

Pamukkale Univ Muh Bilim Derg, XX(X), XX-XX, 20XX

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi

 Pamukkale University Journal of Engineering Sciences

A stable and fast PSO algorithm guided by SPSA for vector quantization-
based image compression

Vector nicemleme tabanlı görüntü sıkıştırma için EPSY ile yönlendirilen
kararlı ve hızlı bir PSO algoritması

İlker KILIÇ1*, Haldun SARNEL1

1Department of Electrical and Electronics Engineering, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University
Manisa, Türkiye.

ilker.kilic@cbu.edu.tr, haldun.sarnel@cbu.edu.tr

Received/Geliş Tarihi: 17.10.2024
Accepted/Kabul Tarihi: 24.04.2025

Revision/Düzeltme Tarihi: 25.02.2025 doi: 10.5505/pajes.2025.78006
Research Article/Araştırma Makalesi

Abstract Öz

Image compression plays a crucial role in reducing storage
requirements and improving transmission efficiency. The effectiveness
of lossy image compression using vector quantization (VQ) heavily
depends on the quality of codebook generation, which is inherently an
optimization problem. In this paper, a coupled hybrid algorithm
integrating Simultaneous Perturbation Stochastic Approximation
(SPSA) into Particle Swarm Optimization (PSO) is proposed to enhance
both the convergence speed and codebook quality in vector
quantization. The novel SPSA-FPSO algorithm, by generating multiple
alternative codebooks at each iteration and selecting the best,
successfully avoids local minima and achieves faster convergence.
Experimental results, conducted on standard gray-level images of
various contrast levels, demonstrate that the proposed SPSA-FPSO
algorithm outperforms both basic PSO and SPSA algorithms in terms of
lower mean square error (MSE) and higher convergence speeds,
establishing its superiority for VQ-based image compression tasks. This
superiority is also shown to be valid when compared to other
metaheuristic algorithms.

 Görüntü sıkıştırma, depolama gereksinimlerini azaltmak ve iletim
verimliliğini artırmak açısından büyük bir öneme sahiptir. Vektör
nicemleme (VN) tabanlı kayıplı görüntü sıkıştırmanın başarısı, esasen
bir optimizasyon problemi olan kod tablosu üretiminin kalitesine
bağlıdır. Bu makalede, hem algoritmanın yakınsama hızını hem de VN
kod tablosunun kalitesini artırmak için Eşzamanlı Pertürbasyon
Stokastik Yaklaşımı (EPSY) tekniğini Parçacık Sürü Optimizasyonu
(PSO) ile bütünleştiren hibrit bir algoritma önerilmektedir. Önerilen
EPSY-HPSO algoritması, her iterasyonda birden fazla alternatif kod
kitabı üreterek en iyisini seçmekte ve yerel minimum noktalarından
kaçınarak daha hızlı bir yakınsama sağlamaktadır. Farklı kontrast
seviyelerine sahip standart gri seviye görüntüler üzerinde
gerçekleştirilen deneysel sonuçlar, EPSY-HPSO algoritmasının hem
ortalama kare hata (OKH) değerlerini düşürme hem de daha yüksek
yakınsama hızları açısından klasik PSO ve EPSY algoritmalarından
daha başarılı olduğunu göstererek VN tabanlı görüntü sıkıştırmadaki
üstünlüğünü kanıtlamaktadır. Bu üstünlüğün diğer metasezgisel
algoritmalarla karşılaştırıldığında da geçerli olduğu gösterilmektedir.

Keywords: Image compression, Metaheuristic algorithms, Vector
Quantization, Codebook generation, PSO, SPSA

 Anahtar kelimeler: Görüntü sıkıştırma, Metasezgisel algoritmalar,
Vektör Nicemleme, Kod tablosu üretimi, PSO, EPSY

1 Introduction

Digital image compression is a process which aims at reducing
the size of a digital image for both storage and transmission
purposes. Compressed images require less information storage
capacity on storage devices, while allowing lower bandwidth
and less time duration to transmit them over a communication
channel. With the help of digital image compression algorithms,
all digital devices using image data are today able to handle
high-resolution large-size digital images in a more efficient
manner.

Vector quantization (VQ) [1],[2] is a widely used quantization
technique in lossy signal processing, information classification,
pattern recognition and feature extraction. In lossy image
compression, small image blocks in a whole image are grouped
based on their similarity. The VQ algorithm reduces the image
size by mapping blocks in an image into a set of vectors. In
implementation, after the division of the image into small
blocks, each block is converted to a vector. Similar vectors form
a cluster centered at a codeword vector. All codeword vectors
of the image form a list called codebook. All image vectors are
assigned to the codeword, which is the most similar in the

*Corresponding author/Yazışılan Yazar

codebook, and represented by their addresses in the codebook
instead of the vector itself. Therefore, a compression is
obtained, and the image size is reduced. The codebook
including a number of codewords must be estimated to
represent the entire image as close to its original as possible.

Better codebook estimation is a crucial task for improving the
performance and efficiency of the image compression
algorithms. Usually, arithmetic coding and Huffman algorithm
[3] are opted for a lossless image compression process.
However, arithmetic coding necessitates extensive probability
distribution tables to define symbol codes, and the frequency-
based code definitions in Huffman coding significantly impact
compression efficiency. Due to these limitations, alternative
lossy compression techniques have become more popular and
achieve higher compression ratios. In VQ-based compression
methods, codebook estimation has a great effect on the
performance [4]. Here, better grouping the image blocks
directly decreases the error of the reconstructed image.
Therefore, finding the optimal codebook can be viewed as an
optimization problem. Codebook optimization increases the
quality of the reconstructed image at the same compression
ratios. The use of metaheuristics for codebook generation has

become more popular recently. The goal of those optimization
algorithms is to find better individuals for representing the
optimum codebook. There are many metaheuristic methods in
the literature presented to solve the codebook estimation
problem in VQ. Some of them are genetic algorithm [5], cuckoo
search algorithm [6], ant colony optimization [7], particle
swarm optimization [8], firefly optimization algorithm [9], bat
algorithm [10], lion optimization algorithm [11], flower
pollination algorithm [12], whale optimization algorithm [13],
and crow search algorithm [14]. There are also some
metaheuristic methods enhanced by useful techniques to
increase their performances for optimal codebook estimation
such as improved differential evaluation algorithm [15],
improved sine–cosine algorithm [16], improved adolescent
identity search algorithm [17], smart fruit fly optimization
algorithm [18] and Levy flight based bat algorithm [19]. A can
finally be added to A new Some of these metaheuristic
optimization algorithms use the K-Means technique to find
initial codebooks before starting the main optimization
process.

Simultaneous perturbation stochastic approximation (SPSA) is
an optimization algorithm developed for difficult multivariate
optimization problems [20]. The gradient approximation of an
optimization problem is the primary benefit of the SPSA. The
algorithm needs only two evaluations of the objective function
per iteration to estimate the unknown parameters regardless of
the dimension of the optimization problem. Therefore, the SPSA
has a superior performance for estimating the gradient value
without direct gradient information. This property makes it
favourable to use in many optimization problems including
signal and image processing, feedback control, statistical
parameter estimation, and simulation-based optimization.

