

Pamukkale Univ Muh Bilim Derg, XX(X), XX-XX, 20XX

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi

 Pamukkale University Journal of Engineering Sciences

1

Comparative analysis of malicious android-based software detection with
trending metaheuristic algorithms

Kötü amaçli android tabanli yazılım tespitinin trend meta-sezgisel
algoritmalar ile karşılaştırılmalı analizi

Mehmet Şirin BEŞTAŞ1*, Özlem BATUR DİNLER2

1Mehmet Şirin Beştaş, Siirt University, Faculty of Engineering, Department of Computer Engineering, Siirt, Turkey.
mehmetsirinbestas@gmail.com

2Özlem Batur Di̇nler, Siirt University, Faculty of Engineering, Department of Computer Engineering, Siirt, Turkey.
o.b.dinler@siirt.edu.tr

Received/Geliş Tarihi: 27.01.2024
Accepted/Kabul Tarihi: 30.04.2024

Revision/Düzeltme Tarihi: 06.04.2024 doi: 10.5505/pajes.2024.93646
Research Article/Araştirma Makalesi

Abstract Öz

Today, Android malware threats and attacks are rapidly increasing due
to their use and popularity. Therefore, the need for systems effectively
detecting malware is also increasing day by day. This study proposes the
use of various trending metaheuristic algorithms for optimal feature
selection (FS) in the detection of Android malware. For this purpose, the
ten most prominent recent metaheuristic algorithms (RMAs) for feature
selection such as Artificial Bee Colony Algorithm (ABC), Firefly
Algorithm (FA), Grey Wolf Optimisation (GWO), Ant Lion Optimisation
(ALO), Crow Search Algorithm (CSA), Sine Cosine Algorithm (SCA),
Whale Optimisation Algorithm (WOA), Salp Swarm Algorithm (SSA),
Harris Hawk Optimization (HHO) and Butterfly Optimization Algorithm
(BOA) were used for feature selection in this study. The efficiency of
these algorithms is evaluated with five different machine learning (ML)
methods on two well-known datasets of Android applications (Drebin-
215 and Malgenome-215). The results obtained are also compared with
five well-known and widely used conventional metaheuristic algorithms
(CMAs) for solving this problem. Extensive experimental results show
that incorporating RMA into Android malware detection is a valuable
approach.

 Günümüzde Android kötü amaçlı yazılım tehdit ve saldırıları,
kullanımları ve popülerlikleri nedeniyle hızla artmaktadır. Bu nedenle,
kötü amaçlı yazılımları etkili bir şekilde tespit edebilecek sistemlere
olan ihtiyaç da gün geçtikçe artmaktadır. Bu çalışma, Android kötü
amaçlı yazılımların tespitinde optimum özellik seçimi (FS) için trend
olan çeşitli meta-sezgisel algoritmaların sarmalama yöntemi ile
kullanılmasını önermektedir. Bu amaçla, bu çalışmada Yapay Arı
Kolonisi Algoritması (ABC), Ateş Böceği Algoritması (FA), Gri Kurt
Optimizasyonu (GWO), Karınca Aslanı Optimizasyonu (ALO), Karga
Arama Algoritması (CSA), Sinüs Kosinüs Algoritması (SCA), Balina
Optimizasyon Algoritması (WOA), Salp Sürü Algoritması (SSA), Harris
Şahin Optimizasyonu (HHO) ve Kelebek Optimizasyonu Algoritması
(BOA) gibi özellik seçiminde en öne çıkan on güncel meta-sezgisel
algoritma (RMA) kullanılmıştır. Bu algoritmaların verimliliği, Android
uygulamalarının iyi bilinen iki veri kümesi (Drebin-215 ve Malgenome-
215) üzerinde beş farklı makine öğrenmesi (ML) yöntemi ile
değerlendirilmiştir. Ayrıca, elde edilen sonuçlar bu problemin
çözümünde yaygın olarak kullanılan ve iyi bilinen beş geleneksel
metasezgisel algoritma (CMAs) ile de karşılaştırılmıştır. Kapsamlı
deneysel sonuçlar, RMA’nın Android kötü amaçlı yazılım tespitine dahil
edilmesinin değerli bir yaklaşım olduğunu göstermektedir.

Anahtar kelimeler: Android, Feature selection, Machine learning,
Malicious software, Recent Metaheuristic algorithms

 Keywords: Android, Özellik seçimi, Makine Öğrenmesi, Kötü amaçli
yazilim, Güncel meta-sezgisel algoritmalar

1 Introduction

Android is the most widely used operating system (OS) among
mobile devices. In this respect, Android plays a key role in
communities, as it accounts for a large proportion of users
worldwide and has a large market share. In this respect, cyber
risk and security management on Android devices is of critical
importance, given the huge impact that cybercrime can bring to
Android users. Especially malware is one of the most dangerous
threats to the cyber management processes at the highest level
[1]. Malware is malicious software (e.g. viruses, ransomware,
trojan horses, and spyware) that can damage or execute
harmful actions on devices [2]. Malware attacks cause
devastating effects such as theft of information, corruption of

*Corresponding author/Yazişilan Yazar

files and infection of the entire device network [3]. In this
regard, the detection of Android malware is among the most
effective techniques used to eliminate or reduce the risks and
dangers posed by Android malicious activities.

 In recent years, machine learning (ML) based security
solutions have been extensively used in Android malware
detection [4]. However, while ML methods train their models
on high-dimensional feature datasets, the fact that the dataset
may contain many irrelevant and redundant features has a
huge impact on the computational and time complexity and can
also affect the performance of the algorithm [5]. In this case, the
burden of ML methods needs to be lightened [6]. Therefore,
Feature Selection (FS) can be used to minimise complexity,
irrelevant and redundant data [7]. FS is the process of finding

mailto:o.b.dinler@siirt.edu.tr

2

the smallest possible number of features describing a data set
in the same way as the original features. Feature selection is a
very important pre-processing step for data mining techniques
as it improves the performance of the prediction process in
terms of speed and accuracy and also provides a better
understanding of the stored data. The success of the FS process
depends on a balance between two important factors: selecting
the minimum number of features and ensuring maximum
accuracy in the results [8]. Feature selection methods can be
categorised into two main groups: filter and wrapper methods.
Filter methods are not dependent on the learning or
classification algorithm. Constantly, the emphasis is placed on
the overall attributes of the data. Wrapper methods interact
with the classifier and invariantly contain the classification
algorithm. In contrast to the filter, these methods require more
computation power and yield more precise outcomes in
comparison to filter methods.

 Metaheuristic algorithms have been recently developed and
implemented in literature to tackle FS challenges: Genetic
Algorithm (GA) [9], Simulated Annealing (SA) [10], Ant Colony
Optimization (ACO) [11], Differential Evolution (DE) [12],
Particle Swarm Optimization (PSO) [13], ABC [14], FA [15],
GWO [16], SSA [17] and so on. These algorithms are preferred
in order to produce results with low costs at high accuracy and
speed of the problems encountered [18].

 Literature survey revealed that many researchers have
used various metaheuristic algorithms for feature selection to
detect Android malware. However, most researchers have
investigated their analyses with a limited number of
algorithms. In addition, there is no detailed research on the
current metaheuristic algorithms proposed for feature
selection in this study. At the same time, there is very little
literature on the use of our proposed state-of-the-art
metaheuristic algorithms for Android malware detection.
Various methods have been proposed, mostly based on GA.
Therefore, in this paper, we compare the performance of ten
RMAs (ABC, FA GWO, ALO, CSA, SCA, WOA, SSA, HHO, and BOA)
in detecting Android malware and the results are also
compared with five well-known CMAs (GA, PSO, SA, ACO and
DE) which are widely used in solving this problem [19] in the
study.

The contribution of this study is summarised below:

1. In this study, the performance and effectiveness of the
ten most prominent recent metaheuristic algorithms
for feature selection in the literature in solving the
Android malware detection problem are investigated
for the first time.

2. Evaluation of the Android malware detection system
providing the best Performance based on ten recent
metaheuristic algorithms, two datasets (Drebin-215
and Malgoneme-215), two validation options (70:30
and 10-k cross validation), and five ML methods (DT,
KNN, NB, RF and SVM) in various scenarios.

3. Determining the Android malware detection system
providing the best performance.

4. A comprehensive empirical investigation of which
recent metaheuristic algorithms exhibit a competitive
approach to FS.

The article's structure comprises the following sections: The
focus of Section 2 is on related works. The proposed model is
presented in Section 3. Section 4 contains the results of all

experiments are analysed and discussed in detail. Finally,
Section 5 has the conclusion.

