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Abstract  Öz 

Image compression plays a crucial role in reducing storage 
requirements and improving transmission efficiency. The effectiveness 
of lossy image compression using vector quantization (VQ) heavily 
depends on the quality of codebook generation, which is inherently an 
optimization problem. In this paper, a coupled hybrid algorithm 
integrating Simultaneous Perturbation Stochastic Approximation 
(SPSA) into Particle Swarm Optimization (PSO) is proposed to enhance 
both the convergence speed and codebook quality in vector 
quantization. The novel SPSA-FPSO algorithm, by generating multiple 
alternative codebooks at each iteration and selecting the best, 
successfully avoids local minima and achieves faster convergence. 
Experimental results, conducted on standard gray-level images of 
various contrast levels, demonstrate that the proposed SPSA-FPSO 
algorithm outperforms both basic PSO and SPSA algorithms in terms of 
lower mean square error (MSE) and higher convergence speeds, 
establishing its superiority for VQ-based image compression tasks. This 
superiority is also shown to be valid when compared to other 
metaheuristic algorithms. 

 Görüntü sıkıştırma, depolama gereksinimlerini azaltmak ve iletim 
verimliliğini artırmak açısından büyük bir öneme sahiptir. Vektör 
nicemleme (VN) tabanlı kayıplı görüntü sıkıştırmanın başarısı, esasen 
bir optimizasyon problemi olan kod tablosu üretiminin kalitesine 
bağlıdır. Bu makalede, hem algoritmanın yakınsama hızını hem de VN 
kod tablosunun kalitesini artırmak için Eşzamanlı Pertürbasyon 
Stokastik Yaklaşımı (EPSY) tekniğini Parçacık Sürü Optimizasyonu 
(PSO) ile bütünleştiren hibrit bir algoritma önerilmektedir. Önerilen 
EPSY-HPSO algoritması, her iterasyonda birden fazla alternatif kod 
kitabı üreterek en iyisini seçmekte ve yerel minimum noktalarından 
kaçınarak daha hızlı bir yakınsama sağlamaktadır. Farklı kontrast 
seviyelerine sahip standart gri seviye görüntüler üzerinde 
gerçekleştirilen deneysel sonuçlar, EPSY-HPSO algoritmasının hem 
ortalama kare hata (OKH) değerlerini düşürme hem de daha yüksek 
yakınsama hızları açısından klasik PSO ve EPSY algoritmalarından 
daha başarılı olduğunu göstererek VN tabanlı görüntü sıkıştırmadaki 
üstünlüğünü kanıtlamaktadır. Bu üstünlüğün diğer metasezgisel 
algoritmalarla karşılaştırıldığında da geçerli olduğu gösterilmektedir. 

Keywords: Image compression, Metaheuristic algorithms, Vector 
Quantization, Codebook generation, PSO, SPSA 

 Anahtar kelimeler: Görüntü sıkıştırma, Metasezgisel algoritmalar, 
Vektör Nicemleme, Kod tablosu üretimi, PSO, EPSY 

1 Introduction 

Digital image compression is a process which aims at reducing 
the size of a digital image for both storage and transmission 
purposes. Compressed images require less information storage 
capacity on storage devices, while allowing lower bandwidth 
and less time duration to transmit them over a communication 
channel. With the help of digital image compression algorithms, 
all digital devices using image data are today able to handle 
high-resolution large-size digital images in a more efficient 
manner. 

Vector quantization (VQ) [1],[2] is a widely used quantization 
technique in lossy signal processing, information classification, 
pattern recognition and feature extraction. In lossy image 
compression, small image blocks in a whole image are grouped 
based on their similarity. The VQ algorithm reduces the image 
size by mapping blocks in an image into a set of vectors. In 
implementation, after the division of the image into small 
blocks, each block is converted to a vector. Similar vectors form 
a cluster centered at a codeword vector. All codeword vectors 
of the image form a list called codebook. All image vectors are 
assigned to the codeword, which is the most similar in the 
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codebook, and represented by their addresses in the codebook 
instead of the vector itself. Therefore, a compression is 
obtained, and the image size is reduced. The codebook 
including a number of codewords must be estimated to 
represent the entire image as close to its original as possible. 

