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Abstract  Öz 

This introductory study suggests a formal basis for the interpretation of 
a continuous path in a connected matrix Lie group to be represented by 
the set of von Neumann ordinals which is a set-theoretical 
interpretation of natural numbers. In this study, it is aimed to relate the 
discrete recurrent structure of von Neumann ordinals to the exponential 
function. Since the Exponential function is fundamentally integrated 
into science and engineering literature this work aims to discover ties 
between the Exponential function and sets where, the Exponential 
function utilized in machine learning, loss functions; cryptography, key 
exchange and encryption algorithms; robotics, kinematics, trajectory 
planning; numerical analysis, discrete integration. Thus, the set 
theoretical interpretation of the exponential function has an 
interdisciplinary critical role. Throughout the article, necessary 
conjectures are postulated to interpret the rotations that form a smooth 
curve in terms of sets, namely von Neumann ordinals. Introduced 
formalizations covering Set existence axiom, unit element for set 
groups, interpretation of a smooth curve in terms of multiplication of 
exponentials, introduced a derivative operator to observe limited 
differentiable properties of the exponential function. 

 Bu giriş çalışması, bağlı matris Lie grubundaki sürekli bir yolun, doğal 
sayıların küme teorik bir yorumu olan von Neumann ordinali olan 
kümeler ile temsil edilmesi için biçimsel bir temel önermektedir. Bu 
çalışmada, von Neumann ordinallerinin ayrık tekrarlayan yapısının 
üstel fonksiyon ile ilişkilendirilmesi amaçlanmıştır. Üstel fonksiyon 
temelde bilim ve mühendislik literatürüne entegre olduğundan bu 
çalışma, makine öğrenimi, kayıp fonksiyonları; kriptografi, anahtar 
değişimi ve şifreleme algoritmaları; robotik, kinematik, yörünge 
planlama; sayısal analiz, ayrık entegrasyon gibi alanlarda kullanılan 
Üstel fonksiyon ile kümeler arasındaki bağları keşfetmeyi 
amaçlamaktadır. Bu nedenle, üstel fonksiyonun küme teorik yorumu 
disiplinler arası kritik bir role sahiptir. Makale boyunca, düzgün bir eğri 
oluşturan rotasyonları kümeler, yani von Neumann ordinalleri 
açısından yorumlamak için gerekli varsayımlar öne sürülmektedir. 
Küme varlığı aksiyomu, küme grupları için birim eleman, düzgün bir 
eğrinin üstellerin çarpımı açısından yorumlanması, üstel fonksiyonun 
kısmen türevlenebilir özelliklerini gözlemlemek için bir türev 
operatörünün tanımlanmasını kapsayan formalizasyonlar tanıtılmıştır. 

 

Keywords: Discrete mathematics, lie group, von Neumann ordinals, 
smooth curve, exponential function, derivative operator, rotation 
group, set theory 

 Anahtar kelimeler: Ayrık matematik, Lie grubu, von Neumann 
ordinalleri, pürüzsüz eğri, türev operatörü, rotasyon grubu, küme 
teorisi 
 

 Introduction 

The von Neumann ordinals are a set-theoretical representation 
of natural numbers. They represent the effort to represent 
natural numbers in terms of sets. Where an entire set of natural 
numbers is generated from ∅ with a recurrence relation 𝑉𝑖+1 =
𝑉𝑖 ∪ 𝑉𝑖

+ where 𝑉𝑖
+ simply wraps return as a set such as {𝑉𝑖}. This 

simple recurrence relation allows the generation of a finite set 
of natural numbers. Considering 𝑉1 = ∅, the first two levels are 
given below. 

𝑉1 = 𝑉0 ∪ 𝑉0
+ = ∅ ∪ {∅} = {∅} = 1 (1) 

𝑉2 = 𝑉1 ∪ 𝑉1
+ = {∅} ∪ {{∅}} = {∅, {∅}} = 2 (2) 

The recurrence relation forms a resemblance with cellular 
automata where it generates various patterns according to 
simple rules [1]. In this study, we aim to relate the discrete 
recurrent structure of von Neumann ordinals to the 

                                                           
*Corresponding author/Yazışılan Yazar 

exponential function. Exponential function is a pillar of Group 
theory and is fundamentally integrated into scientific and 
engineering literature. Therefore, discovering ties of 
exponential function with a way of interpreting natural 
numbers may reveal possibilities for combinatorics, numerical 
analysis, and group theoretic calculations used in a wide range 
of fields such as machine learning, statistics, cryptography, and 
robotics. 

