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Abstract  Öz 

This paper presents a comprehensive literature review on data-driven 
structural health monitoring (SHM) approaches for pipelines. The 
review explores the common failure modes, driving signals, sensor 
technologies, and the application of smart techniques in pipeline SHM 
based on artificial intelligence (AI) and machine learning (ML). The 
analysis of a significant number of publications reveals that corrosion, 
erosion, cracks, and deformation are among the most prevalent failure 
modes, while a diverse range of driving signals, including time series 
data, vibration, temperature, and acoustic emissions, have been utilized 
for monitoring. The review also highlights the growing prominence of 
sensor technologies, such as optical fiber sensors, ultrasound 
techniques, and piezoelectric sensors. The application of AI and ML 
techniques, including supervised learning models, deep learning, and 
ensemble methods, has demonstrated significant potential in enhancing 
pipeline SHM capabilities, enabling accurate prediction and 
identification of failures and optimization of service strategies. 
Furthermore, the review identifies the emergence of promising 
technologies, such as energy harvesting, the Internet of Things (IoT), 
robotics, and drones, which offer creative approaches to tackle the 
issues in pipeline SHM. The review concludes by discussing key 
challenges, providing recommendations, and outlining future outlooks 
to guide the advancement of pipeline SHM through collaborative efforts, 
industry standards, and continued research and development, and to 
assist researchers, novice students, and practitioners to focus their work 
on worthy research points in order to avoid repetitions and to present 
beneficial novel studies. 

 Bu makale, boru hatları için veri odaklı yapısal sağlık izleme (SHM) 
yaklaşımlarına dair kapsamlı bir literatür incelemesi sunmaktadır. 
İnceleme, yaygın arıza modlarını, tetikleyici sinyalleri, sensör 
teknolojilerini ve boru hattı SHM'sinde yapay zeka (AI) ve makine 
öğrenimi (ML) tekniklerinin uygulanmasını araştırmaktadır. Önemli 
sayıda yayının analizi, korozyon, aşınma, çatlaklar ve deformasyonun 
en yaygın arıza modları arasında olduğunu ortaya koyarken, izleme 
için zaman serisi verileri, titreşim, sıcaklık ve akustik emisyonlar gibi 
çeşitli tetikleyici sinyallerin kullanıldığını göstermektedir. İnceleme 
ayrıca, optik fiber sensörler, ultrason teknikleri ve piezoelektrik 
sensörler gibi sensör teknolojilerinin artan önemini vurgulamaktadır. 
AI ve ML tekniklerinin, denetimli öğrenme modelleri, derin öğrenme ve 
toplu yöntemler dahil olmak üzere, boru hattı SHM yeteneklerini 
artırmada önemli bir potansiyel gösterdiği, doğru anomali tespiti, arıza 
tahmini ve bakım stratejilerinin optimizasyonunu sağladığı 
belirtilmektedir. Ayrıca, inceleme, enerji toplama, Nesnelerin İnterneti 
(IoT), robotik ve dronlar gibi boru hattı SHM'deki sorunları ele almak 
için yaratıcı yaklaşımlar sunan umut verici teknolojilerin ortaya çıkışını 
tanımlamaktadır. İnceleme, anahtar zorlukları tartışarak, önerilerde 
bulunarak ve boru hattı SHM'sinin ilerlemesini yönlendirmek için 
işbirliği çabaları, endüstri standartları ve sürekli araştırma ve 
geliştirme yoluyla gelecekteki beklentileri özetleyerek sona ermektedir; 
ayrıca araştırmacılara, acemi öğrencilere ve uygulayıcılara, 
çalışmalarını tekrarlardan kaçınmak ve faydalı yeni çalışmaları 
sunmak için değerli araştırma noktalarına odaklanmaları konusunda 
yardımcı olmaktadır. 

Keywords: Structural Health Monitoring (SHM), Pipeline anomalies, 
Data-Driven systems, Artificial Intelligence (AI), Machine Learning 
(ML), Ensemble Learning 

 Anahtar kelimeler: Yapısal Sağlık İzleme (SHM), Boru Hattı 
anormallikleri, Veriye Dayalı sistemler, Yapay Zeka (AI), Makine 
Öğrenimi (ML), Topluluk Öğrenimi 

1 Introduction 

The industrial landscape has evolved significantly, marked by 
the transition to the highest level where it is now, which 
emphasizes smart manufacturing and interconnected systems. 
Key factors driving this development include advancements in 
automation, a focus on sustainability, and the pursuit of 
enhanced performance and reliability. Among these 
innovations, predictive maintenance stands out, utilizing data 
analytics to anticipate system anomalies before they take place. 
Besides reducing the downtime and maintenance invoice, this 
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proactive strategy also boosts the overall operational 
efficiency, ensuring that industrial systems remain reliable and 
productive in a rapidly changing sector. Unplanned downtime 
can adversely impact the core business of operators, resulting 
in significant repercussions. Reports indicate that in oil and gas 
landscape between 15% and 70% of total production charges 
are accounted for maintenance costs [1], while the running and 
upkeep expenses for offshore systems account for 20% to 35% 
of total revenue [2]. Given this significant percentage, it is 
crucial for operators to implement a robust maintenance 
philosophy. Such an approach aims to reduce any sudden  
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downtime, enhance the comprehensive system dependability 
and availability, and ultimately lower running expenses. By 
prioritizing effective maintenance, companies can better 
manage their resources and enhance their profitability. High-
performance structures are becoming increasingly common 
across various industries, including aerospace, aviation, 
automotive, pipelines, and civil engineering. The quality and 
reliability of these structures are critical for their effective 
performance in severe, challenging settings. Structural Health 
Monitoring (SHM) involves the uninterrupted surveillance and 
assessment of a structural system's performance and behavior 
over its operational lifespan [3]. The primary goals of SHM are 
to identify damage through changes in structural behavior 
captured by measurement information and to assess the 
operational impacts on structural performance [4]-[6]. SHM 
employs a range of sensors to monitor the structural response 
to the applied forces and operational variations [7]. It 
frequently incorporates sophisticated information analysis 
approaches like machine learning (ML) models, to manage 
extensive datasets [8]-[10]. Essential components of SHM, 
including immediate survilience and non-invasive testing, are 
crucial for detecting and addressing possible concerns before 
they develop into serious challenges. By consistently evaluating 
the condition of these structural systems, their longevity can be 
enhanced, and the likelihood of anomalies can be scaled down.  

1.1 State of the art 

Pipeline SHM has become progressively crucial, as pipelines 
serve an essential function in conveying various fluids, 
including oil and gas. The monitoring process incorporates 
various measurement modalities and surveillance techniques 
to collect information on the pipeline structural integrity. The 
collected information is analysed leveraging the power of 
developed models to identify irregularities, foresee possible 
failures, and enhance the adopted maintenance philosophy. A 
crucial element of pipeline SHM is the strategic placement of 
measurement modalities at various locations along the pipeline 
to observe fluctuations in operational indicators that may 
signal possible issues. Prevailing measurement modalities in 
the SHM of pipelines comprise strain sensors, vibration 
sensors, acoustic emission sensing elements, and optic fibre 
sensors, which can be affixed to the pipeline surface or 
entrenched within its walls. Besides sensing elements, pipeline 
SHM approaches frequently employ sophisticated information 
analysis techniques, including ML models that recognize 
patterns in the captured datasets and alert maintenance 
veterans of possible concerns. Through examining the 
information gained from several measuring modalities over a 
span of time, monitoring techniques can recognize trends and 
forecast future incidents.  Another significant component of 
pipeline SHM is the application of non-destructive testing 
(NDT) methods, which enable engineers to examine pipelines 
without inflicting any harm. Radiography, magnetic particle 
inspection,  and ultrasonic testing are widely sued NDT 
methods. Overall, the pipeline SHM landscape is expeditiously 
evolving. As innovative techniques and methods are presented, 
even more sophisticated systems can be expected to emerge, 
guaranteeing the secure and effective functioning of pipelines 
worldwide.  

1.2 Pipelines and their applications 

Pipelines are infrastructure systems used to transport various 
fluids, including natural gas, crude oil, biofuels, water, and 
sewage. Pipeline categorization is an essential process that 
involves classifying pipelines according to several factors, 

including their dimensions, the material they are made from, 
their use, and their placement. This classification is critical for 
implementing appropriate service strategies and surveillance 
methods. By understanding the different categories and their 
specific requirements, it ensures that pipelines are installed 
and operated safely, efficiently, and in accordance with relevant 
regulations and standards. In terms of the location, the 
overground pipeline category refers to pipelines that are 
constructed above ground level. Another category termed 
‘underground’ pipelines. This term refers to pipelines that are 
installed under ground level. Subsea pipelines category is yet 
another classification refers to pipelines that installed under 
sea level. These pipelines are subject to a range of 
environmental conditions, including extreme pressure, 
temperature, and corrosive substances, which require robust 
service strategies and surveillance techniques to ensure their 
integrity and prevent failures that could lead to to ecological 
damage or safety risks. Additionally, another pipelines 
classification is permafrost pipelines whis are usedin regions 
where the ground remains frozen for at least two consecutive 
years, typically found in high-latitude and high-altitude regions 
with cold climates [11]. In permafrost regions, ground stability 
can be affected by several geological phenomena, including 
frost heave, thaw settlement, and sliding. These issues can 
result in pipeline displacement, bending, or deformation, 
posing significant risks to pipeline integrity and functionality. 

1.3 Causes of pipeline failures 

Pipeline failures can have various causes, and it's important to 
note each pipeline failure may have its own specific factors 
contributing to the incident such as pipeline geometry and 
material property, transported substance, and surrounding 
environment. Corrosion of pipeline materials over time can 
weaken the integrity of the pipeline, leading to leaks or 
ruptures. According to reports, corrosion has been identified as 
the cause of approximately 18% of pipeline incidents between 
1998 and 2017 [12]. Pipelines can be mechanically damaged by 
external interference such as excavation activities, accidental 
damage from construction equipment, or intentional sabotage. 
Excavation damage can be a significant cause of pipeline 
incidents. Reports indicate that excavation failure was 
responsible for about 15% of incidents involving hazardous 
liquid pipelines and approximately 18% of incidents related to 
natural gas transmission pipelines during the years 2002 and 
2003 [12]. It is important to implement effective damage 
prevention programs that include education and outreach to 
excavators, marking of pipeline locations, and safe excavation 
practices. Subpar materials or manufacturing flaws can also 
result in pipeline failures. Pipeline failures due to material and 
weld defects are relatively rare and account for a small 
percentage of all pipeline failures [12]. However, it is still 
important to ensure that pipelines are manufactured using 
high-quality materials and that welding is performed to the 
highest standards to minimize the risk of defects. Proper 
inspection and testing during construction and regular 
maintenance and monitoring can also help identify any 
potential issues and prevent failures due to material or weld 
defects. Human errors such as improper installation, 
maintenance, or operation can also contribute to pipeline 
failures. Operating errors are responsible for a relatively small 
percentage of overall pipeline failures [12]. However, it is still 
important to ensure that pipelines are operated by qualified 
personnel and that proper procedures are followed to minimize 
the risk of errors. Regular training and education can help 
ensure that operators are aware of the potential risks and know 

https://doi.org/10.1007/s13349-023-00685-6
https://doi.org/10.1177/1369433218811540
http://doi.org/10.1098/rsta.2006.1925
https://doi.org/10.1016/j.proeng.2017.09.115
https://doi.org/10.1080/10168664.2018.1461536
https://doi.org/10.1016/j.compstruc.2010.01.001
https://doi.org/10.3390/en16041751
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how to respond to any issues that may arise. Additionally, 
implementing effective safety management systems can assist 
in spotting such problems early on and taking action before 
they worsen. Finally, extreme weather events, including floods, 
landslides, earthquakes, and hurricanes, can significantly 
contribute to pipeline failures. According to reports, in 2002 
and 2003, natural force damage was responsible for around 
16% of natural gas transmission pipeline failures and about 9% 
of hazardous liquid pipeline failures [12]. During pipeline 
design and construction, it is essential to take into account the 
possible risks from natural forces and to put in place suitable 
safety measures to reduce damages. From 2010 to 2020, 
reports indicated that mechanical damages and corrosion each 
accounted for 27% of pipeline incidents, while natural force 
damage and material defects represented 16% each of the 
reported incidents [13]. 

1.4 Effects of pipeline failures 

The ability to effectively monitor the condition of pipelines can 
help prevent catastrophic failures and ensure that these vital 
systems operate safely and efficiently. Pipeline failures can lead 
to various hazards and consequences, including fire or 
explosion risks, the release of high-pressure gases and liquids, 
excessive noise, impact hazards, and environmental damage. 
Fig. 1 illustrates the effects of pipeline incidents on both the 
community and commercial sectors concerning deaths, 
injuries, and expenses over the last two decades, as recently 
reported by the Pipeline and Hazardous Materials Safety 
Administration (PHMSA) [14]. 
 

 
Figure 1. Significant Incident Consequences Statistics [14] 

The industry term referred to in Fig. 1 includes anyone involved 
in the pipeline facility, such as the operator or any employed 
contractors, while the public term refers to anyone else. It’s 
essential to understand that any injury resulting from a pipeline 
incident is unacceptable, and efforts should be made to prevent 
these incidents and minimize their potential consequences. 