Better codebook estimation is a crucial task for improving the 
performance and efficiency of the image compression 
algorithms. Usually, arithmetic coding and Huffman algorithm 
[3] are opted for a lossless image compression process. 
However, arithmetic coding necessitates extensive probability 
distribution tables to define symbol codes, and the frequency-
based code definitions in Huffman coding significantly impact 
compression efficiency. Due to these limitations, alternative 
lossy compression techniques have become more popular and 
achieve higher compression ratios. In VQ-based compression 
methods, codebook estimation has a great effect on the 
performance [4]. Here, better grouping the image blocks 
directly decreases the error of the reconstructed image. 
Therefore, finding the optimal codebook can be viewed as an 
optimization problem. Codebook optimization increases the 
quality of the reconstructed image at the same compression 
ratios. The use of metaheuristics for codebook generation has 



 

 

become more popular recently. The goal of those optimization 
algorithms is to find better individuals for representing the 
optimum codebook. There are many metaheuristic methods in 
the literature presented to solve the codebook estimation 
problem in VQ. Some of them are genetic algorithm [5], cuckoo 
search algorithm [6], ant colony optimization [7], particle 
swarm optimization [8], firefly optimization algorithm [9], bat 
algorithm [10], lion optimization algorithm [11], flower 
pollination algorithm [12], whale optimization algorithm [13], 
and crow search algorithm [14]. There are also some 
metaheuristic methods enhanced by useful techniques to 
increase their performances for optimal codebook estimation 
such as improved differential evaluation algorithm [15], 
improved sine–cosine algorithm [16], improved adolescent 
identity search algorithm [17], smart fruit fly optimization 
algorithm [18] and Levy flight based bat algorithm [19]. A can 
finally be added to A new Some of these metaheuristic 
optimization algorithms use the K-Means technique to find 
initial codebooks before starting the main optimization 
process.  

Simultaneous perturbation stochastic approximation (SPSA) is 
an optimization algorithm developed for difficult multivariate 
optimization problems [20]. The gradient approximation of an 
optimization problem is the primary benefit of the SPSA. The 
algorithm needs only two evaluations of the objective function 
per iteration to estimate the unknown parameters regardless of 
the dimension of the optimization problem. Therefore, the SPSA 
has a superior performance for estimating the gradient value 
without direct gradient information. This property makes it 
favourable to use in many optimization problems including 
signal and image processing, feedback control, statistical 
parameter estimation, and simulation-based optimization. 

Particle swarm optimization (PSO) is a population (or swarm) 
based optimization algorithm using stochastic search. It was 
inspired by the social behavior of animals and relies on the 
assumption that social exchange of information among 
individuals could lead to evolutionary distinction. Each particle 
in the swarm represents an individual of the population. PSO is 
one of the best known and commonly used meta-heuristic 
algorithms. But it has two major drawbacks. First, the basic 
algorithm has a relatively slow progress towards optimal or 
near optimal solutions, especially when the problem domain 
has a search space of high dimension. Moreover, the position 
update strategy of the particles, that depends strongly on the 
global best (gbest) particle, has also adverse effects on the 
algorithm performance. In PSO, gbest inherently guides the rest 
of the swarm. Unfortunately, this causes the swarm to become 
more similar to this guiding particle, bringing with it some loss 
of diversity in the search space. It is exactly this phenomenon 
that increases the probability of premature convergence and 
getting trapped in local minima. To avoid these drawbacks and 
improve the overall performance of the PSO algorithm, many 
hybrid schemes are proposed in the literature. Some examples 
of such schemes are given as follows. Chen et al. [21] propose a 
local search method based on the conjugate gradient in 
combination with the PSO for the identification of nonlinear 
systems. A hybrid PSO and ant colony optimization [22] is 
proposed to solve the problem of designing truss structures. A 
quasi-Newton sequential quadratic programming method for 
local search is combined with the PSO algorithm in [23] to solve 
structural optimization problems. Cherki et al. [24] use a 
sequential combination of GA and PSO to solve the problem of 
the optimal power flow on electrical networks. Seyedpoora et 
al. [25] propose a preliminary optimization using SPSA 

