Pamukkale Univ Muh Bilim Derg, 31(2), 225-234, 2025

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi

Pamukkale University Journal of Engineering Sciences

Fırçasız DA motorları ile sürülen ve dinamik model belirsizlikleri içeren robot kollarının uyarlamalı denetimi

Adaptive control of robot manipulators driven by brushless DC motors with uncertainties in dynamic model

Şükrü ÜNVER¹, Erman SELİM^{2*}, Enver TATLICIOĞLU², Erkan ZERGEROĞLU³, Musa ALCI²

¹Bilgisayar Mühendisliği Bölümü, Mühendislik ve Doğa Bilimleri Fakültesi, Sivas Bilim ve Teknoloji Üniversitesi, Sivas, Türkiye. <u>sukru.unver@sivas.edu.tr</u>

²Elektrik-Elektronik Mühendisliği Bölümü, Mühendislik Fakültesi, Ege Üniversitesi, İzmir, Türkiye.

erman.selim@ege.edu.tr, enver.tatlicioglu@ege.edu.tr, musa.alci@ege.edu.tr

³Bilgisayar Mühendisliği Bölümü, Mühendislik Fakültesi, Gebze Teknik Üniversitesi, Gebze, Türkiye.

e.zerger@gtu.edu.tr

Geliş Tarihi/Received: 02.03.2023 Kabul Tarihi/Accepted: 07.06.2024 Düzeltme Tarihi/Revision: 25.03.2024

doi: 10.5505/pajes.2024.88288 Araştırma Makalesi/Research Article

Öz

Bu çalışmada; eklemleri fırçasız doğru akım (DA) motorları kullanılarak sürülen ve dinamik modelinde parametrik belirsizlikler olan robot kolları için eyleyici dinamikleri de ele alınarak uyarlamalı görev uzayı takip denetleyicisi tasarımı gerçekleştirilmiştir. Denetleyici tasarımının doğrudan görev uzayında gerçekleştirilmiştir. Denetleyici tasarımının doğrudan görev uzayında gerçekleştirilmesi sayesinde önerilen denetleyici yapısı pozisyon seviyesinde ters kinematik hesaplamalarına ihtiyaç duymamaktadır. Geliştirilen tam durum geri beslemeli ve ivme ölçümlerine ihtiyaç duymayan denetleyici yapısının robot dinamik modelindeki parametrik belirsizliklere rağmen küresel asimptotik kararılığı Lyapunov tarzı sentez ve kararılık analizi yöntemi kullanılarak garanti edilmiştir. Önerilen yöntemin performansını ve uygulanabilirliğini göstermek amacıyla düzlemde çalışan, iki serbestlik dereceli, eklemleri fırçasız DA motorları kullanılarak sürülen robot kolu modeli kullanılarak benzetim çalışması gerçekleştirilmiştir.

Anahtar kelimeler: Uyarlamalı denetim, Robot kolları, Görev uzayı, Doğrusal olmayan kontrol, Fırçasız DA motorları.

1 Giriş

Robot kollarının gerçekleştirmesi beklenen görevler robot kolunun uç noktasının hareketi cinsinden tanımlanmasına rağmen, bilimsel yazında robot kollarının denetimi konusunda yapılan çalışmaların çoğu robot kolunun eklem uzayında takip denetimine yönelik tasarımlar içermektedir. Eklem uzayında yapılan geliştirmelerden faydalanabilmek amacıyla robot kolunun gerçekleştirmesi beklenen görev eklem uzayı değişkenleri cinsinden ifade edilebilir ancak bu yöntemin en önemli eksikliği pozisyon seviyesinde ters kinematik hesaplamalarına gerçek zamanlı olarak ihtiyaç duyulmasıdır [1]-[3]. Alternatif olarak denetleyici tasarımı, robot kolunun uç noktasının istenen uç nokta yörüngesini takip etmesini amaçlayacak şekilde görev uzayında gerçekleştirilebilir. Bu yöntem pozisyon seviyesinde ters kinematiğin hesaplanmasına olan gereksinimi ortadan kaldırmaktadır [4]. Görev uzayı denetimi konusunda teorik ve deneysel inceleme çalışmaları [5] ve [6]'da bulunabilir.

Abstract

In this study, an adaptive controller design is carried out for robot manipulators whose joints are driven using brushless direct current (BLDC) motors and which have parametric uncertainties in the dynamic model, by considering the actuator dynamics. Thanks to the realization of controller design directly in the task space, the proposed controller structure does not need inverse kinematics calculations at the position level. Despite the parametric uncertainties in the robot dynamic model, the global asymptotic stability of the developed controller structure with full state feedback, which does not need acceleration measurements, is guaranteed by using Lyapunov type synthesis and stability analysis method. To demonstrate the performance and feasibility of the proposed method, a simulation study was carried out using a two degree of freedom, planar robot manipulator model, whose joints are driven using BLDC motors.

Keywords: Adaptive control, Robotic manipulators, Task space, Nonlinear control, BLDC motors.

Bilimsel yazının ilgili kısmı incelendiğinde eyleyici dinamiklerinin çoğunlukla dikkate alınmadığı tespit edilmiştir. Oysaki eyleyici dinamikleri eksiksiz bir robot dinamiğinin önemli bir parçasıdır. Eyleyici dinamiklerinin etkisi, çalışma hızı arttıkça ve yük değişimleri altında dramatik olarak artmaktadır [7]. Eyleyici dinamikleri robot kolunun dinamik karakteristiğini ve kararlılığını da etkileyebilmektedir [8]. Yüksek hız ve doğruluk gereksinimlerine ihtiyaç duyulan robot kollarından yüksek bir performans elde edilmesi istendiğinde dinamikleri, denetleyici tasarımında dikkate eyleyici alınmalıdır [9]. Bilimsel yazında eyleyici dinamiklerini göz bulundurarak denetlevici önünde tasarımlarının gerçekleştirildiği güncel çalışmalar arasında [10]-[12] ve [13] bulunmaktadır. Uyarlamalı denetleyici tasarımı gerçekleştirilen güncel çalışmalar arasında ise [14],[15] ve [16] bulunmaktadır. Ancak tüm bu calısmalarda denetlevici tasarımları eklem uzayında gerçekleştirilmiştir.

Bilimsel yazında robot kollarının görev uzayında denetimini hedeflerken eyleyici modelini de göz önünde bulunduran oldukça az sayıdaki çalışmalar arasında [17],[18] ve [19]

^{*}Yazışılan yazar/Corresponding author

bulunmaktadır. Bu çalışmalarda kinematik ve dinamik model belirsizliklerine ek olarak eyleyici model belirsizlikleri de göz önünde bulundurularak kontrol problemlerine çözümler önerilmiştir. Ancak bu çalışmalarda elektriksel dinamikler ihmal edilerek oldukça basit bir eyleyici modeli tercih edilmiştir. Görev uzayında ve elektriksel dinamikler ihmal edilmeksizin eyleyici dinamiklerinin dikkate alındığı çalışmalar arasında [20] ve [21] bulunmaktadır. [21] calısmasında gürbüzleştirici terim olarak kayan kipli denetim yapısında kullanılan işaret işlevinin tercih edildiği görülmektedir. İşaret işlevinin denetleyici tasarımında kullanılması çatırdama problemi nedeniyle tasarlanan denetleyicilerin gerçek zamanlı uygulamalarda kullanımını kısıtlamaktadır. [20] çalışmasında ise denetleyici tasarımında dinamik model bilgisine ihtiyaç duyulmaktadır. Bilimsel yazında, eyleyicinin elektriksel dinamiklerini ihmal eden, dinamik model belirsizliklerinin ele alınmadığı ve kayan kipli denetim yapısını kullanan uygulanabilirliği görece düşük çalışmalar da dışarıda bırakıldığında eyleyici dinamiklerini göz önünde bulunduran, görev uzayında istenilen uç nokta konfigürasyonun takibini amaçlayan denetleyici tasarımı konusunda tam durum geri beslemeli denetleyici tasarımı çalışması yazarların en iyi bilgisi dahilinde tespit edilememiştir.

Bu çalışmada, eklemleri fırçasız doğru akım motorları (DA) kullanılarak sürülen robot kollarının görev uzayında denetimi problemi eyleyici dinamikleri de dikkate alınarak ele alınmıştır. Fırçasız DA motorları, fırçalı DA motorlarına göre düşük bakım gereksinimi ve yüksek tork üretimi gibi avantajları nedeniyle tercih edilmektedir [22]. Ancak, fırçalı DA motorları yerine fırçasız DA motorlarının kullanılması dinamik karmaşıklığı oldukça arttırmaktadır. Fırçalı DA motorları doğrusala yakın bir davranış göstermekte ve her bir eyleyici için bir denetleyici girişi tasarlanmasına ihtiyaç duyulmaktadır. Buna karşın fırçasız DA motorları faz akımları ve rotor hızları arasındaki çapraz terimler nedeniyle oldukça yüksek dereceden doğrusalsızlıklar içermektedir ve her bir fırçasız DA motoru için iki denetleyici girişi tasarlanması gerekmektedir [23]. Bu calışma kapsamında, görev uzayında, robot kolunun dinamik modelindeki belirsizliklerin sebep olduğu bozucu etkilere karşı gürbüz olan ve eklem ivmelerinin ölçüm bilgisine ihtiyaç duymayan, tüm durum geri beslemeli, geri adımlamalı ve uyarlamalı [24]-[26] denetleyici tasarımı gerçekleştirilmiştir. Tasarlanan denetleyicinin robot dinamik modelindeki parametrik belirsizliklere rağmen asimptotik kararlılığı Lyapunov tarzı sentez ve kararlılık analizi yöntemi kullanılarak garanti edilmiştir. Çalışmanın öne çıkan özellikleri ve katkıları asağıda özetlenmistir;

- Yenilikçi bir yaklaşımla, görev uzayında yörünge takibi, denetleyici tasarımına firçasız DA motor dinamikleri de dahil edilerek gerçekleştirilmiştir,
- Rijit eklemli ve elektrik tahrikli robot kollarında, denetleyici işareti ile eklemlere uygulanan tork girişi arasında doğrusal bir ilişki olduğunu varsayan mevcut çalışmalardan (örneğin, [27]-[31] ve [32]) farklı olarak, çalışmamız kapsamında fırçasız DA motorlarının doğrusal olmayan dinamikleri açıkça dikkate alınmıştır,
- Robot kolunun dinamik modelindeki parametrik belirsizliklerin denetleyici performansı üzerindeki bozucu etkileri, tasarlanan uyarlamalı denetleyici yardımıyla indirgenmiştir.
- Lyapunov tarzı sentez ve kararlılık analiz yöntemi ile asimptotik kararlı denetleyici tasarlanmıştır.