Particle swarm optimization (PSO) is a population (or swarm)
based optimization algorithm using stochastic search. It was
inspired by the social behavior of animals and relies on the
assumption that social exchange of information among
individuals could lead to evolutionary distinction. Each particle
in the swarm represents an individual of the population. PSO is
one of the best known and commonly used meta-heuristic
algorithms. But it has two major drawbacks. First, the basic
algorithm has a relatively slow progress towards optimal or
near optimal solutions, especially when the problem domain
has a search space of high dimension. Moreover, the position
update strategy of the particles, that depends strongly on the
global best (gbest) particle, has also adverse effects on the
algorithm performance. In PSO, gbest inherently guides the rest
of the swarm. Unfortunately, this causes the swarm to become
more similar to this guiding particle, bringing with it some loss
of diversity in the search space. It is exactly this phenomenon
that increases the probability of premature convergence and
getting trapped in local minima. To avoid these drawbacks and
improve the overall performance of the PSO algorithm, many
hybrid schemes are proposed in the literature. Some examples
of such schemes are given as follows. Chen et al. [21] propose a
local search method based on the conjugate gradient in
combination with the PSO for the identification of nonlinear
systems. A hybrid PSO and ant colony optimization [22] is
proposed to solve the problem of designing truss structures. A
quasi-Newton sequential quadratic programming method for
local search is combined with the PSO algorithm in [23] to solve
structural optimization problems. Cherki et al. [24] use a
sequential combination of GA and PSO to solve the problem of
the optimal power flow on electrical networks. Seyedpoora et
al. [25] propose a preliminary optimization using SPSA

followed by PSO. In their scheme, many copies of the result
provided by SPSA are appended to the usual randomized initial
swarm for the PSO algorithm. This process produces an
efficient hybrid initial swarm. Therein it is shown that their
hybrid algorithm performs well in solving structural
optimization problems. In another study [26], combining PSO
with gradient-based methods for optimizing convolutional
neural networks is explored. Following some performance
comparisons in their research, the results come out generally in
favor of conventional gradient-based methods rather than the
hybridization of PSO.

The hybrid algorithms given above combine two among many
optimization algorithms in a way to apply them sequentially
and are classified in a decoupled hybridization type.
Alternatively, the PSO has been hybridized with several popular
metaheuristics and mathematical solvers such as gradient-
oriented schemes [27] in a coupled way. Hybridization with the
genetic algorithm [28], the differential evolution algorithm
[29], the harmony search algorithm [30], the sine–cosine
algorithm [31], the gray wolf algorithm [32], the firefly
algorithm [33], and finally both whale and differential evolution
algorithms (multiple hybridization) [34] can be given as some
other examples of the second type. It appears that more
research focuses on the coupled hybridization because its
designs significantly affect the performance of the base
algorithms. As a result, its implementations have shown
enhancements in the quality of the optimization results.

Another coupled hybridization of PSO to avoid its drawbacks is
given by Kiranyaz et al. [35]. They propose two algorithms in
which SPSA is embedded inside PSO to guide the swarm. They
use a generic name stochastic approximation driven PSO (SAD
PSO) for their algorithms. In their first algorithm, gbest is
updated (or guided) only by SPSA with the ability for gradient
estimation of the objective function while other particles are
updated as usual at every PSO iteration. Their second algorithm
utilizes the information of a special particle which is not in the
swarm, so-called alternative global best particle. The position
of this particle is computed by guiding gbest with SPSA. The
decision is made based on a competition between the two. The
winner replaces the particle gbest to provide better guidance to
the swarm in the next iteration.

The use of metaheuristic methods for VQ-based image
compression has been limited to the use of base algorithms
alone. With a single base algorithm, the optimum codebook
estimation process can get stuck at local optima, resulting in
compressed images with worse visual quality than the
optimum level. Even in cases where local optima can be escaped
from, the number of iterations required to reach the global
optimum is quite large, overshadowing the practical
importance of the algorithm for codebook optimization. The
motivation of this work is to improve the accuracy and speed
performance of a metaheuristic method for the codebook
estimation problem by using a hybridization approach. PSO
was chosen as the metaheuristic base algorithm since it is a
well-known optimization algorithm. The inspiration for
developing our optimization algorithm is the second SAD PSO
algorithm in [35]. Although their hybrid algorithm provided
performance improvement over PSO, it can be further
improved in terms of the quality of the guidance given by SPSA
for both increasing diversity in the search space and speeding
up the convergence. In this paper, we first propose an extended
algorithm. The proposed algorithm computes multiple SPSA
gradient approximations instead of one per iteration and

selects the best one to find a better next position (codebook) for
gbest. This extension can also be stated as using multiple
alternative global particles instead of one in the previous
algorithm. Additionally, the gain parameter a of the SPSA
algorithm is increased dynamically through the iterations in the
proposed algorithm. This novelty results in further
performance increase. The proposed extended algorithm will
be referred to as SPSA-driven fast PSO (SPSA-FPSO) from here
on to emphasize the guidance role of SPSA in the basic PSO and
the acceleration provided in the convergence speed. Second
major contribution of this work is the presentation and
discussion of the results obtained from the first-time
application of this high performance algorithm to codebook
estimation in VQ-based image compression. Unlike the PSO
algorithm's frequent result of getting trapped in local optima,
the proposed SPSA-FPSO algorithm is capable of escaping from
local optima and always reaches or approximates the global
optimum.

This paper is organized as follows. Section 2 introduces the K-
Means algorithm for VQ, the basic PSO algorithm, and the SPSA
algorithm. The proposed algorithm and its application to image
compression based on VQ are presented in Section 3. The
experimental results over mean square error (MSE)
minimization between the reconstructed images and the
originals are given in Section 4. Finally, Section 5 provides a
summary of the concluding remarks.

2 Related methods

In this section, the K-Means algorithm for VQ that produces
initial codebooks for all optimization algorithms, the PSO
algorithm and the SPSA algorithm are explained, respectively,
in detail.

2.1 K-Means algorithm for vector quantization

The K-Means algorithm is a plain and well-known clustering
technique used in many application areas including Vector
Quantization. The algorithm aims to partition the whole data
into “k” Voronoi cells. K-Means algorithm can be used to cluster
data vectors converted from small image blocks. It is one of the
most favorite choices for generating codebooks in VQ due to its
simplicity and fair image representation ability. The most
common version of the K-Means technique is known as Lloyd-
Forgy algorithm which begins by Forgy initialization [36],[37].
The initial codewords are selected randomly from the original
image blocks by Lloyd-Forgy method. The technique aims to
find an optimum codebook that consists of codeword vectors
list representing the image data best. The K-Means technique
starts its process by dividing the original input image into sub-
blocks. Consider the original image Y={Xij} comprises N×N
pixels and is divided into sub-blocks of size m×m pixels. The

number of sub-blocks is determined by Nb = (
𝑁

𝑚
×

𝑁

𝑚
). All image

data is represented by a set of image vectors X = {𝑥𝑖 , i = 1,2, . . . ,
Nb }. Let the variable L represents the size of the blocks, where

L=m×m pixels. Therefore, each sub-block 𝑥𝑖 is defined within
an L-dimensional Euclidean space, denoted as 𝑥𝑖L. Then, a
codebook of Nc codewords, C={c1,c2,…,cNc}, 𝑐𝑗L , j=1,2,..,Nc

represents the original image. Each image vector is denoted as
a row vector by 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, … , 𝑥𝑖𝐿) and the jth codeword

in C is denoted by 𝑐𝑗 = (𝑐𝑗1, 𝑐𝑗2, 𝑐𝑗3, … , 𝑐𝑗𝐿). The K-Means

algorithm maps each original image block to a codeword by
using minimum square error (MSE) criteria through a number
of iterations. Once the algorithm finishes, the index number of
the related codeword is used instead of the image block itself to

represent the data in a block. Thus, a VQ-based image
compression is achieved by forming the vectors of C that
minimize the MSE value given in Equations (1)-(3).

