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Abstract  Öz 

This study presents a novel, cost-effective method for real-time 
underwater vehicle (AUV) localization in enclosed environments, pools 
or marinas. Traditional underwater localization techniques, often 
based on acoustic systems, prove costly and impractical for confined 
spaces. This study focuses on identifying environmental boundaries and, 
utilizing this information, solving the AUV's localization problem by 
leveraging data acquired from a 360-degree field-of-view sonar 
scanning sensor mounted on the AUV. Raw sonar data is processed and 
subsequently clustered using the K-means algorithm, enabling the 
identification of environmental features such as edges and corners. 
These identified features are then matched against a pre-existing 
environment map to determine the AUV's instantaneous position. 
Experimental results demonstrate the accuracy and reliability of the 
proposed approach, with small error values in corner point estimations. 
While the method's low computational complexity makes it suitable for 
real-time applications, the absence of complex and high-cost equipment 
requirements offers a significant advantage for daily applications. This 
study suggests that the proposed method has a broad application 
potential in AUV navigation through its iterative use. 

 Bu çalışma, havuzlar veya marinalar gibi kapalı ortamlarda gerçek 
zamanlı insansız su altı aracı (İSAA) konumlandırması için yeni ve 
uygun maliyetli bir yöntem sunmaktadır. Genellikle akustik sistemlere 
dayanan geleneksel su altı konumlandırma teknikleri, sınırlı alanlar 
için maliyetli ve pratik olmadığı kanıtlanmıştır. Bu araştırma, İSAA 
üzerine monte edilmiş 360 derece görüş alanına sahip bir sonar tarama 
sensöründen elde edilen verileri kullanarak ortam sınırlarını tespit 
etmeyi ve bu bilgileri kullanarak İSAA konumlandırma problemini 
çözmeyi hedeflemektedir. Önerilen yöntem ile ham sonar verileri 
işlenerek kenarlar ve köşeler gibi çevresel özelliklerin belirlenmesini 
sağlamak üzere K-means algoritması kullanılarak gruplanır. Belirlenen 
bu özellikler daha sonra İSAA'nın anlık konumunu belirlemek için 
bilinen ortam haritasıyla eşleştirilir. Deneysel sonuçlar, köşe noktası 
kestirimlerindeki düşük hata değerleri ile önerilen yaklaşımın 
doğruluğunu ve güvenilirliğini göstermektedir. Yöntemin düşük 
hesaplama karmaşıklığı gerçek zamanlı uygulamalar için uygun 
olmasını sağlarken, karmaşık ve yüksek maliyetli ekipman gereksinimi 
olmaması günlük uygulamalar için önemli bir avantaj sunmaktadır. Bu 
çalışma, önerilen yöntemin yinelemeli kullanımı ile İSAA 
navigasyonunda geniş bir uygulama potansiyeline sahip olduğunu 
göstermektedir. 

Keywords: Autonomous Underwater Vehicle, Underwater 
Localization, Scanning Sonar, Data Processing, Edge Detection 

 Anahtar kelimeler: Otonom İnsansız Su altı Aracı, Su altı 
Konumlandırma, Tarama Sonarı, Veri İşleme, Kenar Tanıma 

1 Introduction 

Diving into the depths of the underwater world has long been 
one of humanity's greatest dreams. However, the harsh 
conditions of the seas, the unknown and dangerous nature of 
the depths, and the physiological limitations of humans have 
largely limited these explorations. With the acceleration of 
scientific and technological developments in recent years, the 
use of unmanned underwater vehicles (UUVs) has been 
increasing [1]. UUVs are widely used in both civilian and 
military fields, such as underwater exploration, deep-sea 
mining, search and rescue operations, and monitoring marine 
ecosystems [2]. As technology continues to advance, it is 
expected that UUVs will play an even more significant role in 
understanding underwater world [3]. 

Unmanned underwater vehicles can be divided into two main 
groups based on their operating systems: remotely operated 
vehicles (ROVs) and autonomous underwater vehicles (AUVs) 
[4]. ROVs are generally connected to the outside world by a 
cable and are remotely controlled by an operator to perform a 
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variety of tasks underwater. They are structurally simpler 
systems and do not require complex control systems. However, 
due to their continuous connection to the outside world, ROVs 
have limited maneuverability and a limited operating range [5]. 
AUVs, on the other hand, have no connection to the outside 
world. This allows them to be used in environments that are 
inaccessible to humans, dangerous, and lack communication 
capabilities. On the other hand, AUVs must be able to perceive 
their environment, evaluate collected data, and make decisions 
about their actions. Today, research is focused on developing 
reliable and fully autonomous AUVs with extensive 
maneuverability and decision-making capabilities [6]. 