2 Literature review

In recent years, many studies have proposed various methods
for Android malware detection based on RMAs for feature
selection to improve performance and reduce costs. If the
studies to be carried out in this field are mentioned; Beştaş and
Dinler [19] used five conventional metaheuristic algorithms
such as GA, PSO, SA, ACO and DE, which are the most widely
used in the literature for FS, to select the features that best
represent benign and malicious applications on Android. They
evaluated the efficiency of these algorithms on the Drebin-215
and MalGenome-215 datasets using DT, KNN, NB, RF and SVM
ML methods. According to the results obtained from the
experiments, DE-based feature selection and RF method have
better accuracy rates. Naic et al. [20] utilized the Bald Eagle
Search and Sailfish Optimisation techniques in combination
with KNN, DT, SVM, Linear Regression (LR), and RF ML models.
The results demonstrated a high accuracy rate of 98.92% when
applied to Application Programming Interface (API) call
squence dataset. Sharma [21] proposed a hybrid methodology
for the detection of Android malware. This strategy integrates
the feature-important Water Drop Algorithm (FIWDA) with a
ML algorithm. In order to assess the consequences of the
suggested paradigm, we specifically focused on two openly
accessible Android malware datasets, namely Drebin-215 and
Malgoneme-215. The experimental findings exhibit significant
promise. The F1 score achieved was 98%, with accuracy, recall,
and precision also reaching 99%. The error rates, specifically
RMSE and MAE, were as low as 0.1184 and 0.014, respectively.
Varma et al. [22] proposed Bat optimization approach for
wrapper-based FS on the CICInvesAndMal2019 benchmark
dataset. This approach enhances precision by 1.67 percent and
eliminates 87.41% of superfluous characteristics in a
permission-based Android malware dataset with a high
number of dimensions. Chakravarthy [23], an investigation was
conducted into nature-inspired wrapper-based metaheuristic
algorithms, including whale, firefly, and bat optimisation
algorithms, in order to analyse various Android permission
patterns that are appropriate for the detection of malware. An
assortment of classification algorithms based on ML are utilized
in the assessment process, including LR, SVM, KNN, DT, RF,
Gradient Boosting, and Extreme Learning Machine. In an
experiment utilising the high-dimensional
CICInvesAndMal2019 feature dataset comprising 4115
features, the FA-based wrapper-based feature selection
achieved an enhanced classification accuracy of 95.28%,
surpassing the performance of alternative algorithms in this
regard. Bhagwat and Gupta [24] introduced a metaheuristic FS
technique that incorporates the Gravitational Search Algorithm
(GSA) and the GA. Additionally, they introduced a correlation
known as the Correlated Genetic GSA (CGGSA). The XGBoost
and AdaBoost approaches can be utilized to optimise the
characteristics for malware detection. Elkabbash et al. [25]
introduced a novel detection approach that relies on the
Random Vector Functional Link (RVFL) optimizer. This
approach incorporates Artificial Jellyfish Search optimization
and subsequently reduces the dimensionality of Android
applications' attributes. JavaScript was employed to ascertain
an optimal configuration of the RVFL in order to enhance the
performance of the classifier. Alzubi et al. [26] investigated and
evaluated a novel machine learning approach for the purpose
of detecting Android malware. The method employed in this

3

study incorporates the utilization of HHO and SVM techniques.
The HHO technique is specifically designed to enhance the
hyperparameter optimisation of the SVM technique. The SVM
algorithm is responsible for classifying malware based on the
most effective method selected, and it generates optimal
solutions for the weighted features. A methodology was
presented by Sulaiman et al. [27] that provided a methodology
that utilized the WOA for feature selection of permission-based
features in Android applications to increase their classification
accuracy. The outcomes of their study exhibited enhanced
precision in comparison to the most recent detection models
that employed WOA without feature selection.

3 Proposed Model

The block diagram of the proposed method is shown in Figure
1. In the recommended method, it was aimed to design an
Android malware detection system based on the wrapper-
based feature selection technique with ten metaheuristic
algorithms that have a recent and widespread use in literature

studies. The list of these metaheuristic algorithms and their
usage are provided in Figure 2. Here, a KNN classifier is used as
an evaluator and Recent Metaheuristic Algorithms (RMAs) are
used to obtain the optimal feature subset. The KNN classifier
determines the accuracy of the features (feature subset)
selected by all RMA algorithms. Here, since KNN is the most
preferred classifier, we consider the KNN classifier to evaluate
the accuracy of the selected feature subset. The representation
of Figure 2 is the "Wrapper Feature Selection with RMAs" block
in Figure 1. For this purpose, FS, training, and testing were
applied to the Drebin-215 and Malgoneme-215 datasets of
Android applications. Then, we shuffle the samples in the
relevant dataset and use as input to the wrapper-based FS
technique using RMAs. Then, the optimum feature subset
obtained was given as input to five different ML methods.

Figure 1. The architecture of the proposed model.

4

Figure 2. The wrapper feature selection approach with RMAs classifier with KNN.

3.1 Dataset

Android malware detection results of the proposed approach
are tested using Drebin-215 [28, 29] and MalGenome-215 [29,
30] datasets. The Drebin-215 dataset was created in 2013,
whereas the MalGenome-215 dataset was created in 2012. The
Drebin-215 dataset comprises of which 5.560 are malicious and

9476 are benign samples. The MalGenome-215 dataset
comprises of which 2,539 are benign and 1.560 are malicious
samples. Both datasets contain 215 features with two classes
benign or malware. Table 1 shows the details of each of the
datasets.

Table 1. Details of datasets.

Datasets Year Number of Samples Number of Bening
Samples

Number of
Malware Samples

Number of
Features

Drebin-215[23] 2013 15036 9476 5560 215
Malgenome-215[25] 2010-2012 3799 2539 1260 215

3.2 Shuffling Data

Data shuffling is a preprocessing technique often used to
improve model learning. Data shuffling was used to address
potential problems arising from patterns in the sequential
order of the training samples that could lead to overfitting [31].

3.3 Wrapper Feature Selection with RMAs

FS is commonly considered as an initial phase where the most
optimal subset of features is identified from a pool of all
available features. The RMA approaches employ a population of
potential solutions. The solutions are typically expressed as a
vector of values. In metaheuristic FS algorithms, solutions are
typically represented using a binary encoding of a certain
collection of features [32, 33]. For instance, when considering a
subset of features with seven dimensions (1,0,1,1,1,0,1), the
value 1 indicates that the feature is selected, whereas the value
0 indicates that the feature is not picked [32]. A candidate
solution is observed in the form of its chosen features. Five out
of the seven features that comprise this solution are chosen.

When making preparations for an optimisation procedure, it is
imperative to give careful consideration to the objective
function. Feature selection, as a wrapper technique, aims to
preserve only a minimal set of features while maximizing the
accuracy of the learning algorithm. This study aims to minimise

both the selection ratio and the classification error rate through
the use of the following objective function [32,33]:

 Objecive function = αER+𝛽 (
|𝑆|

|𝑂|
) (1)

where ER is the classification error, |S| is the length of the
selected subset of features, and |O| is the length of all features
in the original dataset. α = [0,1] and 𝛽 = (1 - α).

3.3.1 Artifcial Bee Colony Optimization (ABC)

 It is a natural adaptive metaheuristic algorithm inspired by the
foraging and communication behaviour of honeybees [14]. The
ABC comprises three groups of bees: employed bees, onlookers,
and scout bees. An onlooker bee chooses a food source in
accordance with the probability value 𝑃𝑖 linked to that
particular food source [34-35].

𝑃𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑖
𝑆𝑁
𝑖=1

(2)

where 𝑓𝑖𝑡𝑖 represents the fitness value of solution i; SN
represents the number of food sources which is equal to the
number of employed bees or onlooker bees[35].

5

In order to generate a candidate food position 𝑉𝑖 = [𝑣𝑖,1, 𝑣𝑖,2 , . . .

, 𝑣𝑖,𝐷] from the old one 𝑋𝑖= [𝑥𝑖,1, 𝑥𝑖,2 , . . . , 𝑥𝑖,𝐷] in memory, ABC
algorithm employs the subsequent expression [35]:

𝒗𝒊𝒋 = 𝒙𝒊𝒋 + ∅𝒊𝒋(𝒙𝒊𝒋 − 𝒙𝒌𝒋), (3)

where k ∈ {1, 2, . . . , SN} and j ∈ {1, 2, . . . , D} are randomly
selected indexes; k must be distinct from i; D is the number of
variables (problem dimension); Φi,j is a random number
betwen -1 and 1[35].

Food sources in the population are randomly generated and
assigned to employed bees as [36]:

𝑥𝑖,𝑗 = 𝑥𝑚𝑖𝑛,𝑗 + 𝑟𝑎𝑛𝑑(0,1)(𝑥𝑚𝑎𝑥,𝑗 − 𝑥𝑚𝑖𝑛,𝑗). (4)

where 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 are the lower and upper bounds of the
solution vectors.