followed by PSO. In their scheme, many copies of the result 
provided by SPSA are appended to the usual randomized initial 
swarm for the PSO algorithm. This process produces an 
efficient hybrid initial swarm. Therein it is shown that their 
hybrid algorithm performs well in solving structural 
optimization problems. In another study [26], combining PSO 
with gradient-based methods for optimizing convolutional 
neural networks is explored. Following some performance 
comparisons in their research, the results come out generally in 
favor of conventional gradient-based methods rather than the 
hybridization of PSO.  

The hybrid algorithms given above combine two among many 
optimization algorithms in a way to apply them sequentially 
and are classified in a decoupled hybridization type. 
Alternatively, the PSO has been hybridized with several popular 
metaheuristics and mathematical solvers such as gradient-
oriented schemes [27] in a coupled way. Hybridization with the 
genetic algorithm [28], the differential evolution algorithm 
[29], the harmony search algorithm [30], the sine–cosine 
algorithm [31], the gray wolf algorithm [32], the firefly 
algorithm [33], and finally both whale and differential evolution 
algorithms (multiple hybridization) [34] can be given as some 
other examples of the second type. It appears that more 
research focuses on the coupled hybridization because its 
designs significantly affect the performance of the base 
algorithms. As a result, its implementations have shown 
enhancements in the quality of the optimization results. 

Another coupled hybridization of PSO to avoid its drawbacks is 
given by Kiranyaz et al. [35]. They propose two algorithms in 
which SPSA is embedded inside PSO to guide the swarm. They 
use a generic name stochastic approximation driven PSO (SAD 
PSO) for their algorithms. In their first algorithm, gbest is 
updated (or guided) only by SPSA with the ability for gradient 
estimation of the objective function while other particles are 
updated as usual at every PSO iteration. Their second algorithm 
utilizes the information of a special particle which is not in the 
swarm, so-called alternative global best particle. The position 
of this particle is computed by guiding gbest with SPSA. The 
decision is made based on a competition between the two. The 
winner replaces the particle gbest to provide better guidance to 
the swarm in the next iteration.      

The use of metaheuristic methods for VQ-based image 
compression has been limited to the use of base algorithms 
alone. With a single base algorithm, the optimum codebook 
estimation process can get stuck at local optima, resulting in 
compressed images with worse visual quality than the 
optimum level. Even in cases where local optima can be escaped 
from, the number of iterations required to reach the global 
optimum is quite large, overshadowing the practical 
importance of the algorithm for codebook optimization. The 
motivation of this work is to improve the accuracy and speed 
performance of a metaheuristic method for the codebook 
estimation problem by using a hybridization approach. PSO 
was chosen as the metaheuristic base algorithm since it is a 
well-known optimization algorithm. The inspiration for 
developing our optimization algorithm is the second SAD PSO 
algorithm in [35]. Although their hybrid algorithm provided 
performance improvement over PSO, it can be further 
improved in terms of the quality of the guidance given by SPSA 
for both increasing diversity in the search space and speeding 
up the convergence. In this paper, we first propose an extended 
algorithm. The proposed algorithm computes multiple SPSA 
gradient approximations instead of one per iteration and 



 