The exponential map holds a critical role in the group theory 
and in the time-ordering of derivative operators. However, in 
group theory, this representation is usually shown as the 
topology of SO(3), S2 where smooth curves are represented on 
the surface of the 2D sphere. A smooth curve formed of the 
directional derivatives on the points of the 2D sphere. For this 
reason, each directional derivative along the smooth curve is 
placed on the tangent space of a point (see Fig. 1) and projects 
to an infinitesimally close point on the sphere.  
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The main contribution of this study is to provide a formal basis 
for the interpretation of a continuous path in a connected 
matrix Lie group to be represented by the set of von Neumann 
ordinals. For this purpose, this work postulates conjectures to 
interpret the rotations that form a smooth curve in terms of 
sets, namely von Neumann ordinals.  

Structure of this article; Section 2.1 describes the theoretical 
basis for deriving the Taylor series approximation of the 
Exponential function from the Binomial theorem. Section 2.2 
defines conjectures and proofs.  

Section 2.2 is structured as Conjecture 2.2.1, Set existence 
axiom is defined for unitary rotation groups; in Corollary 2.2.1 
identity element defined w.r.t Conjecture 2.2.1; in Lemma 2.2.1 
derivation of von Neumann ordinals and derivation of 
Exponential function from binomial theorem used for deriving 
a set expansion equivalent to exponential function based on 
Theorem 2.1 and Corollary 2.2.1; Conjecture 2.2.2 introduce 
derivative operator for the set equivalent of the Exponential 
function introduced in Lemma 2.2.1. Finally, concluded with 
proof of Conjecture 2.2.1. 

Taylor Series, its derivation, and its relation to the Binomial 
Theorem are covered in detail to serve as a basis for the further 
discussions that we aim to present in this chapter. 

To relate natural numbers as a set and the exponential map we 
need to go into detail and look into the derivation of Taylor 
Series from the Binomial Theorem. 

 Definitions and Proofs 

2.1  Theoretical Background 

In this subsection, we will adapt the proof for the following 
theorem from [3]. This theorem serves as a basis for 
representing Exponential function as a multiplication of 
infinitely many, infinitely small steps. 

Theorem 2.1. 

𝑙𝑖𝑚
𝑛→𝑖𝑛𝑓

(1 +
𝑥

𝑛
)
𝑛

= 𝑒𝑥 (3) 

 

Proof of Theorem 2.1. 

(1 +
𝑥

𝑛
)
𝑛

= ∑(
𝑛

𝑘
)
𝑥𝑘

𝑛𝑘

𝑛

𝑘=0

 (4) 

= 1 + 𝑥 +∑
𝑛(𝑛 − 1)… (𝑛 − (𝑘 − 1))

𝑘!

𝑥𝑘

𝑛𝑘

𝑛

𝑘=2

 (5) 

             = 1 + 𝑥 +
𝑥2

2!
(1 −

1

𝑛
) (6) 

                           +
𝑥3

3!
(1 −

1

𝑛
) (1 −

2

𝑛
) (7) 

                             …  

                             +
𝑥𝑛

𝑛!
(1 −

1

𝑛
)… (1 −

𝑛−1

𝑛
)            (8) 

 

For n ≥ m, from Theorem 3.19 of [3], the expression can be 
rewritten as follows. 

            1 + 𝑥 +
𝑥2

2!
(1 −

1

𝑛
) (9) 

                        +
𝑥3

3!
(1 −

1

𝑛
) (1 −

2

𝑛
) (10) 

                        …  

                        +
𝑥𝑚

𝑚!
(1 −

1

𝑛
)… (1 −

𝑚−1

𝑛
) (11) 

 

as n → inf and m fixed, expression converges to the Taylor 
Series expansion for eX, 

1 + 𝑥 +
𝑥2

2!
+
𝑥3

3!
+ ⋯+

𝑥𝑚

𝑚!
 (12) 

 □ 

To understand the intuition of the relation between the 
Binomial theorem and the Taylor series we may take a look at 
the binomial coefficient, 

(
𝑛

𝑘
) =

𝑛!