3.3.2 Ant Lion Optimizer (ALO)

It is a natural adaptive metaheuristic algorithm inspired by the
hunting strategies of ant lions in nature [37]. Ants have a
stochastic movement pattern in their pursuit of sustenance.
The stochastic movement of ants is represented by the
following model:

X(t) =∑2r

t

i=1

(ti) − 1
(5)

where t represents the number of iterations, and r(t) is a
random number within the range [0, 1].

3.3.3 Butterfly Optimization Algorithm (BOA)

It is a natural adaptive metaheuristic algorithm inspired by the
movement and foraging behaviour of butterflies in nature [38].
Butteries release a scent in order to attract other butteries. The
fragrance emitted by the butteries is calculated using Equation
6.

 𝑓𝑖 = 𝑐𝐼

𝑎 , 𝑖 = 1,2,… , 𝑁𝑃. (6)

where the butterfly fragrance is represented by 𝑓𝑖 , the sensory
modality is represented by c, the stimulus intensity is
represented by I, a is a power exponent within the range [0 to
1], and NP denotes the number of butterflies. Mathematical
model of the global and local search phases of BOA is shown as
follows [39]:

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + (𝑟2 × 𝑋𝑏𝑒𝑠𝑡
𝑡 − 𝑋𝑖

𝑡) × 𝑓𝑖 (7)

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + (𝑟2 × 𝑋𝑗
𝑡 − 𝑋𝑘

𝑡) × 𝑓𝑖 (8)

where 𝑋𝑖
𝑡 indicates the position of the 𝑖𝑡ℎ butterfly in the 𝑖𝑡ℎ

iteration, 𝑋𝑏𝑒𝑠𝑡
𝑡 best indicates the global optimal individual, r ∈

(0, 1) is a random number, and 𝑋𝑗
𝑡 and 𝑋𝑘

𝑡 are the 𝑗𝑡ℎ individual

and the 𝑘𝑡ℎ individual choosen randomly [39].

3.3.4 Crow Search Algorithm (CSA):

It is a natural adaptive metaheuristic algorithm inspired by the
flock hunting behaviour of crows in nature [40]. Every crow in
CSA is aware of its hidden food location. The term "secret
location" pertains to the optimal solution that a specific crow
has been able to identify thus far, represented as 𝑚𝑖,𝑖𝑡𝑒𝑟 for
crow i during iteration iter. At some point, crow j may opt to
observe its hiding place, i.e., 𝑚𝑗,𝑖𝑡𝑒𝑟 . If crow j notices crow i, it
will fly to a random position to mislead its follower[33].

𝑥𝑖,𝑖𝑡𝑒𝑟+1 =

{

𝑥𝑖,𝑖𝑡𝑒𝑟 + 𝑟𝑖𝑥

𝑓𝑙𝑖,𝑖𝑡𝑒𝑟𝑥

(𝑚𝑗,𝑖𝑡𝑒𝑟 − 𝑥𝑖,𝑖𝑡𝑒𝑟), 𝑟𝑗 ≥ 𝐴𝑃
𝑗,𝑖𝑡𝑒𝑟 (9)

a random position , otherwise

where 𝑟𝑖 and 𝑟𝑗 are two random numbers within the range [0,

1], 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 represents the flight distance of crow i, and
𝐴𝑃𝑗,𝑖𝑡𝑒𝑟represents crow j's awareness possibility.

3.3.5 Firefly Algorithm (FA)

It is a natural adaptive metaheuristic algorithm inspired by the
communication with light and attraction behaviour of fireflies
in nature [15]. For two fireflies 𝑥𝑖 and 𝑥𝑗 , they can be updated

as follows:

𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)
+ 𝛽0𝑒

−𝛾𝑟𝑖,𝑗
2

 (𝑥𝑖
𝑡 + 𝑥𝑗

𝑡)+∝ 𝜀𝑖
𝑡 (10)

where 𝑥𝑖
(𝑡+1)

 represents the position of firefly i at iteration t+1

displacement, 𝛼 is the step size, 𝛽0 is the attractiveness at 𝑟=0,
γ is represented by the absorption coefficient, second part is the
attraction, while the third is randomization [Guo].

3.3.6 Grey Wolf Optimizer (GWO)

It is a natural adaptive metaheuristic algorithm inspired by the
behaviour of grey wolf packs in nature [16]. The behaviour of
grey wolves engaging in prey gathering is characterised by the
following equations:

�⃗� = |𝐴. �⃗⃗�(𝑡) − �⃗⃗⃗⃗�(𝑡)| (11)

�⃗⃗⃗⃗�(𝑡 + 1) = �⃗⃗�(𝑡) − �⃗⃗�. �⃗�(𝑡) (12)

where 𝐴 and �⃗⃗� are coefficient vectors, �⃗⃗� and �⃗⃗⃗� are position
vectors of prey and wolves.

Wolves live in four hierarchical societies: α , β, δ, and ω. The
positions of other grey wolves are adjusted according to the
presence of α, β, and δ wolves. The formulas used for this
calculation are as follows[41]:

𝐷𝛼 = |𝐶1 × 𝑋𝛼 − 𝑋(𝑡)|

𝐷𝛽 = |𝐶2 × 𝑋𝛽 − 𝑋(𝑡)|,

𝐷𝛿 = |𝐶3 × 𝑋𝛼 − 𝑋(𝑡)|

(13)

6

𝑋1 = 𝑋𝛼 − 𝐴1 × 𝐷𝛼
𝑋2 = 𝑋𝛽 − 𝐴2 × 𝐷𝛽 ,

𝑋3 = 𝑋𝛿 − 𝐴3 × 𝐷𝛿

(14)

and

𝑋(𝑡 + 1) = (𝑋1 + 𝑋2 + 𝑋3)/3 (15)

3.3.7 Harris Hawk’s optimization (HHO)

It is a natural adaptive metaheuristic algorithm inspired by the
hunting strategies of Harris hawks observed in nature [33-42].
The hawks adopt perching locations based on the positions of
other hawks and the prey (rabbit), or they perch randomly as
seen below:

𝑋(𝑡 + 1) =

{

𝑋𝑟𝑎𝑛𝑑(𝑡) −

𝑟1|𝑋𝑟𝑎𝑛𝑑(𝑡) − 2𝑟2𝑋(𝑡)|, 𝑞 ≥ 0.5 (16)

(𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑋𝑚(𝑡)) −

𝑟3(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵)), 𝑞 < 0.5

where X(t) and X(t+1) represents the current and next
positions of the hawk, respectively. 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) denotes is the
current location of the rabbit, q, 𝑟1, 𝑟2, 𝑟3 and 𝑟4 denotes random
numbers within the range [0,1]. LB and UB denote the
boundaries of the variables, 𝑋𝑟𝑎𝑛(𝑡) denote the current position
of a randomly choosen hawk, and 𝑋𝑚 denote the average
position of the hawks [33].

The energy of the rabbit is provided as follows:

𝐸 = 2𝐸0(1 −
𝑡

𝑇
) (17)

where E represents the escaping energy, T represent the
number of iterations, and 𝐸0 represents the initial energy state.
At each iteration of the method, 𝐸0 is randomly set between -1
and 1.

The hawks silently encircle the rabbit before executing the
surprise attack once the prey has become exhausted. The
following describes the computational model of this behaviour:

𝑋(𝑡 + 1) = ∆𝑋(𝑡) − 𝐸|𝐽𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑋(𝑡)| (18)

∆𝑋(𝑡) = 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑋(𝑡) (19)

where Δ X(t) denotes the distance between the rabbit and the
hawk at iteration t and J denote the jump strength of the rabbit.

In order to keep the positions current, we use the following
formula:

 𝑋(𝑡 + 1) = 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝐸|∆𝑋(𝑡)| (20)

3.3.8 Sine Cosine Algorithm (SCA):

It is a natural fit metaheuristic algorithm inspired by the
properties of the trigonometric functions sine and cosine [43].

In SCA, the mathematical equations for updating positions are
given Equation (21) [44]:

𝑋𝑖
𝑡+1 = {

𝑋𝑖
𝑡 + 𝑟1 × 𝑠𝑖𝑛(𝑟2) × |𝑟3𝑃𝑖

𝑡 − 𝑋𝑖
𝑡|, 𝑟4 < 0.5 (21)

𝑋𝑖
𝑡 + 𝑟1 × 𝑐𝑜𝑠(𝑟2) × |𝑟3𝑃𝑖

𝑡 − 𝑋𝑖𝑖
𝑡 |, 𝑟4 ≥ 0.5

where 𝑋𝑖

𝑡+1 denotes the 𝑖𝑡ℎ dimension of the solution at 𝑡𝑡ℎ
iteration, 𝑃𝑖 denotes the target in 𝑖𝑡ℎ dimension. 𝑠𝑖𝑛(.), 𝑐𝑜𝑠(.),
and |. | represent the sine, cosine, and absolute value,
respectively. 𝑟1, 𝑟2, 𝑟3 and 𝑟4variables are randomly produced.