An AUV must know where it is and what route to take to reach 
its target point while performing the given, predefined task. 
This requires accurate and real-time positioning information. 
In land and air vehicles, the positioning problem is solved with 
GPS and similar systems. However, these systems are disabled 
in the underwater world. In an environment where vehicles 
have no connection to the outside world and only acoustic and 
optical systems can be used to a limited extent, positioning and 
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navigation for underwater vehicles are much more complex 
and challenging problems. 

AUV navigation solutions are divided into three main groups 
[7]. Inertial navigation is based on estimating the vehicle's 
position and velocity using data from sensors on the vehicle [8]. 
The IMU sensors, a combination of gyroscope and 
accelerometer sensors that measure angular and linear motion 
variables respectively, offers a simple and inexpensive solution 
for inertial navigation [9]. However, as vehicle behavior 
become more complex and the hydrodynamic effects of water 
become unpredictable, large measurement errors occur in the 
estimated values with the IMU sensor over time. Another 
sensor that provides an effective solution for inertial navigation 
is the Doppler Velocity Log (DVL) sensor, which uses the 
Doppler effect [10]. In the study [10], DVL sensor 
measurements are processed with the Kalman Filter to obtain 
information about water flow, vehicle speed, and depth. In 
cases where the DVL sensor is integrated with the IMU sensor 
to tolerate the large cumulative errors caused by the IMU 
sensor in long-term use, despite its fast operation, effective 
navigation solutions are achieved [11], [12]. However, while 
the DVL sensor provides highly accurate position and velocity 
estimation [13], its high price imposes a significant cost burden 
on the system. For this reason, it is used more in large-scale 
studies rather than small-scale, low-cost systems [14]. 

Acoustic navigation systems use multiple acoustic wave 
transponders to locate underwater vehicles [15]. Based on the 
communication between one or more receivers/transmitters 
on the water surface and transponders on the AUV, its position 
and velocity estimates are made. While providing effective 
solutions for navigation and path planning, the installation cost 
of these systems is quite high [16]. In addition, the AUV is 
restricted to moving only within the system's access range. 

Geophysical navigation, on the other hand, is based on systems 
that estimate the vehicle's position and velocity using sensors 
that perceive the environment and using distinctive features of 
the environment known as landmarks. Optical and sonar 
systems are the two main categories of geophysical navigation 
[17]. Lidar camera and IMU sensor data are combined for 
positioning purposes for different geometrical paths in an 
experimental tank environment [18]. Geophysical navigation, 
which is performed by processing data obtained from optical 
sensors, provides the highest accuracy among all methods due 
to providing more information about the external world [19]. It 
provides accurate solutions in long-term use against 
measurement errors [20]. However, it has disadvantages such 
as the complexity and time-consuming nature of image 
processing algorithms [21], the cost of optical sensors, and the 
high lighting requirements of these sensors [22]. It is very 
difficult to obtain healthy image data due to the turbidity and 
fluctuation effects encountered in the underwater environment 
[23]. In many studies in literature, deep learning-based 
methods have been used to draw precise and reliable 
inferences using camera images [24,25]. However, the need for 
a large data set and being time-consuming are the 
disadvantages of these approaches [26]. Bathymetric mapping 
method with active scanning sonars is another method used 
other than optical systems. Bathymetric mapping is the 
measurement and mapping of the depths of the seabed. 
Scanning sonars are successfully used for depth measurements 
and creating topographic maps of underwater objects [27]. 
Active sonars have different structures such as forward-looking 
sonar, side scan sonar [28] and imaging sonar [29] according to 

the scan angle range and settlements. The unknown contour 
tracking task was successfully completed with the forward-
looking sonar, which is a narrow-angle sonar sensor and placed 
in front of the vehicle [30]. The object recognition task was 
performed using side scan sonar placed on the sides of the 
vehicle with deep learning approaches [31]. A study comparing 
seabed bathymetric maps obtained with sensors called multi-
beam imaging sonar with reference maps has shown effective 
results in detecting drifts in vehicle movement [32]. For 
navigation, landmarks on the walls of the water tank detected 
using imaging sonar, which provides information about the 
entire surroundings of the vehicle with its wide scan angle [29]. 
It has been suggested to combine IMU and DVL sensors with 
sonar data using a particle filter for the combined use of inertial 
and geophysical navigation methods [33]. The most 
fundamental problem of geophysical navigation is the lack of 
sufficient and adequate landmarks to achieve successful results 
[34]. 