𝑘! (𝑛 − 𝑘)!
=
𝑛(𝑛 − 1)… (𝑛 − 𝑘 + 1)

𝑘!
 (13) 

where the numerator is the number of 𝑘 permutations of 𝑛 
objects without repetitions whereas the denominator 
represents the number of permutations of the 𝑘 objects. As a 
result, we get only the 𝑘-combinations of the 𝑛 elements. 
However, as we multiply the binomial coefficient with the 1/𝑛𝑘 

Figure 1. Smooth curve γ of Lie 
group on Manifold M on the SO(3). 
Shown with tangent space at point 
𝑡0 with a tangent vector on that 
point. Figure derived from the 

original [2]. 

Figure 2. For a state change from |i⟩ to |n⟩, 
intermediate states arise from higher order 

approximations of 𝑈𝐼 . Figure inspired from [4]. 
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as in Equation 4, will cause the number of 𝑘-permutations to be 
selected to 1, a single permutation of 𝑘 objects. 

In the Dyson series, each order of approximation has a number 

of virtual states associated as depicted in a way in Fig. 2. If we 
consider approximation order as 𝑘, 

𝑈𝐼
(𝑘)(𝑡, 𝑡0) = ∑  

𝑘

𝑛=1

(−
𝑖

ℏ
)
𝑛

∫  
𝑡

𝑡0

𝑑𝜏1∫  
𝜏1

𝑡0

𝑑𝜏2… 

…∫  
𝜏𝑛−1

𝑡0

𝑉𝐼(𝜏1)𝑉𝐼(𝜏2)…𝑉(𝑡𝑛) 

 
(14) 

Intermediate states for the first two orders of approximation 

can be written as follows. The operator 𝐽𝐼
(𝑘)

 represents an order 

denoted by 𝑘 where 𝑈𝐼
(𝑘)(𝑡, 𝑡0) =∑ 𝐽𝐼

(𝑘)(𝑡, 𝑡0) 
𝑘

𝑛=1
. 

𝐽𝐼
(1)(𝑡, 𝑡0) = (−

𝑖

ℏ
)
1

∫  
𝑡

𝑡0

⟨𝑛|𝑉𝐼(𝜏1)𝑑𝜏1|𝑖⟩ 

 
 

(15) 

 
 

𝐽𝐼
(2)(𝑡, 𝑡0)

= (−
𝑖

ℏ
)
2

∑∫  
𝑡

𝑡0

𝑑𝜏1∫  
𝜏1

𝑡0

𝑑𝜏2⟨𝑛|𝑉𝐼(𝜏1)|𝑚⟩⟨𝑚|𝑉𝐼(𝜏2)|𝑖⟩

𝑚

 

(16) 

 

However, this is the case where integration limits are coupled 
because of the time ordering. Therefore, Equation 17 has 
interactions time-ordered. On the other hand, if integration 
limits can be decoupled as follows, 

𝑈𝐼
(𝑘)(𝑡, 𝑡0) = 𝑇 [∑  

𝑘

𝑛=1

(−
𝑖

ℏ
)
𝑛 1

𝑘!
∫  
𝑡

𝑡0

𝑑𝜏1∫  
𝑡

𝑡0

𝑑𝜏2… 

…∫  
𝑡

𝑡0

𝑉𝐼(𝜏1)𝑉𝐼(𝜏2)…𝑉(𝑡𝑛)] 

 
(17) 

 

where it has an additional term, 1 𝑘!⁄  corresponds to the ratio 
of integration region that integral has to cover [5]. 

2.2 Postulates 

Considering 𝑋 is the generator of the group, where, 

𝐴(𝑡) = 𝑒𝑡𝑋 = 𝑙𝑖𝑚
𝑛→𝑖𝑛𝑓

(𝐼 +
𝑡

𝑛
𝑋)
n

 (18) 

Conjecture 2.2.1 (Set Existence). 

∃𝐴(𝐴⊺ = 𝐴−1) (19) 

Conjecture postulates that there exist elements of a rotation 
group with unitary property that can be considered as a set. 
Therefore, Axiom 0 of ZFC is re-interpreted as a conjecture to 
be proven to represent rotation group elements as sets. 

Corollary 2.2.1. Considering 𝐴 as a unitary transformation and 
𝐼 as the identity element of a rotation group 𝐺.  

