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Abstract  Öz 

In this paper, periodic structure theory with the wave approximation is 
used to present a simple approximate solution technique to characterize 
wave motions propagating in periodic line-supported cylinders in the 
circumferential direction. To develop displacement functions that 
adhere to Floquet's concept, a combination of simple beam functions of 
the bounding modes(BM)of propagation bands(PB) of a periodic beam 
are formulated. This study is developed for the motion type known as a 
plane wave. Consequently, only waves that are simply propagating 
without attenuation are taken into account. The circumferential modes 
of a single periodic curved panel (unit cell) have been defined in terms 
of classical beam functions that satisfy Floquet's wave principle, but the 
axial modes are thought to be sinusoidal waves. Displacement functions 
are used to strain energy and kinetic energy expressions. The Rayleigh-
Ritz technique is then used to generate the stiffness and mass matrices 
of the periodic unit cell. By solving the eigenvalue equation, phase-
frequency relation is obtained. It has also been possible to predict the 
bounding frequencies of the PB for various axial modes of a cylindrical 
shell with a certain circumferential phase constant. The findings are 
then put through comparison with those outlined in the literature. 
Further, the bounding frequency results for the optimum periodic 
curved panel which gives lowest frequency for a given cylindrical shell 
geometry are also found out. It has been found that the current beam 
function with a periodic structure (PS) wave approach can find the 
bounding frequencies (BF) and bounding modes (BM) with reasonable 
accuracy. 

 Bu çalışmada, dalga yaklaşımı ile periyodik yapı teorisi, çevresel 
yönde periyodik çizgi destekli silindirlerde yayılan dalga 
hareketlerini karakterize etmek için basit bir yaklaşım çözüm tekniği 
sunmak için kullanılmaktadır. Floquet'nin kavramına uygun yer 
değiştirme fonksiyonları geliştirmek için, periyodik bir kirişin 
yayılma bantlarının (PB) sınırlar modlarının (BM) basit kiriş 
fonksiyonlarının bir kombinasyonu formüle edilmiştir.  Bu çalışma 
düzlem dalga olarak bilinen hareket türü için geliştirilmiştir. Sonuç 
olarak, yalnızca zayıflama olmaksızın yayılan dalgalar dikkate 
alınmıştır. Tek bir periyodik eğri panelin (birim hücre) çepeçevrgi 
modları, Floquet'in dalga prensibini karşılayan klasik ışın 
fonksiyonları açısından tanımlanmıştır,ancak eksenel modların 
sinüzoidal dalgalar olduğu düşünülmektedir.Yer değiştirme 
fonksiyonları,gerinim enerjisi ve kinetik enerji ifadelerini germek için 
kullanılır. Rayleigh-Ritz tekniği daha sonra periyodik birim hücrenin 
sertlik ve kütle matrislerini oluşturmak için kullanılır. Özdeğer 
denkleminin çözülmesiyle faz-frekans ilişkisi elde edilir. Belirli bir 
çepeçevrgi faz sabiti ile silindirik bir kabuğun çeşitli eksenel modları 
için PB'nin sınırlar frekanslarını tahmin etmek de mümkün olmuştur. 
Elde edilen bulgular daha sonra literatürde belirtilenlerle 
karşılaştırılmıştır. Ayrıca, belirli bir silindirik kabuk geometrisi için en 
düşük frekansı veren optimum periyodik kavisli panel için sınırlar 
frekansı sonuçları da bulunmuştur. Periyodik yapı (PS) dalga 
yaklaşımına sahip mevcut ışın fonksiyonunun sınırlar frekansları (BF) 
ve sınırlar modları (BM) makul bir doğrulukla bulabildiği tespit 
edilmiştir. 

Keywords: Cylindrical shell, Curved panel, Wave propagation, 
Bounding frequency, Beam function, Rayleigh-Ritz method 
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1 Introduction 
The use of the wave propagation method to the dynamics of 
periodic structures has proven to be an effective tool. Some 
alike periodic elements connected end-to-end and/or 
connected side-by-side to form a complete structure are the 
basic constituents of a periodic structure(PS). Engineering 
structures such as high-rise buildings[1], elastic 
foundations[2], elevated guideways, multiple-span bridges, 
train tracks, multiple-bladed turbines, wings and fuselages of 
aeroplane, gas pipelines, and reinforced shells/plates in the 
marine and aerospace industries have been or are treated as 
periodic. 
These structures all can transmit waves in discrete frequency 
bands known as "propagation bands(PB)" or "pass bands," 
while preventing waves in other frequency bands from 
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propagating, known as "attenuation bands". A thorough review 
of the works of literature concerning dynamic assessments of 
PS is provided by Mead[3].  
 