Generally, underwater object and obstacle detection studies are 
carried out using feature extraction and classification methods 
using optical or sonar sensor data [35]. Jian et. al. examined 
traditional methods based on feature extraction in this field 
[36]. In a study where images obtained from on-board cameras 
were used for edge detection and contour tracking of marina 
robots, Harris and Canny corner extraction algorithms were 
used [37]. In positioning and mapping studies in the field of 
robotics, methods that use distinctive features of the 
environment as landmarks are widely used. With the detection 
of landmarks, it is possible to make relative positioning 
according to known locations. These landmarks can be natural 
features of the environment, such as corner points, or they can 
appear as special placemarks placed by people. Hoff et. al. 
focused on landmarks in the environment for simultaneous 
positioning and mapping using side scan sonar data. In their 
proposed method, they first obtained a probabilistic map of the 
environment using the raw sonar data they processed and then 
detected landmarks on this map [38]. For terrestrial 
autonomous vehicle mapping studies, environment boundaries 
and obstacle edges were detected using consecutive clustering 
algorithms on laser scan data [39]. 

In this study, a method that utilizes environmental information 
obtained by underwater scanning sonar to determine the 
instantaneous position of an AUV is investigated. In this 
method, raw environmental data collected from the scanning 
sonar is initially processed and subsequently separated into 
groups by using the K-means clustering algorithm. This enables 
the rapid and highly accurate identification of edges and corner 
points in bounded environments such as pools and marinas. By 
detecting at least three edges or two corner points of the 
environment and comparing this information with an 
environment map, the AUV's instantaneous position could be 
determined. Because of its low computational complexity, the 
proposed method is suitable for real-time applications that 
demand speed. Additionally, as it does not necessitate complex 
physical equipment, it offers a low-cost system and can be 
readily employed in small-scale daily-life applications. 

The outline of the paper is as follows: In Section 2, K-means 
clustering algorithm is explained briefly. Section 3 gives the 
details of proposed method step by step. Section 4 provides 
information about the application and includes experimental 
results. Conclusion part is in Section 5. 
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2 K-Means Clustering 

Clustering is a data analysis technique that involves grouping 
data points in a dataset into clusters based on their similarity. 
The objective of clustering is to maximize the similarity within 
clusters while minimizing the similarity between clusters. 

K-means clustering is an unsupervised learning technique used 
to classify a group of data points in a dataset into a 
predetermined number of clusters. It is a hard clustering 
algorithm that assigns each data point to exactly one cluster. 
Given a dataset 𝑋 = {𝑝𝑖| 𝑖 = 1, … , 𝑁} consisting of 𝑁 data 
points, the K-means clustering algorithm partitions the dataset 

into 𝐾 clusters ∁= {𝐶𝑗| 𝑗 = 1, … , 𝐾} by minimizing the sum of 

squared distances between each data and its cluster centroid, 
as shown in Equation (1) [40]. 

𝑎𝑟𝑔 𝑚𝑖𝑛 ∑ ∑ ‖𝑝𝑖 − 𝜇𝑗‖
2

𝑝𝑖𝜖𝐶𝑗

𝐾

𝑗=1

 (1) 

This ensures that data points with high similarity are grouped 
together. The cluster centroid 𝜇𝑗  is calculated as the mean of the 

data points in the cluster and is given by Equation (2). The 
algorithm iteratively assigns data points to clusters and 
updates the cluster centers until convergence.  

𝜇𝑗 =
1

|𝐶𝑗|
∑ 𝑝𝑖𝑝𝑖𝜖𝐶𝑗

  (2) 

In the K-means clustering algorithm, determining the 𝐾 value is 
a critical step to obtain accurate and meaningful clustering 
results. The 𝐾 value represents how many clusters the data will 
be divided into, and choosing this value correctly affects the 
structure of the clusters. There are various approaches to 
determining the K value, such as the elbow method [41], the 
silhouette method [42], and the within-group average distance 
method [43]. However, the use of experimentally determined K 
values is also common in various applications. 

The K-means clustering algorithm is presented below. 

K-Means Clustering Algorithm 
Input   : Data Set 𝑋 = {𝑝𝑖| 𝑖 = 1, … , 𝑁}, Number of cluster 𝐾 

Output: Cluster set ∁= {𝐶𝑗| 𝑗 = 1, … , 𝐾} 

1. Initialize cluster representatives 𝜇𝑗  randomly 

2. repeat 
3.  for 𝑖 = 1. . 𝑁 
4.   Determine the closest representative 𝜇𝑗  for 

point 𝑝𝑖 
5.   𝐶𝑗 = 𝐶𝑗 ∪ 𝑝𝑖   

6.  end for 
7.  for 𝑗 = 1. . 𝐾 
8.   Update cluster representative 𝜇𝑗  

9.  end for 
10. until all 𝜇𝑗 ’s remain unchanged 

 

3 Clustering-Based Edge and Corner Detection 
Method 

In the field of AUV navigation, GPS, lidar, and radar systems are 
commonly used. However, due to limited bandwidth and 
specific frequency constraints in underwater environments, 
simultaneous localization and navigation processes are 
significantly more complex compared to those used in aerial 
and terrestrial vehicles. Underwater mapping and localization 

in high seas typically relies on acoustic communication 
between sensors deployed in the target area. The vehicle's 
position is determined based on the signals received from these 
sensors. However, this method is both impractical and costly 
for small and confined spaces like pools. 