MSE(C) =
1

𝑁𝑏
∑∑𝑖𝑗‖𝑥𝑖 − 𝑐𝑗‖

2

𝑁𝑏

𝑖=1

𝑁𝑐

𝑗=1

 (1)

∑
𝑖𝑗

= 1 , 𝑖 {1, 2, … , 𝑁𝑏}

𝑁𝑐

𝐽=1

 (2)

𝑖𝑗 = {
 1 , if 𝑥𝑖 is in the 𝑗th cluster
 0 , otherwise

 (3)

The Euclidean distance D between the ith image block and jth

codeword is defined by ‖𝑥𝑖 − 𝑐𝑗‖.

The two rules specified by Equation (4) and Equation (5) are
applied by the K-Means algorithm. The group of image vectors
(𝑅𝑗 , j=1,2, … Nc) must satisfy the distance condition

 𝑅𝑗 {𝑥𝑋: 𝐷(𝑥, 𝑐𝑗) < 𝐷(𝑥, 𝑐𝑘),𝑘𝑗}. (4)

The center of 𝑅𝑗 denoted by 𝑐𝑗 is calculated using

𝑐𝑗 =
1

𝑁𝑗
∑ 𝑥𝑖 , 𝑥𝑖 𝑅𝑗

𝑁𝑗

𝑖=1
 (5)

where Nj is the number of elements in 𝑅𝑗 . Let the image vectors

be 𝑥𝑖 , i = 1,2, …, Nb, and the initial codewords determined by the
Forgy method are cj(0), j = 1, 2,…,Nc. Then, the K-Means
algorithm applies the four steps given below to determine a
suboptimal codebook that is used by an optimization algorithm.

Step 1: Select the number of Nc cluster centers from the original
image blocks randomly. This process is named as Forgy
method,

Step 2: Assign the original image blocks to the corresponding
cluster center ij using Euclidean distance criteria. The centers
of clusters are saved in an indicator matrix with size of Nb×Nc

pixels.

𝑖𝑗 = {
 1, if 𝐷 (𝑥𝑖 , 𝑐𝑗(𝑘)) = min𝐷 (𝑥𝑖 , 𝑐𝑗(𝑘))

0, otherwise
 (6)

Step 3: Calculate the new cluster centers given by
Equation (4).

Step 4: Execute the Equations (4) and (6) sequentially until the
cluster centers of cj do not change.

The codebook structure and image reconstruction are shown in
Figure 1.

2.2 PSO algorithm

The Particle Swarm Optimization (PSO) is a population-based
metaheuristic algorithm inspired by the social behavior of
animals like birds flocking, fish schooling, and insect swarming.
The PSO was introduced by Kennedy and Eberhart in 1995 [38].
It is simpler to implement than other metaheuristic and
evolutionary algorithms and requires only a few parameters to
be tuned. The PSO was modified by Shi and Eberhart [39] and
applied to a broad spectrum of optimization problems [40].

All optimization problems require evaluations of their own
objective functions by the solver algorithms to reach the global

optimum solution of the unknown parameters in an iterative
manner. An individual of the PSO algorithm is represented by a
particle resembling for example, a migratory bird who has its
own position and velocity in the swarm. The position of each
particle is viewed as a potential solution to the optimization
problem while its velocity indicates the distance it will move in
the next iteration. Consequently, the velocity and position of
each particle are updated after each iteration to adjust the
parameters and achieve the global best position. The PSO
algorithm inherently achieves both global and local searches.
The best position of each particle in the swarm is denoted by
𝑃𝐵𝑖 (𝑖 = 1,2, … , 𝑝) where i indicates the particle number and p
is the size of the swarm. The best position of the population
(that is of gbest) is denoted by 𝐺𝐵 that is recorded along the
iterations. At the beginning, the position and velocity of each
particle in the swarm are initialized to random values from the
search space of the problem solution. In an iteration t, the PSO
algorithm determines the direction of each particle in the
swarm using the velocity and position equations expressed by
Equations 7 and 8, respectively, where 𝑡 + 1 points to the next
iteration.

𝑉𝑡+1
𝑖 = 𝑘𝑤𝑉𝑡

𝑖 + 𝑘𝑝𝑟1(𝑃𝐵𝑡
𝑖 − 𝑋𝑡

𝑖) + 𝑘𝑔𝑟2(𝐺𝐵𝑡 − 𝑋𝑡
𝑖) (7)

𝑋𝑡+1
𝑖 = 𝑋𝑡

𝑖 + 𝑉𝑡+1
𝑖 (8)

Here, X and V represent the position and the velocity of the
particle, respectively, in the multidimensional search space.

The last two terms in Equation 7 are called cognitive and social
components, respectively, that contribute to the velocity and
position updates of each particle for the next iteration. The

constant kw is a user defined value called inertia weight [38].

The others, kp and kg are acceleration constants which
determine the degree of influence from the particle’s own best
experience and current global best particle in the swarm.
Finally, 𝑟1 and 𝑟2 are two independent random numbers having
uniform distribution in the interval of [0,1]. The pseudo code of
the standard PSO algorithm is given in Table 1 where T is the
maximum number of iterations chosen as the termination

criterion and 𝑓(𝑋𝑖) is the evaluation result of the objective

function for the position of particle i. The optimal solution is
equal to GB when the algorithm stops. Recall that the objective
function in our problem is MSE between the reconstructed
image obtained by the codebook list {𝑋𝑖; 𝑖 = 1,2, … , 𝑝 } and the
original image. The pseudo-code of the PSO algorithm is given
in Table 1.

2.3 Simultaneous perturbation stochastic approximation
algorithm

Gradient-based optimization algorithms suppose that
information exists about the gradient of the objective function
to optimize the parameters. But in many real-world
optimization problems, gradient cannot be computed or
observed directly. This difficulty led to the development of
stochastic approximation (SA) algorithms. They rely on an
approximation to the gradient that is achieved by only
measurements of the objective function in a stochastic setting.
Convergence properties of many such gradient-free stochastic
algorithms are similar to those of the gradient-based
algorithms [41]. SPSA is a stochastic optimization
algorithm produced by Spall [20]. The SPSA algorithm has a
superior feature to the other optimization methods. This
feature is estimating the gradient function value when the exact
gradient is not available for the objective function. Therefore,
the SPSA technique increases the quality of the unknown
parameters by estimating the gradient of the objective function
and using it to update the unknown parameters.

All deterministic multivariate optimization algorithms aim at
minimizing a differentiable objective function 𝑓() by
searching for zero-gradient point. When gradient g of the
function cannot be directly computed in implementations (e.g.,
in many real-world problems), the SA algorithms can be used
alternatively to update the solution vector 𝑡 in d-dimensional
search space by

𝑡+1 = 𝑡 − 𝑎𝑡�̂�𝑡(𝑡) (9)

Table 1. Pseudo-code of the basic PSO algorithm.

Initialize position 𝑋1
𝑖 and velocity 𝑉1

𝑖 of all particles
Define 𝑃𝐵0

𝑖 = 𝑋1
𝑖 , 𝐺𝐵1 = 𝑋1

1;

for 𝑡 = 1 to 𝑇 do

 for Each particle in the swarm do

 Evaluate objective function: 𝐸 = 𝑓(𝑋𝑡
𝑖);

 if E is better than 𝑓(𝑃𝐵𝑡−1
𝑖) then

 𝑃𝐵𝑡
𝑖  𝑋𝑡

𝑖;
 end if
 if E is better than 𝑓(𝐺𝐵𝑡) then

 𝐺𝐵𝑡

 𝑋𝑡

𝑖;
 end if
 end
 for Each particle in the swarm do

 𝑉𝑡+1
𝑖 = 𝑘𝑤𝑉𝑡

𝑖 + 𝑘𝑝𝑟1(𝑃𝐵𝑡
𝑖 − 𝑋𝑡

𝑖) + 𝑘𝑔𝑟2(𝐺𝐵𝑡 − 𝑋𝑡
𝑖);

 𝐢𝐟 |𝑉𝑡+1
𝑖 | > 𝑉𝑚𝑎𝑥

 𝐭𝐡𝐞𝐧 clamp it to 𝑉𝑚𝑎𝑥
 ; 𝐞𝐧𝐝 𝐢𝐟

 𝑋𝑡+1
𝑖 = 𝑋𝑡

𝑖 + 𝑉𝑡+1
𝑖 ;

 end
end

Figure 1. Original image blocks, codebook structure and reconstructed image structure of VQ [17].

where, �̂�𝑡 is an approximation to the gradient vector g at
iteration t and 𝑎𝑡 is a scalar gain sequence that has to meet
certain conditions [20]. The approximation to the gradient
vector is obtained using simultaneous random perturbations
and two measurements of the objective function by

�̂�𝑡(𝑡) =
𝑓(𝑡 + 𝑐𝑡𝑡) − 𝑓(𝑡 − 𝑐𝑡𝑡)

2𝑐𝑡

[

𝑡,1

−1

𝑡,2
−1

.