𝐼 ≡ ∅ (20) 

Proof of Corollary 2.2.1. For all 𝐴 ∈ 𝐺 there is the 𝐼 ∈ 𝐺 where, 

𝐴 = 𝐼𝐴 (21) 

For any set 𝑉𝐴, 

𝑉𝐴 = ∅ ∪ 𝑉𝐴 (22) 

 □ 

Lemma 2.2.1. An infinitely small transformation on a vector 
𝑣 ∈ 𝐺 to another element of the group at an infinitely small 
distance defined as follows, 

𝐴𝜖(𝑣) = (𝐼 +
𝑡

𝑛
𝑋) 𝑣 (23) 

and, correspondingly, 𝐴(𝑠) takes 𝑠 to the next group element as 
follows, 

𝒜(𝑠) = (𝑠 ∪ 𝑠+) (24) 

which is the same recurrence relation for von Neumann 

ordinals, 𝑉𝑖+1 = 𝑉𝑖 ∪ 𝑉𝑖
+ [6]. 

𝑒𝑋 = 𝑙𝑖𝑚
𝑛→𝑖𝑛𝑓

𝐴𝜖(… 𝐴𝜖(⏟    
𝑛 𝑡𝑖𝑚𝑒𝑠

𝑣) … ) 
(25) 

𝒜𝑠 = 𝑙𝑖𝑚
𝑛→𝑖𝑛𝑓

𝒜(…𝒜(⏟    
𝑛 𝑡𝑖𝑚𝑒𝑠

𝑠)… ) 
(26) 

𝐴𝜖(𝑣) ≡ 𝒜(𝑠) (27) 

The term 𝒜𝑠 from Equation 26 will be explained in the Proof of 
Lemma 2.2.1. 

Proof of Lemma 2.2.1.  

We will partly take [7]'s introduction to “Generating a path-
connected group from a neighborhood of 1” and merge it with 
Corollary 3.52 of [8] to serve our conclusion. 

Since 𝐺 is path connected, for any 𝐴 ∈  𝐺 there is a path 𝐴(𝑡) in 
𝐺 with 𝐴(0) = 1 and 𝐴(1) = 𝐴. Any open set that includes 𝐼, 
multiplication by 𝐴(𝑡) is a continuous map (with an inverse 
𝐴(𝑡)−1). 𝐴(𝑡) is a smooth path in 𝐺 where the sequence of 
points 𝐴𝑚 = 𝐴(1 𝑚⁄ ) as in Fig. 3. 

When considered 𝒪 as any open set that includes 𝐼, 

𝐴(𝑡)𝒪 = {𝐴(𝑡)𝐵: 𝐵 ∈ 𝒪} (28) 

is an open set that includes 𝐴(𝑡). Thus, as 𝑡 runs from 0 to 1 the 
open sets 𝐴(𝑡)𝒪 cover the image of the path 𝐴(𝑡), which is the 

Figure 3. 𝐴𝑖 ∈ 𝐺 for all i, 𝐴𝑚 → ∞ where 𝐴𝑚−1 ⁄ (1 ⁄ 𝑚). 
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continuous image of the compact set as 𝑡  in the range [0,1]. The 
image of the path lies in a finite union of sets, 

𝐴(1/𝑚)𝒪⏟      
 𝐴𝑚−1=𝐴𝑚𝐴𝑚

−1𝐴𝑚−1

∪ 𝐴(1/(𝑚 − 1))𝒪⏟          
 𝐴𝑚−2=𝐴𝑚−1𝐴𝑚−1

−1 𝐴𝑚−2

∪ …∪ 𝐴(1)𝒪 
(29) 

therefore, 1 = 𝐴𝑚, 𝐴𝑚−1, … , 𝐴1 = 𝐴 can be found on the path 
𝐴(𝑡). In terms of [7]'s notation with a little modification on our 
representation, 

𝐴 = 𝐴𝑚𝐴𝑚
−1𝐴𝑚−1𝐴𝑚−1

−1 …𝐴1
−1𝐴1 (30) 

which can be rewritten like [8]'s Lemma 3.48, 

𝐴 = 𝐴𝑚⏟
𝐴(0)

𝐴𝑚
−1⏟

𝐴(0)−1

𝐴𝑚−1⏟  
𝐴(1 𝑚⁄ )

𝐴𝑚−1
−1
⏟  

𝐴(1 𝑚⁄ )−1

… 𝐴1
−1⏟

𝐴((𝑚−1) 𝑚⁄ )−1

𝐴1⏟
𝐴(1)

 
(31) 

where, 

𝐴 = 𝑒𝑋 (32) 

    = 𝐴(0)⏟
𝐼

𝐴(0)−1𝐴(1/𝑚)⏟          
𝑒𝑋1

𝐴(1/𝑚)−1𝐴(2/𝑚)⏟            
𝑒𝑋2

…  

…𝐴((𝑚 − 1)/𝑚)−1𝐴(𝑚)⏟              
𝑒𝑋𝑚

 
(33) 

    = 𝑒𝑋1𝑒𝑋2 …𝑒𝑋𝑚 (34) 

which satisfies the decomposition of Equation 25.  