This study proposes a fast and low-cost method for real-time 
studies in enclosed pool environments. The method utilizes 
data obtained from a scanning sonar mounted on the AUV to 
detect the edges and corners of the pool. By comparing this 
information with a known map of the pool, the AUV's 
instantaneous position and orientation can be determined. 

An underwater scanning sonar provides information about the 
entire environment within its detection range and scanning 
angle, essentially offering an image of the environment. The 
raw data obtained from the underwater scanning sonar is first 
processed to extract meaningful and real-valued information. 
This data is then gathered using clustering algorithms to 
identify the boundaries of the environment. 

The underwater vehicle used in this study is a six-degree-of-
freedom (6-DOF) autonomous vehicle. Fig. 1 defines the axes of 
motion of the underwater vehicle.  

 

Figure 1. 6-DOF System axes definitions. 

While motion planning in AUV studies is performed relative to 
a fixed coordinate system, the motion variable measurements 
such as position and velocity provided by the IMU sensor, and 
the environmental scanning information, are based on the local 
coordinate system of the vehicle. Fig. 2 shows the fixed 
coordinate system {𝐺} and the moving coordinate system {𝑅} 
of the AUV. These two coordinate systems are related through 
a transformation 𝒯𝑅

𝐺 , which defines the representation of frame 
{𝑅} relative to frame {𝐺}. 

The expression given in Equation (3) is valid about the 
transformation 𝒯𝐺

𝑅  that is the representation of frame {𝐺} 
relative to frame {R}. 

𝒯𝐺
𝑅 = ( 𝒯𝑅

𝐺 )
−1

  (3) 

 

Figure 2. Coordinate frames. 
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Step 1: Preparation  

To minimize noise effects caused by reflections and echoes in 
the sonar scan data, the acoustic waves should intersect the 
pool edges as perpendicularly as possible. Therefore, the AUV's 
roll angle 𝜙 and pitch angle Θ are set to zero to prepare the 
vehicle for data acquisition. In this case, the transformation 

between frame {𝑅} and frame {𝐺}is reduced to 𝒯𝑅
𝐺 |𝜃=0  

𝜓=0
. 

Step 2: Data Acquisition 

A dataset is obtained by scanning the environment using an 
underwater scanning sonar. The sonar scan data set is defined 
by Equation (4), with the sonar scan angle  𝜑𝑠 and angular 
resolution 𝜎𝑠. 

Ο = {(𝑢𝑖 ,  𝜑𝑖) |   𝑢𝑖 = [𝑜𝑖𝑟]𝑇 , 𝑖 = 1, … ,
 𝜑𝑠 
𝜎𝑠

 , 𝑟 = 1, … , 𝐿} (4) 

Here,  𝜑𝑖 represents the 𝑖𝑡ℎ measurement direction angle, and 
𝐿 is a vector of length carrying the 𝑖𝑡ℎ measurement data. 
Underwater scanning sonar sensors read a data series from the 
nearest point (𝑜𝑖1) to the farthest point (𝑜𝑖𝐿) within the 
scanning range for each scanning direction. 

Step 3: Filtering  

Sonar scan data obtained, especially in underwater, contains 
some noisy values due to multiple reflections and echoes due to 
the physical structure of the environment. To obtain accurate 
and reliable results, these noisy components must be removed 
from the dataset. For this purpose, the sonar-scan data is 
subjected to a filter with threshold value (𝑓𝑡𝑟). If this threshold 
value is too low, it will cause noisy data to be transmitted, while 
if it is too high, it will result in the loss of distinctive features. 
This filtering process and the filtered data set are given in 
Equation (5) and Equation (6), respectively. 

Ο𝑛 = 𝑛𝑜𝑖𝑠𝑒_𝑓𝑖𝑙𝑡𝑒𝑟(Ο, 𝑓𝑡𝑟) (5) 

Ο𝑛 = {(𝑢𝑖  ,  𝜑𝑖) |   𝑢𝑖 = [𝑜𝑖𝑟
𝑛 ]𝑇 , 𝑜𝑖𝑟

𝑛 = {
𝑜𝑖𝑟  , |𝑜𝑖𝑟| > 𝑓𝑡𝑟

  0  ,   |𝑜𝑖𝑟| < 𝑓𝑡𝑟
 } (6) 

Step 4: Orientation Correction  

In this step, the effect of the orientation difference between the 
frame {𝑅} and frame {𝐺} caused by the AUV yaw angle is 
corrected on the dataset. The aim is to facilitate the edge 
detection process in the subsequent steps. The dataset obtained 
after orientation correction is expressed as given in Equation 
(7) and Equation (8). 