Bu makelenin diğer bölümlerinin organizasyonu şu şekildedir: Bölüm 2'de sırasıyla kullanılan kinematik, elektriksel ve dinamik modeller, hata sistemi tasarımı ve kararlılık analizi sunulmuştur. Bölüm 3'te benzetim çalışmasına ait sonuçlar kullanılan model parametreleriyle birlikte sunulmuştur. Son olarak Bölüm 4 ve 5'te elde edilen sonuçlar değerlendirilmiştir.

2 Teorik yöntem

2.1 Kinematik model

n boyutlu uzayda çalışan n serbestlik dereceli robot kolunun kinematik modeli [33]

$$x = f(q) \tag{1}$$

şeklinde ifade edilebilir. Burada $x(t) \in \mathbb{R}^n$ görev uzayı pozisyon vektörünü, $q(t) \in \mathbb{R}^n$ eklem pozisyon vektörünü ve $f(q): \mathbb{R}^n \to \mathbb{R}^n$ ileri kinematiği göstermektedir. Denklem (1) ifadesinin zamana göre türevi alındığında hız seviyesinde kinematik model

$$\dot{x} = J(q)\dot{q} \tag{2}$$

yapısında elde edilmiştir. Burada $\dot{x}(t) \in \mathbb{R}^n$ görev uzayı hız vektörünü, $\dot{q}(t) \in \mathbb{R}^n$ eklem uzayında tanımlı hız vektörünü ve $J(q) \in \mathbb{R}^{n \times n}$ Jakobiyen matrisini göstermekte olup

$$J(q) \triangleq \frac{\partial f(q)}{\partial q} \tag{3}$$

şeklinde tanımlanmıştır.

Özellik 1: Robot kolunun tüm kinematik tekilliklerinden önsel olarak kaçınıldığı kabul edilmekte olup olası her eklem pozisyonu q(t) için Jakobiyen matrisinin tersinin var olduğu kabul edilmektedir [33].

Özellik 2: J(q) ve $J^{-1}(q)$ matrislerinin elemanları eklem pozisyonlarına yalnızca trigonometrik işlevler ile bağlıdır ve dolayısıyla da tüm olası eklem pozisyonları için sınırlı olup alt ve üst sınırları,

$$\xi_{j_1} \le \|J(q)\|_{i\infty} \le \xi_{j_2} \tag{4}$$

$$\frac{1}{\xi_{j_2}} \le \|J^{-1}(q)\|_{i\infty} \le \frac{1}{\xi_{j_1}} \tag{5}$$

şeklinde gösterilmektedir [25]. Burada, $\|\cdot\|_{i\infty}$ ilgili matrisin indirgenmiş sonsuz normunu, $\xi_{j_1}, \xi_{j_2} \in \mathbb{R}$ ise pozitif sabitleri göstermektedir.

Jakobiyen matrisinin zamana göre türevi $W_J(q, \dot{q}) \in \mathbb{R}^{n \times n}$ matrisi ile gösterilmekte olup

$$W_j(q,\dot{q}) \triangleq \frac{d}{dt} \left(J^{-1}(q) \right) \tag{6}$$

yapısında tanımlanmıştır.

Özellik 3: Denklem (6) ile tanımlanan W_j matrisi alttaki yer değiştirme ifadesini sağlar [33]

$$W_j(q,a)b = W_j(q,b)a, \forall a, b \in \mathbb{R}^n.$$
(7)

Özellik 4: Denklem (6) ifadesinde tanımlanan *W_j* ifadesinin üst sınırı

$$\left\|W_{j}(q,a)\right\|_{i\infty} \leq \xi_{j_{3}}\|a\|, \forall a \in \mathbb{R}^{n}$$
(8)

şeklinde elde edilebilir [33]. Burada $\|\cdot\|$ ilgili vektörün Öklid normunu, $\xi_{j_3} \in \mathbb{R}$ ise pozitif sabiti göstermektedir.

2.2 Elektriksel sistem modeli

Çalışmamız kapsamında robot kolunun eklemleri fırçasız DA motorları kullanılarak tahrik edilmektedir. Motorların dinamik modeli [23]

$$L_a \frac{dI_a}{dt} + RI_a + N_p L_b I_B \dot{q} + K_{T2} \dot{q} = V_a \tag{9}$$

$$L_b \frac{dI_b}{dt} + RI_b - N_p L_a I_A \dot{q} = V_b \tag{10}$$

yapısında olup burada $I_a(t)$, $I_b(t) \in \mathbb{R}^n$ faz akım vektörlerini, $I_A(t)$, $I_B(t) \in \mathbb{R}^{n \times n}$ faz akım vektörlerinin köşegensel matris gösterimlerini, L_a , $L_b \in \mathbb{R}^{n \times n}$ köşegensel endüktans matrislerini, $R \in \mathbb{R}^{n \times n}$ köşegensel sargı direnç matrisini, $N_p \in \mathbb{R}^{n \times n}$ köşegensel kutup sayılarını içeren matrisi, $K_B \in \mathbb{R}^{n \times n}$ köşegensel elektromotor kuvvet katsayılarını içeren matrisi, K_{T1} , $K_{T2} \in \mathbb{R}^{n \times n}$ köşegensel tork sabitlerini içeren matrisleri ve $V_a(t)$, $V_b(t) \in \mathbb{R}^n$ denetleyici girişleri olan faz gerilimlerini ifade etmektedir. Tork sabitleri olan K_{T1} ve K_{T2} alttaki yapıda tanımlanmaktadır

$$K_{T1} = N_p (L_b - L_a)$$
(11)

$$K_{T2} = \sqrt{\frac{3}{2}N_pK_B}.$$
 (12)

Faz akım vektörleri $I_a(t)$ ve $I_b(t)$

$$I_a = \begin{bmatrix} I_{a1} & \cdots & I_{an} \end{bmatrix}^{\mathrm{T}}$$
(13)

$$I_b = \begin{bmatrix} I_{b1} & \cdots & I_{bn} \end{bmatrix}^{\mathrm{T}}$$
(14)

yapısında olup bunların köşegensel matris gösterimleri olan $I_A(t)$ ve $I_B(t)$ alttaki yapıda tanımlanmıştır

$$I_A = \operatorname{diag}\{I_{a1} \quad \cdots \quad I_{an}\}$$
(15)

$$I_B = \operatorname{diag}\{I_{b1} \quad \cdots \quad I_{bn}\}. \tag{16}$$

2.3 Dinamik model

Eklemleri fırçasız DA motorları kullanılarak tahrik edilen, rijit eklemli ve n serbestlik dereceli robot kolunun dinamik modeli [23].

$$M(q)\ddot{q} + V_m(q,\dot{q})\dot{q} + G(q) + F_d\dot{q} = (K_{T1}I_B + K_{T2})I_a \quad (17)$$

yapısında olup $\ddot{q}(t) \in \mathbb{R}^n$ eklem ivme vektörünü, $M(q) \in \mathbb{R}^{n \times n}$ eylemsizlik/atalet matrisini, $V_m(q, \dot{q}) \in \mathbb{R}^{n \times n}$ merkezcil ve Koriyolis etkilerini içeren matrisi, $G(q) \in \mathbb{R}^n$ yerçekimine bağlı etkileri, $F_d \in \mathbb{R}^{n \times n}$ sabit, köşegensel ve pozitif tanımlı viskoz sürtünme matrisini göstermektedir.

Çalışmanın devamında yapılacak olan geliştirmelerde dinamik modelin aşağıdaki özelliklerinden faydalanılmaktadır.

Özellik 5: Eylemsizlik matrisi M(q) pozitif tanımlı ve simetrik olup alttaki eşitsizlikleri sağlar [34]

$$m_1 I_n \le M(q) \le m_2 I_n. \tag{18}$$

Burada, $m_1,m_2\in\mathbb{R}$ pozitif sabitleri ve $I_n\in\mathbb{R}^{n\times n}$ birim matrisi göstermektedir.