.

.
𝑡,𝑑

−1
]

 (10)

where each element 𝑡,𝑖 of the vector 𝑡, takes on a value of +1

or -1, as generated by a zero-mean Bernoulli distribution, and
𝑐𝑡 is a positive gain sequence. Both gain sequences are
computed as follows.

 𝑎𝑡 = 𝑎 (𝐴 + 𝑡)⁄ (11)

 𝑐𝑡 = 𝑐 𝑡𝛾⁄ (12)

These equations introduce five SPSA constants. In [41], Spall
recommends using the following values for the three of them:
the stability constant 𝐴 = 60, 𝛼 = 0.602, and 𝛾 = 0.101.
However, he deduces that the performance of the SPSA is very
sensitive to the choice of both gain sequences. He adds that this
problem occurs in other stochastic optimization algorithms as
well, due to their own coefficients. Therefore, it is left to
researchers to find suitable values for the constants a and c
according to the optimization problem to be tackled. The
pseudo-code of the SPSA algorithm is given in Table 2.

3 The proposed algorithm and its
implementation on codebook optimization

3.1 The proposed algorithm: SPSA-FPSO

The algorithm proposed in this paper has an embedded
structure where the SPSA algorithm performs a guidance task
for the particle gbest only in the swarm of PSO. Thus, the
combined process should be considered as a single algorithm in
its own. The proposed algorithm is inspired from [35] where
the SPSA process creates an alternative global best (agbest)
particle from the positon of the particle gbest. If the position of
agbest gives a better objective function value than that of the
gbest, then it is accepted that SPSA provided a new position
towards the global optimum. Next step is to replace the position
of gbest with the position of agbest, thus moving it one step
further towards the global optimum or perhaps moving it away
from a local optimum where it is likely to get stuck. Of course,
no position replacement occurs if agbest has a worse position.
SPSA is given the opportunity to provide this guidance at each

iteration, which can eventually lead the swarm to the global
optimum or a point very close to it. The major difference of our
algorithm from the one summarized above lies in the number
of particles created by SPSA. In this paper, multiple particles
instead of one, each of which is a candidate for being agbest are
put forward as novelty. In the proposed algorithm, SPSA is
applied over the position GB for s times, independently, creating
an ensemble of particles with a variety of positions offering
more diversity starting from this position. The particle agbest
is determined easily after the objective function evaluations for
all alternative particles in the ensemble. Let us denote the
position of agbest by AGB. Now, AGB being an elite position will
compete with GB of gbest, and whichever is the better position
will be eligible to become the new gbest. That is, if AGB scores a
better function evaluation value, then it will replace GB. Note
that this strategy using SPSA only deals with gbest and creates
some competitive particles outside the swarm. Except for this
difference, the internal PSO process is kept the same. Table 3
gives the pseudo code of the proposed algorithm. You can see

Table 2. Pseudo-code of the SPSA algorithm.

Initialize solution vector 1;

Set 𝐴 = 60, 𝛼 = 0.601, and 𝛾 = 0.101;

Set 𝑎 and 𝑐 to values suitable to optimization problem;

for 𝑡 = 1 to 𝑇 do

 Generate d-dimensional Bernoulli distributed

perturbation vector: 𝑡

 Let 𝑎𝑡 = 𝑎 (𝐴 + 𝑡)⁄ and 𝑐𝑡 = 𝑐 𝑡𝛾⁄

 Compute 𝑓(𝑡 + 𝑐𝑡𝑡) and 𝑓(𝑡 − 𝑐𝑡𝑡)

 Compute �̂�𝑡(𝑡) using Equation (10)

 Compute 𝑡+1 using Equation (9)

end

Table 3. Pseudo-code of the SPSA-FPSO algorithm.

Initialize position 𝑋1
𝑖 and velocity 𝑉1

𝑖 of all particles

Define 𝑃𝐵0
𝑖 = 𝑋1

𝑖 , 𝐺𝐵1 = 𝑋1
1; Set size s;

Set 𝐴 = 60, 𝛼 = 0.601, and 𝛾 = 0.101;

Set 𝑎 and 𝑐 to values suitable to optimization problem;

for 𝑡 = 1 to 𝑇 do

 for Each particle in the swarm do

 Evaluate objective function: 𝐸 = 𝑓(𝑋𝑡
𝑖);

 if E is better than 𝑓(𝑃𝐵𝑡−1
𝑖) then

 𝑃𝐵𝑡
𝑖  𝑋𝑡

𝑖;
 end if
 if E is better than 𝑓(𝐺𝐵𝑡) then

 𝐺𝐵𝑡

 𝑋𝑡

𝑖;

 end if

 end

 Let 𝑎𝑡 = 𝑎 (𝐴 + 𝑡)⁄ and 𝑐𝑡 = 𝑐 𝑡𝛾⁄ ;
 Define  = 𝐺𝐵𝑡;
 Set F to an extreme value with respect to optimum of
 the objective function;

 for 𝑘 = 1 to 𝑠 do

 Generate d-dimensional Bernoulli distributed

perturbation vector: 𝑡

 Compute 𝑓(+ 𝑐𝑡𝑡) and 𝑓( − 𝑐𝑡𝑡)

 Compute �̂�𝑡() using Equation (10)

 Compute position of 𝑘thparticle: 𝑌𝑘 =  − 𝑎𝑡�̂�𝑡()

if 𝑓(𝑌𝑘) is better than 𝐹 then

 A𝐺𝐵

 𝑌𝑘 and 𝐹 = 𝑓(𝑌𝑘) ;

 end if

 end

 if 𝑓(𝐴𝐺𝐵) is better than 𝑓(𝐺𝐵𝑡) then

 𝐺𝐵𝑡  𝐴𝐺𝐵;

 end if

 for Each particle in the swarm do

 𝑉𝑡+1
𝑖 = 𝑘𝑤𝑉𝑡

𝑖 + 𝑘𝑝𝑟1(𝑃𝐵𝑡
𝑖 − 𝑋𝑡

𝑖) + 𝑘𝑔𝑟2(𝐺𝐵𝑡 − 𝑋𝑡
𝑖);

 𝐢𝐟 |𝑉𝑡+1
𝑖 | > 𝑉𝑚𝑎𝑥

 𝐭𝐡𝐞𝐧 clamp it to 𝑉𝑚𝑎𝑥
 ;

 end if

 𝑋𝑡+1
𝑖 = 𝑋𝑡

𝑖 + 𝑉𝑡+1
𝑖 ;

 end
end

that the basic steps of both algorithms are included in each
iteration. The innermost loop in the algorithm performs
creating an ensemble of alternative particles by SPSA and
determining agbest in the ensemble. At the beginning of the
SPSA steps of the algorithm, the gain sequences at and ct are
updated accordingly before a new ensemble of alternative
particles is generated.