3.3.9 Salp Swarm Algorithm (SSA)

It is a natural adaptive metaheuristic algorithm inspired by the
movement and grouping behaviour of organisms called salps in
the sea [17]. The mathematical model of herd behaviour
exhibited by Salp chains starts by dividing the population into
two groups, leaders, and followers. Salps have specific
behaviors called the salp chain. This behavior is used for
foraging. The location update equation for the leader salp
follows [45] :

𝑥𝑗
𝑖 = {

𝐹𝑗 + 𝑐1((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑗), 𝑐3 > 0.5

𝐹𝑗 − 𝑐1((𝑢𝑏𝑗 − 𝑙𝑏𝑗) + 𝑙𝑏𝑗)𝑐2, 𝑐3 < 0.5
 (22)

where, 𝑋𝑗
𝑖 represents the leader salp position in the j-th

dimension, 𝐹𝑗 represents j-th dimensional target food source,

𝑐1, 𝑐2 and 𝑐3 represent random numbers, 𝑢𝑏𝑗 and 𝑙𝑏𝑗 represent
the upper and lower bounds in the j-th dimension, respectively.

The coefficient c1 is calculated as follows:

𝑐1 = 2𝑒
−(
4𝑚
𝑀
)2 (23)

where, m represents the current step and M represents the total
number of steps. 𝑐2 and 𝑐3 numbers are randomly generated
coefficients in the range [0, 1].

The following equation is used to update the position of the
salps following the leader salp.

𝑥𝑗
𝑖 =

1

2
(𝑥𝑗

𝑖 + 𝑥𝑗
𝑖−1), 𝑖 ≥ 2 (24)

where, 𝑥𝑗
𝑖 represents the i-th follower salp location in the j-th

dimension.

3.3.10 Whale Optimization Algorithm (WOA)

It is a natural adaptive metaheuristic algorithm inspired by the
movement and hunting behaviour of whale pods at sea [46].
During prey encirclement, other whales try to approach the
best agent and update their position using as follows[47]:

�⃗⃗⃗� = |𝐶. �⃗�∗(𝑡) − �⃗�(𝑡)| (25)

�⃗�(𝑡 + 1) = �⃗�∗(𝑡) − 𝐴. �⃗⃗⃗� (26)

7

where t represents instant iteration. �⃗�∗ represent the location

of the best individual ever achieved. �⃗� represents the location

vector. 𝐴 and 𝐶 vectors denotes the specific coefficients. The
following equations are used to determine these coefficients.

𝐴 = 2�⃗�. 𝑟 − �⃗� (27)

𝐶 = 2. 𝑟 (28)

where �⃗� is parameter whose initial value decreases linearly
from 0 to 2 during iterations. 𝑟 is a random number in [0-1].

Humpback whales execute the attack with two approaches of
both shrinking containment and curled updating of
position[48]. These approach can be expressed as follows:

�⃗�(𝑡+1) = {
�⃗⃗⃗�
∗

(𝑡) − �⃗⃗⃗�. 𝐷, 𝑝 < 0.5

�⃗⃗⃗�𝑒𝑏𝑡 cos(2𝜋𝑙) + �⃗⃗⃗�
∗

(𝑡) , 𝑝 ≥ 0.5

(29)

where b describes shape of the fixed value logarithmic curled. l
gets a random numbers between -1 and 1.

During the initial stage of exploration, this update is executed
in a random manner. The time model equations are formulated
in the following manner:

�⃗⃗⃗� = |𝐶. �⃗�𝑟𝑎𝑛𝑑 − �⃗�| (30)

�⃗�(𝑡 + 1) = �⃗�𝑟𝑎𝑛𝑑 − 𝐴. �⃗⃗⃗� (31)

where �⃗�𝑟𝑎𝑛𝑑 denotes the position vector (the position of the
whale) that is randomly chosen from the population.

3.4 ML Methods

In this study, each feature subset obtained based on the FS of
various RMAs was used for the classification of Android
malware detection using DT[49], KNN[50], NB[51], RF[52], and
SVM[53] ML methods.

3.5 Evolution Metrics

The performance metrics to evaluate and compare the
proposed methods include accuracy, precision, sensitivity,
specificity, F1-Score, number of feature selections and
computation time. The mathematical expressions for these
performance measures are denoted by Equation (32-36)
correspondingly[54].

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝑐𝑐) = (𝑇𝑃 + 𝑇𝑁)/ (𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁) (32)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑟) = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (33)

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅𝑐) = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (34)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑝) = 𝑇𝑁/(𝐹𝑃 + 𝑇𝑁) (35)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 (𝐹) = (2*Pr*Rc) / (Pr+Rc) (36)

where, the terms TP and TN represent true positive and true
negative, respectively. Similarly, the abbreviations FP and FN
denote false positive and false negative, respectively.

 TP: The number of Android apps that are actually
malware and are predicted as malware,

 TN: The number of Android apps that are actually
benign and are predicted as benign,

 FP: The number of Android apps that are actually
benign but are predicted as malware.

 FN: The number of Android apps that are actually
malware but are predicted as benign.

4 Result and Discussion

Experimental results are presented and discussed in this
section. This study aimed to design an Android malware
detection system based on the wrapper-based feature selection
method with ten metaheuristic algorithms that have a current
and widespread use in literature studies. The proposed
approach is evaluated on two Android datasets (Drebin-215 &
Malgoneme-215), two validation models (Model-1 (70:30) &
Model-2 (k-fold = 10)) and five different ML methods (DT, KNN,
NB, RF & SVM). Table 2 lists the control parameters of the
RMAs used. The population size (N) for the algorithms is set to
100. The maximum number of iterations (T) is 100. Each
algorithm was run 30 times and its average values were used
for a fair evaluation.

Table 2. Algorithm parameter settings

RMA Parameter Value

ABC Limit Parameter max=5
ALO Selection method Roulette wheel
BOA Modular modality

Switch probability
C=0.01
P=0.8

 CSA Awareness probability
Flight length

AP=0.1
f1 = 1.5

 FA Alpha
Beta

Gamma

α = 1
 β0 = 1
γ =1

GWO Convergence parameter
Random variables

α =2
r1, r2= [0,1]

HHO Convergence parameter 1.5
 SCA Convergence factor 2
 SSA Controlling parameter

Random variables
C1= Decreases

exponentially from 2
to 0 c2, c3= [0,1]

WOA Convergence parameter a = Decreases
linearly from 2 to 0 b

=1

4.1 Accuracy/F1- Score Performance by Algorithm

A comparison of the average accuracy and F1-Score results
between the algorithms is shown in Table 3 and Table 4,
respectively. According to the experimental results in Table 2,
Drebin-215 and Malgoneme-215 datasets have the highest
accuracy rate with the combination depending on ABC + RF +
Model-2 parameters. The same conclusion was reached for the
F1-Score measurements.

8

Table 3. Average accuracy of all algorithms

 Drebin-215 Malgoneme-215
 RMA DT KNN NB RF SVM DT KNN NB RF SVM

M
o

d
el

-1

ABC 0.94649 0.9791 0.93022 0.98162 0.94109 0.97428 0.98654 0.9595 0.98838 0.94267

ALO 0.94513 0.98081 0.95622 0.98188 0.935 0.97272 0.98683 0.95622 0.98188 0.94709

BOA 0.94225 0.9768 0.9768 0.98033 0.94765 0.97126 0.98341 0.9559 0.98622 0.94765

CSA 0.94585 0.98066 0.98066 0.9827 0.94058 0.97252 0.98636 0.9566 0.98768 0.94058
FA 0.9449 0.9777 0.9777 0.98226 0.94443 0.97179 0.98557 0.9566 0.98783 0.94264

GWO 0.94497 0.97857 0.97857 0.98113 0.9588 0.96772 0.98417 0.95932 0.98378 0.9588
HHO 0.94554 0.97917 0.92965 0.98154 0.94324 0.97112 0.97989 0.95953 0.98639 0.94644
SCA 0.93832 0.97466 0.97466 0.97715 0.95843 0.96787 0.98127 0.95291 0.98358 0.96646
SSA 0.94399 0.97801 0.97801 0.98092 0.94377 0.97182 0.98589 0.95563 0.98651 0.94377
WOA 0.94362 0.98032 0.98032 0.98244 0.93929 0.97073 0.9849 0.95525 0.98642 0.94363

M
o

d
el

-2

ABC 0.94602 0.98003 0.93022 0.99 0.94938 0.97456 0.98802 0.95968 0.98966 0.94989

ALO 0.94862 0.98343 0.93191 0.98506 0.94243 0.97306 0.98727 0.95802 0.98916 0.94975

BOA 0.93656 0.97783 0.92942 0.98126 0.9525 0.97009 0.98358 0.95166 0.98614 0.95118
CSA 0.94511 0.98073 0.93789 0.98269 0.94959 0.97291 0.98698 0.95494 0.98935 0.94879
FA 0.944 0.97913 0.92376 0.98184 0.9545 0.97531 0.98521 0.95496 0.98904 0.95044