 

selects the best one to find a better next position (codebook) for 
gbest. This extension can also be stated as using multiple 
alternative global particles instead of one in the previous 
algorithm. Additionally, the gain parameter a of the SPSA 
algorithm is increased dynamically through the iterations in the 
proposed algorithm. This novelty results in further 
performance increase. The proposed extended algorithm will 
be referred to as SPSA-driven fast PSO (SPSA-FPSO) from here 
on to emphasize the guidance role of SPSA in the basic PSO and 
the acceleration provided in the convergence speed. Second 
major contribution of this work is the presentation and 
discussion of the results obtained from the first-time 
application of this high performance algorithm to codebook 
estimation in VQ-based image compression. Unlike the PSO 
algorithm's frequent result of getting trapped in local optima, 
the proposed SPSA-FPSO algorithm is capable of escaping from 
local optima and always reaches or approximates the global 
optimum.   

This paper is organized as follows. Section 2 introduces the K-
Means algorithm for VQ, the basic PSO algorithm, and the SPSA 
algorithm. The proposed algorithm and its application to image 
compression based on VQ are presented in Section 3. The 
experimental results over mean square error (MSE) 
minimization between the reconstructed images and the 
originals are given in Section 4. Finally, Section 5 provides a 
summary of the concluding remarks. 

2 Related methods 

In this section, the K-Means algorithm for VQ that produces 
initial codebooks for all optimization algorithms, the PSO 
algorithm and the SPSA algorithm are explained, respectively, 
in detail. 

2.1 K-Means algorithm for vector quantization  

The K-Means algorithm is a plain and well-known clustering 
technique used in many application areas including Vector 
Quantization. The algorithm aims to partition the whole data 
into “k” Voronoi cells. K-Means algorithm can be used to cluster 
data vectors converted from small image blocks. It is one of the 
most favorite choices for generating codebooks in VQ due to its 
simplicity and fair image representation ability. The most 
common version of the K-Means technique is known as Lloyd-
Forgy algorithm which begins by Forgy initialization [36],[37]. 
The initial codewords are selected randomly from the original 
image blocks by Lloyd-Forgy method. The technique aims to 
find an optimum codebook that consists of codeword vectors 
list representing the image data best. The K-Means technique 
starts its process by dividing the original input image into sub-
blocks. Consider the original image Y={Xij} comprises N×N 
pixels and is divided into sub-blocks of size m×m pixels. The 

number of sub-blocks is determined by Nb = (
𝑁

𝑚
×

𝑁

𝑚
). All image 

data is represented by a set of image vectors X = {𝑥𝑖 , i = 1,2, . . . , 
Nb }. Let the variable L represents the size of the blocks, where 

L=m×m pixels. Therefore, each sub-block 𝑥𝑖  is defined within 
an L-dimensional Euclidean space, denoted as 𝑥𝑖L. Then, a 
codebook of Nc codewords, C={c1,c2,…,cNc}, 𝑐𝑗L , j=1,2,..,Nc 

represents the original image. Each image vector is denoted as 
a row vector by 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, … , 𝑥𝑖𝐿) and the jth codeword 

in C is denoted by 𝑐𝑗 = (𝑐𝑗1, 𝑐𝑗2, 𝑐𝑗3, … , 𝑐𝑗𝐿). The K-Means 

algorithm maps each original image block to a codeword by 
using minimum square error (MSE) criteria through a number 
of iterations. Once the algorithm finishes, the index number of 
the related codeword is used instead of the image block itself to 

represent the data in a block. Thus, a VQ-based image 
compression is achieved by forming the vectors of C that 
minimize the MSE value given in Equations (1)-(3).  

MSE(C) =
1

𝑁𝑏
∑∑𝑖𝑗‖𝑥𝑖 − 𝑐𝑗‖

2

𝑁𝑏

𝑖=1

𝑁𝑐

𝑗=1

 (1) 

∑
𝑖𝑗

= 1 , 𝑖 {1, 2, … , 𝑁𝑏}

𝑁𝑐

𝐽=1

 (2) 

𝑖𝑗 = {
  1 , if 𝑥𝑖  is in the 𝑗th cluster
 0 , otherwise                       

 (3) 

The Euclidean distance D between the ith image block and jth 

codeword is defined by ‖𝑥𝑖 − 𝑐𝑗‖.  

