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Abstract  Öz 

In this study, transverse vibration of a beam under a moving singular 
load and a moving moment is investigated. A simply supported beam 
with intermediate vertical supports modeled according to Euler-
Bernoulli beam theory. The intermediate supports are modeled as 
consisting of a linear spring and a linear damper. The moving force and 
the moment, the spring force and the damper force are expressed using 
Dirac delta functions in the equations of motion. Obtaining the exact 
solution for this problem with classical methods are quite lengthy and 
complicated. Beam must be divided into spans between each support. 
Each span must be solved separately with different set of coordinates 
having same boundary conditions on support points. As the number of 
support increases, solution becomes more complicated. However, the 
present method can be used to solve the problem for the whole beam 
length without having to separate into various spans regardless of 
number of supports. Dirac delta functions are converted to series 
expansions which allows us to get exact solution in form of series 
expansion. This solution than can be easily calculated by a computer. 
Dynamic responses of several cases such as various number of supports; 
different support points; various moving load, moving moment and 
axial load combinations are examined. 

 Bu çalışmada, bir kirişin hareketli bir yük ve moment altındaki titreşimi 
incelenmiştir. Destek ayakları içeren basit mesnetli bir kiriş Euler-
Bernoulli kiriş teorisine göre modellenmiştir. Destek ayakları doğrusal 
bir yay ve doğrusal bir damperden oluştuğu varsayılarak 
modellenmiştir. Hareketli yük, hareketli moment, yay kuvveti ve damper 
kuvveti Dirac delta fonksiyonu kullanılarak hareket denklemine dâhil 
edilmiştir. Klasik yöntemler ile bu problemin kesin çözümünü elde etmek 
oldukça uzun ve karmaşıktır. Her bir ayak için kiriş, ayaklar arası 
parçalara bölünerek ele alınmalıdır. Bu parçaların her biri, sınır şartları 
destek ayak noktalarında olacak şekilde ayrı koordinat eksenlerinde 
çözümlenmelidir. Ayak sayısı arttıkça çözüm daha da zorlaşacaktır. 
Mevcut çalışmaya konu yöntemle ayak sayısından bağımsız olarak, 
kirişi parçalara ayırmadan tüm kiriş boyunca tek bir koordinat 
ekseninde çözüm elde etmek mümkündür. Dirac delta fonksiyonu seri 
açılımlarına dönüştürülerek seri açılımı halinde kesin çözüme elde 
edilmiştir. Çözüm, basit bir bilgisayar programı yazarak hesaplanabilir. 
Bu çözümle kirişin farklı ayak sayıları; farklı konumlarındaki ayaklar; 
farklı hareketli yük, hareketli moment ve eksenel yük gibi çeşitli 
durumlardaki dinamik davranışı incelenmiştir.  

Keywords: Moving load, Moving moment, Simply supported beam, 
Intermediate supports 

 Anahtar kelimeler: Hareketli yük, Hareketli moment, Basit mesnetli 
kiriş, Destek ayakları 

1 Introduction 

Vibration analysis of beams under moving loads can be used to 
model and study the dynamics of a bridge traveled by a vehicle. 
Moving load problems and beam with intermediate elastic or 
viscous supports have been studied by various researchers so 
far. Frýba [1] solved the moving load problem on a simply 
supported beam with integral transformation methods in his 
book dedicated to vibrations under moving loads. However, 
this method is not suitable when intermediate supports are 
present in the system. Kameswara [2] used two span beam 
approach to obtained frequency and mode shapes expressions 
of a clamped-clamped beam with intermediate elastic support. 
Lee [3] analyzed the transverse vibration of a beam with 
intermediate point constraints subject to a moving load. He 
used the energy methods to get the governing equation and 
solved it with assumed mode method. Esmailzadeh and 
Ghorashi [4] solved vibration of a Timoshenko beam subjected 
to moving distributed mass by finite difference method. Reis et 
al. [5] investigated a bridge with many vertical support under 
moving load. They expressed the moving load and the spring 
and damping loads of the supports as distributed functions. 
Obtaining an exact solution is greatly simplified with this 
method. Uzzal et al. [6] found an analytical solution for a beam 
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subjected to moving load supported by Pasternak foundation 
using Fourier transform technique. Senalp et al. [7] utilized 
Galerkin method and achieved to obtain a solution for a beam 
on linear and nonlinear Pasternak foundation subjected to 
moving force. These two solutions [6, 7] are valid for a 
distributed Pasternak foundation model and not applicable 
when independent vertical supports are present. Zhang and 
Shepard [8] developed a shape function configuration mothed 
for a Euler-Bernoulli beam with two intermediate supports 
excited by moving pressure wave loads. Chawda and Murugan 
[9] studied a cantilever beam under combined moving moment, 
torque and load. They obtained the governing equations using 
energy methods and then solved using Laplace transform. Luo 
et al. [10] obtained closed-form solutions for free vibration of 
beams with intermediate supports using the generalized 
function method. 