GWO 0.94119 0.97955 0.92441 0.98078 0.96318 0.97078 0.98603 0.95611 0.98677 0.96571
HHO 0.94479 0.98129 0.92506 0.98287 0.94687 0.97243 0.98465 0.95279 0.98733 0.94803
SCA 0.93836 0.97749 0.92361 0.97908 0.96003 0.96813 0.9815 0.94642 0.98483 0.97042

SSA 0.94488 0.97816 0.93221 0.98243 0.94971 0.97338 0.98452 0.95434 0.98866 0.94958

 WOA 0.94634 0.98202 0.92944 0.98426 0.94423 0.97415 0.98581 0.9508 0.98894 0.95044

Table 4. Average F1-score of all algorithms

 Drebin-215 Malgoneme-215
 RMA DT KNN NB RF SVM DT KNN NB RF SVM

M
o

d
el

-1

ABC 0.92715 0.97165 0.90778 0.97485 0.91356 0.9611 0.97971 0.93993 0.98235 0.90521

ALO 0.92535 0.974 0.97525 0.97525 0.90365 0.95896 0.98011 0.93494 0.97525 0.91322

BOA 0.92044 0.96854 0.90389 0.9731 0.92404 0.95669 0.97488 0.93423 0.97905 0.92404

CSA 0.92619 0.97381 0.91047 0.97635 0.91271 0.95851 0.97936 0.93535 0.98128 0.91271
FA 0.92453 0.96983 0.90825 0.97577 0.91888 0.95754 0.97819 0.93535 0.98155 0.90528

GWO 0.92408 0.9709 0.89935 0.97421 0.94119 0.92408 0.97609 0.93933 0.97538 0.94119
HHO 0.92539 0.9718 0.907 0.97478 0.91704 0.95642 0.96962 0.94006 0.97931 0.912
SCA 0.91457 0.96562 0.89479 0.9687 0.94072 0.95125 0.97177 0.92903 0.97498 0.94671
SSA 0.92347 0.97025 0.90822 0.97392 0.91783 0.95752 0.9787 0.93404 0.97947 0.91783
WOA 0.92272 0.97333 0.90872 0.976 0.91059 0.95571 0.97722 0.93337 0.97933 0.907

M
o

d
el

-2

ABC 0.92596 0.97295 0.90778 0.98481 0.92662 0.96044 0.98195 0.93982 0.9843 0.91825

ALO 0.92986 0.97755 0.90994 0.97963 0.91559 0.95936 0.98078 0.93804 0.98351 0.91795

BOA 0.91385 0.96998 0.90613 0.97438 0.93155 0.95465 0.97524 0.92818 0.97892 0.92058
CSA 0.92465 0.97393 0.91178 0.97636 0.92697 0.95907 0.98035 0.93295 0.98382 0.91636
FA 0.92374 0.97176 0.89958 0.97519 0.93462 0.96288 0.97765 0.93327 0.98336 0.91926

GWO 0.91948 0.97228 0.89752 0.9737 0.94781 0.95582 0.97895 0.93435 0.97992 0.94549
HHO 0.92452 0.97465 0.90191 0.97661 0.9226 0.9584 0.97682 0.92986 0.98076 0.9149
SCA 0.91477 0.9695 0.89646 0.97135 0.94308 0.95185 0.97206 0.91977 0.97696 0.95344

SSA 0.92449 0.97052 0.9099 0.97598 0.92711 0.95986 0.97663 0.93202 0.98277 0.91772

 WOA 0.92686 0.97564 0.90677 0.9785 0.91835 0.96085 0.97861 0.92685 0.98317 0.91917

4.2 Precision/ Specificity Performance by Algorithm

Table 5 and Table 6 shows the comparison of the average
precision and specifity results between the algorithms.
Experimental results show that the combinations of
CSA+SVM+Model-1 and ABC+SVM+Model-1 parameters
provide the best results on the Drebin-215 and Malgoneme-215

datasets, respectively. The SVM ML method obtained the best
average results in two datasets and two models. The same
conclusion was reached for the specificity measurements in
Table 5.

9

Table 5. Average precision of all algorithms

 Drebin-215 Malgoneme-215
 RMA DT KNN NB RF SVM DT KNN NB RF SVM

M
o

d
el

-1

ABC 0.93375 0.97497 0.88853 0.98681 0.99819 0.96396 0.97998 0.92609 0.99009 0.99989

ALO 0.93161 0.97616 0.98541 0.98541 0.9988 0.95772 0.9823 0.92249 0.98541 0.9992

BOA 0.93799 0.97126 0.88739 0.98441 0.99622 0.95717 0.97936 0.92444 0.97143 0.99622

CSA 0.93424 0.97526 0.89464 0.98698 0.99883 0.96103 0.98378 0.92576 0.98893 0.99883
FA 0.93773 0.97067 0.89211 0.98583 0.99756 0.95697 0.9809 0.92576 0.9875 0.99979

GWO 0.943 0.97515 0.9019 0.9846 0.99545 0.9551 0.97756 0.93058 0.983 0.99545
HHO 0.93783 0.97329 0.88759 0.9845 0.99747 0.95802 0.97113 0.92623 0.9869 0.99875
SCA 0.9361 0.9689 0.89895 0.98132 0.99441 0.95794 0.97189 0.9287 0.98432 0.99334
SSA 0.93403 0.97079 0.89674 0.98462 0.99761 0.95827 0.98066 0.92256 0.98882 0.99761
WOA 0.93586 0.9756 0.88684 0.98654 0.99778 0.95952 0.97872 0.92286 0.98828 0.99938

M
o

d
el

-2

ABC 0.93948 0.97454 0.88853 0.99176 0.99811 0.99139 0.98196 0.93046 0.99147 0.99965
ALO 0.9389 0.97932 0.89125 0.98786 0.99862 0.96065 0.98243 0.92123 0.99193 0.99933

BOA 0.91822 0.97126 0.89189 0.98508 0.99698 0.96045 0.97468 0.9153 0.98754 0.99925
CSA 0.93875 0.97461 0.89775 0.98653 0.99772 0.96197 0.98193 0.92083 0.99143 0.9994
FA 0.93039 0.9726 0.87717 0.9856 0.99694 0.96029 0.97977 0.91769 0.99006 0.99966

GWO 0.93014 0.9747 0.89999 0.98507 0.99546 0.96009 0.97827 0.92812 0.98612 0.99723
HHO 0.93522 0.97682 0.87581 0.98598 0.99863 0.9595 0.97844 0.91741 0.98805 0.99957
SCA 0.93468 0.97167 0.89781 0.98391 0.99516 0.95445 0.97353 0.91629 0.98406 0.99292

SSA 0.93674 0.97119 0.8953 0.98655 0.99826 0.96085 0.97775 0.92128 0.98984 0.9994

 WOA 0.93467 0.97753 0.88727 0.9881 0.99821 0.96526 0.97882 0.91453 0.992 0.99958

Table 6. Average specifity of all algorithms

 Drebin-215 Malgoneme-215
 RMA DT KNN NB RF SVM DT KNN NB RF SVM

M
o

d
el

-1

ABC 0.96145 0.9854 0.93139 0.99243 0.9991 0.98213 0.99001 0.96202 0.99514 0.99996

ALO 0.96011 0.98606 0.99161 0.99161 0.99941 0.9788 0.99124 0.96023 0.99161 0.99965

BOA 0.9645 0.98321 0.93106 0.99105 0.99808 0.97867 0.98979 0.96145 0.99356 0.99808

CSA 0.96179 0.98551 0.93569 0.99252 0.99942 0.98068 0.99198 0.96202 0.99457 0.99942
FA 0.96424 0.98278 0.93414 0.99185 0.99877 0.97849 0.99054 0.96202 0.99382 0.99991

GWO 0.96761 0.98553 0.94258 0.99114 0.99758 0.97774 0.98883 0.9647 0.99165 0.99758
HHO 0.96424 0.98435 0.93094 0.99108 0.99873 0.97911 0.98568 0.96189 0.99356 0.99947
SCA 0.96378 0.98185 0.94093 0.9893 0.99704 0.97919 0.98598 0.96435 0.99235 0.99689
SSA 0.9619 0.98286 0.9377 0.99116 0.9988 0.97919 0.99041 0.96036 0.99452 0.9988
WOA 0.96283 0.98574 0.92991 0.99226 0.99888 0.97994 0.9894 0.96053 0.99426 0.99974