The idea of using multiple SPSA-generated positions, instead of
one, yields more increased diversity in the search space,
proportional to the size s, thus granting better ability to escape
from local optimum. Recall that SPSA can approach the
optimum value faster than other stochastic optimization
methods by simultaneously perturbing all parameters based on
the approximate gradient of the objective function. The PSO and
similar metaheuristic algorithms using only the exploration
and exploitation ability of the population require a high
computational load per iteration since they have to evaluate the
objective function as many times as the number of individuals
in the population. Therefore, improving metaheuristic
algorithms to reach the optimum value with fewer iterations is
of great importance in practice, especially when the number of
unknowns is very large. Our algorithm uses the fast gradient
approximation (owing to simultaneous perturbations) of the
SPSA in the calculation of a better next position (codebook) for
gbest by making different gradient approximations s times and
selecting the best one. The classical PSO which does not use
gradient information can benefit from this guidance provided
by a reliable gradient approximation. It is obvious that, by
SPSA-FPSO, the optimum solution can be reached with many
fewer iterations due to such a valuable guidance to the gbest,
which is known to be the only guide by the swarm.

3.2 Implementation on codebook optimization

Figure 2 illustrates the block-based lossy image compression
system including the proposed optimization algorithm used for

codebook estimation. At the beginning, the original image data
is converted to a list of vectors based on 4×4 image blocks as
explained in Section 2.1. Then, a separate initial codebook is
prepared for each particle using the standard K-Means
algorithm while velocity of each particle is initialized randomly.
After the initialization, the iterative algorithm given in Table 3
is applied to find the optimal codebook. In each iteration, the
codebook gbest evolved by the PSO rules is passed to the SPSA
algorithm where it produces an ensemble of size s new
codebooks each of which corresponds to an alternative particle.
Among the SPSA generated ensemble, the best one is selected
and recorded as agbest. If the codebook of agbest is better than
that of gbest, then it replaces the poorer codebook. Finally, the
PSO swarm of codebooks are updated by Equations (7) and (8)
for the next iteration. When the iteration number reaches to the
maximum number, the best codebook of the swarm (gbest) is
determined by the SPSA-FPSO. To achieve a lossy compression,
each image block is simply replaced by index of the relevant
codeword in the best codebook. This process results in an
indexed image which is further encoded for a communication
channel by a lossless technique such as arithmetic coding or
Huffman coding. After the encoding process, the best codebook
and the encoded image are sent over the channel. The indexed
image is extracted after channel decoding at the receiver end.
Finally, the reconstructed image is obtained by using the best
codebook.

4 Experimental work

The experimental study presented in this section was
conducted to obtain and compare the performance of codebook
estimation of the base algorithms and the proposed hybrid
algorithm on a test image set. In addition, the effect of s on the
performance of the hybrid algorithm was also investigated.

Figure 2. Block diagram of the VQ-based lossy image compression system using SPSA-FPSO.

4.1 Test images and experimental arrangements

In the experiments, six gray level test images, known from the
image processing research field were used. The test images are
of 256×256 pixels size and show different contrast levels and
degree of detail. Of these, Aerial and Barbara are categorized as
high contrast images. While Cameraman, Lena and Peppers have
a fair contrast, the Clock image presents a low contrast with
uneven distribution of details. To allow visual comparison of
test results, only two representative samples were selected for
the sake of space saving: Lena with medium contrast and Clock
with low contrast and uneven detail distribution. The results
are shown in the Section 4.2.

The experiments were conducted as follows. Each original test
image divided into 4×4 pixel image blocks were converted to a
list of vectors of size 16×1 with 256 gray levels. Thus, each
image consists of 4096 vectors to be quantized and encoded, in
total. A unique initial codebook for each particle in the swarm
was computed by the K-Means algorithm based on the Forgy
selection method [36]. The initial codebooks were also
recorded for using in every run of the algorithms on each test
image. For the PSO and SPSA-FPSO algorithms, all particles’
initial positions and the initial best positions were set to these
initial codebooks. Similarly, the solution vector 1 in the SPSA
algorithm was also initialized to the first recorded codebook.

Since the visual error of the reconstructed image is more
evident at high compression ratios, a codebook size of 8
codewords was preferred in all experiments. This codebook
size corresponds to the image compression ratio of 0.203 bpp.
Therefore, the number of unknowns (i.e., pixel gray level
values) in any codebook was 128 since each codeword has 16
unknown gray levels. Thus, an optimum codebook for any test
image must be found by any algorithm in the 128-dimensional
search space. The MSE given by Equations (1)-(3), between an
original image and its reconstructed form obtained from any
individual codebook C were computed in the optimization
algorithms. Each algorithm tested in the experiments tried to
converge to the optimum codebook with a global minimum
MSE value for each test image. However, when the maximum
number of iterations was reached, the goodness of their
estimation was revealed by the difference between the MSE of
the final codebook they could produce and the global minimum.
For all test runs on all the algorithms, the maximum number of
iterations was determined as T=1500. This number was used as
the single termination rule for every run of an optimization
algorithm as seen in Tables 1-3.

The parameters of the optimization algorithms were chosen as
follows. The number of particles (i.e., size p) in both the PSO and
SPSA-FPSO algorithms was set to 100. The number of
alternative particles in the SPSA-FPSO algorithm was set to
different values of s=1, 3, 10, 25, and 50, for performance
comparisons. The user-defined parameter of 𝑘𝑤 was selected as
0.7 while 𝑘𝑝 and 𝑘𝑔 were determined as 1.0 and 2.0,

respectively. The velocity of the particles was restricted to
𝑉𝑚𝑎𝑥 = 10 for both the PSO and SPSA-FPSO algorithms. For A,
 and  in the SPSA algorithm, the recommended values were
used as 60, 0.602 and 0.101, respectively, while a and c were set
to 15 and 0.25, respectively. Because the last two parameters
must be determined with respect to the optimization problem
and the range of values for the unknowns, they were adjusted
to best values after conducting a series of trial runs. However,
for the SPSA-FPSO algorithm, we needed to dynamically change
the value of a during the iterations to boost the acceleration
ability of the proposed hybrid algorithm. While some smaller

value of a contributes to the acceleration of convergence at
early iterations, a larger value as in the SPSA algorithm
strikingly reduces the probability of getting stuck in a local
minimum in the subsequent iterations. A function of t for a was
determined empirically to use in the SPSA-FPSO algorithm as
given in Equation (13).

 𝑎 = 𝑡 50 + 5⁄ (13)

The equation should be inserted into the pseudo-code in Table
3 before the line where the gain sequences 𝑎𝑡 and 𝑐𝑡 are
computed.

4.2 Test results

Here, the proposed SPSA-FPSO algorithm is compared to the
basic PSO and SPSA algorithms in an experimental framework.
The visual results of the base algorithms and the proposed
algorithm for the two selected test images are shown in Figures
3 and 4 after a test run for each algorithm was completed. For
Lena, when the last iteration was completed, the SPSA and PSO
algorithms reached the unsatisfactory values of MSE=368.7 and
MSE=329.6, respectively while the proposed SPSA-FPSO
algorithm achieved the almost global optimum value of
MSE=323.5 with only three alternative particles (i.e., s=3).
When the low contrast image Clock was used by the algorithms,
the SPSA-FPSO algorithm reached the value of MSE=271.9
which is nearly global minimum again. On the other hand, SPSA
and PSO appeared with MSE=305.9 and MSE=281.9,
respectively at the last iteration, still struggling for the global
optimum. This superiority of the proposed algorithm over the
others can also be visually noticed in the reconstructed images
shown in Figures 3 and 4.