It can be seen that some researchers succeeded to obtain closed 
form solutions for free vibration of a beam with intermediate 
supports or constraints. Also some researchers used numerical 
methods to solve moving load problems when supports are 
included in the equation of motion. In this study analytical 
solution for a simply supported beam including intermediate 
supports has been formulated. Euler-Bernoulli beam theory 
was used while formulating the equation of motion. Defining 
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intermediate supports by Dirac delta functions and converting 
them to their Fourier series expansions in the equation of 
motion made it possible to get an ordinary differential equation 
that can be solved easily. 

2 Equation of motion 

Consider an axially loaded simply supported beam under a 
moving load F0, a moving moment M0 shown in Fig. 1. The beam 
is supported by a linear spring of spring constant k and a linear 
damper of damping coefficient c. The speed of the moving force 
is of a constant value ν0 and expressed using Dirac delta 
function such that 

𝐹(𝑥, 𝑡) = 𝐹0𝛿(𝑥 − 𝜈0𝑡) (1) 

The speed of the moving moment has a constant value of ν1 and 
is similarly expressed as 

𝑀(𝑥, 𝑡) = 𝑀0

𝜕𝛿(𝑥 − 𝜈1𝑡)

𝜕𝑥
 (2) 

Transverse deflection of the beam at point x is denoted as u, 
time is denoted as t and elastic and viscous supports are 
assumed to be located at points x=s3 and x=s4 respectively. 
Then the equation of motion for forced transverse vibration of 
a uniform Euler-Bernoulli beam [11] can be written as 

𝐸𝐼
𝜕4𝑢

𝜕𝑥4 − 𝑃
𝜕2𝑢

𝜕𝑥2 + 𝜌𝐴
𝜕2𝑢

𝜕𝑡2 = 𝐹0𝛿(𝑥 − 𝜈0𝑡) + 

𝑀0

𝜕𝛿(𝑥 − 𝜈1𝑡)

𝜕𝑥
− 𝑘𝑢𝛿(𝑥 − 𝑠3) − 𝑐

𝜕𝑢

𝜕𝑡
𝛿(𝑥 − 𝑠4) 

(3) 

where 𝐸 is the Young’s modulus, 𝐼 is the cross-sectional 
moment of inertia of the beam, 𝜌 is the mass density and 𝐴 is 
the cross-sectional area of the beam. 𝜌 and 𝐴 are assumed to be 
constant.  

It is assumed that total solution of beam vibration is the sum of 
the normal modes which are also known as mode superposition 
method. Then, the deflection can be expressed as   

𝑢(𝑥, 𝑡) = ∑ 𝑋𝑛(𝑥) 𝑇𝑛(𝑡)

∞

𝑛=1

 
(4) 

The simply supported beam has the following mode shape 
functions: 

𝑋𝑛(𝑥) = sin(𝜔𝑛𝑥) (5) 

where 

𝜔𝑛 =
𝑛𝜋

𝐿
, 𝑛 = 1, 2, …  (6) 

Then, the solution of the simply supported beam takes the form 

𝑢(𝑥, 𝑡) = ∑  𝑇𝑛(𝑡) sin(𝜔𝑛𝑥)

∞

𝑛=1

 (7) 

 

 

 

Figure 1. Simply supported beam with intermediate supports 
under moving load and moment. 