M
o

d
el

-2

ABC 0.96529 0.9851 0.93139 0.99596 0.99904 0.99598 0.99103 0.96471 0.99583 0.99985

ALO 0.96479 0.98791 0.93323 0.99299 0.9993 0.98041 0.9913 0.95903 0.99606 0.99971

BOA 0.95184 0.98318 0.93427 0.99143 0.99844 0.98052 0.98801 0.9566 0.99391 0.99968
CSA 0.96483 0.98511 0.93789 0.99225 0.99884 0.98117 0.99105 0.95954 0.99581 0.99975
FA 0.95974 0.98394 0.92406 0.99173 0.99842 0.98015 0.99 0.95764 0.99513 0.99986

GWO 0.96 0.98523 0.94148 0.99144 0.99757 0.98022 0.98919 0.96359 0.9932 0.99875
HHO 0.96265 0.98645 0.92188 0.99193 0.9993 0.97989 0.98931 0.95766 0.99414 0.99982
SCA 0.96309 0.98344 0.93995 0.9908 0.99743 0.97744 0.98688 0.95764 0.99219 0.99667

SSA 0.96361 0.98295 0.93632 0.99228 0.99911 0.98053 0.98897 0.95986 0.99502 0.99975

 WOA 0.9622 0.98686 0.93056 0.99315 0.99909 0.98291 0.98947 0.95632 0.9961 0.99982

4.3 Recall Performance by Algorithm

A comparison of the average recall results between the
algorithms is shown in Table 7. Experimental results show that
the combinations based on ABC+RF+Model-2 and
ABC+KNN+Model-2 parameters provide the best results on the
Drebin-215 and Malgoneme-215 datasets, respectively. The
ABC metaheuristic algorithm obtained the best average results
on two datasets for Model-2.

10

Table 7. Average recall of all algorithms

 Drebin-215 Malgoneme-215
 RMA DT KNN NB RF SVM DT KNN NB RF SVM

M
o

d
el

-1

ABC 0.921 0.96837 0.92822 0.96319 0.84227 0.95847 0.97954 0.95441 0.97478 0.82734

ALO 0.9196 0.97187 0.96531 0.96531 0.82524 0.96049 0.97795 0.94815 0.96531 0.84127

BOA 0.90432 0.96586 0.92153 0.96207 0.86172 0.95635 0.97055 0.94471 0.97143 0.86172

CSA 0.91868 0.97239 0.92714 0.96597 0.84032 0.95612 0.97504 0.94568 0.97381 0.84032
FA 0.91195 0.96904 0.9253 0.96593 0.85186 0.95829 0.97557 0.94568 0.97575 0.82734

GWO 0.9064 0.96673 0.89709 0.96406 0.89272 0.94756 0.97478 0.9485 0.96794 0.89272
HHO 0.91367 0.97034 0.92746 0.96528 0.84868 0.95503 0.96825 0.95476 0.97196 0.83968
SCA 0.89494 0.96241 0.89173 0.95645 0.89265 0.94506 0.97178 0.92989 0.96592 0.9052
SSA 0.91349 0.96974 0.92016 0.96346 0.85001 0.95697 0.97681 0.94612 0.97037 0.85001
WOA 0.91088 0.97108 0.93211 0.96571 0.83774 0.9522 0.97584 0.94462 0.97063 0.83069

M
o

d
el

-2

ABC 0.91318 0.97137 0.92822 0.97798 0.86474 0.9314 0.98196 0.94955 0.97725 0.84921
ALO 0.92107 0.97579 0.92968 0.97155 0.8455 0.95823 0.97915 0.95599 0.97525 0.84906

BOA 0.91052 0.96871 0.92117 0.96392 0.87421 0.94906 0.97468 0.9417 0.97049 0.85346
CSA 0.91149 0.97327 0.92652 0.9664 0.86565 0.95628 0.97879 0.95494 0.97633 0.8461
FA 0.91718 0.97094 0.92324 0.965 0.87964 0.96556 0.97556 0.94957 0.97677 0.85087

GWO 0.90914 0.96987 0.89532 0.9626 0.90457 0.95176 0.97965 0.94105 0.97381 0.89913
HHO 0.91437 0.97249 0.93049 0.96742 0.85751 0.95741 0.97524 0.94296 0.9736 0.84368
SCA 0.89622 0.96736 0.89577 0.9591 0.89629 0.94935 0.97063 0.92381 0.96999 0.91753

SSA 0.91295 0.97 0.92521 0.96565 0.8655 0.95899 0.97554 0.94322 0.97583 0.84848

 WOA 0.91932 0.97378 0.92754 0.9691 0.85072 0.95651 0.97843 0.93968 0.97453 0.85094

4.4 Feature Selection Performance by Algorithm

Table 8 shows the average number of features selected by the
algorithms. Experimental results showed that the GWO RMA
achieved the best results in two models (Model-1 and Model-2)
for the Drebin-215 dataset and only in Model-1 for the

Malgoneme-215 dataset. The average number of features
selected for the Drebin-215 dataset is 59.6471 while it is
35.6471 for the Malgoneme-215 dataset. The reason for this
result is the small number of samples in the Malgoneme-215
dataset.

Table 8. Average the number of selection of all algorithms

 Drebin-215 Malgoneme-215

 RMA DT KNN NB RF SVM DT KNN NB RF SVM

M
o

d
el

-1

ABC 111.40 111.50 111.27 119.00 111.50 105.96 105.40 102.36 103.76 106.00

ALO 124.86 126.15 108.78 108.78 124.86 87.53 91.00 91.50 108.78 87.90

BOA 106.29 105.58 106.29 103.83 106.29 92.66 95.40 93.56 93.46 106.29

CSA 109.41 109.41 109.41 110.13 109.41 98.88 95.03 104.43 96.43 109.41
FA 113.25 107.52 109.96 112.52 108.46 106.56 106.83 104.43 106.36 105.80

GWO 59.64 61.36 59.64 61.05 59.64 36.88 37.60 98.20 35.64 59.64

HHO 110.23 110.23 120.18 114.54 106.86 116.10 107.60 101.30 100.20 97.70
SCA 75.41 75.41 75.41 73.47 75.41 53.00 54.66 46.46 47.35 48.23

SSA 111.47 111.47 109.16 108.52 111.47 104.26 104.00 103.63 104.53 111.47
WOA 130.94 135.15 132.40 132.52 130.94 101.70 107.06 96.26 104.73 95.23

M
o

d
el

-2

ABC 111.06 110.40 111.27 106.75 108.71 102.46 103.46 102.80 103.10 103.37

ALO 149.25 160.20 124.87 152.60 144.00 105.81 105.36 125.36 105.63 108.18

BOA 108.62 97.60 106.56 105.20 106.40 100.00 98.72 89.00 97.00 94.36
CSA 111.37 111.00 109.46 111.40 110.60 103.45 106.18 100.00 105.54 104.00

FA 108.00 111.00 108.80 105.00 106.00 106.80 104.60 107.54 105.90. 107.09

GWO 80.40 69.40 59.93 69.76 68.80 61.00 56.54 52.09 58.00 57.90

HHO 110.2 110.23 144.25 104.75 117.50 109.53 103.93 104.43 97.23 112.53
SCA 95.20 81.60 72.56 77.60 87.40 74.54 50.63 55.00 61.27 54.54

SSA 110.20 112.70 110.56 114.60 111.60 104.26 103.72 98.90 103.18 104.09

 WOA 142.80 156.10 123.30 142.50 137.00 106.60 113.45 113.09 99.45 98. 81

11

4.5 Computational Time Performance by Algorithm

Algorithms were implemented using the MATLAB R2018a
(MathWorks, Natick, MA 01760-2098, USA) on PC i7-8565U,
GeForce 2GB and 16GB RAM. Table 9 summarizes the average
computational times of the implemented algorithms. In this
respect, it is possible to state that: computational complexity of

the combinations of Drebin-215+Model-1+GWO+DT and
Malgoneme-215+ Model-1+ABC+DT have the lowest
computation time and are the fastest compared to the others.
The average computation time for the Drebin-215 and
Malgoneme-215 data sets are 0.045736 sec and 0.013936 sec,
respectively. The reason for this result is the small number of
samples in the Malgoneme-215 dataset.