(a)

(b)

(c)

(d)

 Figure 3. Visual comparison of the reconstructed images for
Lena. (a) Original, (b) SPSA result (MSE=368.7), (c) PSO result
(MSE=329.6), and (d) SPSA-FPSO result for s=3 (MSE=322.0).

 The convergence curves of the all algorithms used to estimate
the optimum codebooks for the all test images are shown in
Figure 5. Here, each algorithm was run nine times for each of
the test images. Then, the median value of the nine MSE curves
was computed point by point to obtain an average curve.
Therefore, every curve plotted in Figure 5 is actually a median
average and represents the convergence characteristics of an
algorithm with a fair approximation. The PSO algorithm either
got stuck at a local minimum or fails to complete its
convergence when the maximum number of iterations was
reached for all images except Aerial and Peppers. On the other
hand, the SPSA-FPSO algorithm reached the global minimum or
settled at a very close value for all images except Cameraman.
For this image, the proposed algorithm converged to a nearby
value only with s=50. This is a difficult image for optimization
algorithms used in codebook estimation of block-based
compression. The image contains long strong edges at many

different orientations. This forces the optimization algorithms
to concentrate on those edges, leading to the ignorance of the
rest of the image when MSE is the objective function. As a result,
the algorithms mostly got trapped into a local minimum for this
image. Note that the proposed algorithm converges quickly to
the global minimum even for small values of s (i.e., 3 and 10).
These results prove that the SPSA guidance provided by several
alternative particles increases the diversity of the basic PSO in
the search space and moves gbest to a more efficient position in
each iteration. In short, we can say that SPSA can guide (or
drive) gbest better than PSO can.

The descent rate in the convergence curves of the SPSA-FPSO
algorithm, especially in the early iterations is also remarkable.
Considering only the number of iterations, the proposed
algorithm clearly outperforms the base algorithms in terms of
convergence speed. The fact that SPSA lags far behind other
algorithms in the descent of convergence curves can be
explained by its low exploration effort per iteration (one new
codebook generation only). This algorithm needs more
iterations for convergence, although this does not mean that it
needs more time. On the contrary, it may require less time when
the number of function evaluations is taken into account.
However, it is shown in [35] that the SPSA algorithm fails if the
target function has too many local optima or the number of
unknown parameters is large.

An overview of the results regarding the convergence accuracy
and speed on the test images is given in Table 4. The optimal
MSE values (MSEop) obtained with 𝑁𝐶 = 8 for each image are
appended next to the image name and shown underlined. For
each algorithm, the median of the final MSE values is written in
gray cells. It is seen that SPSA-FPSO can rapidly converge to the
corresponding MSEop for all images except Cameraman.
However, note that all the algorithms fail to reach the MSEop
value of this image due to its characteristics explained above.
To simplify the comparison of the convergence accuracies, a
near optimal MSE value was chosen at 1% above the global
optimum and represented by MSEno. All the median MSE values
that are less than or equal to MSEno (i.e., within 1% tolerance)
were considered accurate and shown in bold. In conclusion, it
can be said that SPSA-FPSO is clearly superior to the base
algorithms when the convergence accuracy is taken into
account. It should also be noticed that the effect of s on the
convergence accuracy of the SPSA-FPSO algorithm is small.
However, the opposite is true when the convergence speed is
concerned. To compare the convergence speeds, the numbers

(a)

(b)

(c)

(d)

Figure 4. Visual comparison of the reconstructed images for
Clock. (a) Original, (b) SPSA result (MSE=302.3), (c) PSO result
(MSE=281.7), and (d) SPSA-FPSO result for s=3 (MSE=271.9).

Table 4. Results of convergence accuracy (final MSE) and iteration number (tno) on test images.

Image name
MSEop

MSEno
SPSA PSO SPSA-FPSO

s=1 s=3 s=10 s=25 s=50

Aerial

518.4
523.6

529.1 523.4 522.6 520.5 519.6 519.6 519.8
- 975 268 149 140 97 89

Clock
271.4
274.1

303.3 280.5 272.5 271.9 274.0 271.9 272.2
- - 412 362 399 218 133

Barbara

338.6
342.0

339.8 342.4 338.9 338.9 338.8 338.7 338.8
934 1500 142 117 67 36 19

Peppers

309.5
312.6

317.2 310.1 309.6 309.6 309.6 309.6 309.8
- 659 375 224 114 71 44

Lena

322.8
326.0

348.8 330.4 323.3 323.4 323.6 323.6 323.6
- - 623 512 253 150 99

Cameraman

405.5
409.6

447.8 423.1 422.7 422.3 423.0 425.2 414.8
- - - - - - -

in the white cells in Table 4 can be used. They are the iteration
numbers, denoted by tno, at which the algorithms reached the
MSEno value for each image. Each tno number is the median of
such iteration numbers found over nine runs. Let us take the
aerial image for example. The table points out that PSO reach
MSEno at 975th iteration while SPSA cannot achieve it in 1500
iterations. The proposed algorithm reaches the same value at

268th, 149th, 140th, 97th and 89th iterations for the values of s =1,
3, 10, 25 and 50, respectively. When all the tno numbers are
examined, it is seen that the SPSA-FPSO algorithm converges
much faster than both PSO and SPSA algorithms for all test
images. Even with 𝑠 =1, the proposed algorithm can reduce the
number of iterations required for the convergence of the PSO
algorithm quite a lot. In addition, the experimental results show

Figure 5. Convergence curves of SPSA-FPSO with different s values (given between parenthesis) on codebook estimation for six

test images (𝑁𝐶 = 8).

that as the number of alternative particles (codebooks)
increases, the speed in iteration axis also increases. This result
clearly indicates the effectiveness of multiple alternative
particles generated by SPSA in our hybrid algorithm for
increasing diversity and providing accurate guidance in a
search space.

4.3 Comparison of computational loads

When computational complexities of optimization algorithms
are compared, considering the number of objective function
evaluations instead of the iteration number at the global
optimum is a more accurate approach. For most algorithms, the
computational cost of a single objective function evaluation is
much heavier than the implementation cost of the optimization
algorithm itself. This is also true for the proposed algorithm and
the base algorithms since MSE computation between an
original image and a reconstructed image by using a codebook
is relatively long. Assuming that the necessary function
evaluations are stored in memory once computed, the PSO
algorithm requires 𝑝 function evaluations while SPSA-FPSO
requires 𝑝 + 3𝑠 evaluations per iteration. Although this
relationship makes SPSA-FPSO seem to be computationally
expensive, the reality is different because SPSA-FPSO
converges earlier by the iteration number. Therefore, it is more
sensible to find the total number of function evaluations that
each algorithm does until it reaches the iteration number 𝑡𝑛𝑜.
Then, the costs of the algorithms can be compared according to
their number of function evaluations. The total number of
function evaluations, denoted by 𝑛𝑓 , for PSO and SPSA-FPSO

until they reach the associated iteration number 𝑡𝑛𝑜 given in
Table 4 is computed by

 𝑛𝑓 = (𝑝 + 3𝑠)𝑡𝑛𝑜 (14)

where 𝑛𝑓 for PSO is found by taking 𝑠 = 0. Let us define

experimental computational advantage as the ratio of the 𝑛𝑓

value for PSO to the 𝑛𝑓 value for SPSA-FPSO. The computational

advantage of SPSA-FPSO over PSO for varying number of
alternative particles are listed in Table 5 where the 𝑛𝑓 value for

PSO on each test image is given next to the image name.
Comparisons were made only for test images where PSO
reached MSEno. One can notice that the computational

advantage is unsuprisingly image dependent and can be up to
order of 30 times.