The two rules specified by Equation (4) and Equation (5) are 
applied by the K-Means algorithm. The group of image vectors 
(𝑅𝑗 , j=1,2, … Nc) must satisfy the distance condition  

 𝑅𝑗 {𝑥𝑋: 𝐷(𝑥, 𝑐𝑗) <  𝐷(𝑥, 𝑐𝑘),𝑘𝑗}. (4) 

The center of 𝑅𝑗 denoted by 𝑐𝑗 is calculated using 

𝑐𝑗 =
1

𝑁𝑗
∑ 𝑥𝑖 ,           𝑥𝑖 𝑅𝑗    

𝑁𝑗

𝑖=1
 (5) 

where Nj is the number of elements in 𝑅𝑗 . Let the image vectors 

be 𝑥𝑖 , i = 1,2, …, Nb, and the initial codewords determined by the 
Forgy method are cj(0), j = 1, 2,…,Nc. Then, the K-Means 
algorithm applies the four steps given below to determine a 
suboptimal codebook that is used by an optimization algorithm.  

Step 1: Select the number of Nc cluster centers from the original 
image blocks randomly. This process is named as Forgy 
method,  

Step 2: Assign the original image blocks to the corresponding 
cluster center ij using Euclidean distance criteria. The centers 
of clusters are saved in an indicator matrix with size of Nb×Nc 

pixels. 

𝑖𝑗 = {
 1,   if  𝐷 (𝑥𝑖 , 𝑐𝑗(𝑘)) = min𝐷 (𝑥𝑖 , 𝑐𝑗(𝑘))

0,                                              otherwise   
 (6) 

Step 3: Calculate the new cluster centers given by 
Equation (4). 

 

Step 4: Execute the Equations (4) and (6) sequentially until the 
cluster centers of cj do not change. 

The codebook structure and image reconstruction are shown in 
Figure 1. 

2.2 PSO algorithm  

The Particle Swarm Optimization (PSO) is a population-based 
metaheuristic algorithm inspired by the social behavior of 
animals like birds flocking, fish schooling, and insect swarming. 
The PSO was introduced by Kennedy and Eberhart in 1995 [38]. 
It is simpler to implement than other metaheuristic and 
evolutionary algorithms and requires only a few parameters to 
be tuned. The PSO was modified by Shi and Eberhart [39] and 
applied to a broad spectrum of optimization problems [40].  

All optimization problems require evaluations of their own 
objective functions by the solver algorithms to reach the global 



 

 

optimum solution of the unknown parameters in an iterative 
manner. An individual of the PSO algorithm is represented by a 
particle resembling for example, a migratory bird who has its 
own position and velocity in the swarm. The position of each 
particle is viewed as a potential solution to the optimization 
problem while its velocity indicates the distance it will move in 
the next iteration. Consequently, the velocity and position of 
each particle are updated after each iteration to adjust the 
parameters and achieve the global best position. The PSO 
algorithm inherently achieves both global and local searches. 
The best position of each particle in the swarm is denoted by 
𝑃𝐵𝑖  (𝑖 = 1,2, … , 𝑝) where i indicates the particle number and p 
is the size of the swarm. The best position of the population 
(that is of gbest) is denoted by 𝐺𝐵 that is recorded along the 
iterations. At the beginning, the position and velocity of each 
particle in the swarm are initialized to random values from the 
search space of the problem solution. In an iteration t, the PSO 
algorithm determines the direction of each particle in the 
swarm using the velocity and position equations expressed by 
Equations 7 and 8, respectively, where 𝑡 + 1 points to the next 
iteration.   