1.5 Maintenance of pipeline systems 

Here an overview of three main maintenance philosophies that 
can be adopted for pipeline systems are provided. The reactive 
(breakdown) maintenance approach is described as a short-
term, cost-effective solution where repairs are only carried out 
when an asset, such as a pipeline, fails or breaks down. While 
this approach can be suitable for non-critical assets, it can lead 
to higher long-term costs due to frequent breakdowns and 
repairs, as well as increased downtime [15]. In contrast, the 
preventive maintenance approach is a proactive approach that 
involves regular inspections, servicing, and repairs to prevent 
pipeline failure. This approach can reduce downtime and 
increase productivity by preventing unexpected breakdowns, 
and, over time, it can save money by prolonging the life of 
pipelines. But this method can be expensive and time-
consuming, and it might not be suitable for every pipeline 

activity [16],[17]. The predictive (condition-based) 
maintenance approach is presented as a data-driven approach 
that gathers information and anticipates malfunctions before 
they happen by using sensors and monitoring procedures. This 
approach is considered the most effective for critical pipeline 
infrastructure, as it is cost-effective, extends the life of assets by 
identifying and addressing issues early, and ensures the safe, 
efficient, and smooth functioning of the pipeline system. 
However, it requires significant investment in monitoring 
equipment and software, and can be complex to implement 
[15]-[17]. Taking into account the significant pipeline incident 
consequences, the predictive (condition-based) maintenance 
approach is essential and crucial for the safe, efficient, and 
smooth functioning of pipeline systems. 

1.6 Reviewing strategy 

This paper presents a comprehensive literature review focused 
on data-driven SHM approaches for pipelines. The review was 
conducted to find answers to specific questions regarding the 
common pipeline failure modes, driving signals, sensor 
technologies, and machine learning techniques used in this 
domain. The review process commenced by searching different 
academic platforms using relevant keywords and search terms 
as depicted in Table 1  

Table 1. Summary of academic platforms and search terms 
Academic platforms 

searched 
Keywords and search terms 

used 

 Web of Science 
 Scopus 
 Google Scholar 
 IEEE Xplore 

 Pipeline structural health 
monitoring 

 Data-driven pipeline SHM 
 Pipeline failure modes 
 Signals for pipeline SHM 
 Sensors for pipeline SHM 
 Machine learning techniques 

for pipeline SHM" 

A systematic review approach was applied to inform the 
creation of this paper and to represent the current 
advancements in the field. The methodology used in this study 
is illustrated in Fig. 2. The search resulted in a plethora of 
publications related to the topic. To identify the most relevant 
and high-quality sources for the current literature review, the 
list of sources was carefully screened, with titles and abstracts 
reviewed and manually refined. Sources that were solely 
focused on SHM of structures other than pipeline systems, such 
as bridges, buildings, or aerospace structures, were removed. 
Additionally, studies conducted prior to 2000 were considered 
outside the scope of the current extensive review. Finally, the 
review was limited to sources published only in English. The 
selected relevant publications were then used for a snowballing 
search to find additional sources through their references or 
citations, ensuring a comprehensive search for relevant 
information. The selected sources were then thoroughly read to 
extract the key findings, recommendations, and conclusions 
related to the current research questions. The acquired 
information was then organized into logical themes or 
categories, such as common pipeline failure modes, driving 
signals, sensor technologies, and machine learning techniques. 
Ultimately, the categorized information was analyzed to 
uncover patterns, trends, and gaps in the literature. The 
findings were then synthesized to offer a thorough summary of 
the current knowledge in the area of data-driven pipeline SHM.  

 

http://www.phmsa.dot.gov/incident-reporting/accident-investigation-division/pipeline-failure-causes
https://www.egig.eu/reports
http://www.phmsa.dot.gov/data-and-statistics/pipeline/pipeline-incident-20-year-trend
http://www.phmsa.dot.gov/data-and-statistics/pipeline/pipeline-incident-20-year-trends
https://doi.org/10.1201/9781351228626
https://doi.org/10.1016/j.cie.2012.02.002
https://doi.org/10.1007/978-3-319-17527-0_65
https://doi.org/10.1201/9781351228626
https://doi.org/10.1007/978-3-319-17527-0_65
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Figure 2. Flowchart of reviewing strategy 

2 Pipeline failure modes 

Pipeline failures pose a significant threat, leading to ecological 
damage, safety risks, and substantial economic wastes. A 
significant instance is the Deepwater Horizon disaster that took 
place in the Gulf of Mexico in 2010, which led to financial 
setbacks surpassing 1 billion USD and caused significant harm 
to oceanic ecosystems [18]. Quantifying the possibility of 
pipeline damages is challenging due to the extensive network 
of pipelines, varying operational and environmental conditions, 
limited data on pipe conditions, and the difficulty of forensic 
investigation. However, efficient risk management strategies 
can assist in bringing the total risk of pipeline damages down to 
a manageable level [19]. Using the combined approach of life 
cycle and management practices, Figueredo et al. [20] recently 
discussed the gain of a comprehensive understanding of subsea 
pipeline incidents, the identification of potential areas for 
improvement in safety management, and eventually the 
improvement of subsea pipeline operations' general safety and 
dependability in the Brazilian petroleum industry. Identifying 
and addressing the root causes of pipeline failures requires a 
comprehensive approach that involves careful monitoring, 
regular maintenance, and effective risk management strategies. 
Failure to address these issues can lead to serious 
consequences, including legal responsibilities and harm to the 
operator's local and international standing. As such, companies 
operating pipelines are highly recommended to prioritize the 
prevention of pipeline failures through diligent oversight and 
proactive measures.  

2.1 Pipeline corrosion and erosion 

Over time, pipelines can corrode due to either internal 
exposure to the elements or the substances they transport, or 
external exposure to their surroundings. Corrosion, illustrated 
in Fig. 3, is a time-dependent process that, if not treated, can 
lead to structural damages, leaks, and other issues that can 
compromise the integrity of the pipeline. Operational corrosion 
diminishes the capacity of pipelines to withstand both internal 
and external applied loads [21]. It is important to implement 
effective corrosion prevention and mitigation strategies to 
guarantee pipelines operate safely and dependably. Various 
techniques have been used to prevent or mitigate pipeline 
corrosion, including coatings, cathodic protection, and 
monitoring. With an emphasis on heavy water plants, a 

reliability analysis of pipelines with corrosion defects caused 
by hydrogen sulfide (H2S) was presented with the goal of 
determining failure probabilities for the establishment of a Risk 
Based Inspection (RBI) program [22]. Two innovative random 
process corrosion development techniques for underground 
pipelines were proposed, depicting the rate of corrosion as 
oscillation of a Poisson square wave procedure [23]. The 
Poisson square wave technique's suggested linear variant as 
well as the non-linear version both found to effectively capture 
the temporal changeability of corrosion development and 
generate continuous corrosion development records. Other 
studies discussed corrosion growth model for underground 
pipelines by incorporating inline inspection (ILI) data and 
measurement uncertainties in a Bayesian framework [24]-[27]. 
Dann et al. [28] suggested a system for automatically matching 
corrosion features found during in-line inspection (ILI) of 
pipelines, with the goal of replacing the laborious and error-
prone manual feature matching procedure. Online corrosion 
monitoring can aid in preventing structural integrity problems 
and reducing the effects of corrosion. In this regard, new 
measuring modalities such as passive wireless devices and 
optical fiber sensors demonstrate significant potential for 
ongoing, in-situ monitoring of natural gas and oil infrastructure 
in real time. Additionally, distributed chemical sensing is 
recognized as a promising approach for the early detection of 
corrosion and monitoring corrosive environments. However, 
ensuring durability and stability under extreme conditions, 
such as high temperatures and high pressures, poses significant 
challenges for corrosion sensing [29]. Foorginezhad et al. [30] 
evaluated the sophisticated sensing systems used for 
monitoring, and carried out a comprehensive analysis of the 
elements causing sewer pipeline corrosion, and looked into a 
number of data analysis methods for evaluating sensor 
readings for predicting corrosion. Ma et al. [31] additionally 
examined the existing models for pipeline corrosion growth, 
examined both probabilistic and deterministic models, and 
presented the application of ML and deep learning (DL) in 
modeling corrosion growth. They also presented hybrid 
approach models, provided suggestions for future 
development, and addressed the data sources and uncertainties 
in the modelling process. Taking the advantage of the bimorph 
sensors, Sheikh et al. [32] proposed an analytical method that 
uses the piezoelectric effect and vibrational mode shapes to 

https://doi.org/10.1016/j.jlp.2017.12.006
https://doi.org/10.1016/j.jlp.2011.12.007
https://doi.org/10.1016/j.jlp.2023.105007.
https://doi.org/10.1016/j.ijpvp.2005.11.004
https://doi.org/10.1016/j.ress.2004.11.021
https://doi.org/10.1016/j.corsci.2013.04.011
https://doi.org/10.1016/j.corsci.2013.04.020
http://dx.doi.org/10.1016/j.ress.2015.08.007
http://dx.doi.org/10.1016/j.ress.2017.01.008
https://doi.org/10.3390/s19183964
https://doi.org/10.1016/j.psep.2020.09.009
https://doi.org/10.1016/j.psep.2022.12.054
https://doi.org/10.1016/j.sna.2022.113940
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identify and measure corrosion flaws. The method's 
performance was evaluated both analytically and 
experimentally, successfully identifying multiple corrosion 
defects. Another study introduced a probabilistic framework 
for assessing the reliability of corroded pipeline networks, even 
when there is limited failure history available. A case study of a 
buried pipeline network was used to assess the applicability of 
the method, and the pipeline operator's failure history data was 
used to confirm the findings [33]. Recent research focused on 
predicting the maximum depth of pitting corrosion in oil and 
gas pipelines using DL models, particularly Generalization and 
Generalization-Memorization models [34]. The study found 
that the accuracy of DL techniques and deep neural networks 
(DNNs) in predicting the maximum depth of pitting corrosion 
significantly exceeded that of empirical and hybrid models. 
Another recent investigation concentrated on monitoring 
internal corrosion in pipelines employing a time reversal 
technique based on piezoelectric active sensing [35]. This study 
presented a method for assessing the inner surface of the 
pipeline for any anticipated corrosion by using wavelet packet 
energy in conjunction with a convolutional neural network 
(CNN) model. The obtained response signal is inverted in the 
time domain and retransmitted as an excitation signal using the 
time reversal method, resulting in a more focused signal.  

Pipeline erosion poses a significant challenge for the pipeline 
industry. It involves the slow deterioration of a pipeline's 
surface caused by fluid flow and abrasive particles in the 
materials being transported. This erosion can result in leaks, 
ruptures, and other failures, leading to serious environmental 
and economic repercussions. Addressing pipeline erosion is a 
multifaceted issue that demands careful attention and 
proactive strategies. Implementing effective monitoring 
techniques can help minimize the chances of erosion-related 
events, ensuring safe and efficient transport of materials 
through pipelines. Elbows in pipelines are designed to alter the 
flow direction, but they are vulnerable to erosion from the 
medium being transported. Fig. 3 depicted a typical form of 
erosion at elbows. Detecting erosion in pipeline elbows is 
crucial for the pipeline integrity. In this context, several studies 
were conducted.  

 
Figure 3. Typical forms of pipeline erosion [36] and 

corrosion [37]. 

Nagy et al. [38] discussed the importance of corrosion-erosion 
detection and monitoring in various industrial infrastructure, 
such as ships, aircraft, pipelines, etc., and focused on the 
potential of long-range guided wave inspection using ultrasonic 
measurements in pipes to detect the damage. The 
Electromechanical Impedance (EMI) method has become a 
promising non-destructive approach for early detection of 
erosion-corrosion. Research has explored the application of the 
EMI method to identify reductions in wall thickness in pipeline 
facilities, especially analysing the change in resonance 
frequency range with decreasing wall thickness. Whether the 

resonance frequency rises or falls in response to modifications 
in the system's properties affects the shift of frequency range 
[39]. The EMI technology has been employed for assessing 
erosion in steel pipelines and for measuring corrosion through 
a probe that operates on the concepts of EMI [40]. Muthanna et 
al. [41] provided information on the erosion-corrosion 
problems encountered in desalination plants, specifically 
focusing on the pipe elbow component of the integrated piping 
system, and highlighted the importance of addressing such 
issues in desalination plants to enhance energy development in 
the industry. Meribout et al. [42] conducted a critical review on 
sensing methods for online integrity monitoring of alloy steel 
process industry equipment, including tanks, transformers, 
pipelines, and metallic structural systems in constructure. The 
authors concluded that while there have been advancements in 
the sensitivity and accuracy of these monitoring techniques, 
additional development is necessary for practical field 
application. They advocated for the use of wireless sensors 
equipped with ultrasonic technology as a promising alternative 
for detecting internal erosion-corrosion. Erosion identification 
approaches usually require constantly contacted sensing 
modalities affixed on the pipelines, that may be limited by 
certain environmental factors. To address this limitation, Chen 
et al. [43] recently introduced an innovative technique for 
identification of erosion at pipeline elbows, which is simple to 
execute, economical, and eliminates the need for constantly 
fixed sensors. This technique integrates percussion, variational 
mode decomposition (VMD), and DL. 