To investigate the effect of using multiple alternative particles
on the convergence speed in the time dimension, the
computational advantages of SPSA-FPSO with multiple
particles over single particle use were obtained and listed in
Table 6. Here, the 𝑛𝑓 value for 𝑠 = 1 on each test image is given

next to the image name and taken as the reference in the
calculations of the computational advantages. As seen from the
table, the number of multiple alternative particles increases the
computational advantage of SPSA-FPSO (i.e., less run time)
compared to using a single particle. However, the increase in
the computational advantage by the number of alternative
particles can be high or remain within marginal limits
depending on the image content.

4.4 Performance comparison to other metaheuristic
algorithms

Finally, some tests were conducted to compare the
performance of the SPSA-FPSO algorithm with the
performances of other well-known metaheuristic algorithms in
the application of codebook optimization. Bat algorithm (BA),
firefly algorithm (FA), genetic algorithm (GA) and improved
adolescent identity search algorithm (IAISA) were included in
these tests, respectively. The parameters of the SPSA-FPSO
algorithm were kept the same as given in Section 4.1. The tests
were performed by selecting the number of alternative global
particles as 3 and 25. In all algorithms, the population size and
codebook size were fixed as 100 and 8, respectively. The
parameter values of other metaheuristic algorithms were
selected as given in Table 7, which are considered appropriate
in [17] for the codebook optimization problem. Convergence
curves of all algorithms were obtained for the two selected test
images. The results are given in Figure 6. It is seen that SPSA-
FPSO is superior not only to PSO algorithm but also to other
metaheuristic algorithms in terms of both convergence
accuracy and convergence speed.

Table 5. Computational complexity comparison: PSO vs. SPSA-FPSO on the test images.

Image name
PSO
𝑛𝑓

 Computational advantage of SPSA-FPSO over PSO

s=1 s=3 s=10 s=25 s=50

Aerial 97500 3.53 6.00 5.36 5.74 4.38

Barbara 150000 10.26 11.76 17.22 23.81 31.58

Peppers 65900 1.71 2.70 4.45 5.30 5.99

Table 6. Computational complexity comparison: single vs. multiple alternative particles in SPSA-FPSO.

Image name

SPSA-FPSO
(s=1)
𝑛𝑓

Computational advantage of SPSA-FPSO with multiple alternative particles

s=3 s=10 s=25 s=50

Aerial 27604 1.70 1.52 1.63 1.24

Clock 42436 1.08 0.82 1.11 1.28

Barbara 14626 1.15 1.68 2.32 3.08

Peppers 38625 1.58 2.61 3.11 3.51

Lena 64169 1.15 1.95 2.44 2.59

5 Conclusions

The use of VQ offers an effective approach to lossy image

compression by mapping image blocks into codebook vectors,

significantly reducing the image size. Key to the success of VQ-

based compression is the estimation of an optimal codebook,

which directly impacts the quality of the reconstructed image.

Optimal codebook generation through metaheuristic

algorithms has gained significant attention in many research

areas. Although the hybridization of these methods,

particularly in a coupled way to enhance both convergence

speed and accuracy has been applied in various research areas,

it has not received much attention in solving the codebook

estimation problem.

The motivation for this work is to overcome the inherit
diversity limitations of PSO by hybridizing it with SPSA which
can generate new codebooks by fast gradient approximations
to the objective function MSE. In the proposed hybrid
algorithm, the codebook owned by gbest of PSO is passed to the
SPSA algorithm to have it generate an ensemble of s new
codebooks, so-called alternative global codebooks, to guide
gbest further. The best of the alternative codebooks in the
ensemble replaces, (if it is better than) that of gbest to provide
a more efficient guidance to the entire swarm in the next
iteration. The second contribution of this work is the
presentation and discussion of the results obtained from the
first-time application of this high performance optimization
algorithm to codebook estimation in VQ-based lossy image

compression. The results of the experiments conducted on six
test images highlight the superiority of the SPSA-FPSO
algorithm over the base algorithms PSO and SPSA in the context
of VQ-based image compression. By embedding the SPSA
within the PSO framework, the hybrid algorithm successfully
reduces the premature convergence issues typically observed
in PSO, enabling it to escape local minima and reach or
approximate the global minimum. It is shown that the SPSA-
FPSO algorithm increases the diversity by using multiple
alternative codebooks and provides more accurate guidance in
the search space. The algorithm not only achieves lower MSE
values for the test images, but also significantly improves the
convergence speed without sacrificing accuracy. The proposed
algorithm reaches or settles very close to the global minimum
for all test images except a troublesome image. However, the
best performer among the algorithms in competition happens
to be SPSA-FPSO again. Especially in the early iterations, the
speed at which the proposed algorithm approaches the global
minimum is remarkable, which can also make it a good global
optimization partner for a faster local optimizer.

When the computational loads are compared, it is seen that
SPSA-FPSO algorithm requires a smaller number of objective
function evaluations than PSO does and therefore the total
computational cost is lower. However, the computational
advantage offered by the algorithm is data dependent and
cannot be foreseen exactly. Although the computational
advantages experimented from the test images may give a
rough idea, there are also other issues affecting the range of
figures, namely, selection of the initial codebook and
optimization of the algorithm parameters. The experimental
results also show that the number of alternative global
codebooks (i.e., value of s) positively influence the convergence
speed while it has a small or trivial effect on accuracy. However,
the computational advantage gained by increasing the number
of alternative particles can either be significant or minimal,
depending on the image content.

The study concludes that the enhanced convergence features of
SPSA-FPSO make it a promising method for optimizing
codebook in VQ-based lossy image compression tasks. It
outperforms not only the basic PSO but also other well-known
metaheuristic algorithms. Considering that the target of this

Figure 6. Convergence curves of the metaheuristic algorithms for comparison to SPSA-FPSO on codebook estimation for two test
images (𝑁𝐶 = 8).

Table 7. Parameters of the metaheuristic algorithms

Algorithm Parameter values

FA =0.5, γ=0.01, 𝛽0 = 0.9

BA
=0.997, γ=0.996, [min max] frequencies: [0,1]

initial values (random): frequency [0,1], pulse rate
[0.5, 1], loudness [0,1]

GA
crossover rate=10%, mutation rate=3%, selection

method is K-Tournament (K=3)

IASIA
search diameter=0.025,

Chebyshev polynomial degree=3

research is image compression, the results could potentially
pave the way for the utilization of the suggested approach in
related areas that prioritize compression and optimization,
including data compression and signal processing. From a
broader perspective, the findings of this work suggest that the
SPSA-driven PSO algorithm employing an ensemble of
alternative global particles can also be effectively applied to
optimization problems in other research areas, offering a fast
and stable solution especially for complex, high-dimensional
problems.

6 Author contribution statements

In the scope of this study, the first author contributed by
reviewing the literature, forming the methodology, developing
the software, performing formal analysis, and writing the
manuscript. The second author contributed by reviewing the
literature, forming the idea and methodology, supervision of
the experiments, performing data curation, and writing the
manuscript.

7 Ethics committee approval and conflict of
interest statement

There is no need to obtain permission from the ethics
committee for the article prepared. There is no conflict of
interest with any person / institution in the article prepared.

8 References
[1] Gray RM. “Vector Quantization”. IEEE ASSP Magazine,

1(1), 4-29, 1984.
[2] Wu Z, Yu J. “Vector quantization: a review”. Frontiers of

Information Technology & Electronic Engineering, 20(4),
507-524, 2019.

[3] Kumar G, Kumar R. “Analysis of Arithmetic and Huffman
Compression Techniques by Using DWT-DCT.”
International Journal of Image, Graphics and Signal
Processing, 4, 63-70, 2021.

[4] Lu TC, Chang CY. “A Survey of VQ Codebook Generation”.
Journal of Information Hiding and Multimedia Signal
Processing, 1(3), 190-203, 2010.