Solid-state physicists were the first to apply the wave 
propagation approach to research the dynamics of periodic unit 
cells [4]. The approach was broadened to take into account the 
study of flexural waves that occur on periodic beam and plate 
structures in engineering [5]-[9] meeting Floquet's criterion. 
The phase constant change with the frequency of infinitely long 
uniform beams and plates on equally spaced rigid supports has 
been estimated to represent the dispersion relationship of 
flexural waves. By discretizing the PB's(dispersion curve), it is 
possible to determine the eigenfrequencies of finite arrays of 
structures [10]. Based on references[6]-[7], there exist 
alternating bands of propagation  of waves and decay for a 
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continuously periodic supporting beam. Mead and Parthan [9] 
successfully determined the PB by using beam functions and 
polynomial functions approximations and analyzing the same 
problem[6] using the periodic structure (PS) technique. Such 
boundary mode products are utilized in [9] to assess the 
multiple supported periodic flat panel's dispersion surfaces 
when exact results are not accessible. 
It is requisite to understand the vibration attributes of 
stiffened/ line supported cylindrical shells and panels to 
analyze acoustic response in engineering structures.. In this 
article an analytical method is proposed to determine the 
bounding frequency of such structures by considering them as 
an arrangement of a number of identical cylindrical curved 
panels using the periodic structure wave approach. Mead and 
Bardell [11]-[12] studied vibration analysis(free) of cylinders 
with distinct stiffeners in the axial direction and 
circumferential direction using shells differential equations 
and PS theory. In comparison with other techniques, this 
method begins by taking the structure's single-bay(unit cells) 
dispersion curve into account before calculating the natural 
frequencies of the whole system. Shell vibration problem has 
also been studied using the PS concept combined with 
hierarchical FEM [13]-[14] for obtaining dynamic 
characteristics (Propagation constants/surfaces versus 
frequency) of orthogonally simple line supports (LS) and 
stiffened cylinders. Accorsi and Bennett have applied FEM to 
determine dispersion curves/surfaces in orthogonal stiffened 
cylinders. Identical axially and circumferentially spaced 
stiffeners were assumed, and complex, real and imaginary 
propagations constants are determined for a single periodic 
unit [15]. Laurent et al. [16] propose a semi-analytical 
technique for modeling the vibroacoustic of immersed cylinder 
strengthened by periodic axisymmetric frames. It is calculated 
how Floquet’s harmonics and support position affects acoustic 
emission. The basic procedure to compute the free wave 
propagation in a 1-D(one dimensional) or quasi-1D periodic 
continuous system, uniform cylindrical shells, and flat panels 
have been employed. The PS theory with FEM has been used to 
study free wave propagation and generate dispersion relations 
in periodic flat panels[17], unsupported cylindrical shells [18]-
[19] and circular ring[20], axial periodic LS (line supports) 
infinitely long curved panels[21], and orthogonally periodic LS 
curved panels[22]. Whether a structure is an open structure or 
a closed structure, the dispersion curve remains the same.  
Each periodic element is a segment of the shell between two 
successive nodal points in the case of a cylindrical shell. The 
most obvious choice in the periodic structure analysis of shell 
structure is the optimum periodic curved panel, which is 
proposed [19],[24]. This optimum (ideal) periodic angle 
corresponds to the lowest frequency of the curved panel 
(optimum) dimension vibrating in the first axial and first 
circumferential modes. Additionally, this will be the whole 
circular cylindrical shell's lowest frequency. Flutter analysis of 
isolated flat and curved panels is presented using high 
precision efficient arbitrary triangular finite element method 
for different constraint conditions on its edges [25]. The PS 
wave technique has been used to study the 1-D axial wave 
motions in a long periodically supported cylindrical curved 
panel exposed to supersonic airflow along its generator [26]. All 
of a finite structure's dynamic attributes can be determined 
from a single phase-frequency curve or surface owing to 
periodic structure analysis. Free wave propagation computing 
has been adapted to cylindrical shells with periodic reinforced 
stiffeners/line supports (LS) along the circumference or length 

[11]-[14]. It has been adapted for an unstiffened shell [18]-[19] 
and the results have been correlated with those obtained by 
classical Warburton's approach [27]. Even though these 
phenomena are widely understood, the majority of literature 
papers on periodic engineering structures focus on the 
development of theoretical and computational methodologies 
to understand their wave propagation behavior and features. 
 
Therefore, in this paper,a new formulation has been presented 
using the periodic structure theory wave approach(plane wave 
motion type) with the Rayleigh-Ritz method to obtain the 
bounding natural frequency of a thin cylindrical structure with 
periodic line supports (LS) along the circumference as depicted 
in Figure 1a. Here, classical beam functions[9],[28] satisfying 
the Floquet’s wave boundary periodicity conditions[3]-[4] have 
been used for circumferential modes of a periodic unit cell i.e. 
curved panel as shown in Figure 1b, while the axial modes are 
assumed as sinusoidal waves. The natural vibration 
frequencies of a complete cylindrical shell/curved panel have 
been obtained by the wave method using the PS concept. The 
BF (bounding frequencies) are found for different axial modes 
of propagation bands(PB) or phase-frequency curves. The 
findings are compared with the literature data[13]. Further, the 
bounding frequency results for the optimum periodic curved 
panel which gives lowest frequency for a given cylindrical shell 
geometry are found out. It is found that the current beam 
function with wave approach able to find the bounding 
frequencies(BF) and bounding modes(BM) with reasonable 
accuracy. The advantage of this method is matrices of small 
order need to be evaluated. This research can be used to 
improve the design and analysis of cylindrical shells that are 
better resistant to vibration and has the potential to be applied 
to other engineering problems related to wave propagation  in 
periodic structures to predict the stop band (bounding 
frequency(BF) of propagation band or phase-frequency curve) 
based on the unit cell modeling. 