2.2 Pipeline scale formation 

Pipeline scale formation, shown in Fig. 4, refers to a buildup of 
deposits on the inner walls of pipelines. Theses deposits can 
reduce the flow capacity of the pipeline and elevate the 
vulnerability to failures such as corrosion or complete rupture. 
Scaling can be caused by a variety of factors, including the 
molecular structure of the substances being transferred, the 
pipeline temperature, the applied pressure, and the existance 
of impurities in the substances. In addition to chemical 
treatment and mechanical cleaning, regular monitoring and 
services help recognise and tackle scaling issues before they 
develop into major concerns. Pipeline scale formation is a 
significant challenge within the petroleum landscape. However, 
with the implementation of effective prevention and control 
strategies, operators can minimize the impact of scale deposits 
on pipeline operations. Regarding monitoring scale deposit 
formation, Almutairi et al. [44] discussed the capability of 
Distributed Temperature Sensor (DTS) systems to provide real-
time downhole data for various aspects of production 
engineering, including inflow profiling and monitoring of fluid 
temperature to prevent wax and hydrate formation. They also 
focused on the analysis of scale deposition on the temperature 
profile of a conventional producing well using DTS. Shar et al. 
[45] highlighted the effectiveness of the Cased Hole Gamma Ray 
measurement in detecting scale presence and emphasized that 
the measurement can be a crucial indicator of scale buildup, 
especially with the absence of other indicators. Alhammadi et 
al. [46] introduced three distinct methods for detecting scale 
deposition utilizing a light sensing technique. They highlighted 
the issue of scale buildup in oil pipelines, which can result in 
sensor malfunction and decreased oil production, ultimately 
affecting well integrity.  
Rostron [48] conducted a thorough literature review on scale 
detection, creating a thorough compilation of all possible 
techniques for detecting pipeline scale deposit. He examined 
the formation of calcite scale and the significant economic risks 
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posed by uncontrolled scale accumulation. Askari et al. [49] 
emphasized the necessity for precise measurement of wax 
thickness inside pipelines used in oil and gas landscape to 
manage the flow of transffered substances through pipelines, 
introducing an innovative method that employs artificial neural 
networks (ANNs) for this measurement. Stuewe et al. [50] 
investigated the efficacy of two non-destructive testing (NDT) 
methods - contact ultrasonic testing (UT) and impact-echo (IE) 
testing - for identifying scale growth in geothermal facilities, 
acknowledging the necessity of a scale monitoring solution 
under high-temperature conditions in geothermal plants to 
improve service and cleaning strategies. Another successful 
measurement of scaling growth by conducting resonance tests 
at regular time intervals during a descaling process has been 
recently presented [51].  

 
Figure 4. Typical form of pipeline scale deposit [47]. 

2.3 Pipeline deformation 

A major problem for pipeline networks is pipeline deformation, 
which is the bending or warping of pipelines as a result of a 
variety of variables, including temperature, pressure, stress 
variations, and natural forces like landslides, soil erosion, and 
seismic activity. Pipeline deformation can have serious 
consequences, including risks to the environment, financial 
losses, and worker and community safety. The development of 
cutting-edge technologies for the real-time detection and 
control of pipeline deformation is essential to reducing these 
risks. Surface loads from construction and automobiles, as well 
as ground movements like earthquakes, have an impact on 
buried infrastructure, such as pipelines for gas and water 
supplies. To monitor pipeline conditions and prevent deflection 
and deformation, Qiu et al. [52] examined regular monitoring of 
pipeline deflection to estimate stress levels and maintain them 
below critical thresholds. Glisic et al. [53] explored lifeline 
systems and geotechnical hazards from earthquakes, 
addressing permanent and transient ground deformations, and 
proposed a health assessment method for buried pipelines 
using distributed Optical Fiber Sensors (OFSs). Wenkai et al. 
[54] investigated the relationship between oil-gas pipelines and 
landslides, paying particular attention to patterns of stress and 
deformation during landslide events, highlighting the 
importance of this understanding for pipeline design and 
remediation. Additionally, the necessity of monitoring changes 
in pipeline diameter to prevent accidents and ensure quality 
testing was discussed [55]. Wong et al. [56] showed a method 
for enhancing pipeline SHM utilizing transient hydraulic 
pressures from water hammer as a natural stimulus, leveraging 
distributed OFSs. A deformation monitoring approach for long-
distance pipelines was developed, combining distributed OFSs 
with the conjugate beam method, and confirmed using a 
pipeline's finite element model [57]. This approach evaluated 
pipeline deformation using both continuous and discrete strain 
signals, confirming the efficacy of the monitoring method. 

Traditional methods for monitoring pipeline deformation, such 
as periodic inspections by skilled technicians or robots, are 
inadequate for real-time assessment, prompting researchers to 
explore more efficient techniques like the inverse finite element 
method (iFEM) [58]. Cheng et al. [59] highlighted the 
significance of monitoring pipeline deformation due to human 
activities and geological disasters, studying how to convert 
measured structural strain from distributed OFS into pipeline 
deflection while addressing the challenges of accurately 
reflecting pipeline deformation. The structural integrity of 
buried warm pipelines is at risk due to thawing permafrost in 
harsh environments. Ground temperature distributions 
surrounding buried warm pipelines and their reaction to 
differential thaw settlement in cold regions were among the 
recent studies that concentrated on the differences in 
engineering characteristics of pipeline foundation permafrost 
and their influence on pipeline mechanical behavior [60]. 
Permanent ground displacement (PGD) caused by fault shifts 
poses a serious threat to pipeline safety and operation. 
Calculating the strains caused by fault effects in the pipeline is 
necessary for assessing the health of the pipeline near fault 
lines. In order to achieve this, simplified computational 
methods have been created to examine the mechanisms 
underlying fault-action-related pipeline failures, accounting for 
variables such as pipeline elongation, soil passive pressure, and 
the pipeline's interaction with the surrounding soil [61]. Fig. 5 
illustrates a typical form of landslide causing pipeline 
deformation. 

2.4 Pipeline cracks and leakage 

Pipeline crack and leakage detection is a crucial component of 
ensuring the pipelines integrity and safety. Cracks - leading to 
leakages – may take place because of different reasons 
including corrosion, stress, fatigue, and manufacturing defects. 
Cracks in pipelines, as depicted in Fig. 5, can have devastating 
consequences, including environmental damage, loss of 
product, and even human fatalities. Leakage is a serious global 
issue as well, with some countries experiencing water loss, for 
instance, due to leaks exceeding 40% of the total water supply 
system [62]. As precautional measure, there has been a growing 
need for effective methods for detecting, diagnosing, and 
monitoring pipeline cracks and the accompanying leakages. To 
aid in accident prevention and guarantee the safe and efficient 
functioning of pipelines across various industries, various 
technologies and methods have been used or combined to 
create a comprehensive system that can detect cracks or 
leakages early, diagnose their severity and location accurately, 
and monitor their progression over time. Utilizing fiber 
geometry and optical time domain analysis for information 
localization, the use of optical fiber sensors (OFSs) to monitor 
temperature profiles over long distances for leakage detection 
in various applications, including pipelines, was presented [63], 
[64]. Additionally, a thorough method utilizing distributed OFSs 
based on Brillouin scattering for in-line and real-time 
monitoring of long-distance pipelines was covered [65]. This 
method could detect ground movement, leaks, and third-party 
intrusions in addition to measuring temperature and strain 
over distances greater than 150 km. Myles [66] described the 
theoretical underpinnings and real-world uses of a fiber optic 
technique that uses Brillouin acoustic scattering to locate 
pipeline leaks underground and monitor strain changes within 
the pipes. The author emphasized the potential of fiber optic 
technology to address significant issues with current pipeline 
monitoring systems and mentioned that fiber optic cables can 
be used to monitor strains, measure temperatures, and find 
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leaks over long distances. The assessment of underground 
pipelines can be challenging due to their complex nature and 
the many factors that can impact their condition. To overcome 
these challenges and with great help of the continuous 
revolution of technology, many researches have presented 
different underground pipeline assessment techniques. Mirzaei 
et al. [67] explored the application of brillouin optical time 
domain amplifier (BOTDA) and raman optical time domain 
reflectometer (ROTDR) measurement modalities as accurate 
systems for detecting oil pipeline leaks, focusing on the 
environmental temperature changes resulting from oil leaks. 
By resolving the mass, energy, and heat transfer equations in 
the fiber cable and soil, they demonstrated the transient 
response of these sensors. Another study looked at the 
difficulties and methods of detecting and localizing pipeline 
leaks, with a focus on hardware-based approaches that make 
use of specialized sensing devices like vapor sampling, soil 
monitoring, optical fiber sensors, cable sensors, acoustic 
monitoring, and ultrasonic flow meters. Additionally, software-
based approaches that rely on applications that continuously 
monitor pipeline parameters like temperature, pressure, and 
flow rate were covered [68]. Likewise, subsea pipeline 
assessment can be challenging because of the hostile and 
corrosive surroundings in which the pipelines are located. 
Seawater can cause deterioration and corrosion of the 
pipeline's components, which can lead to leaks, cracks, and 
other defects. In addition, subsea pipelines are subject to 
damage from marine growth, marine life, and other 
environmental factors. Subsea pipelines were reported to have 
relatively lower deterioration rate compared to the other 
categories of pipeline systems [69]. However, maintaining 
these structures has become a focus of research and 
development, with new methods being developed to improve 
integrity management efficiency [70]. A mathematical model 
and experimental validation were used in another study to 
examine the accuracy and viability of using distributed optical 
fiber temperature sensing for leak detection in subsea oil 
pipelines. The results showed that the optical fiber cable 
detection system could quickly and accurately determine the 
location and scale of leaks along a subsea pipeline [71]. An 
alternative innovative approach for the swift detection and 
identification of pipeline leak locations was proposed, 
employing lead zirconate titanate (PZT) sensors, with an 
emphasis on its effectiveness and accuracy [72].  

 

Figure 5. Typical forms of pipeline cracks [73] and 
deformation [54]. 

 
Real-time crack monitoring has garnered significant research 
interest, leading to the development of various methods, 
including computer vision methods, in-situ sensing modalities, 
and non-destructive assessment. Roberts et al. [74] explained 
the recent evolvement and implementation of Acoustic 
Emission (AE) monitoring as a non-invasive method for 

detecting, locating, and the surveillance of fatigue cracks in 
metal structures and emphasized how the Paris-Erdogan 
equation, which correlates crack length, fatigue cycle count, 
applied stress intensity factor range, and material constants, 
can be used to characterize the crack growth rate during 
fatigue. Another study provided important insights into the full 
fatigue acoustic emission (AE) characteristics of piping prior to 
cracking [75]. The analysis of AE data showed that variations in 
amplitude and energy were sensitive to the microscopic 
structure of the pipe, offering valuable information on the 
progression of fatigue and aiding in leak prediction. 
Additionally, a novel method for detecting and localizing cracks 
in high-pressure fluid pipelines using AE signals was 
introduced [76], which leveraged changes in AE activity in 
relation to applied load to indicate irregularities in the 
material's structure. This technique demonstrated improved 
accuracy in fault diagnosis compared to traditional methods. 
Moreover, the recent discussion on using distributed OFSs for 
crack monitoring highlighted their unique ability to monitor 
spatially distributed cracks over large areas or long distances 
[77].  

3 Data-driving signals 

Continuous monitoring of pipeline behavior offers valuable 
insights into its performance under various operating 
conditions, aiding in the optimization of design and 
maintenance strategies. Multiple parameters can be monitored 
for data-driven diagnostics and prognostics to assess the 
current condition and potential issues affecting pipeline 
integrity, as well as to predict future behavior and remaining 
useful life. Strain measurements reveal the deformations and 
stresses that the pipeline undergoes, helping to identify 
potential structural problems. Monitoring temperature 
variations along the pipeline can also detect anomalies or 
unusual conditions that may compromise its structural 
integrity. Additionally, data from vibration sensors provides 
important information about the behavior and condition of the 
pipeline structures. Keeping track of pressure levels and fluid 
flow rates within the pipeline can help identify leaks or changes 
in operating conditions that may impact structural 
performance. Furthermore, monitoring corrosion levels is 
essential for assessing the degradation of the pipeline material 
and ensuring its long-term integrity. Beyond these parameters, 
time itself can be a valuable signal for pipeline SHM.   

3.1 Time series 

A statistical technique for analyzing and interpreting data 
points gathered over time is time series analysis. Finding 
patterns, trends, and connections in a series of chronologically 
arranged data is its main goal. Time series modeling is a potent 
statistical technique for evaluating data obtained from sensors 
mounted on structures in the context of SHM. Sohn et al. [78] 
explored the SHM process through a statistical pattern 
recognition framework, utilizing statistical process control 
(SPC) techniques for vibration-based damage diagnosis. Harley 
et al. [79] introduced the Time Reversal Change Focusing 
(TRCF) monitoring technique, which offers a metric for 
assessing the extent of damage in pipes. They demonstrated 
how to reduce multimodal and dispersive effects in a low-
power SHM system for pipelines by using time reversal 
processing techniques, highlighting that TRCF alleviates the 
limitations on excitation frequency and bandwidth found in 
many other non-destructive testing methods. Gul et al. [80] 
investigated statistical pattern recognition methods in SHM for 
detecting structural changes, particularly in damage detection, 
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and validated these methods through various test structures 
and replicated damage scenarios. De Lautour et al. [81] 
discussed the implementation analytical time series techniques 
in SHM for damage classification and estimation, addressing the 
challenges of applying these methods to real structures due to 
the need for a substantial number of training samples. 
Vamvoudakis-Stefanou et al. [82] examined the use of 
unsupervised statistical time series techniques for vibration-
based failure identification across a collection of ostensibly 
identical structures. Additionally, Graph Tools can be employed 
to visualize signal patterns and time evolution in response to 
different fault scenarios, simulating and analyzing fault 
propagation through structural graphs, which aids in 
identifying critical points and potential failure modes, thereby 
facilitating fault pattern recognition and validation [83].  