𝑉𝑡+1
𝑖 = 𝑘𝑤𝑉𝑡

𝑖 + 𝑘𝑝𝑟1(𝑃𝐵𝑡
𝑖 − 𝑋𝑡

𝑖) + 𝑘𝑔𝑟2(𝐺𝐵𝑡 − 𝑋𝑡
𝑖) (7) 

𝑋𝑡+1
𝑖 = 𝑋𝑡

𝑖 + 𝑉𝑡+1
𝑖  (8) 

Here, X and V represent the position and the velocity of the 
particle, respectively, in the multidimensional search space. 

The last two terms in Equation 7 are called cognitive and social 
components, respectively, that contribute to the velocity and 
position updates of each particle for the next iteration. The 

constant kw is a user defined value called inertia weight [38]. 

The others, kp and kg are acceleration constants which 
determine the degree of influence from the particle’s own best 
experience and current global best particle in the swarm. 
Finally, 𝑟1 and 𝑟2 are two independent random numbers having 
uniform distribution in the interval of [0,1]. The pseudo code of 
the standard PSO algorithm is given in Table 1 where T is the 
maximum number of iterations chosen as the termination 

criterion and 𝑓(𝑋𝑖) is the evaluation result of the objective 

function for the position of particle i. The optimal solution is 
equal to GB when the algorithm stops. Recall that the objective 
function in our problem is MSE between the reconstructed 
image obtained by the codebook list {𝑋𝑖; 𝑖 = 1,2, … , 𝑝 } and the 
original image. The pseudo-code of the PSO algorithm is given 
in Table 1.   

2.3 Simultaneous perturbation stochastic approximation 
algorithm 

Gradient-based optimization algorithms suppose that 
information exists about the gradient of the objective function 
to optimize the parameters. But in many real-world 
optimization problems, gradient cannot be computed or 
observed directly. This difficulty led to the development of 
stochastic approximation (SA) algorithms. They rely on an 
approximation to the gradient that is achieved by only 
measurements of the objective function in a stochastic setting. 
Convergence properties of many such gradient-free stochastic 
algorithms are similar to those of the gradient-based 
algorithms [41]. SPSA is a stochastic optimization 
algorithm produced by Spall [20]. The SPSA algorithm has a 
superior feature to the other optimization methods. This 
feature is estimating the gradient function value when the exact 
gradient is not available for the objective function. Therefore, 
the SPSA technique increases the quality of the unknown 
parameters by estimating the gradient of the objective function 
and using it to update the unknown parameters.  

All deterministic multivariate optimization algorithms aim at 
minimizing a differentiable objective function 𝑓() by 
searching for zero-gradient point. When gradient g of the 
function cannot be directly computed in implementations (e.g., 
in many real-world problems), the SA algorithms can be used 
alternatively to update the solution vector 𝑡 in d-dimensional 
search space by 

𝑡+1 = 𝑡 − 𝑎𝑡�̂�𝑡(𝑡) (9) 

Table 1. Pseudo-code of the basic PSO algorithm.  

Initialize position 𝑋1
𝑖  and velocity 𝑉1

𝑖 of all particles 
Define 𝑃𝐵0

𝑖 = 𝑋1
𝑖 ,   𝐺𝐵1 = 𝑋1

1;  

for  𝑡 = 1 to 𝑇  do 

      for Each particle in the swarm do 

             Evaluate objective function:  𝐸 = 𝑓(𝑋𝑡
𝑖); 

             if  E is better than 𝑓(𝑃𝐵𝑡−1
𝑖 )   then 

                    𝑃𝐵𝑡
𝑖   𝑋𝑡

𝑖;                
             end if 
             if  E is better than 𝑓(𝐺𝐵𝑡)   then 

                     𝐺𝐵𝑡  
 
 𝑋𝑡

𝑖;                
             end if 
      end 
      for Each particle in the swarm do 