For the other half of the proof; Equation 26, we can take a look 
at Equation 29 and try to decompose Equation 26 in terms of a 
finite union of terms as shown in Equation 24 which is well-
known as von Neumann ordinals, 

                   𝑉0 = ∅ = 𝒜0 (35) 

                        = 0 (36) 

                   𝑉1 = 𝒜(𝒜0) = 𝒜1 (37) 

                        = 𝑉0 ∪ 𝑉0
+ = 𝑉0 ∪ 𝑉1\𝑉0 (38) 

                        = {0} = 1 (39) 

                   𝑉2 = 𝒜(𝒜1) = 𝒜2 (40) 

                        = 𝑉1 ∪ 𝑉1
+ = 𝑉1 ∪ 𝑉2\𝑉1 (41) 

                        = {0,1} = 2 (42) 

                         …  

                   𝑉𝛼 = 𝒜(𝑉𝛼−1) = 𝒜𝛼 (43) 

                        = 𝑉𝛼−1 ∪ 𝑉𝛼−1
+ = 𝑉𝛼−1 ∪ 𝑉𝛼\𝑉𝛼−1 (44) 

where 𝑉𝛼  is an open set since it does not contain itself. 

𝑉𝛼 =⋃𝑉𝑖
𝑖<𝛼

 (45) 

Relation between sets and exponential function derived from 
the union of open sets. Equations 46 and 47 provide a useful 
decomposition that shows equivalence. 

𝑉𝛼 = 𝑉0⏟
∅⏟

𝐴(1 𝑚⁄ )⏟      
𝐴𝑚

∪ 𝑉1⏟
𝑉0⏟

𝐴(1 𝑚⁄ )⏟      
𝐴𝑚

∪ 𝑉1\𝑉0⏟  
𝒪⏟

𝐴𝑚
−1𝐴𝑚−1⏟        

𝐴𝑚−1=𝐴(
1

𝑚−1
)

∪ 𝑉2⏟
𝑉1⏟

𝐴(
1

𝑚−1
)

∪𝑉2\𝑉1⏟  
𝒪

∪ … 

 
 

(46) 

…∪ 𝑉3⏟
𝐴(1/(𝑚−2))𝒪

∪…∪ 𝑉𝛼−2⏟
𝐴(𝛼−2)𝒪

∪ 𝑉𝛼−1⏟
𝐴(𝛼−1)𝒪

 

 
(47) 

where,  

   𝐴𝑚 ≡ ∅ (48) 

∴ 𝒜0 = ∅ (49) 

and considering the inverse of 𝒜, 

𝒜−1(𝑠) = 𝑠\𝒜1 (50) 

𝒜−𝑖(𝑠) = 𝑠\𝒜𝑖 (51) 

𝑉𝑖+1 = 𝑉𝑖⏟
𝐴𝑖

∪ 𝑉𝑖+1\𝑉𝑖⏟  
𝐴−𝑖(𝐴𝑖+1)

 
(52) 

          = 𝑉𝑖\𝑉𝑖⏟
𝐴−𝑖(𝐴𝑖)

∪ 𝑉𝑖+1⏟
𝐴𝑖+1

 
(53) 

therefore, Equation 46 can be generalized to 

𝒜𝛼 = 𝒜0 ∪ 𝒜1 ∪ 𝒜2 ∪ …∪ 𝒜𝛼−1 (54) 

where, 

𝒜1 = 𝒜(𝒜
−0(𝒜1))⏟        
𝒜1

 
(55) 

𝒜2 = 𝒜
2(𝒜−1(𝒜1)) (56) 

each 𝒜𝑖  mapped from 𝒜𝑗  through origin by 𝒜−𝑗(𝒜𝑗) 

operation in the same way as 𝐴𝑚−1 = 𝐴𝑚𝐴𝑚
−1𝐴𝑚−1. With that in 

mind, we can write the equivalent of Equation 30 below, 

𝒜𝛼(𝒜−(𝛼−1) (𝒜𝛼−1(𝒜−(𝛼−2)(…𝒜2(𝒜−1(𝐴1(𝐴−0(∙))⏟      
𝑒𝑋1

))
⏟              

𝑒𝑋2

)… ))