 

Substituting Eq. (7) into Eq. (3) yields 

𝐸𝐼 ∑ 𝜔𝑛
4 𝑇𝑛(𝑡) sin(𝜔𝑛𝑥)

∞

𝑛=1

+ 𝑃 ∑ 𝜔𝑛
2 𝑇𝑛(𝑡) sin(𝜔𝑛𝑥)

∞

𝑛=1

+ 𝜌𝐴 ∑
 𝜕2𝑇𝑛(𝑡)

𝜕𝑡2 sin(𝜔𝑛𝑥)

∞

𝑛=1

= 𝐹0𝛿(𝑥 − 𝜈0𝑡) + 𝑀0

𝜕𝛿(𝑥 − 𝜈1𝑡)

𝜕𝑥

− 𝑘𝛿(𝑥 − 𝑠3) ∑  𝑇𝑛(𝑡) sin(𝜔𝑛𝑥)

∞

𝑛=1

− 𝑐𝛿(𝑥 − 𝑠4) ∑  
 𝜕𝑇𝑛(𝑡)

𝜕𝑡
sin(𝜔𝑛𝑥)

∞

𝑛=1

 

(8) 

The Force 𝐹0 in Eq. (8) can be expanded into Fourier sine series 
as 

𝐹0𝛿(𝑥 − 𝜈0𝑡) =
2𝐹0

𝐿
∑ sin(𝜔𝑛𝜈0𝑡) sin(𝜔𝑛𝑥)

∞

𝑛=0

 (9) 

In the same manner, the moment 𝑀0 can be written in series 
form as 

𝑀0

𝜕𝛿(𝑥 − 𝜈1𝑡)

𝜕𝑥
= −

2𝑀0

𝐿
∑ 𝜔𝑛 cos(𝜔𝑛𝜈1𝑡) sin(𝜔𝑛𝑥)

∞

𝑛=1

 (10) 

The supports can also be written in series form as 

𝑘𝛿(𝑥 − 𝑠3) ∑  𝑇𝑛(𝑡) sin(𝜔𝑛𝑥)

∞

𝑛=1

=
2𝑘

𝐿
∑ 𝑇𝑛(𝑡) sin2(𝜔𝑛𝑠3) sin(𝜔𝑛𝑥)

∞

𝑛=1

 

(11) 

and 

𝑐𝛿(𝑥 − 𝑠4) ∑  
 𝜕𝑇𝑛(𝑡)

𝜕𝑡
sin(𝜔𝑛𝑥)

∞

𝑛=1

=
2𝑐

𝐿
∑

 𝜕𝑇𝑛(𝑡)

𝜕𝑡
sin2(𝜔𝑛𝑠4) sin(𝜔𝑛𝑥)

∞

𝑛=1

 

(12) 

Substituting Eqs. (9), (10), (11), and (12) into Eq. (8) yields 
following form of the equation: 

M0 
v1 

x 

u 

P P 

s3 

c k 

v0 

F0 

s4 

L 
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𝐸𝐼 ∑ 𝜔𝑛
4 𝑇𝑛(𝑡) sin(𝜔𝑛𝑥)

∞

𝑛=1

+ 𝑃 ∑ 𝜔𝑛
2 𝑇𝑛(𝑡) sin(𝜔𝑛𝑥)

∞

𝑛=1

+ 𝜌𝐴 ∑
 𝜕2𝑇𝑛(𝑡)

𝜕𝑡2 sin(𝜔𝑛𝑥)

∞

𝑛=1

=
2𝐹0

𝐿
∑ sin(𝜔𝑛𝜈0𝑡) sin(𝜔𝑛𝑥)

∞

𝑛=1

−
2𝑀0

𝐿
∑ 𝜔𝑛 cos(𝜔𝑛𝜈1𝑡) sin(𝜔𝑛𝑥)

∞

𝑛=1

−
2𝑘

𝐿
∑ 𝑇𝑛(𝑡) sin2(𝜔𝑛𝑠3) sin(𝜔𝑛𝑥)

∞

𝑛=1

−
2𝑐

𝐿
∑

 𝜕𝑇𝑛(𝑡)

𝜕𝑡
sin2(𝜔𝑛𝑠4) sin(𝜔𝑛𝑥)

∞

𝑛=1

 

(13) 

It is obvious that term sin(𝜔𝑛𝑥) on both sides of Eq. (13) can be 
cancelled out. Since the equation must be satisfied for each n, 
Eq. (13) reads 

𝐸𝐼𝜔𝑛
4 𝑇𝑛(𝑡) + 𝑃𝜔𝑛

2 𝑇𝑛(𝑡) + 𝜌𝐴�̈�𝑛(𝑡)

=
2𝐹0

𝐿
sin(𝜔𝑛𝜈0𝑡) −

2𝑀0

𝐿
𝜔𝑛 cos(𝜔𝑛𝜈1𝑡)