2 Mathematical formulation 
The analysis of (PS) periodic structures (such beams, plates, or 
shells) introduces a parameter (δ) termed as "propagation 
constant" by using the "Floquet principle," which connects the 
vectors at two corresponding sets 'a' and 'b' in adjacent 
repeating elements: 
 
                  Vector at ‘b’ =(Vectorat ‘a’)*exp(δ)                               (1) 
 
where the propagation constant, δ = δr + iδi   ( i =-1 ) is the 
basic complex form. The phase lag or lead of the vibration at 
point 'b' concerning point 'a' (Figure 1 a) is represented by the 
portion δi (𝜖) that is imaginary, whilst the real part (δr) denotes 
the spatial increment or decrement in amplitude. 
 
In the current work using the periodic structure theory in a 
wave approach and beam functions that satisfy the wave 
boundary requirements following Floquet's principle, the 
natural frequencies have been predicted for a cylindrical shell 
with circumferential periodic LS as shown in Figure 1a.  
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Figure 1.    (a) Cylindrical shell showing periodic unit (a-b-c-d)    

(b) Curved panel (one periodic unit cell) 

 
Displacement functions that fulfil Floquet’s principle are 
formed by combining simple beam functions of a periodic 
multi-supported beam’s BM of PB. The LS and the circular edge 
supports are assumed as simple, and radially non-deflecting. 
For this study, the beam functions (f and g) [9] that meet wave 
boundary requirements are used as follows: 

𝑓(𝜂, 𝜀) = sin (
𝜖

2
) sin(𝜋𝜂) − (

𝑖

2
) cos (

𝜖

2
) sin(2𝜋𝜂) 

           𝑔(𝜂, 𝜀) = cos (
𝜖

2
) ϕs(𝜂) + 𝑖(𝛾2) sin (

𝜖

2
)ϕs+1 (𝜂)        (2a) 

𝛾2 = (
𝜆𝑠

𝜆𝑠+1
)2 ;  𝜖 = 𝜖𝑦 

 
The modes chosen are (i) the bound modes(sinusoidal modes) 
for axial wave motion, and (ii) the bound modes (beam function 
modes that satisfy Floquet's wave principle for the 
wave motion along the circumference, viz:     
                

𝑈(𝜉, 𝜂, 𝑡) = 𝑢(𝜉, 𝜂)𝑒𝑖𝜔𝑡; 𝑢 = (𝑢1𝑓 + 𝑢2𝑔) cos(𝑟𝜋𝜉) 

    𝑉(𝜉, 𝜂, 𝑡) = 𝑣(𝜉, 𝜂)𝑒𝑖𝜔𝑡; 𝑣 = (𝑣1𝑓,𝜂 + 𝑣2𝑔,𝜂) sin(𝑟𝜋𝜉)        (2b) 

𝑊(𝜉, 𝜂, 𝑡) = 𝑤(𝜉, 𝜂)𝑒𝑖𝜔𝑡; 𝑤 = (𝑤1𝑓 + 𝑤2𝑔) sin(𝑟𝜋𝜉) 

where s is an odd positive integer. s is the fixed-end beam 
function of the nth mode[28],[21].  
 
=y/b and ξ=x/a. η and ξ vary from 0 to 1.`𝑓,𝜂 and  𝑔,𝜂  are the 

first differential of the function f and g with respect to . 
 
The above displacement functions meet Floquet's principle (Eq. 
(1)) for the periodic (repeating) element in Figure 1b of the 
cylindrical shell in Figure 1a as follows: 
 
i) Along the generator of periodic cylindrical panel 
 

𝑢,𝜉(0, 𝜂) = 𝑢,𝜉(1, 𝜂) = 0; 

𝑣(0, 𝜂) = 𝑣(1, 𝜂) = 0; 
𝑤(0, 𝜂) = 𝑤(1, 𝜂) = 0 ; 

𝑤,𝜉𝜉(0, 𝜂) = 𝑤,𝜉𝜉(1, 𝜂) = 0; 

                                                                                           (3) 

Where, 𝑢,𝜉 =
𝜕𝑢

𝜕𝜉
; 𝑤,𝜉𝜉 =

𝜕2𝑤

𝜕𝜉2
 

                                                                            

 
ii) Along LS for the flexural wave's for circumferential 

propagation 
 

𝑢(𝜉, 1) = 𝑢(𝜉, 0)=0; 𝑢,𝜂(𝜉, 1) = 𝑢,𝜂(𝜉, 0)𝑒−𝑖𝜖; 