[5] Yang SB. “Constrained - storage multistage vector
quantization based on genetic algorithms”. Pattern
Recognition, 41(2), 689–700, 2008.

[6] Chiranjeevi K, Jena UR. “Image compression based on
vector quantization using cuckoo search optimization
technique”. Ain Shams Engineering Journal, 9(4), 1417–
1431, 2018.

[7] Tsai CW, Tseng SP, Yang CS, Chiang MC. “Preaco: A fast ant
colony optimization for codebook generation”. Applied
Soft Computing, 13(6), 3008–3020, 2013.

[8] Feng HM, Chen CY, Ye F. “Evolutionary fuzzy particle
swarm optimization vector quantization learning scheme
in image compression”. Expert Systems with Applications,
32(1), 213–222, 2007.

[9] Horng MH. “Vector quantization using the firefly
algorithm for image compression”. Expert Systems with
Applications, 39(1), 1078–1091, 2012.

[10] Guo JR, Wu CY, Huang ZL, Wang FJ, Huang MT. “Vector
quantization image compression algorithm based on bat
algorithm of adaptive separation search”. International
Conference on Advanced Intelligent Systems and
Informatics, Cairo, Egypt, 11-13 December 2021.

[11] Geetha K, Anitha V, Elhoseny M, Kathiresan S,

Shamsolmoali P, Selim MM. “An evolutionary lion

optimization algorithm-based image compression
technique for biomedical applications”. Expert Systems,
38(1), Article e12508, 2021.

[12] Kumari GV, Rao GS, Rao BP. “Flower pollination-based K-
means algorithm for medical image compression”.
International Journal of Advanced Intelligent Paradigms,
18(2), 171–192, 2021

[13] Rahebi J. “Vector quantization using whale optimization
algorithm for digital image compression”. Multimedia
Tools and Applications, 81(14), 20077–20103, 2022.

[14] Althobaiti MM. Crow search algorithm based vector
quantization approach for image compression in 6G
enabled industrial internet of things environment.
Editors: Gupta D, Ragab M, Mansour RF, Khamparia A,
Khanna A. AI-enabled 6G networks and applications, 55–
73, Wiley, 2023.

[15] Nag S. “Vector quantization using the improved
differential evolution algorithm for image compression”.
Genetic Programming and Evolvable Machines, 20, 187–
212, 2019.

[16] Ghadami R, Rahebi J. “Compression of images with a
mathematical approach based on sine and cosine
equations and vector quantization (VQ)”. Soft Computing,
27(22), 17291–17311, 2023.

[17] Kilic I, Cetin M. “Improved adolescent identity search
algorithm for block-based image compression”. Expert
Systems with Applications, 237, 121715, 2024.

[18] Kilic I. “A novel codebook generation by smart fruit fly
algorithm based on exponential flight”. The International
Arab Journal of Information Technology, 20 (4), 584-591,
2023.

[19] Kilic I. “A Levy flight based BAT optimization algorithm for
block-based image compression”. Technicki Glasnik –
Technical Journal, 16 (4), 477-483, 2022.

[20] Spall JC. "Multivariate stochastic approximation using a
simultaneous perturbation gradient approximation". IEEE
Transactions on Automatic Control, 37(3), 332-341, 1992.

[21] Chen S, Mei T, Luo M, Yang X. “Identification of nonlinear
system based on a new hybrid gradient-based PSO
algorithm”. ICIA 2007 International Conference on
Information Acquisition, Jeju City, Korea, 8-11 July 2007.

[22] Kaveh A, Talatahari S. “A hybrid particle swarm and ant
colony optimization for design of truss structures”. Asian
Journal of Civil Engineering, 9(4), 329–48, 2008.

[23] Plevris V, Papadrakakis M. “A hybrid particle swarm-
gradient algorithm for global structural optimization”.
Computer-Aided Civil and Infrastructure Engineering,
26(1), 48-68, 2011.

[24] Cherki I, Chaker A, Djidar Z, Khalfallah N, Benzergua F. “A
sequential hybridization of genetic algorithm and particle
swarm optimization for the optimal reactive power
flow”. Sustainability, 11(14), 3862, 2019.

[25] Seyedpoor SM, Gholizadeh S. Talebian SR. “An efficient
structural optimisation algorithm using a hybrid version
of particle swarm optimisation with simultaneous
perturbation stochastic approximation”. Civil Engineering
and Environmental Systems, 27(4), 295–313, 2010.

[26] Wessels S, van der Haar D. “Using particle swarm
optimization with gradient descent for parameter
learning in convolutional neural networks”. CIARP 25th
Iberoamerican Congress, Porto, Portugal, 2021.

[27] Pujari AK, Veeramachaneni SD. “Gradient based
hybridization of PSO”. CSAI 2023 International Conference
on Computer Science and Artificial Intelligence, Beijing,
China, 8 - 10 December 2023.

[28] Barroso ES, Parente JE, Cartaxo de Melo AM. “A hybrid
PSO-GA algorithm for optimization of laminated
composites”. Structural and Multidisciplinary
Optimization, 55(6), 2111–2130, 2017.

[29] Parouha RP, Verma P. “Design and applications of an
advanced hybrid meta-heuristic algorithm for
optimization problems”. Artificial Intelligence Review, 54,
5931–6010, 2021.

[30] Shankar T, Shanmugavel S, Rajesh A. “Hybrid HSA and PSO
algorithm for energy efficient cluster head selection in
wireless sensor networks”. Swarm and Evolutionary
Computation, 30, 1–10, 2016.

[31] Chegini SN, Bagheri A, Najafi F. “PSOSCALF: A new hybrid
PSO based on Sine and Cosine Algorithm and Levy Flight
for solving optimization problems”. Applied Soft
Computing, 73, 697-726, 2018.

[32] Şenel FA, Gokce F, Yuksel AS, Yigit T. “A novel hybrid PSO–
GWO algorithm for optimization problems”. Engineering
with Computers, 35(4), 1359–1373, 2019.

[33] Kaya S, Karaçı̇zmeli ̇İH, Aydilek İB, Tenekeci ME, Gümüşçü
A. “The effects of initial populations in the solution of flow
shop scheduling problems by hybrid firefly and particle
swarm optimization algorithms”. Pamukkale University
Journal of Engineering Science, 26(1), 140–149, 2020.

[34] Qiao J, Wang G, Yang Z, Luo X, Chen J, Li K, Li P. “A hybrid

particle swarm optimization algorithm for solving

engineering problem”. Scientific Reports, 14(1), 8357,
2024.

[35] Kiranyaz S, Ince T, Gabbouj M. “Stochastic approximation
driven particle swarm optimization with simultaneous
perturbation – Who will guide the guide?”. Applied Soft
Computing, 11(2), 2334–2347, 2011.

[36] Lloyd SP. “Least squares quantization in PCM”. IEEE
Transactions on information theory, IT-28 (2), 129-137,
1982.

[37] Pena JM, Lozano JA. Larranage P. “An empirical
comparison of four initialization methods for the K-Means
algorithm”. Pattern Recognition Letters, 20, 1027-1040,
1999.

[38] Kennedy J, Eberhart R. “Particle swarm optimization”.
IEEE International Conference on Neural Networks,
Australia, 27 November - 1 December 1995.

[39] Shi Y, Eberhart R. “A modified particle swarm optimizer”.
IEEE Congress on Evolutionary Computation, 4-9 May
1998.

[40] Gad AG. “Particle Swarm Optimization algorithm and its
applications: A systematic review”. Archives of
Computational Methods in Engineering, 29, 2531–2561,
2022.

[41] Spall JC. “Implementation of the simultaneous

perturbation algorithm for stochastic optimization”. IEEE

Transactions on Aerospace and Electronics Systems, 34(3),

817-823, 1998.