Özellik 6: Eylemsizlik matrisinin zamana göre türevi olan $\dot{M}(q)$ ile merkezcil ve Koriyolis terimlerini modelleyen matris $V_m(q, \dot{q})$ birlikte aşağıdaki ters simetri özelliğini sağlarlar [34]

$$a^{\mathrm{T}}(\dot{M} - 2V_m)a = 0, \forall a \in \mathbb{R}^n.$$
⁽¹⁹⁾

Özellik 7: Denklem (17) ifadesinin sol tarafındaki dinamik terimler doğrusal olarak parametrelerine ayrıştırılabilir yapıda olup [34]

$$Y\theta = M(q)\ddot{q} + V_m(q,\dot{q})\dot{q} + G(q) + F_d\dot{q}$$
(20)

şeklinde yeniden yazılabilir. Üstte $Y(q, \dot{q}, \ddot{q}) \in \mathbb{R}^{n \times p_d}$ regresör matrisini ve $\theta \in \mathbb{R}^{p_d}$ ise robotun fiziksel özelliklerine bağlı sabit parametre vektörünü göstermektedir.

Özellik 8: $V_m(q, \dot{q})$ matrisi altta sunulan yer değiştirme özelliğini sağlar [34]

$$V_m(q,a)b = V_m(q,b)a, \forall a, b \in \mathbb{R}^n.$$
(21)

Özellik 9: Dinamik model terimleri için üst sınırlar [34],

$$\|V_m(q,a)\|_{i\infty} \le \xi_{\nu_1} \|a\|, \forall a \in \mathbb{R}^n$$
(22)

$$\|G(q)\| \le \xi_g \tag{23}$$

$$\|F_d\|_{i\infty} \le \xi_f \tag{24}$$

şeklinde elde edilmiş olup $\xi_{v_1}, \xi_g, \xi_f \in \mathbb{R}$ pozitif sabitleri göstermektedir.

2.4 Hata sistemi geliştirilmesi ve denetleyici tasarımı

Çalışmanın bu aşamasında robot kolunun uç noktasının istenilen görev uzayı yörüngesini takip etmesini sağlayacak denetleyici tasarımı gerçekleştirilecektir. Denetleyici elektriksel motor modelinde $V_a(t)$ ve $V_b(t)$ ile gösterilen faz gerilimleri olup takip eden adımlarda tasarlanacaklardır. Robotun dinamik modelinin parametrik belirsizlikler içerirken kinematik ve elektriksel model parametrelerinin bilindiği varsayılmaktadır. Yalnızca eklem pozisyonları ve eklem hızları ile faz akımlarının ölçülebildiği kabul edilmektedir.

Görev uzayı takip hatası $e(t) \in \mathbb{R}^n$ aşağıdaki gibi tanımlanmış olup

$$e \triangleq x_d - x \tag{25}$$

burada $x_d(t) \in \mathbb{R}^n$ takip edilmesi istenilen görev uzayı pozisyon vektörünü göstermekte olup üçüncü dereceye kadar türevlenebilirdir ve aşağıdaki eşitsizlikleri sağlar

$$\begin{aligned} \|x_{d}(t)\| &\leq \xi_{d_{1}}, \|\dot{x}_{d}(t)\| \leq \xi_{d_{2}}, \|\ddot{x}_{d}(t)\| \leq \xi_{d_{3}}, \|\ddot{x}_{d}(t)\| \\ &\leq \xi_{d_{4}} \end{aligned}$$
(26)

Burada, $\xi_{d_1}, \xi_{d_2}, \xi_{d_3}, \xi_{d_4} \in \mathbb{R}$ pozitif sabitleri göstermektedir. Süzgeçlenmiş hata işareti $r(t) \in \mathbb{R}^n$ aşağıdaki gibi tanımlanmış olup

$$r \triangleq J^{-1}(\dot{x}_d + K_e e) - \dot{q} \tag{27}$$

burada $K_e \in \mathbb{R}^{n \times n}$ pozitif tanımlı, köşegensel, sabit denetleyici kazanç matrisini göstermektedir. Denklem (27) ifadesi J(q) ile çarpılıp Denklem (25) ifadesinin türevi kullanılarak düzenlendiğinde,

$$\dot{e} = -K_e e + Jr \tag{28}$$

ifadesi elde edilmiştir.

Denklem (27) ifadesinin türevi alınıp elde edilen ifade M(q) ile çarpılıp ardından Denklem (17) kullanıldığında alttaki ifadeye ulaşılabilir

$$\begin{aligned} M\dot{r} &= M(q)W_{j}(q,\dot{q})(\dot{x}_{d} + K_{e}e) - V_{m}(q,\dot{q})r \\ &+ M(q)J^{-1}(q)(\dot{x}_{d} + K_{e}\dot{e}) \\ &+ V_{m}(q,\dot{q})J^{-1}(q)(\dot{x}_{d} + K_{e}e) \\ &+ G(q) + F_{d}\dot{q} - K_{T1}I_{A}I_{b} - K_{T2}I_{a}. \end{aligned}$$
(29)

Üstteki ifadenin elde edilmesi esnasında Denklem (6) ifadesi ve $I_B I_a = I_A I_b$ kullanılmıştır. Özellik 7 ve Denklem (2) kullanılarak Denklem (29) ile verilen ifadede dinamik model parametrelerine bağlı terimler birlikte yazılmak amacıyla yeniden gruplandığında alttaki terime ulaşılır

Burada, $Y(q, x, \dot{x}, x_d, \dot{x}_d, \dot{x}_d) \in \mathbb{R}^{n \times p_d}$ bilinen regresör matrisini, $\theta_d \in \mathbb{R}^{p_d}$ ise bilinmeyen dinamik model parametrelerini içeren vektörü göstermektedir. Denklem (30) ile sunulan tanım Denklem (29) ile elde edilen hata dinamiklerinde yerine yazıldığında

$$M\dot{r} = -V_m r + Y\theta_d - K_{T1}I_A I_b - K_{T2}I_a \tag{31}$$

ifadesine ulaşılabilir. Denklem (30) ile tanımlanan ifadede $x \to x_d$ ve $\dot{x} \to \dot{x}_d$ yazılması sonucunda

$$Y_r \theta_d = M(q) W_j(q, J^{-1}(q) \dot{x}_d) \dot{x}_d + M(q) J^{-1}(q) \dot{x}_d + V_m(q, J^{-1}(q) \dot{x}_d) J^{-1}(q) \dot{x}_d + G(q) + F_d J^{-1}(q) \dot{x}_d$$
(32)

ifadesi elde edilmiş olup $Y_r(q, x_d, \dot{x}_d, \ddot{x}_d) \in \mathbb{R}^{n \times p_d}$ bilinen regresör matrisini göstermektedir. Denklem (31) ifadesine $Y_r \theta_d$ teriminin eklenip çıkartılması sonucunda

$$M\dot{r} = -V_m r + (Y - Y_r)\theta_d + Y_r \theta_d - K_{T1} I_A I_b - K_{T2} I_a$$
(33)

açık çevrim hata sistemi elde edilmiştir. Takip eden kararlılık analizinde kullanmak amacıyla aşağıdaki sunulan üst sınırın doğruluğu Ek-A'da ispatlanmış olup

$$\|(Y - Y_r)\theta_d\| \le (c_1 + c_2 \|e\|) \|e\| + (c_3 + c_4 \|e\|) \|r\|$$
(34)

Burada, $c_1, c_2, c_3, c_4 \in \mathbb{R}$ robot kolunun fiziksel parametrelerine ve takip edilmesi istenen yörüngeye bağlı bilinen, artı sabitleri göstermektedir. Kontrol sisteminin çalışmasını basitçe özetleyen bir blok diyagramı Şekil 1'de sunulmuştur.

Şekil 1. Kontrol sistemi blok diyagramı. Figure 1. Block diagram of the control system.

Fırçasız DA motorların çok girişli yapısından dolayı denetleyici girişleri olan faz gerilimleri $V_a(t)$ ve $V_b(t)$ tasarlanarak faz akımları $I_a(t)$ ve $I_b(t)$ kontrol edilerek istenilen tork τ değerlerinin robot eklemlerine uygulanması gerekmektedir.

Bu hedef doğrultusunda $\eta_a(t) \in \mathbb{R}^n$ ile gösterilen hata işareti

$$\eta_a \triangleq I_{ac} - I_a \tag{35}$$

şeklinde tanımlanmıştır. Burada $I_{ac}(t) \in \mathbb{R}^n$ ara denetleyiciyi ifade etmekte olup

$$I_{ac} = K_{T2}^{-1} \left(K_r r + J^T e + (k_{a1} + k_{a2}) \|e\|^2 r + Y_r \hat{\theta}_d \right)$$
(36)

yapısında tasarlanmıştır. Burada, $K_r \in \mathbb{R}^{n \times n}$ pozitif tanımlı, köşegensel, sabit denetleyici kazanç matrisini, k_{a1} , $k_{a2} \in \mathbb{R}$ pozitif sabit denetleyici kazançlarını ve $\hat{\theta}_d(t) \in \mathbb{R}^{p_d}$ parametre kestirim vektörünü ifade etmekte olup güncelleme kuralı alttaki yapıda tasarlanmıştır

$$\dot{\hat{\theta}}_d = Y_r^{\mathrm{T}} r. \tag{37}$$

Denklem (35) ile tanımlanan hatanın ve Denklem (36) ile tasarlanan denetleyicinin Denklem (33) ile elde edilen açık çevrim hata sisteminde yerine yazılması sonucunda

$$M\dot{r} = -V_m r + (Y - Y_r)\theta_d + Y_r \tilde{\theta}_d - K_{T1} I_A I_b - K_r r -J^T e - (k_{a1} + k_{a2}) ||e||^2 r$$
(38)
+ $K_{T2} \eta_a$

üstteki kapalı çevrim hata sistemine ulaşılmıştır. Burada $\tilde{\theta}_d(t) \in \mathbb{R}^{p_d}$ parametre kestirim hata vektörünü göstermekte olup

$$\tilde{\theta}_d \triangleq \theta_d - \hat{\theta}_d \tag{39}$$

şeklinde tanımlanmıştır.