Ο𝜙 = 𝒯𝑅
𝐺 |𝜃=0  

𝜓=0

(Ο𝑛) (7) 

Ο𝜙 = {(𝑢𝑖  , 𝒯𝑅
𝐺 |𝜃=0  

𝜓=0

( 𝜑𝑖)) |   𝑢𝑖 = [𝑜𝑖𝑟
𝑛 ]𝑇} (8) 

Step 5: Real Coordinates Matching  

The sonar scan data is read as a set of numerical values for the 
region from the closest point to the sonar to the farthest point 
within the measurement range. For each point in the dataset, 
the corresponding position information on the frame {R}, 
assigned to AUV, should be obtained. (𝜌𝑠𝑐𝑎𝑛) is the scan range 
of the underwater scanning sonar, and the matching coordinate 
values of the scan data are defined by Equation (9). 

𝑉 = {𝑣𝑖   |   𝑣𝑖 = [𝑜𝑖𝑟
𝑛   𝑣𝑖𝑟𝑥   𝑣𝑖𝑟𝑦]

𝑇
 } (9) 

The 𝑥 and 𝑦 coordinates of point 𝑣𝑖  relative to the frame {R} are 
calculated using the formulas given in Equation (10a) and 
Equation (10b) respectively. 

 𝑣𝑖𝑟𝑥 = 𝜌𝑠𝑐𝑎𝑛 ∗
0.5 ∗ 𝐿 − 𝑟

0.5 ∗ 𝐿
 (10a) 

 𝑣𝑖𝑟𝑦 = 𝜌𝑠𝑐𝑎𝑛 ∗
0.5 ∗ 𝐿 − 𝑖

0.5 ∗ 𝐿
 (10b) 

In this way, the coordinates of the physical point corresponding 
to each value in the dataset are obtained. 

Step 6: Clustering  

The coordinate-mapped dataset is clustered into 𝐾 clusters 
using the K-means clustering algorithm. Each data point in the 
dataset is labeled with the cluster to which it belongs. Each 
cluster 𝐶𝑗 is represented by its cluster centroid 𝜇𝑗 . 

Step 7: Cluster Merging  

Clusters that correspond to the same edge or pool boundary are 
merged into the same class. Given that 𝜃𝑗  is the angle between 

the cluster centroid 𝜇𝑗  of the 𝐶𝑗 cluster and AUV, 𝐶𝑗 clusters 

satisfying the condition 𝜃𝑝1 < 𝜃𝑗 < 𝜃𝑝2 are included in the 

𝐸𝑑𝑔𝑒𝑝 class. The threshold values 𝜃𝑝1 and 𝜃𝑝2 are determined 

experimentally based on pool geometry and complexity. 

Step 8: Edge and Corner Detection  

Not all data points in the 𝐸𝑑𝑔𝑒𝑝 class represent the pool edge. 

Some data points may belong to obstacles in the environment, 
while others may be noise that have survived the filtering 
process. Such data points within each class must be discarded. 
The class center (𝜂𝑝) for the 𝐸𝑑𝑔𝑒𝑝 class is calculated as the 

mean value of the class members, as expressed in Equation 
(11).  

𝜂𝑝 =
1

|𝐸𝑑𝑔𝑒𝑝|
∑ 𝑣𝑖

𝑣𝑖𝜖𝐸𝑝

 (11) 

It is obvious that the points forming the same edge within a 
class will be located on a line. If the angle 𝜃𝑝 between the class 

center 𝜂𝑝 and a point 𝑣𝑖  in 𝐸𝑑𝑔𝑒𝑝 is less than a certain threshold 

value, this point is added to the 𝐸𝑝 edge list, and other points 

are ignored. The points in the 𝐸𝑝 list define the 𝑝𝑡ℎ edge.  

After detecting the edges, the intersection points are 
determined to identify the corners. A corner is the intersection 
of two edges. The angle between the AUV and the center of the 
𝑚𝑡ℎ edge, represented by 𝜃𝑝, is calculated as in Equation (12). 

𝜂𝑚𝑥  and 𝜂𝑚𝑦 are 𝑥 and 𝑦 coordinates of 𝜂𝑝 respectively. 