𝑢,𝜂𝜂(𝜉, 1)=𝑢,𝜂𝜂(𝜉, 0)𝑒−𝑖𝜖; 

𝑣(𝜉, 1) = 𝑣(𝜉, 0) = 0; 𝑣,𝜂(𝜉, 1) = 𝑣,𝜂(𝜉, 0)𝑒−𝑖𝜖  ; 

𝑤(𝜉, 1) = 𝑤(𝜉, 0) = 0;    𝑤,𝜂(𝜉, 1) = 𝑤,𝜂(𝜉, 0)𝑒−𝑖𝜖; 

𝑤,𝜂𝜂(𝜉, 1) = 𝑤,𝜂𝜂(𝜉, 0)𝑒−𝑖𝜖 

                                                                                                                   (4) 
 

Where, 𝑢,𝜂 =
𝜕𝑢

𝜕𝜂
,  𝑢,𝜂𝜂 =

𝜕2𝑢

𝜕𝜂2
, 𝑣,𝜂 =

𝜕𝑣

𝜕𝜂
,  𝑣,𝜂𝜂 =

𝜕2𝑣

𝜕𝜂2
, 

𝑤,𝜂 =
𝜕𝑤

𝜕𝜂
,      𝑤,𝜂𝜂 =

𝜕2𝑤

𝜕𝜂2
 

       
     The component phase difference between neighbouring LS is  
       represented by the phase constant (𝜖 =δi = 𝜖y), where x, y are 
       the coordinates of a point with the left support as the origin. 

 
Rayleigh quotient for a single beam's frequency employing  
approximately complex mode waveforms with a known 
imaginary part (i.e. phase parameter or constant)  𝜖y [3] of the 
propagation constant (δ) for a plane wave: 

 

                                        𝜔2 =
∫ 𝐸𝐼|

𝑑2𝑤

𝑑𝑥2 |
2

𝑑𝑥
𝐿

0

∫ 𝜌𝐴|𝑤|2
𝐿

0
 𝑑𝑥

                                         (5) 

 
The integrals' modulus signs cause this to be different from the 
typical Rayleigh quotient. The cylindrical panels' changed 
strain and kinetic energy expressions are shown below: 
 
The strain energy (U) of the periodic unit cell/repeating 
element in Figure 1b is: 
   𝑈 =

𝐶 ∫ ∫

[
 
 
 
 
 
 
 
 (𝐷1

2(|𝑢,𝜉|)
2
) + (𝐷2

2(|𝑣,𝜂|)
2
) + (𝐷2(|𝑤||𝑣,𝜂|

∗
+ |𝑣,𝜂||𝑤|∗)) + (|𝑤|)2 + (𝜈𝐷1𝐷2(|𝑢,𝜉||𝑣,𝜂|

∗
+ |𝑣,𝜂||𝑢,𝜉|

∗
))

+(𝜈𝐷1(|𝑤||𝑢,𝜉|
∗
+ |𝑢,𝜉||𝑤|∗)) + (0.5𝜈′𝐷1

2(|𝑣,𝜉|)
2
) + (0.5𝜈′𝐷1𝐷2(|𝑣,𝜉||𝑢,𝜂|

∗
+ |𝑢,𝜂||𝑣,𝜉|

∗
))

+(0.5𝜈′𝐷2
2(|𝑢,𝜂|)

2
) + (𝛽𝐷1

4(|𝑤,𝜉𝜉|)
2
) + (𝛽𝐷2

4(|𝑤,𝜂𝜂|)
2
) − (𝛽𝐷2

3(|𝑤,𝜂𝜂||𝑣,𝜂|
∗
+ |𝑣,𝜂||𝑤,𝜂𝜂|

∗
))

+ (𝛽𝜈′𝐷2
2(|𝑣,𝜂|)

2
) + (𝛽𝜈𝐷1

2𝐷2
2(|𝑤,𝜉𝜉||𝑤,𝜂𝜂|

∗
+ |𝑤,𝜂𝜂||𝑤,𝜉𝜉|

∗
)) − (𝛽𝜈𝐷1

2𝐷2(|𝑤,𝜉𝜉||𝑣,𝜂|
∗
+ |𝑣,𝜂||𝑤,𝜉𝜉|

∗
))

+(2𝜈′𝐷1𝐷2(|𝑤,𝜉𝜂|)
2
− (2𝛽𝜈′𝐷1

2𝐷2(|𝑤,𝜉𝜂||𝑣,𝜉|
∗
+ |𝑣,𝜉||𝑤,𝜉𝜂|

∗
)) + (2𝛽𝜈′𝐷1

2(|𝑣,𝜉|)
2
) ]

 
 
 
 
 
 
 
 

1

0

1

0
𝑑𝜉𝑑𝜂 

                                                                                                                                                                                                
                                                                                                     (6) 

Where, 𝐶 =
𝐸ℎ𝑎𝑏

2𝑅2(1−𝜈2)
 ;  𝐷1 =

𝑅

𝑎
 ;  𝐷2 =

𝑅

𝑏
 ; (1 − 𝜈) =  𝜈′ 

 
A periodic unit cell /repeating element's kinetic energy is: 
                    

          𝑇 =
𝜌ℎ𝑎𝑏𝜔2

2
∫ ∫ [|𝑢|2

1

0
+ |𝑣|2

1

0
+ |𝑤|2]𝑑𝜉𝑑𝜂                         (7) 

           
The formulas for strain energy and kinetic energy make use of 
the displacement functions (Eq. (2)). The periodic unit cell 
stiffness and mass matrices are then derived using the 
Rayleigh-Ritz technique.  
 