3.2 Vibration 

In SHM, Vibration-driven surveillance is a widely used as it can 
identify hidden incidents within the internal components of 
structures by analyzing changes in their structural 
characteristics [84]. In the field of pipeline SHM, vibration 
signal processing involves analysing and interpreting signals 
produced by vibrating pipelines. Important details regarding 
the pipeline's performance, condition, and possible flaws are 
contained in these signals. Both frequency-domain and time-
domain analysis techniques are used in the process. Instead of 
converting the signal waveform to the frequency domain, time-
domain analysis techniques analyze it directly in the time 
domain. This approach offers insights on the amplitude, phase, 
and time characteristics of a signal, enabling the identification 
of patterns and anomalies. Techniques such as auto-regressive 
(AR) [85], auto-regressive with exogenous input (ARX) [86], 
auto-regressive integrated moving average (ARIMA), vector 
auto-regressive (ARV) [87], auto-regressive moving average 
(ARMA) [88], and auto-regressive moving average with 
exogenous inputs (ARMAX) [89] are widely applied in time 
series analysis. On the other hand, a method for analyzing 
signals in the frequency domain is called frequency-domain 
analysis. Frequency-domain analysis offers insights into the 
phase and amplitude of different signal frequency components, 
helping to identify specific vibration patterns or anomalies. 
Techniques like Fourier transform (FT) [90], frequency 
response function (FRF) [91], strain frequency response 
function (SFRF) [92], frequency domain decomposition (FDD) 
[93]], and multiple signal classification (MUSIC) [94] are 
employed in frequency domain analysis. Vibration-based fault 
identification techniques are growing in popularity due to their 
technical and financial advantages. They offer global sensitivity 
to damage, outperforming localized techniques like ultrasonic 
and radiographic methods. The location and extent of damage 
can be predicted using changes in modal parameters, such as 
natural frequencies, mode shapes, and modal damping [95]. 
Depending on the length of the pipeline, underground pipelines 
may respond differently to seismic activity, which can result in 
different displacements and strains, particularly at the 
boundary points [96]. These differences may have an impact on 
the pipeline's performance and structural soundness during 
seismic activity. Furthermore, changes in displacements and 
strains are caused by variations in the coefficients of elastic and 
viscous interaction between the pipeline and soil along its 
length. Displacements can range from 0 to 15%, while strains 
can vary from 0 to 18% when compared to a scenario where 
these coefficients remain constant. The pipeline's response to 
seismic forces also differs based on its length.  

3.3 Temperature 

Temperature measurements are commonly employed in 
pipeline SHM to assess the thermal behavior of the structures. 
Temperature variations may have an effect on pipelines' 
structural integrity, causing the material to expand or contract. 
By tracking temperature changes along the pipeline, 
abnormalities or deformations that may signal damage or wear 
can be identified, allowing for timely preventive measures. 
Temperature-based monitoring techniques are currently a 
focal point of research in SHM due to their ease of distributed 
sensing, lack of pollution, stability, sensitivity, and low cost 
[65]. Zhao et al. [97] unveiled a new scour monitoring system 
for submarine pipelines' nearshore and landfill segments that 
relies on temperature measurements. They presented the 
three-index estimator (TIE) methodology, which distinguishes 
between the heat transfer behaviors of sediment and water 
using active thermometry. Another system was suggested in 
relation to scour monitoring that uses temperature readings to 
extract consistency, spatial continuity, and amplitude as three 
characteristics from temperature time records. This system can 
distinguish between areas exposed to water flow and those 
buried in sand by analyzing the excess temperature gap and 
time instability during the heating process [98]. Experimental 
tests were conducted to confirm that the system is effective in 
monitoring scour conditions. The temperature-based pipeline 
scour monitoring approach is regarded as low-cost, highly 
precise, flexible in construction, and a promising method for 
offshore pipeline scour monitoring, especially in nearshore 
areas [99]. Madabhushi et al. [71] emphasized the use of 
temperature measurements for near real-time leak detection in 
subsea oil pipeline networks through optical fiber cables. This 
technology employs optical time domain reflectometry to 
detect temperature gradients along the fiber, helping to 
pinpoint the location and extent of a leak. The optical fiber 
temperature measurement system's precision and spatial 
resolution were assessed through mathematical modeling and 
experimental studies. Ukil et al. [100] provided insights and 
solutions for gas pipeline leaks and water ingress issues, 
particularly focusing on the application of distributed 
temperature sensing (DTS) systems for monitoring and 
detecting abnormal events like pipeline leaks. They also 
discussed the application of the temperature tracer method 
(TTM) across various engineering fields, including oil and gas 
pipeline safety. TTM is a technique for monitoring the 
structural health of pipelines and has gained popularity as a 
low-cost, non-invasive way to evaluate the integrity of subsea 
pipelines and find leaks of gas and oil [63], [66], [67]. In a newly 
conducted study, He et al. [101] thoroughly reviewed the TTM, 
which indirectly assesses the health of a structure by 
monitoring effective temperature signals and employing a 
mathematical model that links temperature with measured 
physical quantities. The authors also noted the method's 
application in SHM due to its advantages, including ease of use, 
low cost, continuous monitoring, and minimal environmental 
impact.  

3.4 Ambient noise and acoustic transient 

Ambient noise serves as a baseline for normal operating 
conditions and aids in detecting changes or anomalies in noise 
levels, while acoustic transients are crucial for identifying 
specific events that could damage the pipeline. Monitoring both 
ambient noise and acoustic transients is essential for thorough 
pipeline SHM. Several researchers have developed various non-
intrusive technologies that utilize ambient noise and acoustic 
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transients to enable cost-effective and large-scale pipeline 
inspection and condition assessment. In this context, three 
experimental case studies were conducted on plastic pipes to 
demonstrate the monitoring of multiple anomalies, material 
loss, and leaks, particularly regarding transient hydraulic 
pressures caused by water hammer [56]. Furthermore, a novel 
technique utilizing acoustic emission signals for crack 
identification and localization in high-pressure fluid transport 
pipelines was presented [76]. Recognizing that transient wave-
based methodologies are promising for estimating pipeline 
failures, Ahadi et al. [102] discussed how acoustic emission 
(AE) methodologies are used for identifying and localizing leaks 
in gas or liquid pipelines. They examined the challenges 
associated with interpreting and classifying AE signals, 
emphasized the effectiveness of correlation-based methods for 
identifying leakage signals, and highlighted the benefits of the 
Wavelet Transform (WT) for time-frequency analysis of AE 
signals while addressing the drawbacks of the Short Time 
Fourier Transform (STFT) in AE analysis. Jing et al. [103] 
suggested using a rough inverse scattering method to 
reconstruct variations in cross-sectional area along water 
pipelines, enabling the deduction of the size and location of 
blockages. Zeng et al. [104] presented a pipeline condition 
assessment technique utilizing the concept of "Inverse Wave 
Reflectometry". The technique is based on hydraulic transients 
and discussed the challenges associated with evaluating aging 
and deteriorating underground pipelines in water distribution 
systems. This method analyzes pressure wave reflections 
within the pipeline to detect the position of the anomalies and 
how severe they are. The authors noted several advantages of 
this approach, including its non-destructive nature, capability 
to assess multiple pipelines at once, and potential for real-time 
monitoring. Wang [105] tackled the problem of leaks in water 
supply systems and proposed an active transient wave-based 
methodology to estimate leaks in pipe networks, highlighting 
the significance of measurement quality and quantity for 
accurate leak detection, particularly in real-world settings 
where noise frequently affects signals. Inspired by passive 
imaging techniques from oceanography and geology, which use 
ambient turbulence noise and correlation-based functions to 
estimate parameters, Wang et al. [106] explored the utilization 
of passive acoustic noise for identifying pipeline degradation 
and faults within water supply sensor systems. They 
emphasized the need for high-powered acoustic sources and 
the possible stresses on the water system caused by active 
detection methods, in contrast to passive techniques that take 
advantage of existing noise. Their suggested technique 
estimates average wave speed, reflections, and the scattering 
characteristics of anomalies by extracting the impulse response 
(IR) or time-domain Green's functions between sensors. This 
passive method, utilizing correlation functions of flow-induced 
turbulence noise, provides a non-destructive and long-range 
solution for asset management, capable of detecting leaks, 
blockages, air pockets, and deterioration, with measurement 
accuracy and detection performance comparable to 
conventional active methods [107]. Addressing the challenges 
of water loss in supply networks and the need for non-intrusive 
technologies for pipe inspection and condition assessment, the  
last reference suggested a compressive sensing-based 
technique that uses ambient noise signals to identify pipe faults 
in water pipelines. This technique seeks to decrease correlation 
sidelobes and increase the noise bandwidth, which can cause 
ambiguities and false alarms in fault detection [108].  

3.5 Stresses and strains 

The generated stresses and strains are also crucial factors in the 
SHM of pipelines, enabling timely maintenance and repair. 
Stresses in pipelines are caused by various factors, including 
changes in pressure and temperature, and external loads. 
Strains, on the other hand, refer to the deformation of the 
pipeline due to the applied stresses. The measurement and 
monitoring of these stresses and strains can assist engineers in 
pinpointing problematic areas and take the necessary action to 
avoid catastrophic failures. The use of advanced sensors has 
made it possible to accurately design monitoring systems 
capable of capturing real-time data on the current behaviour of 
pipelines, analysing these data, and predicting future 
behaviour. One such study by Amirat et al. [22] focused on the 
Lifecycle oversight of underground pipelines for the safe 
conveyance and delivery of hydrocarbons. They highlighted the 
significance of reliability analysis as a strategic approach for 
risk-informed design and upkeep of pipelines. Additionally, 
they experimentally characterized the spread of residual 
stresses in pipes of large diameter, and integrated this with a 
corrosion model to evaluate the effects of aging throughout the 
pipeline's lifespan. Inaudi et al. [109] discussed the unique 
features of a monitoring technology that was rarely found in 
conventional techniques. The discussed technique allowed for 
the measurement of strain to detect pipeline leakages and 
prevent pipeline failure in landslide areas. Li et al. [110] 
reviewed cutting-edge strain sensors that are expected to play 
a significant role in the creation of intelligent tools and next-
generation smart components. In terms of technology 
readiness levels (TRLs), they focused on industrial strain 
sensing technologies that have advanced to a mature stage. The 
creation of damage indices to identify and pinpoint damage in 
a structure under simulated environmental conditions was 
another topic covered by the writers. Liu et al. [111] provided 
insights into real-time, early-warning monitoring of landslides 
and slope stability, along with the development of strain 
sensing and visualization modules for SHM. Li et al. [112] 
suggested a multi-sensor surveillance system for buried 
metallic pipeline performance assessment and SHM under 
sophisticated stress conditions. They addressed the challenge 
of measuring and identifying substantial axial bending stresses 
that arise from surface loads, uneven pipe trenches, and ground 
subsidence during construction. The authors also presented a 
field application that demonstrated the effectiveness of their 
proposed monitoring scheme, supporting the rationale behind 
their proposal. Recently, Cheng et al. [59] employed a long 
short-term memory (LSTM) neural network in conjunction 
with distributed fiber optic strain sensing to translate the 
measured strain in optical fibers into deflection of pipelines. 
Their intelligent transformation model proved effective and 
accurate in translating strain to deflection, making it applicable 
in practical engineering scenarios. In the context of pipeline 
fault detection, it was observed that strain drops, measured by 
sensors near the pipe extremities, provided the most 
informative data for analyzing strain measurements and 
determining pipe flow properties and leakage. These strain 
drops remained stable regardless of other flow and leakage 
conditions [113]. He et al. [114] introduced a novel stress wave 
communication networking method for SHM of pipelines, 
utilizing sensor networks. This technique creates multiple-
access stress wave channels for data transmission between 
multiple sensors using piezoelectric transducers and 
orthogonal variable spreading factor (OVSF) codes. The 
feasibility of this method was experimentally validated, 
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showcasing the benefits of stress wave communication, 
including the removal of the need for additional cables or 
communication devices.  

4 Instrumentation and measurement 
Measurement and sensing methods are crucial for SHM of 
pipelines as they deliver instantenous information on their 
structural integrity. By employing accurate and reliable 
measurement and sensing techniques, SHM can effectively 
identify damage at an early stage, facilitating timely repairs or 
maintenance, which helps prevent catastrophic failures and 
enhances safety. Numerous studies have focused on either 
developing new SHM measurement and sensing techniques or 
assessing the effectiveness of existing and emerging methods. 
Warsi et al. [115] reviewed electronic techniques used for SHM 
in civil and mechanical systems, highlighting the significance of 
instantenous surveillance to avert structural damages and 
economic setbacks. A recent study presented a technique that 
uses the Euclidean distance method to determine the best 
location of sensors in a pipeline network for damage detection. 
In order to categorize damage locations and facilitate quick 
detection using a small number of sensors, this methodology 
was combined with a support vector machine (SVM) [116].  