𝜃𝑚 = 𝑎𝑡𝑎𝑛2(𝜂𝑚𝑦, 𝜂𝑚𝑥) (12) 

If the 𝑝𝑡ℎ edge and the 𝑞𝑡ℎ edge share a common corner, 𝜃𝑝 and 

𝜃𝑞 must satisfy Equation (13).  

|𝜃𝑝 − 𝜃𝑞| ≠ 180°𝑘 , 𝑘 = 0,1,2, …  (13) 

Corner points are searched among the edge data that satisfy 
this condition. There are two possible cases: 

• Case 1: If some points in the 𝑝𝑡ℎ edge list 𝐸𝑝 and the 𝑞𝑡ℎ edge 

list 𝐸𝑞 are in the close neighborhood of each other when 

considering the Euclidean distance, this clearly indicates a 
common corner between the two edges. The average of these 
points is calculated as the corner point. 
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• Case 2: If there are no points close to each other in the 𝑝𝑡ℎ 
edge list 𝐸𝑝 and the 𝑞𝑡ℎ edge list 𝐸𝑞 , this may be due to the fact 

that the potential corner point is outside the sonar scan range. 
In this case, the 𝐸𝑝 and 𝐸𝑞 edge lists are virtually extended by 

additional points starting from their midpoints up to the 
maximum pool edge length to estimate the corner point. 

In this way, the process is completed by first determining the 
edges and then the potential intersection points, corners, of the 
underwater environment. By comparing the found corner 
points with the known map of the pool, the instantaneous 
localization information of the AUV can be obtained. 

4 Experimental Study and Results 

This section presents the experimental studies of the method 
by which underwater environment data, acquired by a sonar 
sensor, is utilized to determine environmental boundaries, 
specifically the edges and corners of the pool, through a 
clustering approach. The identified edges and corners are 
subsequently compared with the known pool map to ascertain 
the AUV's instantaneous position and orientation. 

Sound Navigation and Ranging (SONAR) systems constitute a 
type of active sensor that operates by emitting sound waves to 
detect underwater objects and recording the reflections of 
these pulses. Scanning sonars, conversely, determine 
environmental characteristics by generating an acoustic wave 
with a wide vertical beam and a narrow horizontal beam. The 
distance between the sonar and the obstacle is computed using 
Equation (14), employing the speed of sound waves in water 
and the time differences between the wave's send and return. 

𝛿 = 𝑣𝑠 ∗ (𝑡𝑟 − 𝑡𝑠) (14) 

The typical velocity of sound waves in a marine environment is 
1500 𝑚/𝑠. However, this value is subject to variations 
depending on the water's salinity, temperature, and the sonar 
sensor's performance under pressure. In these experimental 
studies, the Ping360 Scanning Imaging Sonar sensor, 
manufactured by BlueRobotics, was employed. The Ping360, a 
mechanical sonar characterized by a 50 𝑚 scanning range and 
a 300 𝑚 depth operational range, and high-performance, is 
highly suitable for underwater operations due to its 360-degree 
scanning angle [26]. 

In order to test the proposed method, the AUV, that is designed 
and manufactured by the team comprising the authors, is 
utilized. This quadrotor-type AUV, with 6-DOF is equipped with 
8 motors. With dimensions of 395 𝑚𝑚 𝑥 449 𝑚𝑚 𝑥 258 𝑚𝑚 
and an approximate weight of 8 𝑘𝑔, this small-scale vehicle is 
notable for its autonomous operational capabilities. 
Experimental studies were carried out in a rectangular closed 
pool measuring 25 𝑚 𝑥 7 𝑚. 

The initial phase of the test involves preparing the AUV for 
measurement and acquiring environmental data using the 
scanning sonar. Initially, the AUV's roll and pitch angles are 
calibrated to zero, thus preparing it for measurement. Utilizing 
the onboard scanning sonar, which boasts a 1-degree angular 
resolution, a complete 360-degree (400 grad) scan is 
performed to collect the necessary data. The acquired data, for 
each grad direction, consists of 1200 data points, with the first 
data point representing the nearest point and the last data point 
representing the farthest point within the scanning range. Each 
data in the 400 𝑥 1200 data set obtained for the entire 
surroundings takes values between 0 − 255, depending on the 
perceived obstacle. Given that the studies were conducted 

within a small and confined pool, the scanning range was set to 
5 𝑚. A visualization of the acquired data set is provided in Fig. 
3. 

 

Figure 3. Scanning Sonar data visualization. 

To ensure data relevance, the sonar scan data is converted to 
polar coordinates, resulting in a reduction of the data set size to 
400 𝑥 400. The image of the data set in polar coordinates is 
depicted in Fig. 4. The utilized scanning sonar sensor provides 
a grayscale representation of the environment. The white circle 
in the middle of the image shows the location of the AUV. 