             𝑉𝑡+1
𝑖 = 𝑘𝑤𝑉𝑡

𝑖 + 𝑘𝑝𝑟1(𝑃𝐵𝑡
𝑖 − 𝑋𝑡

𝑖) + 𝑘𝑔𝑟2(𝐺𝐵𝑡 − 𝑋𝑡
𝑖); 

             𝐢𝐟 |𝑉𝑡+1
𝑖 | > 𝑉𝑚𝑎𝑥

   𝐭𝐡𝐞𝐧 clamp it to 𝑉𝑚𝑎𝑥
 ;   𝐞𝐧𝐝 𝐢𝐟 

            𝑋𝑡+1
𝑖 = 𝑋𝑡

𝑖 + 𝑉𝑡+1
𝑖 ; 

      end  
end 

 

 
Figure 1. Original image blocks, codebook structure and reconstructed image structure of VQ [17]. 

 
 



 

 

where, �̂�𝑡  is an approximation to the gradient vector g at 
iteration t and 𝑎𝑡 is a scalar gain sequence that has to meet 
certain conditions [20]. The approximation to the gradient 
vector is obtained using simultaneous random perturbations 
and two measurements of the objective function by 

 

�̂�𝑡(𝑡) =
𝑓(𝑡 + 𝑐𝑡𝑡) − 𝑓(𝑡 − 𝑐𝑡𝑡)

2𝑐𝑡

[
 
 
 
 
 
 
𝑡,1

−1

𝑡,2
−1

.

.

.
𝑡,𝑑

−1
]
 
 
 
 
 
 

 (10) 

where each element 𝑡,𝑖  of the vector 𝑡, takes on a value of +1 

or -1, as generated by a zero-mean Bernoulli distribution, and 
𝑐𝑡 is a positive gain sequence. Both gain sequences are 
computed as follows.     

          𝑎𝑡 = 𝑎 (𝐴 + 𝑡)⁄  (11) 

 𝑐𝑡 = 𝑐 𝑡𝛾⁄      (12) 

These equations introduce five SPSA constants. In [41], Spall 
recommends using the following values for the three of them: 
the stability constant 𝐴 = 60,  𝛼 = 0.602, and 𝛾 = 0.101. 
However, he deduces that the performance of the SPSA is very 
sensitive to the choice of both gain sequences. He adds that this 
problem occurs in other stochastic optimization algorithms as 
well, due to their own coefficients. Therefore, it is left to 
researchers to find suitable values for the constants a and c 
according to the optimization problem to be tackled. The 
pseudo-code of the SPSA algorithm is given in Table 2. 

3 The proposed algorithm and its 
implementation on codebook optimization 

3.1 The proposed algorithm: SPSA-FPSO 

The algorithm proposed in this paper has an embedded 
structure where the SPSA algorithm performs a guidance task 
for the particle gbest only in the swarm of PSO. Thus, the 
combined process should be considered as a single algorithm in 
its own. The proposed algorithm is inspired from [35] where 
the SPSA process creates an alternative global best (agbest) 
particle from the positon of the particle gbest.  If the position of 
agbest gives a better objective function value than that of the 
gbest, then it is accepted that SPSA provided a new position 
towards the global optimum. Next step is to replace the position 
of gbest with the position of agbest, thus moving it one step 
further towards the global optimum or perhaps moving it away 
from a local optimum where it is likely to get stuck. Of course, 
no position replacement occurs if agbest has a worse position. 
SPSA is given the opportunity to provide this guidance at each 

iteration, which can eventually lead the swarm to the global 
optimum or a point very close to it. The major difference of our 
algorithm from the one summarized above lies in the number 
of particles created by SPSA. In this paper, multiple particles 
instead of one, each of which is a candidate for being agbest are 
put forward as novelty. In the proposed algorithm, SPSA is 
applied over the position GB for s times, independently, creating 
an ensemble of particles with a variety of positions offering 
more diversity starting from this position. The particle agbest 
is determined easily after the objective function evaluations for 
all alternative particles in the ensemble. Let us denote the 
position of agbest by AGB. Now, AGB being an elite position will 
compete with GB of gbest, and whichever is the better position 
will be eligible to become the new gbest. That is, if AGB scores a 
better function evaluation value, then it will replace GB. Note 
that this strategy using SPSA only deals with gbest and creates 
some competitive particles outside the swarm. Except for this 
difference, the internal PSO process is kept the same. Table 3 
gives the pseudo code of the proposed algorithm. You can see 