Denklem (35) ile tanımlanan hatanın önce türevinin alınıp ardından L_a ile çarpılıp sonrasında Denklem (9) ifadesindeki elektriksel modelin yerine yazılması sonucu

$$L_{a}\dot{\eta}_{a} = L_{a}\frac{dI_{ac}}{dt} + RI_{a} + N_{p}L_{b}I_{B}\dot{q} + K_{T2}\dot{q} - V_{a}$$
(40)

ifadesine ulaşılmıştır. Denklem (40) ifadesinde açıkça görüldüğü üzere Denklem (36) ile sunulan $I_{ac}(t)$ tasarımının zamana göre türevinin kullanılması gerekmekte olup bu ifade ise $\dot{r}(t)$ terimine bağlıdır. Denklem (27) ile sunulan tanımın zamana göre türevi alınıp ulaşılan ifadede Denklem (17) ile verilen dinamik modelin $M^{-1}(q)$ ile çarpılmasının ardından yalnız bırakılan eklem ivme vektörü $\ddot{q}(t)$ yerine yazılınca

$$\dot{r} = \frac{d}{dt} [J^{-1}(q)(\dot{x}_d + K_e e)] - \frac{\mathrm{adj}(M(q))}{\mathrm{det}(M(q))} [(K_{T1}I_B + K_{T2})I_a - V_m(q, \dot{q})\dot{q} - G(q) - F_d \dot{q}]$$
(41)

şeklinde yeniden yazılabilir. Burada det(\cdot) ifadesi ilgili matrisin determinantını, adj(\cdot) ifadesi ise ilgili matrisin ekini/adjointini göstermekte olup açıkça görülebileceği üzere Denklem (41) ifadesi paydadaki det(M(q)) teriminin bilinmeyen dinamik model parametrelerine dayanmasından dolayı doğrusal olarak parametrelerine ayrıştırılabilir yapıda değildir. Eylemsizlik matrisinin determinantı doğrusal olarak parametrelerine ayrıştırılabilir bir işlev olup sunum kolaylığı açısından $h(q) \in \mathbb{R}$ olarak yeniden tanımlandığında

$$h(q) \triangleq \det(M(q)) = m^{\mathrm{T}}\theta_m \tag{42}$$

yapısında yazılabilir. Üstte $m(q) \in \mathbb{R}^{p_m}$ bilinen regresör vektörünü, $\theta_m \in \mathbb{R}^{p_m}$ ise bilinmeyen parametre vektörünü göstermektedir. Denklem (40) ile sunulan ifadenin h(q) ile çarpıldıktan sonra elde edilene $\frac{1}{2}\dot{h}L_a\eta_a$ teriminin eklenip cıkartılması sonucunda

$$hL_{a}\dot{\eta}_{a} = hL_{a}\frac{dI_{ac}}{dt} + h(RI_{a} + N_{p}L_{b}I_{B}\dot{q} + K_{T2}\dot{q}) + \frac{1}{2}\dot{h}L_{a}\eta_{a} - \frac{1}{2}\dot{h}L_{a}\eta_{a} - hV_{a}$$
(43)

ifadesine ulaşılmıştır. Burada, $\frac{dI_{ac}}{dt}$ ifadesi h(q) ya da diğer bir deyişle det(M(q)) ile çarpıldığından dolayı $hL_a\dot{\eta}_a$ ifadesi doğrusal parametrelerine ayrıştırılabilir bir işlev olup diğer doğrusal parametrelerine ayrılabilen terimlerle birlikte yazılıp yeniden gruplandığında

$$Y_a \theta_a = h L_a \frac{dI_{ac}}{dt} + h \left(RI_a + N_p L_b I_B \dot{q} + K_{T2} \dot{q} \right) + \frac{1}{2} \dot{h} L_a \eta_a$$
(44)

İfadesine ulaşılabilir. Üstte $Y_a(I_a, I_b, q, \dot{q}, \eta_a, x, \dot{x}, x_d, \dot{x}_d, \ddot{x}_d, \ddot{x}_d) \in \mathbb{R}^{n \times p_a}$ bilinen regresör matrisini, $\theta_a \in \mathbb{R}^{p_a}$ ise bilinmeyen parametre vektörünü göstermektedir. Denklem (44) tanımının Denklem (43) ifadesinde yerine yazılması sonucu

$$hL_a\dot{\eta}_a = Y_a\theta_a - \frac{1}{2}\dot{h}L_a\eta_a - hV_a \tag{45}$$

açık çevrim hata sistemine ulaşılmıştır. Denetleyici girişi olan faz gerilimi $V_a(t)$

$$V_a = \left(m^{\mathrm{T}}\hat{\theta}_m\right)^{-1} \left(Y_a\hat{\theta}_a + K_{T2}r\right) \tag{46}$$

yapısında tasarlanmış olup $\hat{\theta}_m(t) \in \mathbb{R}^{p_m}$ ve $\hat{\theta}_a(t) \in \mathbb{R}^{p_a}$ parametre kestirim vektörleri olup güncelleme kuralları alttaki yapıda tasarlanmıştır

$$\dot{\hat{\theta}}_m = \operatorname{proj}\{-mV_a^{\mathrm{T}}\eta_a\}$$
(47)

$$\dot{\hat{\theta}}_a = Y_a^{\mathrm{T}} \eta_a. \tag{48}$$

Denklem (47) ile sunulan tasarımda proj $\{\cdot\}$: $\mathbb{R}^{p_m} \to \mathbb{R}^{p_m}$ projeksiyon/izdüşüm operatörünü göstermekte olup ve $\hat{\theta}_m$ vektörünün elemanlarının değerlerini paydadaki $m^T \hat{\theta}_m$ ifadesinin sıfıra eşit olmayacağı bir aralıkta sınırlandırmak amacıyla kullanılmaktadır [35], [38]. Denklem (46) ile tasarlanmış olan denetleyici kuralının Denklem (45) ifadesinde yerine yazılması sonucunda

$$hL_a\dot{\eta}_a = Y_a\theta_a - \frac{1}{2}\dot{h}L_a\eta_a - h(m^{\mathrm{T}}\hat{\theta}_m)^{-1}(Y_a\hat{\theta}_a + K_{T2}r)$$

$$(49)$$

kapalı çevrim hata sistemine ulaşılmıştır. Denetleyici girişi olan faz gerilimi $V_b(t)$

$$V_b = RI_b - N_p L_a I_A \dot{q} + K_{T1} I_A r \tag{50}$$

yapısında tasarlanmış olup Denklem (10) ile sunulan elektriksel modelde yerine yazılması ve sadeleştirmelerin yapılması sonucunda

$$L_b \frac{dI_b}{dt} = K_{T1} I_A r \tag{51}$$

kapalı çevrim hata sistemine ulaşılmıştır.

2.5 Kararlılık analizi

Çalışmanın bu aşamasında, kapalı çevrim sistemin kararlılığı Lyapunov tabanlı kararlılık analiz yöntemi kullanılarak irdelenecektir.

Teori 1: Denklem (36), Denklem (46) ve Denklem (50) ifadelerinde tasarlanan denetleyiciler, Denklem (37), Denklem (47) ve Denklem (48) ifadelerinde tasarlanan güncelleme kuralları, denetleyici kazanç matrisleri K_e ve K_r pozitif sabit denetleyici kazancı $\kappa \in \mathbb{R}$ için

$$\lambda_{\min}(K_e) = \frac{1}{4\delta} + \frac{c_2^2}{4k_{a1}} + \kappa$$
(52)

$$\lambda_{\min}(K_r) = c_3 + \delta c_1^2 + \frac{c_4^2}{4k_{a2}} + \kappa$$
 (53)

Yukarıda sunulan koşulları sağlayacak yapıda tasarlandıklarında kapalı çevrim sistemin sınırlılığını ve robot kolunun uç noktasının verilen görev uzayı yörüngesini takip etmesini garanti etmektedir. Diğer bir ifadeyle görev uzayı takip hatasının zaman ilerledikçe $t \to +\infty$ orijine yakınsaması $e(t) \to 0$ garanti edilmektedir. Üstte $\lambda_{\min}(\cdot)$ ilgili matrisin en küçük özdeğerini ve $\delta \in \mathbb{R}$ artı sabiti göstermektedir.