 

Figure 4. Scanning sonar data image. 

As clearly shown in Fig. 4, the sonar scan data set exhibits a 
substantial noise component due to multiple reflections and 
echoes. For successful and precise results, it is imperative to 
mitigate these noisy ones. Following the implementation of the 
filtering process designed for this purpose, the representation 
of the filtered data set is presented in Fig. 5. The obtained sonar 
data takes values between 0 and 255. The value of 0 means that 
the relevant location is empty and the value of 255 signs that 
there is an object in the relevant location. When the data is 
examined, it is seen that the noise caused by multiple 
reflections and echoes generally has values varying between 
150 and 220. Therefore, points with values lower than 220 in 
the data set are canceled, and points above 220 are survived. 
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Figure 5. Filtered data image. 

The sonar scan data set comprises values corresponding to the 
region between the point closest to the sonar and the terminal 
point of the scan range. These points must be transformed into 
real-world distance and position data, proportional to the scan 
range. This transformation is performed with respect to the 
local coordinate system, the origin of which is located on the 
AUV. The outcome of this transformation is shown in Fig. 6. 
After this process, the sonar scan data is converted into 
coordinate values, thus reflecting the real-scale representation 
of the underwater environment. The location of the AUV is 
indicated by a red star (∗) sign in figure. 

 

Figure 6. Coordinate frame matching data. 

The second phase of the experimental studies involves 
performing clustering and feature extraction operations on the 
sonar scan data set, which has been converted to real-world 
distance information. For this purpose, the K-means clustering 
algorithm is employed to partition the data into clusters. The 
clustered data for a cluster count of 10 is illustrated in Fig. 7. 
Each cluster is represented by a distinct color, and the cluster 
centroids are indicated by a red cross (x) marker.  

There are various methods in the literature regarding the 
determination of the optimal number of clusters. Very small 𝐾 
values may cause the data not to be separated into meaningful 
clusters. Very large 𝐾 values may lead to overfitting problems. 
The number of clusters to be used in this study was determined 
by trial and error. In the case of 6 or less clusters, the resulting 

cluster structure does not allow for inference. If the number of 
clusters is 14 or more too many clusters are formed and the 
computational cost in the next steps is greatly increased. In the 
experiments, it was observed that cluster numbers between 8 
and 11 had similar results. Considering that an AUV can detect 
a maximum of three edges at the same time due to the structure 
of the pool used in the experiments, it was concluded that 
choosing the number of clusters as 10 was appropriate and 
sufficient. 

 

Figure 7. Clustered data. 

In the final stage, the obtained data clusters are evaluated, and 
edge information of the pool is extracted. For this purpose, the 
data clusters are classified using the cluster centers. Based on 
the information that the pool is rectangular, 120-degree 
scanning regions were created, and clusters whose cluster 
centers remained in the same scanning region were collected 
into the same class. The scanning regions are adjusted as shown 
in Fig. 8. 

 

Figure 8. Cluster classification. 

The points in a class that belong to an edge are added to the 
edge list, and the other points are ignored. As a result of this 
process, the points representing the edge are located as shown 
in Fig. 9. Accordingly, three edge lists were created, which 
means that the three pool edges (right edge, top edge, and 
bottom edge) were detected. 
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Figure 9. Detected edges. 

After the edge detection is completed, the intersection points 
between the intersecting edges are detected as corner points. 
For this experimental environment, two corner points were 
found, one is the bottom right corner, which is the intersection 
point of the right edge and the bottom edge, and the other is the 
top right corner point, which is the intersection point of the 
right edge and the top edge. The detected corner points are 
shown in Fig. 10 with a blue plus (+) sign. 

 

Figure 10. Detected corner points. 

According to the results obtained, the top right corner 
coordinate values were found as (4.154, 3.938) and the bottom 
right corner coordinate values as (4.115, −2.689). These values 
are given in meters and according to the {𝑅} coordinate frame 
whose origin is located on AUV. In the experimental study, the 
AUV position at instant of sonar scan data collection was set to 
(21, 3) and the yaw angle was set to 0° degrees according to the 
fixed coordinate frame {𝐺}. It is assumed that the origin of the 
{𝐺} frame is placed at the bottom left corner of the pool as seen 
in Fig. 2. Ideally, according to this position of the AUV, it is clear 
that the top right corner and bottom right corner coordinate 
values are (4, 4) and (4, −3), respectively. The absolute error 
and error percentage between these values and the estimated 
values obtained by the proposed method are given in Table 1. 

