorithm according to F-score.

Table 8. Friedman test statistical ranking results for F-score
metric across seven datasets with p-values

Algorithms
GWO ARO AOA MPA WOA HBA CHBA p-value

Dataset

Cancer 2 4 6 7 5 3 1 1.384E-4
Iris 65 3 5 4 65 2 1 2.184E-3
CMC 2 3 6.5 5 65 4 1 4.411E-4
Wine 45 3 7 6 45 2 1 2.152E-4
Vowel 2 6 35 6 35 6 1 2.419E-3
Glass 7 1 6 25 5 4 2.5 3.628E-5
Ecoli 3 2 7 6 5 4 1 2.028E-3

Avg. 3.86 3.14 586 5.21 5.14 3.57 1.21

Table 9 shows the average rank values calculated according to
the precision metric. Based on the average success ranking
across all datasets, CHBA achieved the best clustering
performance with an average rank of 1.29. The ARO algorithm
ranked second with an average rank of 2.00, while HBA was the
third most successful algorithm with an average rank of 3.71.
The AOA algorithm was the least successful algorithm in terms
of the precision metric with an average rank of 6.57. CHBA's
achievement of statistically significant p-values (p < 0.05)
across all datasets confirms that its superiority in precision
performance is not due to random chance. Particularly, the very
low p-values in Cancer (p=2.187E-5) and Iris (p=1.415E-4)
datasets reveal that CHBA has strong statistical significance in
terms of precision.

Table 9. Friedman test statistical ranking results for precision
metric across seven datasets with p-values

Algorithms
Dataset

GWO ARO AOA MPA WOA HBA CHBA p-value
Cancer 7 2 6 3 5 4 1 2.187E-5
Iris 4 2 7 5 3 6 1 1.415E-4
CMC 4 2 7 5 6 3 1 3.148E-3
Wine 3 2 7 5 6 3 1 3.746E-4
Vowel 4 2 6 5 7 3 1 8.423E-5
Glass 6 1 7 4 5 2 3 2.581E-3
Ecoli 2 3 6 7 4 5 1 1.074E-3
Avg. 429 2.00 6.57 486 514 3.71 1.29




Table 10 presents the average rank values calculated according
to the sensitivity metric. In the average success ranking across
all datasets, CHBA demonstrates the superior sensitivity
performance with an average rank of 1.57. The ARO algorithm
ranks second with an average rank of 3.00, while HBA ranks
third with an average rank of 3.14. WOA and AOA algorithms
exhibited the lowest performance in terms of sensitivity with
an average rank of 5.57. According to the Friedman test results,
the p-values obtained across all datasets are less than 0.05,
indicating that the sensitivity differences between algorithms
are statistically significant. The p-values in CMC dataset
(3.296E-5) and Ecoli dataset (2.619E-4) are particularly low,
demonstrating that CHBA's superiority in sensitivity
performance is based on strong statistical foundations.

Table 10. Friedman test statistical ranking results for
sensitivity metric across seven datasets with p-values

Algorithms
Dataset

GWO ARO AOA MPA WOA HBA CHBA p-value
Cancer 6 4 3 5 7 2 1 3.846E-4
Iris 2 3 6 7 4 4 1 4.271E-4
CMC 4 3 6 5 7 2 1 3.296E-5
Wine 3 2 7 5 4 6 1 5.753E-4
Vowel 4 2 5 6 7 3 1 3.461E-3
Glass 4 3 6 2 7 1 5 4.914E-3
Ecoli 2 4 6 7 3 4 1 2.619E-4
Avg. 3.57 3.00 5.57 529 557 3.14 1.57

Table 11 indicates the average rank values which are calculated
by considering the intra-cluster distances of CHBA and
competitor algorithms. CHBA is the best optimizer according to
both the best value metric and the average value metric.
According to the best value metric, ARO is the second and GWO
is the third best algorithm. For the average value metric, ARO is
the second and the HBA is the third best optimizer. The
Friedman test results show a statistically significant p-value of
2.713E-4 (p < 0.005), confirming that the observed differences
in intra-cluster distance performance between algorithms are
not due to random chance and that CHBA's superiority in
minimizing intra-cluster distances is statistically validated.