İspat 1: Yukarıda sunulan teoriyi ispatlamak amacıyla, radyal olarak sınırlandırılmamış, sürekli ve artı tanımlı [36],[37] Lyapunov işlevi $V(t) \in \mathbb{R}$ alttaki yapıda tanımlanmıştır

$$V \triangleq \frac{1}{2}r^{\mathrm{T}}Mr + \frac{1}{2}e^{\mathrm{T}}e + \frac{1}{2}h\eta_{a}^{\mathrm{T}}L_{a}\eta_{a} + \frac{1}{2}I_{b}^{\mathrm{T}}L_{b}I_{b} + \frac{1}{2}\tilde{\theta}_{d}^{\mathrm{T}}\tilde{\theta}_{d} + \frac{1}{2}\tilde{\theta}_{m}^{\mathrm{T}}\tilde{\theta}_{m} + \frac{1}{2}\tilde{\theta}_{a}^{\mathrm{T}}\tilde{\theta}_{a}.$$
(54)

Burada $\tilde{\theta}_m(t) \in \mathbb{R}^{p_m}$ ve $\tilde{\theta}_a(t) \in \mathbb{R}^{p_a}$ parametre kestirim hata vektörlerini göstermekte olup

$$\tilde{\theta}_m \triangleq \theta_m - \hat{\theta}_m \tag{55}$$

$$\tilde{\theta}_a \triangleq \theta_a - \hat{\theta}_a \tag{56}$$

şeklinde tanımlanmışlardır. Denklem (54) ile sunulan Lyapunov işlevi içerisindeki terimlere karesel olarak bağlı olup artı tanımlıdır.

V(t) ifadesinin zamana göre türevi alındığında

$$\dot{V} = \frac{1}{2}r^{\mathrm{T}}\dot{M}r + r^{\mathrm{T}}M\dot{r} + e^{\mathrm{T}}\dot{e} + \frac{1}{2}\dot{h}\eta_{a}^{\mathrm{T}}L_{a}\eta_{a} + h\eta_{a}^{\mathrm{T}}L_{a}\dot{\eta}_{a} + I_{b}^{\mathrm{T}}L_{b}\frac{dI_{b}}{dt} + \tilde{\theta}_{d}^{\mathrm{T}}\dot{\tilde{\theta}}_{d} + \tilde{\theta}_{m}^{\mathrm{T}}\dot{\tilde{\theta}}_{m} + \tilde{\theta}_{a}^{\mathrm{T}}\tilde{\tilde{\theta}}_{a}$$
(57)

elde edilmiştir. Denklem (28), Denklem (38), Denklem (49), Denklem (51) ifadelerindeki hata dinamikleri ve Denklem (39), Denklem (55), Denklem (56) ile tanımlanan parametre kestirim hata vektörlerinin zamana göre türevlerinde θ_d , θ_m ve θ_a vektörlerinin sabit olmaları Denklem (37), Denklem (47) ve Denklem (48) ile tasarlanan güncelleme kuralları ile birlikte Denklem (57) ifadesinde yerine yazılıp sadeleştirmeler yapıldığında

$$\dot{V} = r^{\mathrm{T}}(Y - Y_{r})\theta_{d} - r^{\mathrm{T}}K_{r}r - k_{a1}\|e\|^{2}\|r\|^{2} - k_{a2}\|e\|^{2}\|r\|^{2} + r^{\mathrm{T}}K_{T2}\eta_{a} - e^{\mathrm{T}}K_{e}e + \eta_{a}^{\mathrm{T}}Y_{a}\theta_{a} - \eta_{a}^{\mathrm{T}}h(m^{\mathrm{T}}\hat{\theta}_{m})^{-1}(Y_{a}\hat{\theta}_{a} + K_{T2}r) - \tilde{\theta}_{m}^{\mathrm{T}}\mathrm{Proj}\{-mV_{a}^{\mathrm{T}}\eta_{a}\} - \tilde{\theta}_{a}^{\mathrm{T}}Y_{a}^{\mathrm{T}}\eta_{a}$$
(58)

elde edilmiştir. Üstteki ifadenin elde edilmesinde *Özellik* 6 kullanılmıştır.

Projeksiyon operatörünün sağladığı $-\tilde{\theta}_m^{\mathrm{T}} \operatorname{Proj} \{-m V_a^{\mathrm{T}} \eta_a\} \leq \tilde{\theta}_m^{\mathrm{T}} m V_a^{\mathrm{T}} \eta_a$ eşitsizliği [35], [38] ve Denklem (34) ifadesinde sunulan üst sınır kullanılarak Denklem (58) ifadesinin sağ tarafı için aşağıda sunulan üst sınır

$$\dot{V} \leq c_{1} \|e\| \|r\| + c_{2} \|e\|^{2} \|r\| + c_{3} \|r\|^{2} + c_{4} \|e\| \|r\|^{2} - \lambda_{\min}(K_{r}) \|r\|^{2} - k_{a1} \|e\|^{2} \|r\|^{2} - k_{a2} \|e\|^{2} \|r\|^{2} - \lambda_{\min}(K_{e}) \|e\|^{2}$$
(59)

elde edilmiştir. Analizin devamında Denklem (59) ifadesinde sunulan eşitsizliğin sağ tarafındaki bazı terimler için üst sınırlar elde edilecek ve ardından Denklem (59) içerisinde yerine yazılacaktır. Young eşitsizliğinden faydalanılarak [39], [40]

$$c_1 \|e\| \|r\| \le \frac{1}{4\delta} \|e\|^2 + c_1^2 \|r\|^2$$
(60)

üst sınırı elde edilmiş olup burada $\delta \in \mathbb{R}$ pozitif sabiti göstermektedir. Öte yandan $\frac{c_2^2}{4k_{a1}} ||e||^2$ teriminin eklenip çıkartılması sonucu alttaki üst sınır [41]

$$c_{2} \|e\|^{2} \|r\| - k_{a1} \|e\|^{2} \|r\|^{2}$$

$$= -\|e\|^{2} \left(\sqrt{k_{a1}} \|r\| - \frac{c_{2}}{2k_{a1}}\right)^{2}$$

$$+ \frac{c_{2}^{2}}{4k_{a1}} \|e\|^{2} \le \frac{c_{2}^{2}}{4k_{a1}} \|e\|^{2}$$
(61)

elde edilmiş ve benzer adımlar takip edilerek

$$c_2 \|e\|^2 \|r\| - k_{a2} \|e\|^2 \|r\|^2 \le \frac{c_4^2}{4k_{a2}} \|e\|^2$$
(62)

sonucuna ulaşılmıştır. Denklem (60), Denklem (61) ve Denklem (62) ile elde edilen üst sınırların Denklem (59) ifadesinde yerine yazılması ve elde edilen terimlerin yeniden gruplanması sonucunda

$$\dot{V} \leq -\left(\lambda_{\min}(K_e) - \frac{1}{4\delta} - \frac{c_2^2}{4k_{a1}}\right) \|e\|^2 - \left(\lambda_{\min}(K_r) - c_3 - c_1^2 - \frac{c_4^2}{4k_{a2}}\right) \|r\|^2$$
(63)

ifadesine ulaşılmıştır. Denetleyici kazançları için Denklem (52) ve Denklem (53) ile sunulan tasarımların kullanılmasıyla

$$\dot{V} \le -\kappa \|z\|^2 \tag{64}$$

sonucuna ulaşılmış olup üstte $z(t) \in \mathbb{R}^{2n}$ birleştirilmiş hata vektörü olup $z \triangleq \begin{bmatrix} e^T & r^T \end{bmatrix}^T$ olarak tanımlanmıştır.

göz Denklem (54)ve Denklem (64) önünde bulundurulduğunda $V(t) \in \mathcal{L}_{\infty}$ [42] olduğu sonucuna ulaşılmıştır. Buna göre e(t), r(t), $\eta_a(t)$, $I_b(t)$, $\tilde{\theta}_d(t)$, $\tilde{\theta}_m(t)$, $\tilde{\theta}_a(t) \in \mathcal{L}_{\infty}$ olduğu görülmektedir. Hata işaretleri e(t) ve r(t)sınırlı oldukları için Özellik 2, Denklem (28) ile beraber kullanılarak $\dot{e}(t) \in \mathcal{L}_{\infty}$ olduğu gösterilebilir. Denklem (25) ve zamana göre türevi e(t), $\dot{e}(t)$, $x_d(t)$, $\dot{x}_d(t)$ işaretlerinin sınırlılıkları ile birlikte göz önünde bulundurulduğunda x(t), $\dot{x}(t) \in \mathcal{L}_{\infty}$ ispatlanır. $\dot{x}(t)$ işaretinin sınırlılığı ve Özellik 2, Denklem (2) ile kullanıldığında $\dot{q}(t) \in \mathcal{L}_{\infty}$ gösterilir. q(t) ve $\dot{q}(t)$ sınırlı oldukları için M(q), $V_m(q,\dot{q})$, $G(q) \in \mathcal{L}_{\infty}$ olduğu ispatlanır. Üstteki sınırlılık sonuçları kullanılarak Denklem (30) ile elde edilen Y(t) ve Denklem (32) ile elde edilen $Y_r(t)$ matrislerinin sınırlılıkları ispatlanabilir. $\tilde{\theta}_d(t)$, $\tilde{\theta}_m(t)$ ve $\tilde{\theta}_a(t)$ işaretlerinin sınırlılığı ve $\theta_d, \theta_m, \theta_a$ vektörlerinin sabit olmaları sırasıyla Denklem (39), Denklem (55) ve Denklem (56) ile birlikte kullanılarak $\hat{\theta}_d(t)$, $\hat{\theta}_m(t)$, $\hat{\theta}_a(t) \in \mathcal{L}_{\infty}$ gösterilebilir. Üstteki sınırlılık çıkarımları Denklem (36) ile birlikte kullanılarak $I_{ac}(t) \in \mathcal{L}_{\infty}$ ve bu sonuç $\eta_a(t) \in \mathcal{L}_{\infty}$ ile beraber $I_a(t)$ işaretinin sınırlılığını ispatlamak için kullanılabilir. Bu sınırlılık çıkarımları Denklem (46) ve Denklem (50) ile sunulan tasarımlar kullanılarak denetleyici girişleri olan $V_a(t), V_b(t) \in$ \mathcal{L}_{∞} gösterilebilir. Üstteki sınırlılık sonuçları ve Özellik 5, Denklem (31) ile birlikte kullanıldığında $\dot{r}(t) \in \mathcal{L}_{\infty}$ ispatlanır. Yukarıdakine benzer adımların takip edilmesiyle tüm işaretlerin kapalı çevrim altında sınırlılığı gösterilebilinir.