⏟                              
𝑒𝑋𝑚−1

)

⏟                                        
𝑒𝑋𝑚

 

 
(57) 

Thus, 

𝒜(𝑠) = (𝑠 ∪ 𝑠+) ≡ 𝐴𝜖(𝑣) = (𝐼 +
𝑡

𝑛
𝑋) □ 

 

Conjecture 2.2.2. 
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Depending on the Lemma 2.2.1 derivative operator for 𝒜𝑖  
where 𝑖 → ∞ defined in Equation 58. The derivative operator 
applies the set difference as 𝒜𝑖\𝑠 and it applies the set 
difference for each element of the 𝒜𝑖\𝑠 recursively.  

𝑑𝒜𝑖

𝑑𝑠
= {𝑥|∀𝑦 ∈ (𝒜𝑖\𝑠) 𝑓𝑜𝑟 

𝑑𝑦

𝑑𝑠
} (58) 

Proof of Conjecture 2.2.2 

For a variable 𝑋, the derivative of exponential can be reminded 
as below for comparison, 

𝑒𝑋 = 𝐼 + 𝑋 +
1

2!
𝑋2 +

1

3!
𝑋3 +

1

4!
𝑋4 +⋯ (59) 

𝑑𝑒𝑋

𝑑𝑋
= 0 + 𝐼 + 𝑋 +

1

2!
𝑋2 +

1

3!
𝑋3 +⋯ (60) 

where 𝑒𝑋 ≅ 𝑑𝑒𝑋 𝑑𝑋⁄  and, correspondingly for an order 𝛼 in 
von Neumann ordinals derived by 𝒜𝛼  shall provide the same 
behavior. Given 𝐴𝛼  can be differentiated using Equation 58 for 
∅ as follows. 

𝐴𝛼 = {∅ ∪ {∅} ∪ {∅ ∪ {∅}}

∪ {∅ ∪ {∅} ∪ {{∅ ∪ {∅}}}}… } 
(61) 

𝑑𝐴𝛼
𝑑∅

= {Ø ∪ {Ø} ∪ {Ø ∪ {Ø}}… } (62) 

where 𝐴𝛼 ≅ 𝑑𝐴𝛼/𝑑Ø where  𝛼 → ∞. 

Proof of Conjecture 2.2.1. 

Considering that, 

1. Corollary 4.2.1, proves that the empty set is the identity 
element for any set in the hierarchy. 

2. Lemma 2.2.1, to prove that 𝒜 corresponds to an infinitely 
small change. 

3. Conjecture 2.2.2, to prove that 𝐴𝛼 shows identical behavior 
as the exponential function when the derivative operator 
from Equation 58 is applied. 

In light of the above findings, we can deduce that a continuous 
path in a connected matrix Lie group can be represented by the 
von Neumann ordinals in the extent of proven conjectures. 

 Conclusions 

This study introduced formal definitions as a basis for the 
interpretation of a continuous path in a connected matrix Lie 
group to be interpreted sets and express mathematically 
similar properties as Exponential function. This has been made 
possible by properties of von Neumann ordinals. Derivation of 
von Neumann ordinals strongly correlates with the derivation 
of the Taylor series from the Binomial theorem for 
approximating the Exponential function. Therefore, this 
introductory work postulated conjectures to interpret the 
rotations that form a smooth curve in terms of sets, namely von 
Neumann ordinals.  

Introduced concepts relate the empty set to rotation groups 
which will conceptually allow a rotation group to be 

represented as a hierarchy of sets, namely von Neumann 
ordinals. Strangely, the derivative operator introduced in 
Conjecture 2.2.2 which works on von Neumann ordinals causes 
a similar effect in comparison to differentiating 𝑒. We believe 
our postulates initiate a research effort toward the 
discretization of mathematical structures formed by rotations, 
and eventually the exponential function. Discovering ties of 
exponential function with a way of interpreting natural 
numbers may reveal possibilities in terms of combinatorics, 
Maximum Satisfiability, k-coloring, Evolutionary Algorithms; 
numerical analysis discretization of integrals; robotics, 
kinematics and trajectory planning, trajectory generation and 
cryptography, Diffie-Hellman Key Exchange, Zero-Knowledge 
proofs, encryption algorithms such as RSA, ElGamal. These 
applications are only some examples that utilize exponential 
function.  
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