−
2𝑘

𝐿
𝑇𝑛(𝑡) sin2(𝜔𝑛𝑠3) −

2𝑐

𝐿
�̇�𝑛(𝑡) sin2(𝜔𝑛𝑠4) 

(14) 

The rearrangement of Eq. (14) gives the following equation:  

�̈�𝑛(𝑡) + 𝑎𝑛�̇�𝑛(𝑡) + 𝑏𝑛𝑇𝑛(𝑡)

=
2

𝜌𝐴𝐿
[𝐹0 sin(𝜔𝑛𝜈0𝑡) − 𝑀0𝜔𝑛 cos(𝜔𝑛𝜈1𝑡)] 

(15) 

where 

𝑎𝑛 =
2𝑐

𝜌𝐴𝐿
sin2(𝜔𝑛𝑠4) (16) 

and 

𝑏𝑛 =
1

𝜌𝐴
(𝐸𝐼𝜔𝑛

4 + 𝑃𝜔𝑛
2 +

2𝑘

𝐿
sin2(𝜔𝑛𝑠3)) (17) 

Assuming that the beam is initially at rest, the initial conditions 
are written in the forms 

𝑇𝑛(0) = �̇�𝑛(0) = 0 (18) 

Using the initial conditions in Eq. (18), Eq. (15) can be solved 
[12] and 𝑇𝑛(𝑡) can finally be obtained. 

3 Numerical examples 

A beam with properties listed in Table 1 is investigated under 
various load and support configurations. The summation of Eq. 
(7) is calculated by a computer program for n=100 terms and 
the beam shape 𝑢(𝑥, 𝑡) is obtained. The maximum deflection of 
the beam in dynamic response was compared to maximum 
static deflection when loaded at the midpoint with the same 
magnitude of the moving load. The beam is assumed to be 
initially at rest. 

3.1 Various Cases for the Beam 

The static midpoint deflection of the beam when 20000 N is 
applied at 𝐿/2 calculated as 0.238 m from deflection formula 
𝑢𝑠 = 𝐹𝐿3/48𝐸𝐼 [13] and this value can be used to verify the  

Table 1. Properties of the beam 

Description Symbol Value Unit 

Beam width  0.1 m 

Beam height  0.1 m 

Beam length L 10 m 

Cross-sectional area A 0.01 m2 

Area moment of inertia I 8.33e-6 m4 

Density ρ 7800 kg/m3 

Modulus of elasticity E 2.1e+11 N/m2 

formulation method of this work. In Fig. 2, the response of the 
beam at different times are plotted in the case that only moving 
force is acting on the beam. Similarly, in Fig. 3, the response of 
the beam is shown in the case where only the moving moment 
acts. In Fig. 4 the effect of axial load on the response of the beam 
in the case where the moving force acts are depicted. In Figs. 6-
9, the responses of the beam under moving load are shown for 
various support configurations assuming each support has both 
elastic and viscous characteristics. 

Figure 2. Shapes of the beam under moving load only, 
F0=20000 N, ν0=10 m/s, M0=0, P=0.

 

Figure 3. Shapes of the beam under moving moment only, 
F0=0, M0=40000 N.m, ν1=10 m/s, P=0. 
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Figure 4. Shapes of the beam under moving load and axial 
tension force, F0=0, M0=0, P=40000 N.

 

Figure 5. Dimensionless midpoint deflection under the moving 
loads, ν0=1 m/s, 10 m/s and 20 m/s. 

When the magnitude of the force changes, it is noticed that 
frequency of the beam vibration doesn’t change. Deflection 
changes directly proportional to the magnitude of the force. 
Also when change of force’s speed is investigated, it is seen that 
when speed increases, the maximum deflection of the beam 
also increases. At lower speeds, there are more beam 
oscillations than higher speeds. This is shown in the Fig. 5 as 
midpoint deflection vs time plot on dimensionless coordinates 
where time coordinate is calculated as 𝜈0𝑡/L and u coordinate 
is calculated as 𝑢/𝑢𝑠 . Three different magnitudes of forces 
plotted as F0=200 N, F0=2000 N and F0=20000 N with three 
different speeds. Total nine plots are obtained. It is observed 
that all forces with same speed have same plot as dimensionless 
deflection is independent from the force as stated before. Also 
increase in deflection as speed increases can be clearly 
observed. 