4.1 Optical fiber sensors  

Before discovering the optical fiber sensors (OFS) in the the 
middle of the 1970s, electrical-based measurement were the 
predominant technology in the market. However, due to the 
susceptibility of electrical sensors to electromagnetic 
interference and their need for frequent calibration, 
researchers began investigating alternative sensing methods 
beyond electronics. This exploration ultimately brought OFS to 
the forefront, highlighting their potential in a diverse array of 
uses [117]. OFSs are measurement technologies that can 
identfy changes in physical features including temperature, 
pressure, strain, and others, by using optical fibres. These 
sensors are extensively utilized in various applications, 
including pipeline SHM. One specific type of OFSs is the Fiber 
Bragg Grating (FBG) measurement modality, which operates by 
employing regular changes in the core fiber’s refractive index 
to reflect particular wavelengths of light. FBG sensors are 
favored for their straightforward sensing principle, resistance 
to electromagnetic interference (EMI), compact size, and ability 
to measure strain [109]-[111], temperature [109], [118], force 
[118], [119], flow rate [120], pressure [121], torque and 
displacement [122], and vibration [123], and their capability of 
multiplexing [124]; FBG sensors have emerged as promising 
sensing elements and have demonstrated significant potential 
for monitoring the health of pipeline structures [125]. 
Numerous studies have been conducted over the last 20 years 
to investigate the use of OFS technology in the prognosis and 
diagnosis of pipeline failures. For pipeline deformation, section 
2.3, for instance, the technology or its derivatives have proven 
to be reliable and accurate solutions for monitoring such a 
damage, allowing engineers and operators to detect and track 
any changes in the shape or position of pipelines. This 
technology has been shown to be a non-invasive and 
economical way to keep an eye out for pipeline leaks, as 
discussed in Section 2.4. It enables immediate responses in the 
event of a leak, greatly lowering the possibility of 
environmental harm and improving pipeline operations safety. 
Additionally, the technology provides excellent accuracy and 
precision in identifying cracks by identifying even minor 
changes in strain or temperature, ensuring that no cracks are 
overlooked and preserving the pipeline safety and integrity. 

OFS technology is easily installable and can be incorporated 
into current pipeline infrastructures, making it an increasingly 
popular choice for monitoring across various industries. 
Moreover, several studies have been conducted to propose new 
monitoring techniques or to review and evaluate existing ones. 
Leng et al. [126] highlighted the significance and application of 
embedded OFSs like extrinsic Fabry-Perot interferometer 
(EFPI) and FBG sensing modalities, for real-time survweilance 
of the curing process and damage detection in high-
performance structures. Inaudi et al. [109] discussed the 
application of distributed OFSs for SHM of large structures 
including pipelines. The same authors [127] reviewed the OFS 
technologies and systems that have reached commercial 
exploitation and routine application in SHM and presented 
significant application examples of OFSs in the sector. 
Majumder et al. [128] conducted an in-depth analysis of 
research and development efforts in SHM utilizing FBG sensors, 
highlighting their advantages over electrical sensors, their 
suitability for comprehensive sensing systems, and their 
applications in structural sensing, while also identifying areas 
that require further investigation. Tan et al. [129] offered a non-
destructive technique to detect corrosion by using changes in 
the Bragg wavelength brought on by strains on the FBG due to 
mechanical elongation and variations in the pipeline coating 
materials. They explored and experimentally validated the 
relationship between wavelength shifts, corrosion rates, and 
induced strain. Feng et al. [130] explained the evolvement and 
implementation of multiple core optical fiber and spatial-
division-multiplexing sensors for monitoring the integrity of 
steel pipes. The authors demonstrated the feasibility of their 
approach through experiments on a scaled model of a steel 
pipe, utilizing spatial-division-multiplexing method compined 
with a 7-core fiber to monitor deformation and vibration 
responses, emphasizing the precision and dependability of 
their findings and showcasing the method's effectiveness in 
detecting the resultant structural strains as well as modal 
frequency. They also noted the promising applications of their 
proposed technique in the SHM of underground pipelines and 
other infrastructures. Wang et al. [131] proposed a high-
sensitivity interrogation system for FBG sensors using a 
composite cavity fiber laser, designed to measure wavelength 
changes in the FBG sensor by converting these changes into arm 
length variations and ultimately into shifts in the fiber laser 
beat frequency signal (BFS). This system is characterized by its 
simple structure, low cost, and high sensitivity. Li et al. [132] 
introduced a methodology employing OFS to create an 
intelligent system for underground pipelines, facilitating 
quantitative assessments, predictions, and automated safety 
evaluations, with its feasibility validated through experiments 
in a real pipe network. Wu et al. [133] proposed a non-intrusive 
structure utilizing FBG sensing for detecting pipeline pressure 
deterioration to ensure safety, featuring a ditrigonal strain 
beam that amplifies strain on the pipeline wall, benefiting from 
its simple design and ease of installation. Jiang et al. [134] 
recently addressed the challenges of traditional pipeline health 
assessment methods, such as complexity and cost, by 
integrating distributed OFS and proposing a framework that 
combines this technique with semi-supervised learning for 
pipeline health assessment. Additionally, Bertulessi et al. [135] 
briefly discussed the applications of distributed OFS in Pipeline 
Health Monitoring (PHM), mentioning technologies like 
distributed acoustic sensing (DAS) as well as stimulated 
brillouin scattering (SBS) in pipeline systems.  
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4.2 Piezoelectric sensors  

Piezoelectric sensors are essential in SHM applications, 
particularly for assessing a structure's performance and 
integrity. Recently, their application in pipeline SHM has 
attracted considerable interest from researchers. Leveraging 
the unique properties of piezoelectric sensors, researchers 
have been able to create effective monitoring systems that 
identify and diagnose structural problems early, facilitating 
proactive maintenance and reducing the likelihood of costly 
pipeline incidents or environmental hazards. In the early 
2000s, the feasibility of distributed health monitoring for 
identifying and locating structural damage was demonstrated 
using wired piezoelectric accelerometer arrays in conjunction 
with black box technology [136]. Numerous studies and 
research articles have underscored the effectiveness of 
piezoelectric sensors in SHM applications [137]-[139]. These 
references offer in-depth insights into various facets of 
piezoelectric sensor use in SHM, including their design, how 
they are installed, how they process signals, and pertinent case 
studies. They explain how the piezoelectric effect is used to 
convert mechanical phenomina such as stresses or vibrations 
into useful electrical signals, carrying beneficial information for 
SHM purposes. The cited bibliographies also emphasize how 
high sensitive the piezoelectric sensing modalities are, enabling 
them to identify minor variations in structural resposes. 
Furthermore, the cited references highlighted the capability of 
the piezoelectric sensors to effectively record dynamic 
responses, enabling the early detection of structural failures. 
This promotes proactive maintenance and helps prevent 
catastrophic consequences. In section 2.1, novel method for 
monitoring pipeline corrosion ware presented, which 
employed piezoelectric sensors affixed to the pipeline's outer 
surface as both actuators to produce ultrasonic signals and 
sensing elements to detect the produced signals as they travel 
across the pipeline wall. Piezoelectric sensors are frequently 
utilized in electromagnetic interference (EMI)-based 
techniques to detect and monitor pipeline deterioration. In this 
application, sensors attached to the pipe's surface measure 
changes in their electrical impedance over time, demonstrating 
a high level of accuracy and sensitivity in detecting corrosion. 
Section 2.4 discussed approaches for identifying pipeline leaks 
using piezoelectric sensors, emphasizing their ability to 
accurately detect and locate leaks. Additionally, these sensors 
have been employed to monitor pipeline structural behaviors, 
including vibration and strain. Cheraghi et al. [140] and Fu et al. 
[141] introduced SHM techniques that focus on the surveillance 
of the vibration signals of pipes utilizing piezoelectric 
measurements, achieving improved damage location and 
localization accuracy compared to conventional methods. In the 
pipeline monitoring system, a particular kind of piezoelectric 
material called lead zirconate titanate (PZT) was used as a 
transmitter and sensor to create and identify stress waves, 
owing to its strong piezoelectric properties, rapid response, 
and broad bandwidth, making it ideal for stress wave-based 
SHM systems [114]. To address the limitations of existing SHM 
measurement technologies, such as the reliance on adhesives 
or couplants for sensor mounting - which can compromise 
consistency and reproducibility - discrete piezoelectric 
ultrasonic transducers are employed. These transducers 
facilitate adhesive-free and rapid prototyping, enhancing 
measurement accuracy [142]. While fiber Bragg gratings 
(FBGs) have drawbacks in frequency bandwidth, thermal 
sensitivity, and cost, piezoelectric sensors are lightweight, offer 
high-frequency bandwidth, and have been extensively utilized 

in SHM through EMI-based techniques [143]. Leveraging their 
accuracy, high sensitivity, and immediate surveillance 
capabilities, A smart corrosion sensing node and cloud-based 
wireless impedance monitoring systems that use piezoelectric 
technology are examples of recent developments for online 
quantitative monitoring of pipe corrosion [144]. Overall, the 
application of piezoelectric sensors in pipeline SHM has yielded 
promising outcomes. As researchers continue to investigate 
new applications and methodologies, these sensors are 
expected to become increasingly valuable, advancing the field 
of structural engineering by providing reliable data for 
maintenance, safety assessments, and decision-making 
processes.  

4.3 Micro-electro-mechanical sensors  

Micro-electro-mechanical sensors (MEMS), including 
accelerometers, are widely utilized in various fields, notably in 
pipeline SHM. These sensing modalities are embedded devices, 
usually sub-micrometer to millimeter in size, that combine 
mechanical and electrical components [145]. MEMS 
accelerometers are specifically engineered to measure 
acceleration and find applications across many industries, 
including pipeline SHM [146]. In this context, they can monitor 
the structural integrity of pipelines by detecting vibrations, 
changes in acceleration, and other mechanical parameters that 
may signal potential issues or damage. Continuous monitoring 
of these parameters enables pipeline operators to identify and 
resolve problems such as leaks, corrosion, stress 
concentrations, deformations, displacements, or other 
anomalies before they worsen, thereby guaranteeing the safety 
and dependability of the pipeline systems [147]. MEMS 
accelerometers are essential for real-time vibrational analysis 
in SHM. A complementary metal-oxide-semiconductor (CMOS) 
MEMS procedure can be used to fabricate them, resulting in 
compact, high-performance, and cost-effective accelerometers 
[115]. These miniaturized sensors employ real-time 
monitoring to detect changes in acceleration within structures. 
By incorporating MEMS accelerometers into SHM systems, non-
invasive and retrofittable monitoring solutions become 
feasible. It is significant to remember that research and 
development in the use of MEMS accelerometers for SHM is 
ongoing, with efforts focused on enhancing their sensitivity, 
accuracy, and reliability for improved pipeline monitoring. 
Sabato et al. [148] explored the application of MEMS 
accelerometers in SHM, particularly their integration within 
Wireless Sensor Networks (WSN) for wireless data 
transmission. They underlined the need for sensors that can 
pick up low-amplitude and low-frequency vibrations, which 
traditional low-cost sensor boards might not be able to do. The 
authors also discussed the ShakeNet system, a vibration 
sensing system developed to address existing systems' 
limitations in capturing low-frequency vibrations. While 
pointing out the dearth of research on the real-world use and 
comparison of commercially available low-cost accelerometers 
under SHM conditions, Ribeiro et al. [149] carried out an 
experimental performance evaluation of inexpensive MEMS 
accelerometers for determining the natural frequencies and 
damping ratios of civil structures as well as evaluating their 
noise characteristics. Recently, Manikandan et al. [150] 
evaluated and evaluated the effectiveness and suitability of 
accelerometers based on MEMS for measuring vibration, 
providing guidance on selecting the appropriate MEMS 
accelerometer based on specific needs.  
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4.4 Attenuated total reflectance spectroscopy 

In pipeline SHM, attenuated total reflectance (ATR) 
spectroscopy is a commonly used measurement method for 
examining the characteristics and makeup of pipeline 
materials. This method is a useful tool for assessing pipeline 
conditions because it enables direct sample measurement 
without the need for significant preparation. A sample is 
brought into contact with a high-refractive-index crystal, like 
zinc selenide or diamond, in order to perform ATR 
spectroscopy. There are several internal reflections in the 
crystal as a result of the angled infrared light being directed 
onto its surface. An evanescent wave created by these 
reflections enters the sample and makes it easier to analyze its 
molecular makeup and structure [151]. ATR spectroscopy is 
capable of detecting and characterizing various substances that 
may be found in pipelines, including corrosion products, 
contaminants, and degradation by-products. By examining the 
spectral data obtained from ATR measurements, it becomes 
possible to identify and monitor alterations in the chemical 
composition and condition of pipeline materials, aiding in the 
assessment of their integrity and the prediction of potential 
failures [152]-[154]. While ATR spectroscopy is a powerful 
analytical tool for pipeline materials, it is frequently employed 
alongside other measurement and sensing methods in pipeline 
SHM to offer a more thorough assessment of the structural 
integrity of pipelines. 