Rayleigh quotient is  Ω2 =  𝑈/ 𝑇∗          
 

 𝑇∗ =
𝜌ℎ𝑎𝑏

2
∫ ∫ [|𝑢|2

1

0
+ |𝑣|2

1

0
+ |𝑤|2]𝑑𝜉𝑑𝜂                       (8) 

 
Using the Rayleigh-Ritz method,  

Line supports(LS) 
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𝜕Ω2

𝜕𝑞𝑖
∗ = 0 ; (𝑞𝑖 = 𝑢1, 𝑢2, 𝑣1, 𝑣2, 𝑤1, 𝑤2),one eventually obtains      

([𝐾] − Ω2[𝑀]){𝑞} = {0}                                                            (9) 

 
      For non-trivial solutions (if and only if the determinant of a 

matrix is zero), the linear algebraic equations of motion are 
found for the coefficients qi (i=1.....6) as follows: 
 
                            det | [𝐾] − Ω2[𝑀] | = {0}                   (10) 
 
Ω is dimensionless frequency. We now have (6 x 6) stiffness and 
(6 x 6) mass matrices. These are as follows. 

2.1 Stiffness matrix 

[𝐾] = 0.5𝐶[𝐾𝑖𝑗]                                              (11) 

Where, 𝐾𝑖𝑗   are  

𝐾11 = (𝑟2𝜋2𝐷1
2𝐼1 + 0.5𝜈′𝐷2

2𝐼4); 
 

𝐾12 = (𝑟2𝜋2𝐷1
2𝐼2 + 0.5𝜈′𝐷2

2𝐼5) ; 
                  

 𝐾13 = 𝑟𝜋(𝜈𝐷1𝐷2𝐼7 + 0.5𝜈′𝐷1𝐷2𝐼4); 
 

𝐾14 = 𝑟𝜋(𝜈𝐷1𝐷2𝐼8 + 0.5𝜈′𝐷1𝐷2𝐼5); 
 

 𝐾15 = 𝑟𝜋(𝜈𝐷1𝐼1); 𝐾16 = 𝑟𝜋(𝜈𝐷1𝐼2); 
 

 𝐾22 = (𝑟2𝜋2𝐷1
2𝐼3 + 0.5𝜈′𝐷2

2𝐼6); 
 

𝐾23 = 𝑟𝜋(𝜈𝐷1𝐷2𝐼8 + 0.5𝜈′𝐷1𝐷2𝐼5); 
 

𝐾24 = 𝑟𝜋(𝜈𝐷1𝐷2𝐼9 + 0.5𝜈′𝐷1𝐷2𝐼6); 
 

𝐾25 = 𝑟𝜋(𝜈𝐷1𝐼2); 𝐾26 = 𝑟𝜋(𝜈𝐷1𝐼3);  
 

  𝐾33 = 𝑟2𝜋2[0.5(1 + 𝛽𝜈′)𝐷2
2𝐼10 + 𝜈′(0.5 + 2𝛽)𝐷1

2𝐼4]; 
 

𝐾34 = 𝑟2𝜋2[0.5(1 + 𝛽𝜈′)𝐷2
2𝐼11 + 𝜈′(0.5 + 2𝛽)𝐷1

2𝐼5] ; 
 

𝐾35 = 𝐷2[(1 − 𝛽𝑟2𝜋2𝐷1
2)𝐼7 − 𝛽𝐷2

2𝐼10 − 𝛽𝜈′𝑟2𝜋2𝐷1
2𝐼4]; 

 
𝐾36 = 𝐷2[(1 − 𝛽𝑟2𝜋2𝐷1

2)𝐼8 − 𝛽𝐷2
2𝐼11 − 𝛽𝜈′𝑟2𝜋2𝐷1

2𝐼5]; 
 

𝐾44 = [(1 + 𝛽𝜈′)𝐷2
2𝐼12 + 𝜈′(0.5 + 2𝛽)𝑟2𝜋2𝐷1

2𝐼6]; 
 

𝐾45 = 𝐷2[(1 − 𝛽𝑟2𝜋2𝐷1
2)𝐼7 − 𝛽𝐷2

2𝐼10 − 𝛽𝜈′𝑟2𝜋2𝐷1
2𝐼4] ; 

 
𝐾46 = 𝐷2[(1 − 𝛽𝑟2𝜋2𝐷1

2)𝐼9 − 𝛽𝐷2
2𝐼11 − 𝛽𝜈′𝑟2𝜋2𝐷1

2𝐼6]; 
 