Table 9. Average the computational times (in sec) of all algorithms

 Drebin-215 Malgoneme-215

 RMA DT KNN NB RF SVM DT KNN NB RF SVM

M
o

d
el

-1

ABC 0.117 0.116 0.378 0.624 1.110 0.013 0.025 0.020 0.195 0.424

ALO 0.057 2.912 0.623 0.623 4.654 0.029 0.053 0.048 0.623 2.630

BOA 0.061 0.816 0.131 0.581 4.364 0.029 0.051 0.047 0.157 2.364

CSA 0.066 0.800 0.128 0.554 4.587 0.044 0.045 0.060 0.147 2.628

FA 0.402 0.614 0.056 0.728 50.564 0.046 0.053 0.060 0.206 2.444

GWO 0.045 0.408 0.107 0.425 3.534 0.033 0.023 0.063 0.110 1.846

HHO 0.054 0.452 0.133 0.626 2.042 0.046 0.056 0.112 0.179 0.180

SCA 0.051 0.370 0.114 0.507 3.580 0.024 0.026 0.025 0.222 1.642

SSA 0.065 0.874 0.059 0.592 4.505 0.027 0.048 0.072 0.173 2.377

WOA 0.069 0.800 0.063 0.718 4.858 0.027 0.062 0.032 0.168 2.479

M
o

d
el

-2

ABC 0.521 1.962 0.378 1.697 1.949 7.235 0.269 0.148 1.869 2.482

ALO 0.808 5.092 0.072 6.680 40.564 0.127 0.233 0.127 1.672 2.514

BOA 0.499 2.868 0.376 6.194 25.237 0.120 0.219 0.146 1.567 2.487

CSA 0.517 3.480 0.376 6.267 26.757 0.138 0.045 0.150 1.557 2.624

FA 0.489 3.516 0.498 5.794 24.440 0.132 0.224 0.157 1.563 2.721

GWO 0.325 1.945 0.266 5.303 17.615 0.097 0.131 0.131 1.362 1.796

HHO 0.412 2.413 0.628 6.484 34.014 0.142 0.239 0.178 1.707 2.882

SCA 0.409 2.327 0.289 5.573 19.556 0.102 0.123 0.126 1.396 1.664

SSA 0.513 3.432 0.365 6.201 26.218 0.123 0.218 0.151 1.563 2.523

 WOA 0.740 5.011 0.405 6.833 37.701 0.128 0.238 0.158 1.589 2.649

Figures 3-10 reveal the comparasion of best performing
average results of the evaluation performance metrics for the
Drebin-215 and Malgoneme-215 dataset based Model-1 and
Model-2 with the CMAs and RMAs approaches.

12

Figure 3. Comparasion of best performing result with the Drebin-215 + Model-1 based on CMAs [19] (black-white bars) and RMAs
(colored bars).

13

Figure 4. Comparasion of best performing result with the Drebin-215 + Model-2 based on CMAs [19] (black-white bars) and RMAs
(colored bars).

14

 Figure 5. Comparasion of best performing result with the Malgoneme-215 + Model-1 based on CMAs [19] (black-white bars)
and RMAs (colored bars).

15

Figure 6. Comparasion of best performing result with the Malgoneme-215 + Model-2 based on CMAs [19] (black-white bars) and
RMAs (colored bars).

16

Figure 7. Comparasion of best performing Number of feature selection and Computational times with the Drebin-215 + Model-1
based on CMAs [19] and RMAs.

Figure 8. Comparasion of best performing Number of feature selection and Computational times with the Drebin-215 + Model-2
based on CMAs [19] and RMAs.

17

Figure 9. Comparasion of best performing Number of feature selection and Computational times with the Malgoneme-215 + Model-1
based on CMAs [19] and RMAs.

Figure 10. Comparasion of best performing Number of feature selection and Computational times with the Malgoneme-215 + Model-
2 based on CMAs [19] and RMAs.

18

Table 10. A comparison between some related work.

The proposed approach was compared with those of recent

studies.

5 Conclusions

Today, Android applications are widely used individually and
corporately. In this context, since the security of Android
systems covers a wide audience, the development of strong and
effective security measures is extremely important. In
particular, malware detection is one of the most effective
techniques to provide protection for Android users. In this
context, in this study, ten metaheuristic algorithms used for FS
(ABC, ALO, BOA, CSA, FA, GWO, HHO, SCA, SSA, and WOA); two
datasets (Drebin-215 and Malgoneme-215); two validation
options (Model-1 and Model-2) and five ML (DT, KNN, NB, RF,
and SVM) methods are selected as in various scenarios to
perform an effective Android malware analysis. First, each
metaheuristic algorithm is transferred to the wrapper-based FS
method, generating the optimal feature subset from the full
feature set. Then, this optimal feature subset was analyzed with
different models and ML methods, and as a result of the
comparisons made for the relevant data set, the combination
that gave the best technique was determined. Thus, at the end
of this study, the effect of the techniques used in the FS method
based on a series of meta-heuristic algorithms, which are most
commonly used, on the success of detecting Android malware
was observed. The results show the effectiveness and efficiency
of using the most prominent metaheuristic algorithm in the
detection of Android malware. The results obtained show that
RF and Model-2 achieve the highest accuracy. With this study,
it is aimed to contribute to the development of effective defence
systems against Android malware, whose area of influence is
constantly increasing. In future studies, the hybrid architecture
of the metaheuristic algorithms showing the highest accuracy
value for Drebin-215 and Malgoneme-215 will be designed and
the performance results of its use with different deep learning
(DL) algorithms will be investigated.

6 Author contributions

Author 1 formation of the idea, design, data analysis, and
literature review; Author 2 contributed to the evaluation and
analysis of the results obtained.

7 Approval from the ethics committee and
statement of conflict of interest

 There is no need to obtain ethics committee permission for the
article prepared. There is no conflict of interest with any
person/institution in the prepared article.

8 References

[1] Tahtaci B, Canbay B. “Android malware detection using
machine learning”. In 2020 Innovations in Intelligent
Systems and Applications Conference (ASYU), Istanbul,
Turkey, 15-17 October 2020.

[2] Kalash M, Rochan M, Mohammed N, Bruce ND, Wang Y,
Iqbal F. “Malware classification with deep convolutional
neural networks”. In 2018 9th IFIP international
conference on new technologies, mobility and security
(NTMS), Paris, France, 26-28 February 2018.

[3] Masum M, Shahriar H. “Droid-NNet: Deep learning neural
network for android malware detection”. In 2019 IEEE
International Conference on Big Data(Big Data), Los
Angeles, CA, USA, 9-12 December 2019.

[4] Lee J, Jang H, Ha S, Yoon Y. “Android malware detection
using machine learning with feature selection based on
the genetic algorithm”. Mathematics, 9(21), 2813, 117334-
117352, 2021.

[5] Wang L, Gao Y, Gao S, Yong X. “A new feature selection
method based on a self-variant genetic algorithm applied
to android malware detection”. Symmetry, 13(7), 1290,
2021.

[6] Ay Ş, Ekinci E, Garip Z. “A comparative analysis of meta-
heuristic optimization algorithms for feature selection on
ML-based classification of heart-related diseases”. The
Journal of Supercomputing, 1-30, 2023.

[7] Şahin CB, Diri B. "Robust feature selection with LSTM
recurrent neural networks for artificial immune
recognition system". IEEE Access, (7), 24165-24178, 2019,

[8] Şahin CB. “Learning optimized patterns of software
vulnerabilities with the clock-work memory mechanism”.
Avrupa Bilim ve Teknoloji Dergisi, (41), 156-165, 2022.

[9] Goldberg DE, Holland, JH. “Machine Learning”. Machine
Learning, 3(23), 95-99, 1988.

[10] Van Laarhoven, PJ, Aarts EH. “Simulated Annealing”.
Springer Netherlands, 7-15, 1987.

Literature Year Dataset (s) Feature Selection
Method

Classifier # of
samples

Accuracy

Our Previous Study
[19]

2023
Drebin -215
Malgoneme- 215

DE RF
15036
3799

98.98 %
99.09 %

Naic et al. [20] 2022 Drebin-215 Sailfish Optimization RF 15036 98. 92 %

Sharma [21] 2022 Drebin -215
Malgoneme- 215

Feature-important
Water Drop
Algorithm

RF 15036

98.00 %

RF / MLP 3799 99.00 %

Varma et al.[22] 2021 CICInvesAndMal2019 Bat Optimization
Algorithm

KNN 1594 94.78 %

Chakravarthy [23] 2021 CICInvesAndMal2019 FA ELM 1594 95.28 %

Lee et al.[55] 2021 Andro-AutoPsy GA Multilayer
Perceptron

7500 98.1 %

This Paper 2024 Drebin -215
Malgoneme- 215

ABC RF
15036
3799

99.00 %
98.96%

19

[11] Dorigo M, Birattari M, Stutzle T. “Ant colony optimization”.
IEEE Computational Intelligence Magazine, 1 (4), 28-39,
2006.

[12] Storn R, Price K. “Differential Evolution–a simple and
efficient heuristic for global optimization over continuous
spaces”. Journal of Global Optimization, (11), 341-359,
1997.

[13] Kennedy J, Eberhart R. “Particle Swarm Optimization”. In
Proceedings of ICNN'95- International Conference on
Neural Networks, IEEE, Perth, WA, Australia 1942-1948,
27-01 December 1995.

[14] Karaboga D. “An idea based on honey bee swarm for
numerical optimization”. Technical report-tr06, Erciyes
university, engineering faculty, computer engineering
department, (200), 1-10, 2005.