Denklem (64) ile elde edilen ifadenin her iki tarafının t = 0anından $t \to +\infty$ için integrali alındığında

$$\int_{0}^{+\infty} \|z(\sigma)\|^2 d\sigma \le \frac{1}{\kappa} \left(V(0) - V(+\infty) \right) \le \frac{V(0)}{\kappa} \tag{65}$$

sonucuna ulaşılabilir ki bu ifadeden $z(t) \in \mathcal{L}_2$ olduğu görülmektedir. Üstteki sınırlılık takip analizinden e(t), r(t), $\dot{e}(t) \dot{r}(t) \in \mathcal{L}_{\infty}$ ve dolayısıyla da z(t), $\dot{z}(t) \in \mathcal{L}_{\infty}$ ispatlanmıştır. Bu çıkarımların ışığında Barbalat'ın önermesi [43] kullanılarak $t \to +\infty$ için z(t) vektörünün yakınsaklığı ve e(t) ile r(t) vektörlerinin yakınsaklığı, dolayısıyla da *Teori 1* kapsamında sunulan önerme ispatlanmış olur.

3 Benzetim çalışmasının sonuçları

Tasarlanan uyarlamalı denetleyicinin performansını göstermek amacıyla düzlemde çalışan, iki serbestlik dereceli, dönel eklemli robot kolu modeli kullanılarak sayısal benzetim çalışmaları gerçekleştirilmiştir. Denklem (1)'de sunulan ileri kinematik

$$x = \begin{bmatrix} l_1 c_1 + l_2 c_{12} \\ l_1 s_1 + l_2 s_{12} \end{bmatrix}$$
(66)

yapısında olup Jakobiyen matrisi

$$J = \begin{bmatrix} -l_1 s_1 - l_2 s_{12} & -l_2 s_{12} \\ l_1 c_1 + l_2 c_{12} & l_2 c_{12} \end{bmatrix}$$
(67)

şeklinde elde edilmiştir. Burada $s_1 = \sin(q_1), s_2 = \sin(q_2), c_1 = \cos(q_1), c_2 = \cos(q_2), s_{12} = \sin(q_1 + q_2), c_{12} = \cos(q_1 + q_2)$ şeklinde tanımlanmıştır. Eklem uzunlukları $l_1 = l_2 = 0,127$ m olarak alınmıştır. Denklem (17)'de sunulan robot kolunun dinamik modeli aşağıdaki terimler ile kullanılmış olup [44]

$$M = \begin{bmatrix} p_1 + 2p_3c_2 & p_2 + p_3c_2 \\ p_2 + p_3c_2 & p_2 \end{bmatrix}$$
(68)

$$V_m = \begin{bmatrix} -p_3 s_2 \dot{q}_2 & -p_3 s_2 (\dot{q}_1 + \dot{q}_2) \\ -p_3 s_2 \dot{q}_1 & 0 \end{bmatrix}$$
(69)

$$F_d = \begin{bmatrix} p_4 & 0\\ 0 & p_5 \end{bmatrix}$$
(70)

burada $p_1 = 3,473$, $p_2 = 0,193$, $p_3 = 0,242$, $p_4 = 5,3$, $p_5 = 1,1$ olarak ele alınmıştır. Sayısal benzetim çalışmaları gerçekleştirilirken p_1 , p_2 , p_3 , p_4 ve p_5 parametreleri sadece robot kolunun hareketlerinin benzetimi amacıyla kullanılmış olup denetleyici tasarımlarının bir parçası değildir. Robot kolunun eklemlerini sürmekte kullanılan fırçasız DA motorlarının elektriksel modeli aşağıdaki terimler ile kullanılmış olup

$$L_a = \begin{bmatrix} L_{a1} & 0\\ 0 & L_{a2} \end{bmatrix}$$
(71)

$$L_b = \begin{bmatrix} L_{b1} & 0\\ 0 & L_{b2} \end{bmatrix}$$
(72)

$$R = \begin{bmatrix} R_1 & 0\\ 0 & R_2 \end{bmatrix}$$
(73)

$$N_p = \begin{bmatrix} N_{p1} & 0\\ 0 & N_{p2} \end{bmatrix}$$
(74)

Bu ifadelerdeki elektriksel model parametreleri birinci eklem için; $L_{a1} = L_{a2} = 3,6$ mH, $L_{b1} = L_{b2} = 27,9$ mH, $R_1 = R_2 =$ $1,5587\Omega$ ve $N_{p1} = N_{p2} = 2$ olarak, ikinci eklem için ise $L_{a1} =$ $L_{a2} = 0,36$ mH, $L_{b1} = L_{b2} = 2,79$ mH, $R_1 = R_2 = 0,5587\Omega$ ve $N_{p1} = N_{p2} = 2$ olarak alınmıştır. Eklemlerdeki firçasız DA motorlarının karakteristikleri pratik uygulama koşulları göz önünde bulundurularak farklı olarak ele alınmıştır.

Takip edilmesi istenilen görev uzayı yörüngesi

$$x_{d} = \begin{bmatrix} 0.12 + (1 - \exp\{-0.01t^{3}\}0.01\cos(0.05t) \\ 0.12 + (1 - \exp\{-0.01t^{3}\}0.01\sin(0.1t) \end{bmatrix} m$$
(75)

yapısında tasarlanmış olup bu ifadedeki üstel terim sisteme yumuşak bir başlangıç vermek amacıyla kullanılmıştır.

Robot kolunun başlangıçta hareketsiz durumdaki eklem pozisyonları $q(0) = \begin{bmatrix} 0 & \frac{\pi}{2} \end{bmatrix}^{\mathrm{T}}$, eklem hızları $\dot{q}(0) = \begin{bmatrix} 0 & 0 \end{bmatrix}^{\mathrm{T}}$ olarak ele alınmıştır. Parametre kestirim vektörlerinin başlangıç değerleri $\hat{\theta}_d(t=0) = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}^{\mathrm{T}}$, $\hat{\theta}_m(t=0) = \begin{bmatrix} 1 & 1 \end{bmatrix}^{\mathrm{T}}$ ve $\hat{\theta}_a(t=0) = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}^{\mathrm{T}}$ olarak seçilmiştir.

Denetleyici kazançları firçasız DA motorlarına uygulanan faz gerilimleri de göz önünde bulundurularak görece büyük bir değerden başlayıp iyi bir denetim performansı elde edilene kadar azaltılmak suretiyle deneme yanılma yoluyla ayarlanmış olup altta sunulan kazanç değerleri için elde edilen sonuçlar paylaşılmıştır

$$K_r = \begin{bmatrix} 4 & 0\\ 0 & 3 \end{bmatrix} \tag{76}$$

$$K_e = \begin{bmatrix} 3 & 0\\ 0 & 2 \end{bmatrix} \tag{77}$$

$$k_{a1} + k_{a2} = 1. (78)$$

Görev uzayı takip yörüngeleri Şekil 2'de, x ekseni pozisyon takip hatası Şekil 3'te, y ekseni pozisyon takip hatası Şekil 4'te, birinci eklem için faz gerilimleri olan denetleyici girişleri V_a ve

 V_b Şekil 5'te ve ikinci eklem için faz gerilimleri olan denetleyici girişleri V_a ve V_b Şekil 6'da sunulmuştur. Gerek Şekil 2 gerekse de Şekil 3 ve Şekil 4'ten uç nokta takip hedefine ulaşıldığı gözlemlenmektedir. Şekil 4 ve Şekil 5 incelendiğinde ise denetleyici girişleri olan faz gerilimleri V_a ve V_b ifadelerinin pratikte uygulanabilir sınırlar içerisinde kaldığı görülmektedir.

Şekil 2. İstenen $x_d(t)$ ve gerçek x(t) görev uzayı yörüngeleri. Figure 2. Desired $x_d(t)$ and real x(t) task space trajectories.

Şekil 3. *x* ekseni pozisyon takip hatası. *Figure 3. x -axis position tracking error.*

Şekil 4. y ekseni pozisyon takip hatası. Figure 4. y axis position tracking error.

Şekil 5. Eklem-1 için faz gerilimleri *V*_a ve *V*_b. *Figure 5. Phase voltages V*_a and *V*_b for joint-1.