4.5 Magnetic flux leakage 

Another widely employed technique in pipeline SHM is thw 
magnetic flux leakage (MFL). This technique is for identifying 
failures and evaluating the pipeline integrity. This non-
destructive testing (NDT) technique utilizes sensing elements 
that are sensitive to magnetism to identify the magnetic leakage 
field generated by flaws on the pipeline's inner and outer 
surfaces [155]. In MFL technology, a magnetizing device 
generates a magnetic field within the pipeline. As the 
magnetized pipeline moves through the sensor array, any 
structural defects or irregularities in the pipeline cause the 
magnetic field to be disrupted, which allows magnetic flux to 
leak out. The sensors then capture this leakage, providing data 
that can be analyzed to identify and characterize the defects 
[156]. The MFL technique is particularly advantageous for 
inspecting operational pipelines, as it does not necessitate 
taking the pipeline out of service for assessment. As a result, it 
is an economical and effective method of pipeline integrity 
monitoring [157]. Furthermore, this valuable technique can be 
integrated with other sensing methods, such as ultrasonic 
testing or visual inspection, to obtain a more thorough 
comprehension of the pipeline's state [155]. 

4.6 Radio-technical methods 

Another method that is frequently used to evaluate the integrity 
of pipelines is radiography. It employs X- or gamma rays to 
generate images of the pipeline's internal structure, enabling 
the detection of defects and anomalies. In this method, a source 
of radiation is placed over one of the pipeline sides, while a 
radiographic receiver is positined on the opposite side. The 
source emits X-  or gamma rays that travel through the pipeline 
material, and the receiver captures the radiation that passes 
through, converting it into an image. This image can reveal 
issues such as corrosion, cracks, wall thinning, or other defects 
within the pipeline [158]. Radiography offers several benefits 
in pipeline structural health monitoring (SHM). It produces 
detailed, high-resolution images of the internal condition, 
facilitating accurate identification and characterization of 

defects. This technique is applicable to both onshore and 
offshore pipelines and is effective for a variety of pipeline 
materials [158]. However, there are limitations to consider. 
Radiography requires access to both sides of the pipeline, 
which can be problematic for buried or submerged pipelines. 
Additionally, radiographic inspections may necessitate 
temporarily taking the pipeline out of service, potentially 
disrupting operations [158]. To address these challenges, 
researchers investigate the likes of computed digital 
radiography and tomography (CT) scanning as alternative 
methods. These methods provide enhanced imaging 
capabilities and can offer three-dimensional insights into the 
internal structure of the pipeline [159]. Radiography is an 
important technique in pipeline SHM as it enables non-
destructive evaluation of the internal conditions of pipelines. It 
produces detailed images that assist in detecting and 
characterizing defects, thereby helping to maintain the safety 
and integrity of pipeline infrastructure. Another emerging 
technology in pipeline SHM is Radio Frequency Identification 
(RFID). RFID-based sensing systems provide wireless and 
remote monitoring capabilities, enabling the acquisition and 
analysis of data in real time [160]. RFID sensors can monitor 
various parameters relevant to pipeline SHM, such as strain, 
temperature, pressure, and corrosion. These sensors are 
typically passive, meaning they do not require an external 
power source and can be powered by the energy emitted from 
an RFID reader or scanner. They can be affixed to the pipeline 
surface or embedded within it, enabling continuous health 
monitoring of the pipeline [161]. One significant advantage of 
RFID devices in pipeline SHM is their wireless and remote 
monitoring capabilities, which eliminate the need for physical 
connections or wired systems, simplifying deployment and 
maintenance. Moreover, RFID sensors can be integrated with 
other sensing technologies, such as fiber optic sensors or 
acoustic emission sensors, to create a comprehensive 
monitoring solution [162]. However, it's essential to recognize 
that the use of RFID devices in pipeline SHM is still in its infancy, 
and more studies and advancements are required to improve 
their dependability and performance. Challenges such as signal 
interference, communication range limitations, and sensor 
durability must be addressed for successful implementation in 
pipeline monitoring applications [163]. In summary, RFID 
devices show promise as a wireless and remote monitoring 
solution in pipeline SHM, offering the potential for 
Instantaneous data acquisition and assessment that facilitates 
proactive maintenance and early detection of potential pipeline 
issues. However, more study and advancement are needed to 
get past technical obstacles and guarantee their efficient 
application in pipeline SHM.  

4.7 Pigging and visual inspections 

Pigging and visual inspections are two significant methods 
employed in pipeline SHM. Pigging involves the use of devices 
known as "pigs" to inspect and clean pipelines. These 
cylindrical devices are placed inside the pipeline and driven by 
the flow of the material being transported. Pigs can be equipped 
with various sensors and tools to gather information on the 
structural health of pipelines, such as detecting defects, 
determining the pipeline wall's thickness and locating any 
areas that are eroding or corroding. This method enables in-line 
inspection of pipelines without the need for excavation or 
shutting down the system [164]-[168]. In contrast, visual 
inspections entail a physical examination of the pipeline's 
external surface to spot any visible defects or anomalies. This 
can be conducted through direct observation or with the aid of 
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remote inspection tools like cameras or drones. Visual 
inspections are particularly effective for identifying external 
corrosion, coating damage, leaks, and other visible signs of 
deterioration. They provide critical information about the 
pipeline's condition and can help determine if further 
inspection or maintenance is necessary [169], [170]. Both 
pigging and visual inspections are essential for pipeline SHM. 
Pigging offers a thorough evaluation of the pipeline's internal 
condition, while visual inspections deliver important insights 
into external surface conditions. These methods can be used in 
conjunction with other strategies like radiography, magnetic 
flux leakage, or ultrasonic testing, to achieve a more 
comprehensive understanding of the pipeline's structural 
health [171]. It is crucial to remember that variables like 
pipeline age, location, operating conditions, and regulatory 
requirements affect the frequency and extent of pigging and 
visual inspections. Pipeline operators typically create 
inspection plans that specify the intervals and methods for 
inspections, guided by these factors and industry best practices 
[172], [173]. 

4.8 Ultrasound techniques 

Ultrasound methods are crucial in pipeline SHM as they provide 
a non-destructive testing approach for assessing pipeline 
integrity. One notable technique is ultrasonic guided wave 
testing, which has gained popularity for pipeline defect 
screening [174]-[176]. This method employs guided ultrasonic 
waves to detect defects without requiring direct contact with 
the pipeline surface [177]-[179]. Experimental evaluations 
have shown that it is effective in identifying cracks, corrosion, 
and various other types of damage in pipelines [142], [180], 
[181]. Ultrasonic guided wave technology and its uses in 
identifying pipeline flaws have been thoroughly described in 
the literature [182]. Ultrasonic testing provides in-depth 
information about the defect size, position, and severity, 
facilitating targeted maintenance and repair efforts [182]. The 
idea behind this method is to send ultrasonic signals into the 
pipeline material and then look at the reflected signals to find 
any irregularities or flaws. To enhance defect identification and 
classification, the data gathered from ultrasonic inspections can 
be processed and examined using a variety of signal processing 
methods and machine learning algorithms [183]. It's crucial to 
remember that also ultrasound techniques are commonly 
combined with other methods of inspection, such as 
radiography or magnetic flux leakage, to provide a 
comprehensive evaluation of pipeline integrity. Each method 
has unique benefits and drawbacks, and the choice of technique 
depends on factors like pipeline characteristics, accessibility, 
and the specific types of defects being examined [183]. While 
the guided wave technique is effective for monitoring the health 
of tubular structures, interpreting elastic wave signals for 
damage detection can be challenging due to factors such as 
mode conversion, mode mixing, refraction, dispersion, and 
attenuation [184].  

4.9 Electrochemical techniques 

In pipeline SHM, electrochemical sensing methods such as 
electrochemical impedance spectroscopy (EIS) and 
electrochemical corrosion potential (ECP) monitoring have 
attracted a lot of interest because of their effectiveness in 
detecting and monitoring corrosion-related problems [185]. 
These electrochemical sensors utilize the principles of 
electrochemistry to assess and analyze corrosion processes 
within pipelines. EIS evaluates the impedance of the pipeline's 
protective coating, enabling the detection of coating 

degradation or corrosion. This method provides an 
understanding of the electrochemical response of pipelines, 
enabling the early identification of possible issues. Meanwhile, 
ECP monitoring assesses the corrosion potential of the pipeline, 
which can indicate the likelihood of corrosion occurring. By 
monitoring changes in the ECP over time, it is possible to 
identify areas of the pipeline that are at risk of corrosion. These 
electrochemical sensing techniques offer the advantage of 
being non-destructive and can provide real-time monitoring of 
pipeline conditions. They can help in detecting corrosion, 
coating degradation, and other potential issues, allowing for 
timely maintenance and preventing pipeline failures [186]. 

4.10  Eddy current techniques 

One popular non-destructive testing (NDT) method for pipeline 
SHM is eddy current testing [187]. This technique produces 
eddy currents in the pipeline material through the use of a coil-
generated magnetic field. Consequently, an opposing magnetic 
field is produced by these eddy currents, and the interaction 
between these fields is employed to identify anomalies and 
defects in the pipeline material [173]. Eddy current testing is 
particularly effective for accurately detecting damage in both 
ferrous and non-ferrous materials, making it ideal for pipeline 
inspection and monitoring. This technique is essential for 
identifying damage before a pipeline develops a pathway that 
could lead to leakage, thus boosting the comprehensive 
integrity and protection of pipelines. Existing in-line inspection 
(ILI) techniques, like electromagnetic acoustic transducer 
methods, magnetic flux leakage, and ultrasonic testing, have 
drawbacks in terms of detection sensitivity and inspection 
time. A unique pulsed eddy current (PEC) sensing technique 
has been put forth to identify and distinguish between inner 
and outer diameter flaws in steel pipes in order to overcome 
these difficulties. This method makes use of the induced eddy 
current distribution patterns at the inner diameter surface, 
which are influenced by permeability and conductivity. High 
inspection speed, a large detection depth, remarkable 
sensitivity, good linearity, low power consumption, simple 
implementation, and crack identification capabilities have all 
been demonstrated [188].  

5 Data analysis and monitoring methods 

In the realm of pipeline SHM, data analysis is crucial for 
deriving meaningful insights from the extensive amount of 
collected data. Important elements of SHM systems include 
sensor accuracy, data volume, and data analysis algorithm 
performance [189]. It can be especially difficult to analyse high-
dimensional data, which has many variables. Data mining (DM) 
methods can be applied in these circumstances to uncover 
patterns and hidden relationships in the data [190]. Using a 
combination of statistical, mathematical, artificial intelligence 
(AI), and machine learning (ML) approaches, DM entails 
extracting useful knowledge, insights, and information from 
massive datasets [190]. For monitored pipelines to remain 
reliable and intact, diagnostic and prognostic techniques are 
essential. There are many uses for the benefits of monitoring, 
recognizing, and quantifying features of interest from 
structural responses that can reduce expenses, improve safety, 
and save time [191]. In this context, AI and ML techniques are 
increasingly employed in pipeline SHM to improve monitoring 
system capabilities and offer intelligent solutions to the 
challenges faced in this field [192], [193].  Kudelina et al. [194] 
reviewed ML-based fault diagnostic techniques, while Huang 
[195] summarized the advancements of AI in mechanical fault 
diagnosis. ML algorithms for analysing structural integrity are 
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developed via supervised training approaches using a database 
of labelled attributes, whereas DL models have gained traction 
for their capability to analyse raw datasets and determine the 
damage state or remaining useful life (RUL) [196]. 
Conventional SHM methods that rely on site inspections are 
tedious, time-consuming, costly, and pose dangers to field 
experts. Integrating DL and smart devices in civil engineering 
applications has shown promise in mitigating these challenges 
[197]. ML and DL techniques have been extensively researched 
in SHM, with algorithms being trained on diverse datasets to 
enhance their accuracy [198]. Artificial neural networks 
(ANNs) improve predictions of pipeline performance by 
establishing relationships between various input parameters 
and the target parameter. The use of ANNs allows for the 
consideration of complex interactions between uncertain 
variables such as operating conditions and pipeline properties 
[199]. Noroznia et al. [200] proposed a novel pipeline age 
evaluation model using an ANN based on measured data. 
Various types of artificial neural network (ANN) technologies 
and their applications in mechanical engineering, including 
mechanical fault diagnosis, structural analysis, geometric 
modelling, and design optimization, have been explored [201], 
[202]. Convolutional neural network (CNN)-based methods 
have also been studied for SHM. Specifically, guided wave NDT 
using ultrasonic sensors has been employed to identify and 
track pipeline irregularities in crucial regions that are prone to 
flaws. CNN models have been developed to differentiate among 
a total of six different types of pipeline signals, with the goal of 
enhancing event recognition in pipeline monitoring [203]. 
Recently, a CNN-based corrosion monitoring technique 
demonstrated an impressive classification accuracy of over 
99.01%. This indicates the capability of the technique to 
quantitatively evaluate the pipeline corrosion condition and 
accurately detect the severity of internal corrosion, highlighting 
its potential applicability to various pipeline types with 
differing levels of corrosion [36]. Another novel diagnosis 
strategy utilizes a one-dimensional CNN to extract spatial 
information and a Bidirectional Gated Recurrent Unit (Bi-GRU) 
for temporal information fusion, demonstrating robustness in 
fault identification accuracy, particularly for noise and variable 
pressure signals, with an accuracy of approximately 95.9% 
[204]. Support Vector Machine (SVM) algorithms have also 
been employed in pipeline SHM. Driven by a network of FBG 
sensors and aided by SVM algorithms, the structural condition 
of a pipeline was predicted by evaluating the measurements 
sensitivity of pipeline pressure, flow variations, and leakage 
detection and localization, where great accuracies achieved by 
the SVM classifiers [113]. A Recurrent Neural Network (RNN)-
based model was found effective and accurate to predict a 
pipeline's life condition, contributing to better decision-making 
for maintenance and safety [205]. Unsupervised learning 
techniques, including autoencoders, have been investigated in 
the context of pipeline SHM. Autoencoders, a form of ANNs, are 
frequently utilized for unsupervised learning applications like 
reduction of dataset dimensionality, extraction of most reliable 
features, and compression of data [206]-[211]. Variational 
autoencoders (VAEs) serve as a powerful method for 
probabilistically representing high-dimensional datasets, as 
they can extract latent parameters from the data's probabilistic 
distribution and create a compact representation that 
facilitates the reconstruction of unseen data [212], [213]. 
Unsupervised data clustering techniques, including K-means 
and principal component clustering analysis (PCCA), have 
garnered attention in pipeline SHM. By utilizing the clustering 
capabilities of these algorithms, pipelines can enhance data 