[15] Yang XS. “Firefly algorithm, stochastic test functions and
design optimisation”. International journal of bio-inspired
computation, 2(2), 78-84, 2010.

[16] Mirjalili S, Mirjalili SM, Lewis A. “Grey wolf
optimizer”. Advances in engineering software, 69, 46-61,
2014.

[17] Mirjalili S, Gandomi A H, Mirjalili SZ, Saremi S, Faris H,
Mirjalili SM. “Salp Swarm Algorithm: A bio-inspired
optimizer for engineering design problems”. Advances in
engineering software, 114, 163-191, 2017.

[18] Akalin F, Yumusak N. “Classification of acute leukaemias
with a hybrid use of feature selection algorithms and deep
learning-based architectures”. Pamukkale University
Journal of Engineering Sciences, 29(3), 256-263, 2022.

[19] Beştaş MŞ, Dinler ÖB. “Detection of Android Based
Applications with Traditional Metaheuristic Algorithms”.
International Journal of Pure and Applied Sciences, 9(2),
381-392, 2023.

[20] Naick S, Bethapudi P, Reddy SPR. "Malware detection in
Android mobile devices by applying Swarm Intelligence
Optimization and machine learning for API Calls", Int J
Intell Syst Appl Eng, 10 (3), 67-74, 2022.

[21] Sharma RM. “AMD-FIWDA: Android malware detection
using feature importance Water Drop
Algorithm”. NeuroQuantology, 20(15), 5005-5018 2022.

[22] Varma PRK, Mallidi SKR, Jhansi SJ, Dinne PL. “Bat
optimization algorithm for wrapper-based feature
selection and performance improvement of android
malware detection”. IET Netw, 10, 131–140, 2021.

[23] Chakravarthy SJ. “Wrapper-based metaheuristic
optimization algorithms for android malware detection: a
correlative analysis of firefly, bat & whale optimization”. J
Hunan Univ, 48 (10), 2021.

[24] Bhagwat S, Gupta GP. “Android malware detection using
hybrid meta-heuristic feature selection and ensemble
learning techniques”. In International Conference on
Advances in Computing and Data Sciences, 6th
International Conference, ICACDS 2022, Kurnool, India,
145–156, April 2022.

[25] Elkabbash ET, Mostafa RR, Barakat SI. “Android malware
classification based on random vector functional link and
artificial Jellyfish Search optimizer”. PLoS ONE, 16 (11), 1-
22, 2021.

[26] Alzubi OA, Alzubi JA, Al-Zoubi AM, Hassonah MA, Kose U.
“An efficient malware detection approach with feature
weighting based on Harris Hawks optimization”. Cluster
Computing, 25, 2369-2387, 2022.

[27] Sulaimon SA, Adebayo OS, Bashir SA, Ismaila I. “Android
Malware Classification using Whale Optimization
Algorithm”. i-manager’s Journal on Mobile Applications and
Technologies, 5.2: 37, 1-16, 2018.

[28] Arp D, Spreitzenbarth M, Hubner M, Gascon H, Rieck K,
Siemens CERT. “Drebin: Effective and explainable
detection of android malware in your pocket”. In Ndss,
(14), 23-26, 2014.

[29] HCRL. Hacking and Countermeasure Research Lab.
https://ocslab.hksecurity.net/andro-autopsy (11.05.
2021)

[30] Zhou Y, Jiang X. “Dissecting android malware:
characterization and evolution”. In 2012 IEEE symposium
on security and privacy, IEEE, 95- 109, 2012.
https://ocslab.hksecurity.net/andro-autopsy (11.05.
2021)

[31] Deci. “Lesson 1.4 Data Shuffling”.
https://deci.ai/course/data-shuffling/(11.05.2021).

[32] Yildiz O, Doğru IA. “Permission-based android malware
detection system using feature selection with genetic
algorithm”. International Journal of Software Engineering
and Knowledge Engineering, 29(02), 245-262, 2019.

[33] Dokeroglu T, Deniz A, Kiziloz HE. “A comprehensive
survey on recent metaheuristics for feature selection”.
Neurocomputing, 494, 269-296, 2022.

[34] Gao W, Liu S, Huang L. “A global best artificial bee colony
algorithm for global optimization”. Journal of
Computational and Applied Mathematics, 236, 2741-
2753, 2011.

[35] Singh NSP, Nair NK. “Artificial bee colony algorithm for
inverter complex wave reduction under line-load
variations”. Transactions of the Institute of Measurement
and Control,40(5), 1593-1607, 2018.

[36] Jin Y, Sun Y, Ma H. “A developed artificial bee colony
algorithm based on cloud model“. Mathematics, 6(4):61,
1-18, 2018.

[37] Mirjalili S. “The ant lion optimizer”. Advances in
engineering software, 83, 80-98, 2015.

[38] Zhou H, Cheng HY, Wei ZL, Zhao X, Tang AD, Xie L. “A
hybrid butterfly optimization algorithm for numerical
optimization problems”. Computational Intelligence and
Neuroscience, 2021,1– 4, 2021.

[39] Arora S, Singh S. “Butterfly optimization algorithm: a novel
approach for global optimization”. Soft Computing, 23,
715-734, 2019.

[40] Çerçevik AE, Avşar Ö. “Doğrusal sismik izolasyon
parametrelerinin karga arama algoritmasi ile
optimizasyonu”. Pamukkale Üniversitesi Mühendislik
Bilimleri Dergisi. 26(3), 440-447, 2020.

[41] Şahin CB. “Optimization of Software Vulnerabilities
patterns with the Meta-Heuristic Algorithms”. Türk Doğa
ve Fen Dergisi, 11(4), 117-125, 2022.

[42] Bairathi D, Gopalani D. “A novel swarm intelligence based
optimization method: Harris’ hawk optimization”.
In Intelligent Systems Design and Applications: 18th
International Conference on Intelligent Systems Design
and Applications (ISDA 2018) held in Vellore, India,
December 6-8, 2018, Volume 2 (pp. 832-842). Springer
International Publishing, 2020.

[43] Mirjalili S. “SCA: a sine cosine algorithm for solving
optimization problems”. Knowledge-based systems, 96,
120-133, 2016.

https://ocslab.hksecurity.net/andro-autopsy
https://ocslab.hksecurity.net/andro-autopsy

20

[44] Abualigah, L., Diabat, A. “Advances in Sine Cosine
Algorithm: A comprehensive survey”. Artif Intell Rev 54,
2567–2608, 2021.

[45] Ibrahim, R.A., Ewees, A.A., Oliva, D. et al. “Improved salp
swarm algorithm based on particle swarm optimization
for feature selection”. J Ambient Intell Human Comput 10,
3155–3169, 2019.

[46] Mirjalili S, Lewis A. “The whale optimization algorithm”.
Advances in engineering software, 95, 51-67, 2016.

[47] Nadimi-Shahraki, M., Zamani, H., Asghari Varzaneh, Z. et
al. “A systematic review of the whale optimization
algorithm: theoretical foundation, improvements, and
hybridizations”. Arch Computat Methods Eng 30, 4113–
4159, 2023.

[48] Alizada, B. “Improved whale optimization algorithm based
on π number”. International Scientific and Vocational
Studies Journal, 4(1), 21-30, 2020.

[49] Cihan P, Kalipsiz O, Gökçe E. “Computeraided diagnosis in
neonatal lambs”. Pamukkale Üniversitesi Mühendislik
Dergisi, 26 (2), 385-391, 2020.

[50] Ullah A, Şahin CB, Dinler Ö.B, Khan MH, Aznaoui H. “ Heart
disease prediction using various machines learning
approach”. Journal of Cardiovaskular Disease Research,
3(12), 379-391, 2021.

[51] Koşan MA, Yildiz O, Karacan H. “Kimlik avi web sitelerinin
tespitinde makine öğrenmesi algoritmalarinin
karşilaştirmali analizi”. Pamukkale Üniversitesi
Mühendislik Bilimleri Dergisi. 24(2), 276-282,2018.

[52] Kalayci TE. “Kimlik hirsizi web sitelerinin siniflandirilmasi
için makine öğrenmesi yöntemlerinin karşilaştirilmasi”.
Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi.
24(5), 870-878, 2018.

[53] Khan SN, Khan SU, Aznaoui H, Şahin, CB, Dinler, Ö.B.
“Generalization of linear and nonlinear support vector
machine in multiple fields: a review”. Computer Science
and Information Technologies, 3(4), 226-239, 2023.

[54] Cihan, P. “ The machine learning approach for predicting
the number of intensive car, intubated patients and death:
The COVID-19 pandemic in Turkey”. Sigma Journal of
Engineering and Natural Sciences, (40) 1, 85-94, 2021.

[55] Lee, J., Jang, H., Ha, S. and Yoon, Y. “Android malware
detection using machine learning with feature selection
based on the Genetic algorithm”. Mathematics, (9), 2813,
1-20, 2021.