Şekil 6. Eklem-2 için faz gerilimleri *V*_a ve *V*_b. *Figure 6. Phase voltages V*_a *and V*_b *for joint-2.*

4 Sonuçlar

Fırçasız DA motorlarının çok girişli ve yüksek dereceden doğrusalsızlıklar içeren yapıları kullanıldıkları robot kolunun kontrolünü zorlaştırmaktadır. Buna ek olarak robot kolunun dinamik modelindeki belirsizliklerin de ele alınması sonucunda ortava oldukca zor bir kontrol problemi cıkmaktadır. Calısma kapsamında tasarlanan yenilikçi denetleyici yapısı ile robot dinamik modelindeki belirsizliklere rağmen görev uzayı takip hatasının küresel asimptotik kararlılığı Lyapunov tabanlı olarak garanti edilmiştir. Tüm güncelleme kurallarının ve kapalı çevrim sistem içerisindeki tüm işaretlerin sınırlı kalacağı dolayısıyla tasarlanan denetleyici girişleri olan ve fırçasız DA motorlarına uygulanan faz gerilimlerinin de sınırlı kalacacağı garanti edilmektedir. Benzetim sonucları veterince ivi bir takip performansının elde edildiğini ve denetleyici girişi olan faz gerilimlerinin uygulanabilir sınırlar içerisinde kaldığını göstermektedir. Tasarlanan tam durum geri beslemeli denetleyici yapısı eklem pozisyonlarının, hızlarının ve motor akımlarının ölçümüne ihtiyaç duymaktadır. Gelecek çalışmalarda filtre veya gözlemci [35] tasarımına yönelik çalışmalar yapılarak bu gereksinimler azaltılabilir. Ayrıca tasarlanan denetleyici yapısı kinematik ve elektriksel model bilgisine ihtiyaç duymaktadır. Bu doğrultuda gelecek çalışmalarda robot dinamik modelindeki belirsizliklere ek olarak kinematik ve elektriksel model belirsizliklerinin de ele alınması ayrıca tasarlanan denetleyici yapılarının gerçek zamanlı uygulamalarının da yapılması planlanmaktadır.

5 Conclusions

The complex structures of BLDC motors, which involve multiple inputs and high-order nonlinearities, make it difficult to control the robot manipualtors in which they are used. Additionally, the uncertainty in the dynamic model of the robot arm leads to a challenging control problem. In this study, a novel controller design structure was proposed to guarantee the global asymptotic stability of task space tracking error, based on Lyapunov theory, despite the uncertainties in the robot manipulators dynamic model. All update laws and signals within the closed-loop system are guaranteed to remain bounded, ensuring that the input to the designed controller and the phase voltages applied to the brushless DC motors are also bounded. Simulation results show that a sufficiently good tracking performance was achieved, and the phase voltages applied to the BLDC motors remained within the feasible limits. The designed full-state feedback controller structure requires the measurement of joint positions, velocities, and motor currents. Future work could focus on reducing these requirements by designing filters or observers [45]. Additionally, the proposed controller structure requires

knowledge of the kinematic and electrical model parameters. Thus, future work is planned to address the uncertainties in the kinematic and electrical models, in addition to those in the robot manipulator's dynamic model. Real-time implementation of the designed controller structures is also planned.

6 Teşekkür

Bu çalışma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından 121E383 No.lu proje ile desteklenmiştir. Projeye verdiği destekten ötürü TÜBİTAK'a teşekkürlerimizi sunarız. Ayrıca Şükrü ÜNVER, 2211-C programı kapsamında desteklendiği için TÜBİTAK'a ve YÖK 100/2000 projesi kapsamında desteklendiği için Yükseköğretim Kuruluna teşekkür eder.

7 Yazar katkı beyanı

Gerceklestirilen calısmada Sükrü ÜNVER vazılım, bilimsel vazın taraması, metodoloji, orijinal taslağın yazımı ve düzeltmeleri başlıklarında; Erman SELİM sonuçların ve metodolojinin değerlendirilmesi, konseptin detaylandırılması, biçimsel analiz ve inceleme başlıklarında; Enver TATLICIOĞLU fikrin oluşturulması, konseptin detaylandırılması, metodoloji, yazım denetimi ve makale içeriğinin incelemesi ve düzenlemesi baslıklarında; ZERGEROĞLU Erkan konseptin detaylandırılması, metodoloji, biçimsel analiz ve inceleme başlıklarında; Musa ALCI metodoloji, biçimsel analiz, inceleme değerlendirme ve danışmanlık başlıklarında katkı sunmuşlardır.

8 Etik kurul onayı ve çıkar çatışması beyanı

"Hazırlanan makalede etik kurul izni alınmasına gerek yoktur".

"Hazırlanan makalede herhangi bir kişi/kurum ile çıkar çatışması bulunmamaktadır".

9 Kaynaklar

- [1] Yılmaz BM, Tatlıcıoğlu E, Savran A, Alcı M. "Self-adjusting fuzzy logic based control of robot manipulators in task space". *IEEE Transactions on Industrial Electronics*, 69(2), 1620-1629, 2022.
- [2] Uzuner S, Akkus N, Toz M. "5-DOF serial robot manipulator design, application and inverse kinematic solution through analytical method and simple search technique". *Pamukkale University Journal of Engineering Sciences*, 26(2), 392-401, 2020.
- [3] Uzuner S, Akkus N, Toz M. "5-DOF serial robot manipulator design, application and inverse kinematic solution through analytical method and simple search technique". *Pamukkale University Journal of Engineering Sciences*, 26(2), 392-401, 2020.
- [4] Cetin K. Control of Redundant Robot Manipulators with Telerobotic Applications. PhD Thesis, Izmir Institute of Technology, Izmir, Türkiye, 2016.
- [5] Nakanishi J, Cory R, Mistry M, Peters J, Schaal S. "Operational space control: A theoretical and empirical comparison". *The International Journal of Robotics Research*, 27(6), 737-757, 2008.
- [6] Siciliano B, Khatib O, Kröger T. Springer Handbook of Robotics. 2nd ed. Berlin, Germany, Springer, 2008.
- [7] Tarn TJ, Bejczy AK, Yun X, Li Z. "Effect of motor dynamics on nonlinear feedback robot arm control". *IEEE Transactions on Robotics and Automation*, 7(1), 114-122, 1991.

- [8] Wai RJ, Muthusamy R. "Design of fuzzy-neural-networkinherited backstepping control for robot manipulator including actuator dynamics". *IEEE Transactions on Fuzzy Systems*, 22(4), 709-722, 2014.
- [9] Good MC, Sweet LM, Strobel KL. "Dynamic models for control system design of integrated robot and drive systems". *Journal of Dynamic Systems, Measurement, and Control*, 107(1), 53-59, 1985.
- [10] Chwa D, Kwon H. "Nonlinear robust control of unknown robot manipulator systems with actuators and disturbances using system identification and integral sliding mode disturbance observer". *IEEE Access*, 10, 35410-35421, 2022.
- [11] Javad K, Xu B, Alfi A, Arabkoohsar A, Nazmara G. "Compound FAT-based prespecified performance learning control of robotic manipulators with actuator dynamics". *ISA Transactions*, 131, 246-263, 2022.
- [12] Saleki A, Fateh MM. "Model-free control of electrically driven robot manipulators using an extended state observer". *Computers and Electrical Engineering*, 87, 106768, 2020.
- [13] Shojaei K, Kazemy A, Chatraei A. "An observer-based neural adaptive PID² controller for robot manipulators including motor dynamics with a prescribed performance". IEEE/ASME Transactions on Mechatronics, 26(3), 1689-1699, 2021.
- [14] Chen Z, Yang X, Liu X. "RBFNN-based nonsingular fast terminal sliding mode control for robotic manipulators including actuator dynamics". *Neurocomputing*, 362, 72-82, 2019.
- [15] Keighobadi J, Fateh MM, Xu B. "Adaptive fuzzy voltagebased backstepping tracking control for uncertain robotic manipulators subject to partial state constraints and input delay". *Nonlinear Dynamics*, 100 (3), 2609–2634, 2020.
- [16] Sedaghati A, Pariz N, Siahi M, Barzamini R. "A new fuzzy control system based on the adaptive immersion and invariance control for brushless DC motors". *International Journal of Dynamics and Control*, 9(2), 807-817, 2021.
- [17] Cheah CC. "Task-space regulation of robots with approximate actuator model". *Robotica*, 21(1), 95–104, 2003.
- [18] Liu C, Cheah CC. "Task-space adaptive setpoint control for robots with uncertain kinematics and actuator model". *IEEE Transactions on Automatic Control*, 50(11), 1854-1860, 2005.
- [19] Liu C, Cheah CC, Slotine JJ. "Adaptive jacobian PID regulation for robots with uncertain kinematics and actuator model". *IEEE/RSJ International Conference on Intelligent Robots and Systems*, 3044-3049, 2006.
- [20] Carrillo-Serrano RV, Hernández-Guzmán VM, Santibáñez V. "PD control with feedforward compensation for rigid robots actuated by brushless DC motors". *Robotica*, 29(4), 507-514, 2011.
- [21] Si W, Zhao L, Wei J, Guan Z. "Task-space regulation of rigidlink electrically-driven robots with uncertain kinematics using neural networks". *Measurement and Control*, 54(1-2), 102-115, 2021.
- [22] Kelek MM, Oğuz Y, Fidan U, Özer T. "Real-time control of load cell based two-wheel balancing robot using PID controller". *Pamukkale University Journal of Engineering Sciences*, 27(5), 597-603, 2021.