𝐾55 = [(1 + 𝛽𝑟4𝜋4𝐷1
4)𝐼1 + 𝛽𝐷2

4𝐼10 + 2𝛽𝜈′𝑟2𝜋2𝐷1
2𝐷2

2𝐼4 +
𝛽𝜈𝑟2𝜋2𝐷1

2𝐷2
2𝐼7]; 

 
𝐾56 = [(1 + 𝛽𝑟4𝜋4𝐷1

4)𝐼2 + 𝛽𝐷2
4𝐼11 + 2𝛽𝜈′𝑟2𝜋2𝐷1

2𝐷2
2𝐼5 +

𝛽𝜈𝑟2𝜋2𝐷1
2𝐷2

2𝐼8]; 
𝐾66 = [(1 + 𝛽𝑟4𝜋4𝐷1

4)𝐼3 + 𝛽𝐷2
4𝐼12 + 2𝛽𝜈′𝑟2𝜋2𝐷1

2𝐷2
2𝐼6 +

 𝛽𝜈𝑟2𝜋2𝐷1
2𝐷2

2𝐼9]; 

The integration 𝐼𝑖  are 

𝐼1 = ∫ 𝑓𝑓∗1

0
𝑑𝜂; 𝐼2 = ∫ 𝑓𝑔∗1

0
𝑑𝜂; 𝐼3 = ∫ 𝑔𝑓∗1

0
𝑑𝜂; 

     𝐼4 = ∫ 𝑓,𝜂𝑓,𝜂
∗1

0
𝑑𝜂; 𝐼5 = ∫ 𝑓,𝜂𝑔,𝜂

∗1

0
𝑑𝜂 = ∫ 𝑔,𝜂𝑓,𝜂

∗1

0
𝑑𝜂;  

 𝐼6 = ∫ 𝑔,𝜂𝑔,𝜂
∗1

0
𝑑𝜂; 

𝐼7 = ∫ 𝑓𝑓,𝜂𝜂
∗1

0
𝑑𝜂 = ∫ 𝑓,𝜂𝜂𝑓∗1

0
𝑑𝜂;    

     𝐼8 = ∫ 𝑓𝑔,𝜂𝜂
∗1

0
𝑑𝜂 = ∫ 𝑔𝑓,𝜂𝜂

∗1

0
𝑑𝜂; 

 𝐼9 = ∫ 𝑔𝑔,𝜂𝜂
∗1

0
𝑑𝜂 = −𝐼6; 

 𝐼10 = ∫ 𝑓,𝜂𝜂𝑓,𝜂𝜂
∗1

0
𝑑𝜂;  

 𝐼11 = ∫ 𝑓,𝜂𝜂𝑔,𝜂𝜂
∗1

0
𝑑𝜂 = ∫ 𝑔,𝜂𝜂𝑓,𝜂𝜂

∗1

0
𝑑𝜂;  

 𝐼12 = ∫ 𝑔,𝜂𝜂𝑔,𝜂𝜂
∗1

0
𝑑𝜂; 

Where, 𝑓,𝜂  and 𝑔,𝜂  are the first differential of the functions f and 

g with respect to η; 𝑓,𝜂𝜂  and 𝑔,𝜂𝜂 are the second differential of 

the functions f and g with respect to η.  𝑓∗, and 𝑔∗ are complex 
conjugate of functions f and g respectively.    

2.2 Mass matrix    

[𝑀𝑖𝑗] = [

𝐼1̅ 0 0

0 𝐼2̅ 0

0 0 𝐼3̅

]                                                                  (12) 

Where, 

𝐼1̅ = [
𝐼1 𝐼2
𝐼2 𝐼4

]; 𝐼2̅ = [
𝐼4 𝐼5
𝐼5 𝐼6

]; 𝐼3̅ = [
𝐼1 𝐼2
𝐼2 𝐼3

]. 

Equation (9) does not provide information about attenuated 
(or complex conjugate) waves. This is because 𝜖y is assumed to 
be purely imaginary. This situation is fulfilled when a "plane 
wave" propagates with a frequency(ω)across a line-supported 
cylinder along the y-axis. Each periodic unit oscillates in the 
same complex mode w(ξ,η)e iωt [3] but there will be a phase gap 
of 𝜖y between adjoining unit cells in the direction of the 
circumference (y or η).  
The parameters used in the analysis are as follows. The 
geometrical parameters of curved panel(axial length(a), radius 
of curvature(R), circumferential length (b) and thickness(h)) 
and material parameter(Young’s modulus of elasticity (E), 
density(ρ), Poisson's ratio (ν)) are supplied to analysis. The 
value of b(circumferential length of periodic curved panel or 
unit cell) will be used in the computation according to periodic 
angle(θ) of curved panel. Then, the value of phase constant 𝜖y 
can vary from 0 to  and the corresponding dimensionless 
frequency Ω is acquired from eigen value equation (9) for a 
given value of the axial mode(r). The dimensionless frequency 
value Ω at 𝜖y = 0 and , are the bounding frequency of 
propagation band or phase-frequency curve. 