The difference between 𝑦-coordinates of detected corner 
points should be equal to the length of any of the pool edges, 
here it is short edge’s length. The estimated edge-length is 
calculated as 6.627 𝑚. Considering that the actual length of the 
short side of the pool is 7 𝑚, the absolute error value of the 
estimation is 0.373 𝑚. It can be said that the error margin of 
approximately 5.33% is within the acceptable error value 
range. 

Using the estimated coordinate values of corners, the AUV 
position was calculated as (20.864, 2.692) according to the {𝐺} 
coordinate frame. According to the estimate position, the 
absolute error value in the 𝑥-coordinate is 0.136 𝑚 and in the 
y-coordinate value is 0.308 𝑚. The error percentages are seen 
to be 6.47% and 10.27%, respectively. The values are given in 
Table 1. 

Table 1. Actual and Estimated Values 

 

Coord 
Top Right 
Corner 

Bottom 
Right 
Corner 

AUV 
position 

Set Values 
𝑥 4 4 21 

𝑦 4 −3 3 

Estimated 
Values 

𝑥 4.154 4.115 20.864 

𝑦 3.938 −2.689 2.692 

Absolute 
Estimation 
Error 

𝑥 0.154 0.115 0.136 

𝑦 0.062 0.311 0.308 

Error Percent 
𝑥 3.85% 2.87% 6.47% 

𝑦 1.55% 10.37% 10.26% 

When all the results are considered together, it is clearly seen 
that the estimation error values are at an acceptable level. In 
addition, when evaluating the results, it should be taken into 
account that there will be drifts in both position and orientation 
due to the vehicle being in operation during the experimental 
study. 

The results obtained show that the proposed method can be 
used successfully in positioning and mapping studies in 
environments such as pools and marinas with certain 
boundaries. Although the detection of the edges and corners of 
the pool is directly dependent on the geometry of the 
environment, the method considered has a flexible structure. It 
will be possible to achieve solutions by appropriately selecting 
the limitations in the edge detection step for underwater 
environments with different geometries. It is appropriate to use 
the proposed method to determine the boundaries of objects 
and obstacles in the underwater. It can be used to solve both 
search tasks and obstacle avoidance problems especially in seas 
and rivers, which offer a different working environment than 
pools, because they do not have regular geometry. 

In robotic research, the data obtained from the environment 
and IMU sensor measurements for localization, mapping and 
navigation problems are integrated with methods such as 
Kalman filter and particle filter to reach a solution. With the 
detection of both natural and artificial landmarks, the relative 
position of autonomous vehicles is achieved. Although it 
depends on the geometry of the working environment, it is 
possible to evaluate the environmental boundaries, especially 
the corner points, as natural landmarks due to their distinctive 
qualities. The method proposed in this study offers the 
opportunity for AUV positioning with sufficient precision and 
accuracy by using natural landmarks without the need for 
additional equipment. This opportunity allows the method to 
be easily adapted and used in different environments. The 
clustering algorithm-based structure of the method offers the 
opportunity for real-time operation with low computational 
load and easy applicability. Additionally, not needing high-cost 
equipment such as DVL can be considered as the biggest 
advantage of the method. 
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5 Conclusion 

Underwater localization is of paramount importance in various 
domains, notably submarine research, underwater exploration, 
and the navigation of underwater robotic systems. However, 
this field is faced with challenges. One of the biggest problems 
is the ineffectiveness of conventional GPS signals underwater. 
Consequently, alternative underwater localization technologies 
are employed. Several solutions exist, including inertial 
navigation, acoustic navigation, and optical navigation. 
Acoustic localization systems deployed in open sea 
environments typically involve the placement of an array of 
receivers and transmitters on the seabed. These systems 
communicate with a surface station, or the underwater vehicle 
itself establishes a self-contained localization system using 
these transceivers. However, the deployment of such systems 
in enclosed environments incurs substantial costs. 

This study has focused on more appropriate solutions as 
opposed to high-cost systems. In an enclosed environment, 
environmental data acquired from a sonar scanning sensor 
with a 360-degree field of view were utilized for environmental 
mapping and AUV localization. Initially, the raw sonar scan data 
was processed and subsequently classified via the K-means 
clustering algorithm. By identifying clusters exhibiting 
common characteristics with the environment map from this 
classified data, the boundaries of a confined underwater 
environment, such as a pool, were delineated. Subsequently, 
the intersection points of the identified edges, i.e., corner 
points, were estimated. Experimental results indicated that the 
error margins in these estimations were minimal, and the AUV 
localization results derived from these points were reliable. 
Although this study concentrated on a single localization 
instance, the results suggest that the proposed method can be 
iteratively employed for AUV navigation. The method's 
computational efficiency and low cost make it a viable option 
for real-time applications. Ongoing research is focused on 
integrating the method with various filtering techniques to 
enhance the method's robustness and adaptability. 
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