- [23] Bridges MM, Dawson DM. "Adaptive control of rigid-link electrically-driven robots actuated with brushless DC motors". *IEEE Conference on Decision and Control*, Lake Buena Vista FL, USA, 14-16 December 1994
- [24] Ümütlü RC, Öztürk H, Bıdıklı B. "An adaptive controller design for ATMD system used in structures under the effect of unknown nonlinear effects". Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 24(71), 571-579, 2022.
- [25] Krstic M, Kanellakopoulos I, Kokotovic P. Nonlinear and Adaptive Control Design. 1st ed. New York, USA, John Wiley & Sons, Inc, 1995.
- [26] Bıdıklı B. "A backstepping nonlinear control design for variable speed wind turbines". *Pamukkale University Journal of Engineering Sciences*, 25(5), 560-570, 2019.
- [27] Soltanpour MR, Khalilpour J, Soltani M. "Robust nonlinear control of robot manipulator with uncertainties in kinematics, dynamics and actuator models". *International Journal of Innovative Computing, Information and Control*, 8(8), 5487-5498, 2012.
- [28] Liu H, Zhang T. "Neural network-based robust finite-time control for robotic manipulators considering actuator dynamics". *Robotics and Computer-Integrated Manufacturing*, 29(2), 301-308, 2013.
- [29] Moreno-Valenzuela J, Campa R, Santibáñez V. "Modelbased control of a class of voltage-driven robot manipulators with non-passive dynamics". *Computers & Electrical Engineering*, 39(7), 2086-2099, 2013.
- [30] Zhou B, Yang L, Wang C, Chen Y, Chen K. "Inverse Jacobian adaptive tracking control of robot manipulators with kinematic, dynamic, and actuator uncertainties". *Complexity*, 2020, 1-12, 2020.
- [31] Seçil GE, Obuz S, Parlaktuna O. "Robust position/force control of nonholonomic mobile manipulator for constrained motion on surface in task space". *Turkish Journal of Electrical Engineering and Computer Sciences*, 30(3), 785-804, 2022.
- [32] Yılmaz BM, Tatlicioglu E. "Robot kolları için doğrusal süzgeç tabanlı çıkış geri beslemeli kontrolör tasarımında uyarlamalı yöntem yaklaşımı". Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(6), 756-762, 2024.
- [33] Dawson DM, Bridges MM, Qu Z. Nonlinear Control of Robotic Systems for Environmental waste and Restoration. 1st ed. New Jersey, USA, Prentice-Hall Inc, 1995.
- [34] Lewis F, Dawson DM, Abdallah CT. Robot Manipulator Control: Theory and Practice. 2nd ed, Boca Raton, USA, CRC Press, 2003.
- [35] Braganza DD, Dixon WE, Dawson DM, Xian B. "Tracking control for robot manipulators with kinematic and dynamic uncertainty". *International Journal of Robotics* and Automation, 23(2), 5293-5297, 2008.
- [36] Şahan G. "Exponential stability and boundedness of nonlinear perturbed systems by unbounded perturbation terms". *Journal of the Franklin Institute*, 360(13), 10275-10296, 2023.
- [37] Şahan G, Özdemir D. "Uniform asymptotic and input to state stability by indefinite Lyapunov functions". *European Journal of Control*, 76, 100945, 2024.
- [38] Bridges MM, Dawson DM, Gao X. "Adaptive control of rigid-link electrically-driven robots". *IEEE Conference on Decision and Control*, Lake Buena Vista FL, USA, 14-16 December 1994.

- [39] Kokotovic PV. "The joy of feedback: nonlinear and adaptive". *IEEE Control Systems Magazine*, 12(3), 7-17, 1992.
- [40] Şahan G. "Relaxation of conditions of Lyapunov functions". Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(2), 238-244, 2021.
- [41] Marquez HJ. Nonlinear Control Systems: Analysis and Design. 1st. ed. Edmonton Alberta, Canada. John Wiley & Sons, Inc, 2003.
- [42] Şahan G. "Stability analysis by a nonlinear upper bound on the derivative of Lyapunov function". *European Journal of Control*, 56, 118-123, 2020.
- [43] Khalil HK. Nonlinear Systems. 2nd ed. New Jersey, USA, Prentice-Hall, Inc., 1996.
- [44] Zergeroğlu E, Tatlıcıoğlu E. "Observer based output feedback tracking control of robot manipulators". *IEEE International Conference on Control Applications*, Yokohama, Japan, 8-10 September 2010.
- [45] Beyhan S. "An adaptive extended fuzzy function stateobserver based control with unknown control direction". *Pamukkale University Journal of Engineering Sciences*, 23(5), 519-526, 2017.

Ek A

Bu bölümde, Denklem (34) ifadesinde sunulan üst sınır detaylandırılacaktır. Denklem (30) ile verilen ifadeden Denklem (32) ile sunulan ifadenin çıkartılmasının ardından sadeleştirmeler yapıldığında

$$\begin{split} (Y - Y_r)\theta_d &= M(q)W_j(q, \dot{x}_d)J^{-1}(q)K_e e \\ &- M(q)W_j(q, \dot{x}_d)r \\ &+ M(q)W_j(q, K_e e)J^{-1}(q)\dot{x}_d)K_e e \\ &+ M(q)W_j(q, K_e e)J^{-1}(q)K_e e \\ &- M(q)W_j(q, K_e e)r \\ &- M(q)J^{-1}(q)K_e^2 e \\ &+ M(q)J^{-1}(q)K_e J(q)r \\ &+ 2V_m(q, J^{-1}(q)\dot{x}_d)J^{-1}(q)K_e e \\ &- V_m(q, J^{-1}(q)\dot{x}_d)r \\ &+ V_m(q, K_e e)r + F_d J^{-1}(q)K_e e \\ &- F_d r \end{split}$$
(A1)

esine ulaşılmıştır. Bu ifadenin elde edilmesinde Denklem (25), Denklem (27), Denklem (28), Özellik 3 ve Özellik 8 kullanılmıştır. Denklem (26), Özellik 2, Özellik 4, Özellik 5 ve Özellik 9 içerisinde sunulan üst sınırlardan faydalanılarak Denklem (A1) ifadesinin sağ tarafi için aşağıdaki üst sınır,

$$\begin{split} \|(Y - Y_r)\theta_d\| &\leq \frac{m_2\xi_{J_3}\xi_{d_2}\lambda_{\max}(K_e)}{\xi_{j_1}} \|e\| \\ &+ m_2\xi_{J_3}\xi_{d_2}\|r\| \\ &+ \frac{m_2\xi_{J_3}\xi_{d_2}\lambda_{\max}(K_e)}{\xi_{j_1}} \|e\| \\ &+ \frac{m_2\xi_{J_3}\lambda_{\max}^2(K_e)}{\xi_{j_1}} \|e\|^2 \qquad A2 \\ &+ m_2\xi_{J_3}\lambda_{\max}(K_e)\|e\|\|r\| \\ &+ \frac{m_2\lambda_{\max}^2(K_e)}{\xi_{j_1}} \|e\| \\ &+ \frac{m_2\xi_{j_2}\lambda_{\max}(K_e)}{\xi_{j_1}} \|r\| + \end{split}$$

$$\frac{\xi_{v_{1}}\xi_{d_{2}}\lambda_{\max}(K_{e})}{\xi_{j_{1}}^{2}} \|e\| + \frac{\xi_{v_{1}}\xi_{d_{2}}}{\xi_{j_{1}}} \|r\| + \frac{\xi_{v_{1}}\xi_{d_{2}}\lambda_{\max}(K_{e})}{\xi_{j_{1}}^{2}} \|e\| + \frac{\xi_{v_{1}}\lambda_{\max}^{2}(K_{e})}{\xi_{j_{1}}^{2}} \|e\|^{2} + \frac{\xi_{v_{1}}\lambda_{\max}(K_{e})}{\xi_{j_{1}}} \|e\|\|r\| + \frac{\xi_{f}\lambda_{\max}(K_{e})}{\xi_{j_{1}}} \|e\| + \xi_{f}\|r\|$$

elde edilmiş olup burada $\lambda_{mak}(\cdot)$ ilgili matrisin en büyük özdeğerini ifade etmektedir. Üstteki ifadelerin yeniden gruplanmasıyla

$$c_{1} \triangleq \frac{m_{2}\xi_{J_{3}}\xi_{d_{2}}\lambda_{\max}(K_{e})}{\xi_{j_{1}}} + \frac{m_{2}\lambda_{\max}^{2}(K_{e})}{\xi_{j_{1}}} + \frac{2\xi_{\nu_{1}}\xi_{d_{2}}\lambda_{\max}(K_{e})}{\xi_{j_{1}}^{2}} + \frac{\xi_{f}\lambda_{\max}(K_{e})}{\xi_{j_{1}}}$$
(A3)

$$c_{2} \triangleq \frac{m_{2}\xi_{J_{3}}\lambda_{\text{mak}}^{2}(K_{e})}{\xi_{j_{1}}} + \frac{\xi_{\nu_{1}}\lambda_{\text{mak}}^{2}(K_{e})}{\xi_{j_{1}}^{2}}$$
(A4)

$$c_{3} \triangleq m_{2}\xi_{J_{3}}\xi_{d_{2}} + \frac{m_{2}\xi_{j_{2}}\lambda_{\max}(K_{e})}{\xi_{j_{1}}} + \frac{\xi_{\nu_{1}}\xi_{d_{2}}}{\xi_{j_{1}}} + \xi_{f}$$
(A5)

$$c_4 \triangleq m_2 \xi_{J_3} \lambda_{\max}(K_e) + \frac{\xi_{\nu_1} \lambda_{\max}(K_e)}{\xi_{j_1}}$$
(A6)

şeklinde tanımlanmış olup dolayısıyla Denklem (34) ifadesinde sunulan üst sınıra ulaşılmıştır.