3 Results and discussions 

The geometric information and material attributes required to 
generate numerical results were taken from [11],[13]. The 
material is Aluminum and has the following properties: 
The modulus E is 70 GPa, the Poisson's ratio(ν) is 0.3, and the 
material density is 2700 kg/m3. The axial length a = 0.135 m, 
the shell and panel radius R = 0.381 m, and the thickness h = 
0.559 mm are the dimensional parameters of the curved panel 
and the full cylinder (Figure 1).  
To compare the outcomes of the current formulation, 
eigenvalues of equation (9) were computed for a cylinder with 
randomly selected 44 equi-space circumferential simple (LS) 
line supports (periodic unit, i.e. curved panel with π/22 
radian subtended angle at center)[13]. The dimensionless 
frequency Ω is determined using the present beam function 
with PS formulations for a given 𝜖y (0 to π) for different axial 
modes (r=1,2). The phase-frequency curves (propagation 
bands, PB I and PB II) are shown in Figure 3 for periodic angle 
π/22 radians. The BF compare well with the bounding 
frequencies of first two propagation bands (PB) obtained using 
the hierarchical function [13] and presented in Table 1. 
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(a)                                                 (b) 

Figure 3. The first (PB I) and second(PB II) propagation bands 
(phase-frequency curve) for cylindrical shell with periodic 
angle θ = π/22 for axial mode (a) r =1, (b) r=2 
 
The advantage of present method is that it requires evaluating 
matrices of small order. This method can envisage the 
dispersion relation in the "pure PB with no attenuations”. This 
follows from the hypothetical presumption of the δr = 0, which 
is generally not true.PB-associated attenuation was previously 
described by an exact analysis by Mead & Bardell [11].  
 
The finite element code [17], [22]-[25] using high precision 
triangular finite elements of Cowper et al. [29] and analytical 
beam functions code[24] are used to find the frequencies (Ω) of 
the curved plate for various edge constraints. Simply- 
supported four edges: SSSS; clamped four edges: CCCC; simply 
supported straight sides clamped curved sides: SCSC; and 
simply supported curved sides straight sides clamped: CSCS; 
are various forms of edge constraints considered [24]. The 
results for the aforementioned frequencies for various axial (r) 
and circumferential (s) modes are well compared with the [13]. 
Now, these bounding frequencies (BF) obtained from the 
present formulation are compared with single curved panel 
free vibration frequencies with different edge boundary 
conditions and presented in Table 1. 

 
Table 1. Comparison of BF (Ω) of  phase-frequency curves or 

               propagation bands(PB 1 and PB II) with periodic angle 
     of /22 radians for    r=1, 2 with literature[13,24]. 

 

 
 
 
 
 

(+Upper values are present PS approach; *Middle values are 
of[13]; and **lower values are dimensionless frequency and 
corresponding modes of single curved panel[24]; Lower values 
are modes (r, s) in the axial and circumferential  direction of  the 

single curved panel with SSSS or CSCS  edges boundary 
conditions[24]). 
 
There is a clear subtended angle in a curved panel in the earlier 
study [18],[19],[24] where the frequency is lowest. An optimum 
or ideal curved panel is one with this specific subtended angle 
(optimum angle). As a result, it becomes clear that choosing the 
repeating cells for shell analysis that would correspond to the 
lowest natural frequency with SSSS boundary conditions is 
reasonable. The lowest axial mode (r=1) of a circular, 
cylindrical shell as shown in Figure 1 with simply supported 
ends has the lowest radial vibration frequency, but the number 
of circumferential modes depends on the ratios of the shell's 
axial length (a) to its radius (R), as well as its thickness (h) to 
its radius (R) [27]. 
 
It was demonstrated in Figure 4a that the smallest Ω of value of 
0.2516 corresponds to r=1 and N (circumferential full 
waves)=18 for radial vibration [18],[19],[24] using 
Warburton's [27] method and taking the dimensions(a/R, h/R) 
of  ref.[13] for circular cylindrical shell with simply supported 
ends.  The natural frequency (Ω)versus subtended angle(θ) at 
center of a cylindrically curved panel with the SSSS boundary 
condition and the same a/R and h/R ratios as that of full 
cylindrical shell is shown in Figure  4b. It is evident that for a 
given a/R and h/R ratio, one subtended angle is obtained with 
the natural frequency Ω =0.2516 being lowest [18],[19],[24]. 
The corresponding subtended angle is /18 radians (optimum 
periodic angle 0) and oscillates in the r=1(first axial) and 
s=1(circumferential mode). The corresponding panel with 
subtended angle /18 radians(10 degrees) is called the 
optimum periodic curved panel. However, in reference [11]-
[13], the periodic unit cell (curved plate) angles are presumed 
to be aleatory i.e. /22 radians and /33 radians. 
 