analysis, recognize damage patterns, detect outliers, optimize 
sensor placement, and extract features, thereby improving the 
overall effectiveness of structural health monitoring and 
assessment [214]. Additionally, analysing pipeline incident 
datasets indicates the potential for developing a causal model 
that could identify key factors and predict future failures in 
pipeline systems [215]. Fuzzy logic has also been explored in 
the context of pipeline SHM, as it can better handle the inherent 
uncertainties and ambiguities present in structural data, 
resulting in decision-making procedures that are stronger and 
more trustworthy for monitoring, maintenance, and asset 
management [216]-[218]. The progress in SHM systems is 
influenced by various elements, such as the creation of novel 
materials and intricate constructions, and the necessity to 
enhance safety protocols. A key focus in SHM is the 
advancement of innovative measurement methodologies, 
which enhance the recorded signals' quality and facilitate the 
investigation of material properties via novel approaches [219]. 
To minimize the reliance on skilled technicians for conducting 
in-situ NDT on high-pressure pipes transporting hazardous 
substances, a pole-climbing robot (PCR) designed for 
inspecting industrial-sized pipelines has been developed [220]. 
Diverse robotic systems, including mobile and climbing robots 
as well as aerial drones, can be employed for pipeline SHM 
[221]. Multiple mode robotic platforms, including aerial and 
roosting drones, hybrid ground-water robots, hybrid sky-water 
robots, and hybrid sky-ground robots, hold significant 
capability for executing various inspection duties when 
integrated with NDE approaches. Additionally, soft robotics 
utilizing smart materials are being created for inspection tasks 
in confined spaces due to their lightweight nature, high 
adaptability, and reduced reliance on electric motors compared 
to traditional rigid robotics [221]. Advanced SHM technologies, 
such as Optical Fiber Sensors (OFS) for detecting corrosion and 
distributed OFS for physical and chemical sensing, have been 
developed but remain in the early stages of implementation. 
There are still challenges in applying SHM techniques that rely 
on acoustic methods and unmanned aerial vehicles (UAVs), 
particularly due to the difficulty of monitoring deformations 
from both sides using a single technique. This highlights the 
necessity for the development of newer technologies to 
accurately identify errors and damages in the pipeline industry 
[222]. Emphasizing the importance of integrating multiple 
sensors to enhance monitoring accuracy, Sharma et al. [223] 
explored the possibilities of multi-sensor frameworks and 
sensor data fusion for predictive maintenance, pointing out 
how important advances in electrical and computer 
engineering, electronics, sensor technology, and information 
science have been to the development of new pipeline SHM 
technologies. The concept of the Internet of Things (IoT) has 
transformed lifestyles by enabling greater efficiency, 
convenience, and automation across various industries, 
including pipeline monitoring techniques that leverage IoT 
capabilities [224]. Energy harvesting methods are crucial for 
pipelines ongoing surveillance using Wireless Sensor Networks 
(WSNs), with various approaches and sensors proposed in the 
literature for detecting leaks and corrosion. These techniques 
for WSN-based Pipeline Monitoring Systems (PMS) can be 
categorised as invasive energy harvesting techniques (IEHTs) 
and non-invasive energy harvesting techniques (NEHTs). The 
former category necessitates modifications to the pipeline 
structure, while the latter one does not require significant 
alterations. In this context, Virk et al. [225] offered an extensive 
review on WSN-based energy harvesting technologies for 
pipeline SHM systems in the water, oil, and gas sectors.  
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6 Results and discussion 
This comprehensive review examined a substantial number of 
publications related to pipeline SHM. It focused on the 
evolution of pipeline SHM, investigating the various types of 
pipeline failures highlighted in the literature, as well as the 
sensor technologies and the latest approaches for fault 
prognostics and diagnosis. The selected papers represented 
contributions from numerous authors across different 
countries, primarily over the past 20 years, starting from the 
year 2000. Through this cutting-edge evaluation and the 
synthesized insights from the analyzed research papers, a 
considerable amount of information regarding the context of 
pipeline SHM has been systematically extracted and 
categorized. This provides a solid foundation for future 
innovations and developments in this field. Fig. 6 depicts the 
percentage of publications related to pipeline SHM per year, 
illustrating an increasing trend of publications in a yearly basis. 
This increasing trend indicates a positive growth in research 
activities and publications centered on pipeline SHM. It reflects 
a sustained effort to enhance knowledge, technologies, and 
practices aimed at ensuring the integrity and reliability of 
pipelines, highlighting the significance and complexity of 
pipeline SHM as a field of active exploration. 

 
Figure 6. Trend of publication in pipeline SHM 

The literature review, as depicted in Fig. 7, revealed that 
corrosion and erosion combined represented the highest 
percentage of discussed failures at 44%. This indicates that 
issues related to corrosion and erosion were the most prevalent 
among the identified failure modes in the reviewed 
publications. Following that, cracks and leakages accounted for 
26% of the discussion, highlighting their significant presence in 
the literature. Pipeline deformation was also a notable concern, 
representing 18% of the discussions. Scale formation, although 
with a lower percentage of 12%, was still a recognized issue in 
pipeline SHM discussions. However, scaling is indeed an 
important issue encountered in oil and gas pipelines that 
deserves more consideration, and the fact that was not as 
prominently featured in the literature review findings 
suggested that it might not be receiving the same level of focus 
or research attention as the other major failure modes like 
corrosion, cracking, and leakage because scaling issues may be 
more localized or system-specific, whereas the other failures 
tend to be more universal pipeline problems. However, it 
should not be overlooked, as it can still have a considerable 
effect on pipeline performance and dependability, particularly 
in the oil and gas sector. Additionally, it is essential to recognize 
that there are other potential failure modes and causes that can 
impact the pipeline’s integrity and performance. Joint failure, 
for instance, such as bolt looseness in flanged connections, is an 
important consideration that should be addressed in pipeline 
SHM. Flanges and bolted joints are critical points of potential 

failure that need to be monitored for any loosening or 
degradation that could lead to leaks or other issues. 
Incorporating monitoring of these components into the overall 
pipeline SHM strategy is a valuable recommendation.  
The presented review also revealed that a variety of driving 
signals has been monitored in pipeline SHM as discussed across 
the viewed publications. Datasets of time series, vibration, 
temperature, ambient noise, acoustic transients, stresses and 
strains, pressure, corrosion rate, flow rate, chemical 
composition, as well as electromagnetic field, all have been 
incorporated into pipeline SHM strategies, facilitating the early 
identification of problems and proactive upkeep to guarantee 
the long-term dependability and safety of the infrastructure.. 
However, the choice of best monitoring signals is influenced by 
various factors, including pipeline material and design, pipeline 
environment, failure modes, operational requirements, 
monitoring technology availability, and data integration and 
analysis. Considering these selection factors and conducting a 
thorough assessment of the pipeline system, knowledgeable 
choices regarding the selection of monitoring signals in pipeline 
structural health monitoring can be made to efficiently oversee 
and preserve the structural integrity and operational reliability 
of the infrastructure. 
 

 
Figure 7. Percentages of most pipeline failures discussed 

The state-of-the-art review also displayed different 
instrumentation and measurement technologies discussed in 
the literature. The methods include radiographic techniques, 
pigging and visual inspection, Eddy current techniques, 
electrochemical techniques, ultrasound techniques, magnetic 
flux leakage, attenuated total reflectance (ATR) spectroscopic 
techniques, micro-electro-mechanical sensors (MEMS), 
piezoelectric sensors, and optical fibre sensors. Optical fibre 
sensors have the highest discussion percentage at 27.5%, while 
electrochemical techniques have the lowest at 2.5%. Fig. 8 
depicts these methods along with their corresponding 
discussion percentages in reviewed papers. Generally, the 
percentages indicating the discussion of various 
instrumentation and measurement technologies in the context 
of pipeline SHM are significant. They offer insights into the 
degree of emphasis and consideration afforded to each 
technology in the examined papers concerning the state of the 
art. The current review indicates that higher percentages imply 
that specific technologies, like OFSs, ultrasound methods, and 
piezoelectric sensors, have garnered more attention and 
discourse in the realm of pipeline SHM. This may suggest that 
these technologies are viewed as significant, effective, or 
promising for assessing the structural health of pipelines. On 
the other hand, lower percentages, like those for 
electrochemical techniques, may suggest that these methods 
are less commonly discussed or perceived as less significant in 
the considered topic. Overall, the percentages offer a glimpse 
into the current trends, preferences, and research emphasis on 
different instrumentation and measurement technologies for 



 

16 
 

pipeline SHM, helping researchers and practitioners 
understand which technologies are gaining traction and which 
may require further exploration or development. 
With the vast diversity of instrumentations and measurement 
technologies, the selection of the suitable technology for 
pipeline SHM is influenced by several factors, including the 
monitoring objectives, cost, accuracy and reliability, sensitivity 
and resolution, ease of installation and maintenance, 

compatibility with pipeline material, data management and 
analysis, environmental conditions, regulatory requirements, 
and scalability. Table 1 provides some advantages and 
limitations of various measurement and sensing technologies 
used in pipeline SHM, offering valuable insights for a thorough 
evaluation when selecting the most suitable technology for 
pipeline SHM that aligns with specific needs and requirements.  

 

 
Figure 8. Percentages of most sensing technologies discussed

Additionally, the reviewed papers discussed various AI and ML 
techniques utilized in pipeline SHM to enhance monitoring 
capabilities, provide intelligent solutions, and improve 
decision-making processes. The extensive review emphasized 
the contribution of AI and ML techniques, including Deep 
Learning (DL) models, in processing raw data and determining 
the damage state or remaining useful life (RUL) of pipelines. 
These models enhance accuracy, efficiency, and the processing 
of complex data sets, leading to informed decision-making in 
pipeline maintenance and safety. Techniques such as 
supervised learning artificial neural network (ANN) models, 
convolutional neural network (CNN) models, support vector 
machine (SVM) algorithms, recurrent neural network (RNN)-
based models, as well as unsupervised learning autoencoders, 
variational autoencoders (VAEs), clustering algorithms like K-
means, fuzzy logic, and principal component clustering analysis 
(PCCA) were prominently featured in the literature. The review 
highlighted the importance of applying multi-sensor condition 
monitoring in pipeline SHM, paving the way for the utilization 
of more ML techniques, including ensemble learning that 
leverages the robustness of model boosting, bagging, majority 
voting, and stacking techniques to improve the precision and 
dependability of pipeline srveillance methods. By combining 
multiple sensors and leveraging ensemble learning methods, 
researchers can improve the detection of anomalies, predict 
failures, and optimize maintenance strategies in pipeline 
infrastructure. While the discussed AI and ML methods offer 
significant benefits in pipeline SHM, it is essential to 
acknowledge that each method has its own set of pros and cons 
as outlined in Table 2. The selection of the most suitable 
method for a specific pipeline monitoring application should 
consider various factors, including monitoring objectives, data 
quality, operational requirements, and cost-effectiveness. The 

continuous innovation and exploration of more effective 
methods by combining different AI and ML models to leverage 
their positive capabilities highlight the dynamic nature of 
research in pipeline SHM. This integration of various 
techniques not only addresses the limitations of individual 
methods but also enhances the overall monitoring and 
assessment processes, leading to more efficient and reliable 

pipeline health monitoring systems. Furthermore, the current 
in-depth survey revealed that the introduction of promising 
technologies like energy harvesting, monitoring robots and 
drones, and the cocept of Internet of Things (IoT), is vital in the 
domain of pipeline SHM. These technologies offer innovative 
solutions to enhance the monitoring, inspection, and 
maintenance of pipelines, addressing challenges and improving 
the efficiency and effectiveness of SHM systems. Energy 
harvesting techniques enable continuous monitoring of 
pipelines using Wireless Sensor Networks (WSNs) without the 
need for external power sources, ensuring uninterrupted data 
collection and surveillance, reduce the need for frequent 
battery replacements or external power supply, leading to cost 
savings in the long run for pipeline monitoring systems, and 
promote sustainability by utilizing renewable energy sources 
to power monitoring devices, reducing the environmental 
impact of traditional power sources. Similarly, IoT technologies 
enable remote monitoring and real-time data transmission 
from sensors installed along pipelines, allowing for quick 
detection of anomalies and timely interventions, facilitate the 
integration of sensor data, enabling comprehensive analysis 
and visualization of pipeline health metrics for informed 
decision-making and predictive maintenance, and automate 
data collection, analysis, and reporting processes, improving 
operational efficiency and enabling proactive maintenance 
strategies. Robots and drones, on the other hand, offer 
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enhanced inspection capabilities for pipelines, including 
accessing hard-to-reach areas, performing non-destructive 
testing (NDT), and capturing high-resolution imagery for 
detailed analysis, reduces the need for manual intervention in 
hazardous environments, enhancing safety for technicians and 
mitigating risks associated with pipeline monitoring, and can 
adapt to various pipeline environments and conditions, 
providing flexibility in inspection tasks and expanding the 
coverage area for SHM. Overall, the combination of energy 
harvesting, IoT, robots, and drones enables comprehensive and 

multi-modal monitoring of pipelines, covering a wide range of 
parameters and ensuring thorough assessment of structural 
health, enhances the quality and precision of monitoring data 
through real-time data collection, integration, and analysis, 
which results in more accurate anomaly detection and 
predictive maintenance. Additionally, it promotes innovation in 
SHM modeling, resulting in the creation of advanced 
monitoring systems that are efficient, reliable, and adaptable to 
changing pipeline condition