Table 11. Friedman test statistical ranking results for intra-
cluster distance metric across seven datasets with p-values

Algorithms Ranking based Ranking based
on average on best

GWO 443 4.14

ARO 2 2.29

AOA 5.43 5

MPA 5 4.57

WOA 5.57 5.57

HBA 443 5

CHBA 1.14 1.29

p-value: 2.713E-4

While these statistical results statistically confirm the
superiority of CHBA over competing algorithms, analysis of the
underlying reasons for this performance difference is also
important.
The superior performance of CHBA can be attributed to several
key technical improvements:

e Enhanced Smell Intensity Modelling
The exponential decay method (Equation 9) provides a more
realistic representation of environmental factors compared to
HBA's inverse square law (Equation 2). While inverse square
law assumes linear intensity reduction with distance,
exponential decay captures the stochastic nature of real-world
scent propagation affected by wind turbulence, atmospheric
conditions, and humidity variations. This results in more
diverse search patterns and prevents premature convergence.

e Improved Exploration-Exploitation Balance
The stochastic parameter rg € [0,1] in the exponential model
dynamically adjusts the search radius. When rg—0, the
algorithm maintains wider exploration areas, while rg—1
focuses on intensive exploitation. This adaptive mechanism
allows CHBA to automatically balance between global and local
search based on the problem landscape.

e  Prevention of Local Minimum Traps
Traditional HBA's deterministic intensity calculation often
leads to repetitive search patterns around the same regions.
CHBA's stochastic exponential approach generates varying
intensity values even for identical distances, creating escape
mechanisms from local optima and enabling discovery of global
solutions.

e Enhanced Convergence Characteristic
The exponential model's mathematical properties ensure
smoother convergence compared to the abrupt changes in
HBA's inverse square method, particularly in complex
clustering landscapes with irregular cluster boundaries and
overlapping data distributions.

Table 12. Intra-cluster distance performance comparison showing best and mean values for CHBA and competing algorithms

Dataset GWO ARO AOA MPA WOA HBA CHBA
Cancer Best  3108.462 2964.876 3026.186 2989.758 3076.472 2974.876 2964.647
Mean 3245.362 2970.128 3032.758 2995.461 3107.563 2994.643 2967.874
Iris Best  97.0283 96.698 96.847 97.142 97.462 97.175 96.642
Mean 97.285 96.9238 97.044 97.492 97.599 97.253 96.763
CMC Best  5617.846 5538.462 5746.374 5532.855 5673.492 5549.184 5534.749
Mean 5849.463 5672.184 5973.171 5698.163 5712.841 5687.942 5662.219
Wine Best  16330.182 16332.516 16583.467 16469.263 16486.591 16364.758 16304.402
Mean 16366.843 16361.728 16676.481 16491.946 16520.137 16402.403 16334.184
Vowel Best  149846.3 149782.2 150461.5 150467.3 151742.9 150763.5 149489.6
Mean 150023.6 150018.5 150703.2 150602.5 152011.2 151236.1 149869.7




Glass Best  219.481 217.415 219.472 224.486 220.648 221.794 218.284
Mean 221.472 218.179 222.99 227.634 224.948 223.576 219.973
Ecoli Best  27.493 25.212 28.882 28.163 25.146 28.882 24.181
Mean 28.351 26.371 30.214 29.826 26.212 29.915 25.816

7 Conclusion

This study introduces a novel meta-heuristic approach called
the Clustering Honey Badger Algorithm (CHBA), designed to
solve clustering problems. CHBA replaces the inverse square
law used in the classical Honey Badger Algorithm (HBA) with
an exponential decay model that more realistically accounts for
environmental factors in scent propagation. This modification
helps the algorithm overcome issues of premature convergence
and entrapment in local optima.

CHBA was evaluated on seven clustering datasets and
compared with six well-known meta-heuristic algorithms,
including GWO, ARO, AOA, MPA, WOA, and the original HBA.
Performance was assessed using five external metrics:
accuracy, F-score, precision, sensitivity, and intra-cluster
distance. The results show that CHBA achieved the highest
performance in most datasets across all metrics. Furthermore,
statistical analyses using the Friedman test yielded p-values
below 0.005 for all metrics, confirming that CHBA's superiority
is statistically significant rather than due to chance.

Despite its strengths, CHBA has certain limitations. The
algorithm has only been tested on single-objective clustering
problems and static datasets. Additionally, no adaptive
mechanism has been integrated to automatically tune its
parameters during execution.

Future studies may focus on adapting CHBA to multi-objective
clustering scenarios, extending its applicability to dynamic or
streaming datasets, and developing self-adaptive versions with
automatic parameter control. Further improvements may also
involve enhancing components such as the honey phase or
hybridizing CHBA with local search strategies to improve
convergence speed and overall performance.

In conclusion, CHBA stands out as a competitive alternative in
the field of meta-heuristic clustering, particularly due to its high
performance and statistically validated superiority on complex
and imbalanced datasets. Author contribution statement
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