  
Figure 4. (a) Radial free vibration frequency(Ω) (a) versus 

circumferential full waves(N) of full circular cylindrical shell 
using Warburton approach [19],(b) versus subtended angle(θ) 

in the center of cylindrically curved panel[19] 
 

The findings of the boundary frequencies (Ω) for a curved panel 
with the ideal(optimum) periodic angle 0 = /18(optimum) 
are  shown in Table 2 for the first propagation band and first 
two axial modes(r= 1, 2).The minimum frequency Ω=0.2516 is 
determined, which corresponds to the curved panel with four 
edges simply-supported(SSSS) boundary conditions and 
vibrating in first axial(r=1) and circumferential(s=1) mode. 

There is a coherent  gap between Ω =0.2516 (0 = /18 radians, 

optimum) and Ω =0.2724 ( =/22 radian). From the discussion 
above, it can be inferred that if the chosen periodic curved panel 
angle is /22 radian [11]-[13] for this particular geometry, the 
lowest bounding frequency (fundamental) Ω = 0.2516 is 
missed.  
 

 Dimensionless bounding frequencies( Ω ) and modes of 
propagation bands(PB)  at phase constants 𝜖 y =0 and  𝜖 y = 

 PB I PB II 

r 𝜖𝑦 = 0 𝜖𝑦 = 𝜋 𝜖𝑦 = 0 𝜖𝑦 = 𝜋 

1 0.8556+ 

0.8556* 

0.8548** 

s=2,(SSSS)  

0.2724+ 

0.2724* 

0.2724** 

s=1,(SSSS) 

0.9521+ 

0.9517* 

0.9521** 

 s=1,(CSCS) 

1.3712+ 

1.3162* 

1.3164** 

 s=2,(CSCS) 
 
2 

 
0.9616+ 
0.9636* 
0.9661** 

s=2,(SSSS)   

 
0.5046+ 
0.5039* 
0.5021** 

s=1,(SSSS) 

 
0.9917+ 
0.9887* 
0.9921** 

s=1, (CSCS) 

 
1.4623+ 
1.4164* 
1.4257** 

s=2,(CSCS) 
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The bounding frequency results are compared with published 
literature data[19,24] and found good agreement. The modes of 
bounding frequencies are identified and shown for first two  
axial modes(r=1,2) in Table 2.  
 

Table 2. Comparison of BF( Ω )of phase-frequency curve or  
             first propagation band(PB I)for optimum periodic 

                angle(/18 radians) and r=1,2 with references[19,24]. 

(+Upper values are present approach; Bracket values are 
reported in[19]; *values are frequencies obtained in [24] 
corresponding to optimum periodic angle.Lower values are 
modes(r, s)in the axial and circumferential direction of  the 
single curved panel with SSSS edges boundary conditions[24]). 
Further, the bounding frequency can be generated for different 
periodic angles. However, for a particular geometry (a/R,h/R) 
of shell, one can not get the lowest fundamental frequency for 
other periodic angles(θ) except θ0=π/18 i.e. 10 
degrees(optimum periodic angles). The natural frequency 
versus subtended angle in the center of curved panel cross 
section is depicted in Figure 4b with four edges simply 
supported. One can get the boundary frequency( lower point of 
PB I as shown in Figure 3, at  𝜖y = ) for other periodic angles 
using Figure 4b graph. However, these are not significant for 
the design and analysis of cylindrical shell structures. 

4 Conclusions 

A new formulation of the wave propagation in a multi 
circumferential LS supported cylindrical curved panel or a 
complete shell in bending vibrations is described in this study 
using an approximate solution. The periodic structure theory in 
a wave approach is used to describe the wave motion in 
circumference of cylindrical shell with periodic circumferential 
line supports. Plane wave motion type has been considered. 
Consequently, only simply propagating waves are considered 
with no attenuation. Bounding modes  of a periodic beam's 
propagation bands are coupled with basic beam functions to 
generate displacement functions that satisfy Floquet's theory. 
Derive the stiffness and mass matrices of periodic unit cell 
(single periodic curved panel) using the Rayleigh-Ritz 

approach. To find the phase-frequency relation, use the 
aforementioned technique to solve the eigenvalue problem. 
The bounding frequencies and bounding modes results of the 
current beam function with periodic structure formulations are 
well comparable to those of the literature-available hierarchical 
functions. This validates the proposed present formulation. The 
benefit of this approach is that only small-order matrices need 
to be examined. To identify the vibration modes, these 
bounding frequencies from the current formulation are 

compared with single curved panel free vibration 
dimensionless frequencies with various edge boundary 
conditions. Next, the findings of the boundary frequencies for 
the periodic curved panel's with an optimum angle which is the 
lowest frequency for the specified cylindrical shell geometry 
(a/R, h/R) have been demonstrated. The limitation of present 
work is the type of wave considered does not provide 
information about attenuated (or complex conjugate) waves. 
This is because ϵy is assumed to be purely imaginary. The 
objective of future study is to extend the current methodology 
for determining the propagation surfaces of an orthogonal grid 
of a line-supported cylindrical shell. 
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