Table 2. Measurement and sensing technologies discussed 
Method Advantages Limitations 

Fiber optical Sensors 

 High sensitivity to parameter changes 
 Capability of distributed sensing 
 Immunity to electromagnetic 

interference 
 Long-term stability and reliability 
 Capability of real-time monitoring 

 Necessity to appropriate expertise and 
maintenance due to sensor fragility 

 Sensitivity to environmental factors. 
 Sensitivity to installation method and 

calibration 
 Limited measurement range 

Piezo-electric Sensors 

 High sensitivity to parameter changes 
 Wide operational frequency range 
 Compact size and lightweight 
 Capability of real-time monitoring 

 Sensitivity to ambient temperature 
variations 

 Limited measurement range 
 Sensitivity to external noise or 

interference 
 Sensitivity to installation method and 

position 

Micro-Electro-Mechanical Sensors 

 High sensitivity to parameter changes 
 Small size and placement flexibility  
 Ability to integrate multiple sensing 

elements for simultaneous multi-
measurements 

 Cost-effective 
 Capability of real-time monitoring 

 Limited durability and reliability in 
harsh environmental conditions 

 Necessity to regular calibration and 
maintenance 

 Limited measurement range or 
sensitivity for certain parameters 

Attenuated total reflectance 
spectroscopic techniques 

 Saving in time and resources as it 
provides direct analysis of samples in 
their natural state 

 Versatility in the analysis of a wide range 
of materials  

 High sensitivity to parameter changes 

 Surface sensitivity and may not be 
suitable for detection of anomalies 
located deep within the pipeline 

 Necessity to sample preparation. 
 Incapability of real-time monitoring 

Magnetic Flux Leakage 

 High sensitivity to pipeline anomalies 
 Versatility in above-ground and 

underground pipeline monitoring 
 Comprehensive detection due to 

comprehensive coverage of the 
pipeline's surface  

 Capability of real-time monitoring 

 Limited to ferromagnetic materials. 
 Necessity to surface preparation 
 Limited to surficial defects and may 

struggle for deeper defects within 
pipeline wall. 

 Necessity to regular calibration and 
maintenance 

Radio-Technical techniques 

 Hogh resolution (Radiography). 
 Non-destructiveness (Radiography).  
 Capability of detecting internal and 

external defects (Radiography). 
 Cost-effective and large-scale 

deployment (RFID). 
 Passive operation (FRID) 
 Maintenance-free (FRID). 

 Safety concerns (Radiography).  
 High cost and necessity to appropriate 

expertise and maintenance 
(Radiography). 

 Challenging accessibility for buried or 
hard-to-reach pipelines (Radiography). 

 Limited operational range (RFID). 
 Sensitivity to external interference 

(RFID). 

Pigging 

 Improved flow and reduced blockages.  
 Prevention of corrosion and damage. 
 Increased safety.  
 Cost-effectiveness 

 Limited accessibility.  
 Operational complexity. 
 Sensitivity to Pipeline Conditions. 

Visual/physical inspections 
 Direct inspection. 
 Low cost. 
 Flexibility 

 Limited detection range. 
 Operator subjectivity. 
 Safety risks. 

Ultrasound techniques 
 Comprehensive detection. 
 High detection sensitivity. 

 Limited detection depth. 
 Necessity to surface preparation. 
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 Non-destructive. 
 Capability of real-time monitoring. 
 Versatility in above-ground and 

underground pipeline monitoring. 

 Necessity to appropriate expertise. 

Electrochemical techniques 

 Selectivity and Sensitivity. 
 Non-destructive. 
 Cost-effectiveness. 
 Capability of real-time monitoring. 

 Limited detection range. 
 Sensitivity to environmental factors. 
 Necessity to regular calibration and 

maintenance. 

Eddy Current 

 Non-destructive Testing. 
 Sensitive to Surface Defects. 
 Suitable for Ferrous and Non-Ferrous 

Materials. 
 Rapid Inspection. 

 Depth limitation. 
 Surface condition sensitivity. 
 Necessity to appropriate analysis and 

assessment personnel.  

Table 3. Detection and monitoring algorithms discussed 

Type Advantages Disadvantages 

 Bayesian Interference 

 Allows the integration of prior 
information into the analysis. 

 Allows for a clear interpretation of 
results in terms of probabilities. 

 Can be versatile for different 
applications. 

 Enables continuous updating of 
beliefs as new data becomes available, 
facilitating real-time decision-making. 

 Can help mitigate overfitting by 
incorporating prior distributions. 

 Not suitable for high-dimensional 
problems or complex models.  

 Sensitive to the choice of prior 
distributions and may lead to 
subjectivity or bias if not chosen 
carefully. 

 Can lead to unreliable estimates, 
particularly if the prior is not well-
informed. 

 Interpreting results and 
understanding the implications of 
prior distributions can be difficult for 
new users. 

Neural Networks 

 Can of learn and identify intricate 
patterns in data that are challenging 
for other algorithms to detect. 

 Able to generalize from examples and 
provide accurate predictions for new, 
unseen data. 

 Extremely versatile, applicable to a 
broad array of predictive modelling 
tasks. 

 Can manage large volumes of data and 
perform parallel processing, making 
them ideal for big data applications. 

 May be computationally intensive and 
demand significant computing 
resources for training. 

 Can be challenging to interpret, 
making it hard to understand the 
reasoning behind their predictions. 

 Overfitting is a frequent issue with 
neural networks, where the model 
closely fits the training data but 
performs poorly on new data. 

 Require substantial amounts of 
labelled data for effective training, 
which can be time-consuming and 
costly to acquire. 

Support Vector Method 

 Beneficial in high-dimensional 
environment. 

 Performs well when there is a distinct 
margin of separation. 

 Less prone to overfitting as compared 
to other algorithms. 

 Suitable for both linear and non-linear 
data. 

 Not ideal for large datasets due to the 
lengthy training time required. 

 Choosing the right kernel function can 
be tricky. 

 Sensitive to the selection of kernel 
function and hyperparameters. 

 It can be difficult to interpret the 
results of SVM. 

Principal Component 

 Reduces dimensionality. 
 Detects patterns and correlations that 

might not be obvious in the original 
dataset. 

 Improves data accuracy by reducing 
noise and redundancy in the data. 

 Increases efficiency by speeding up 
computation time. 

 Loss of information. 
 Requires domain knowledge. 
 Sensitive to outliers. 
 May not work for all datasets, 

particularly those with highly complex 
or nonlinear relationships between 
variables. 

K-Means 

 Easy to implement and 
computationally efficient. 

 Works well with large datasets. 
 Highly scalable and can  manage a vast 

number of variables. 

 Requires the number of clusters to be 
specified in advance, which can be 
difficult if the optimal number is not 
known. 

 Sensitive to initial cluster 
assignments. 
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 Simple and straightforward 
algorithm. 

 Assumes that clusters are spherical, of 
equal size, and have similar densities, 
which may not hold true in real-world 
datasets. 

 Not suitable for datasets with a high 
degree of noise or outliers. 

 

7 Review outcomes 

Based on the comprehensive review and discussions of 
valuable results obtained, several key current challenges, 
recommendations, and future outlooks can be identified in the 
considered research field. 

7.1 Key challenges 

 The seamless incorporation of the promising techniques 

including energy harvesting, IoT, robots, and drones into 

existing pipeline monitoring systems. Ensuring 

compatibility, interoperability, and data integration among 

these technologies can be complex. 

 Managing the vast amount of data generated by various 

sensors and technologies poses a challenge. Ensuring data 

quality, accuracy, and effective analysis methods are 

essential for deriving meaningful insights and making 

informed decisions. 

 The lack of standardized practices and regulations for 

pipeline SHM can hinder the implementation and adoption 

of advanced monitoring technologies. Establishing industry 

standards and guidelines is crucial for ensuring consistency 

and reliability in monitoring practices. 

 Implementing advanced SHM technologies, such as AI, ML, 

drones, and robotics, may require significant investments in 

infrastructure, equipment, and expertise. Cost-

effectiveness and resource optimization are key challenges 

for widespread adoption. 

 With the increasing use of IoT and data-driven technologies, 

ensuring the security and privacy of sensitive monitoring 

data becomes a critical challenge. Protecting data from 

cyber threats and unauthorized access is essential. 

7.2 Recommendations 

 Emphasis on the importance of integrating multi-sensor 

condition monitoring in pipeline SHM to enhance the 

identification of structural issues and refine the adopted 

condition-based mainyenance strategy. 

 Exploring the application of ensemble learning techniques, 

such as model boosting, bagging, majority voting, and 

stacking, to leverage the robustness of multiple ML models 

for more accurate and reliable monitoring systems. 

 Highlighting the need for addressing a wider range of 

pipeline failures, including joint failures such as bolt 

looseness in connection flanges. Incorporating monitoring 

of critical points like flanges and bolted joints into the 

overall pipeline SHM strategy is crucial for maintaining the 

structural health and dependability of pipelines. 

 Advocating for the establishment of standardized practices 

and regulations in pipeline SHM to ensure consistency, 

reliability, and interoperability of monitoring technologies 

across the industry. 

 Encouraging the investment in emerging technologies such 

as energy harvesting, IoT, robotics, and drones to enhance 

monitoring capabilities, improve efficiency, and ensure 

sustainable and reliable pipeline infrastructure. 

 Fostering the collaboration among industry stakeholders, 

researchers, and regulatory bodies to share knowledge, 

best practices, and innovations in pipeline SHM, promoting 

continuous improvement and advancements in the field. 

7.3 Future outlooks 

 Continued advancements in AI and ML techniques to drive 

innovation in pipeline SHM, enabling more accurate 

anomaly detection, predictive maintenance, and real-time 

monitoring. 

 The development of innovative sensor technologies, 

including optical fibre sensors, MEMS, piezoelectric 

sensors, and smart materials, to enable more precise and 

comprehensive monitoring of pipeline health, leading to 

early detection of issues and proactive maintenance. 

 The integration of robotics and drones for inspection and 

maintenance tasks to improve efficiency, safety, and 

coverage in pipeline monitoring, enhancing overall 

reliability and safety of pipeline infrastructure. 

 Focus on data analytics, predictive maintenance, and 

condition-based monitoring to continue to grow, enabling 

predictive insights, optimizing maintenance schedules, and 

improving the overall reliability and safety of pipeline 

infrastructure. 

 Incorporating environmental monitoring capabilities into 

pipeline SHM systems to assess the impact of pipelines on 

the environment, ensuring compliance with regulations, 

and promoting sustainability in the pipeline industry 

8 Conclusion 

This comprehensive literature review makes several novel 

contributions to the field of pipeline structural health 

monitoring (SHM): 

 Systematic Analysis of Failure Modes: The review provides 

a detailed examination of the most prevalent pipeline 

failure modes, including corrosion, erosion, cracks, and 

deformation. This in-depth analysis helps identify the 

critical areas that require effective monitoring and 

maintenance strategies. 

 Emerging Sensor Technologies: The review highlights the 

growing prominence of innovative sensor technologies, 

such as optical fiber sensors, ultrasound techniques, and 

piezoelectric sensors. This insight into the latest 

advancements in sensing capabilities can guide the 

development of more comprehensive and accurate pipeline 

SHM systems. 

 Advancements in Data-Driven Approaches: The review 

extensively covers the application of artificial intelligence 
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(AI) and machine learning (ML) techniques, including 

supervised learning models, deep learning, and ensemble 

methods. The demonstrated potential of these data-driven 

approaches in enhancing anomaly detection, failure 

prediction, and maintenance optimization is a significant 

contribution to the field. 

 Integration of Emerging Technologies: The review 

identifies the promising integration of energy harvesting, 

Internet of Things (IoT), robotics, and drones into pipeline 

SHM. These advancements enable continuous, remote, and 

automated monitoring, improving the overall performance 

and efficiency of pipeline integrity assessment and 

maintenance. 

 Comprehensive Recommendations and Future Outlooks: 

The review provides a well-structured set of 

recommendations and future outlooks that address the key 

challenges and guide the future progress of pipeline SHM. 

These strategic directions can serve as a roadmap for 

researchers, industry professionals, and regulatory bodies 

to drive the advancement of this critical field. 
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