3.2 Comparison of The Results with FEA  

A finite element analysis has been done using Ansys software to 
compare the results of this method with those results of the 
finite element analysis software. Two transient structural 
analysis were performed with the same properties of the beam 
as previous numerical examples and its model can be seen in 
Fig. 10. Material is chosen as structural steel. The beam was  

 

 

Figure 6. Midpoint deflection with no supports, F0=20000 N, 
ν0=10 m/s, M0=0, P=0. 

 

 

Figure 7. Midpoint deflection with support at x=5, F0=20000 N, 
ν0=10 m/s, M0=0, P=0. 

divided into 100 elements each having 0.1 m length. Bottom 
edge of the beam on the left hand side was fixed. Bottom edge 
on the right hand side was fixed in X and Z directions and left 
free in Y direction in order to model the beam supports. The 
analysis was divided into 21 steps and in each step the force 
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Figure 8. Midpoint deflection with two supports at x=3.5 and 
x=6, F0=20000 N, ν0=10 m/s, M0=0, P=0. 

was applied on element borders with 0.5 m distance.  In first 
analysis, the deflections of the beam subjected to same 
magnitude of moving load have been obtained. The midpoint 
deflection versus time diagram is plotted in Fig. 11. When 
comparing with present method’s deflection, it can be clearly 
seen that Ansys results are in good agreement with the present 
method.  

The midpoint deflection of the present method in the case of 
moving moment shown in Fig. 12 is also compared with Ansys 
results. It is obvious that both results are again in good 
agreement especially considering their frequencies. 

 

 

 

Figure 9. Midpoint deflection with three supports at x=2.5, x=5 
and x=7.5, F0=20000 N, ν0=10 m/s, M0=0, P=0. 

4 Conclusion 

In this study, a method for solving equation of motion of a 
uniform Euler-Bernoulli beam under moving load was 
developed. This method can be used to predict dynamic 
responses of bridges traveled by a vehicle. The maximum static  
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Figure 11. Midpoint deflection of Ansys results under moving 
load, F=20000 N 

 

Figure 12. Midpoint deflection of Ansys results under moving 
moment, M=40000 N.m 

deflection at the midpoint of the beam is close to the maximum 
deflection under a moving load with the same magnitude. This 
helps us to validate the accuracy of the method. When the axial 
load is applied on the beam, maximum deflection decreases as 
expected. Thus the present method can be used for structural 
elements under tensional loads. The most remarkable aspect of 
the method is that it allows implementing supports into the 
equation and makes it possible to have an exact solution rather 
than numerical methods. Also multiple moving loads or moving  

 

Figure 13. Deflection under the moving load on dimensionless 
coordinates at ν0=17.3 m/s for single-span, two span, three 

span and four span beams 

moments at different speeds and supports at different locations 
can be implemented into the equation and can be solved with 
little effort. In case of multiple loads, it must be noted that the 
solution will only cover the time interval when all the loads are 
acting on the beam. In case of multiple supports, the method 
allows to compare different support configurations and can be 
used for the optimization of supports under bridges. For 
example, in Figs. 7-9, it can be seen that the maximum 
deflection with two supports is less than the maximum 
deflection with one support. But, there isn’t a significant 
difference in maximum deflections of two and three supports. 
Thus, the example with two supports can be considered more 
effective than that of the beam with three supports. 

In Fig. 12, dimensionless deflection under the moving load for 
different intermediate support settings are given. This is a 
comparison of the present method with method put forward by 
Lee [3] in his study. k is taken as a very large value (1012 N/m) 
so that supports behave like fixed supports. This way the beam 
is divided into spans and its dynamic behavior is investigated 
for different span cases. ν0 is taken as 17.3 m/s. The beam 
properties also taken as the same properties specified in 
reference [2]. Results are found to be in very good agreement 
with the results plotted in reference [2]. 

Results of the present method are also compared with results 
of finite element analysis. Ansys software was used and results 
were in good agreement with present method. Slight 
differences are possibly due to present method’s Euler-
Bernoulli beam theory approach. Finite element analysis 
software takes into consideration displacement in all directions 
whereas Euler-Bernoulli beam theory assumes that 
displacements are only transversal. Regardless the method 
used to define a moving load in a finite element analysis 
software can be used for different applications where a moving 
load needs to be defined as a boundary condition. 
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