Table 2. Pseudo-code of the SPSA algorithm.  

Initialize solution vector 1;  

Set 𝐴 = 60, 𝛼 = 0.601, and  𝛾 = 0.101; 

Set 𝑎 and 𝑐 to values suitable to optimization problem; 

for  𝑡 = 1 to 𝑇  do 

 Generate d-dimensional Bernoulli distributed       

perturbation vector:  𝑡  

 Let 𝑎𝑡 = 𝑎 (𝐴 + 𝑡)⁄  and 𝑐𝑡 = 𝑐 𝑡𝛾⁄  

 Compute  𝑓(𝑡 + 𝑐𝑡𝑡) and 𝑓(𝑡 − 𝑐𝑡𝑡) 

 Compute �̂�𝑡(𝑡)  using Equation (10) 

 Compute 𝑡+1 using Equation (9) 

end 

 

Table 3. Pseudo-code of the SPSA-FPSO algorithm.  

Initialize position 𝑋1
𝑖  and velocity 𝑉1

𝑖 of all particles 

Define 𝑃𝐵0
𝑖 = 𝑋1

𝑖 ,   𝐺𝐵1 = 𝑋1
1;   Set size s; 

Set 𝐴 = 60, 𝛼 = 0.601, and  𝛾 = 0.101;  

Set 𝑎 and 𝑐 to values suitable to optimization problem; 

for  𝑡 = 1 to 𝑇  do 

      for Each particle in the swarm do 

             Evaluate objective function:  𝐸 = 𝑓(𝑋𝑡
𝑖); 

             if  E is better than 𝑓(𝑃𝐵𝑡−1
𝑖 )   then 

                    𝑃𝐵𝑡
𝑖   𝑋𝑡

𝑖;                
             end if 
             if  E is better than 𝑓(𝐺𝐵𝑡)   then 

                     𝐺𝐵𝑡  
 
 𝑋𝑡

𝑖;                

             end if 

      end 

      Let 𝑎𝑡 = 𝑎 (𝐴 + 𝑡)⁄  and 𝑐𝑡 = 𝑐 𝑡𝛾⁄ ; 
      Define  = 𝐺𝐵𝑡; 
      Set F to an extreme value with respect to optimum of  
      the objective function;   

      for  𝑘 = 1 to 𝑠  do 

 Generate d-dimensional Bernoulli distributed       

perturbation vector:  𝑡  

 Compute  𝑓(+ 𝑐𝑡𝑡) and 𝑓( − 𝑐𝑡𝑡) 

 Compute �̂�𝑡()  using Equation (10) 

 Compute position of 𝑘thparticle: 𝑌𝑘 =  − 𝑎𝑡�̂�𝑡()          

if  𝑓(𝑌𝑘) is better than 𝐹  then 

                 A𝐺𝐵 
 
 𝑌𝑘  and  𝐹 = 𝑓(𝑌𝑘) ;                

       end if 

  end 

  if  𝑓(𝐴𝐺𝐵) is better than 𝑓(𝐺𝐵𝑡)   then 

               𝐺𝐵𝑡    𝐴𝐺𝐵;                 

       end if 

       for Each particle in the swarm do 

             𝑉𝑡+1
𝑖 = 𝑘𝑤𝑉𝑡

𝑖 + 𝑘𝑝𝑟1(𝑃𝐵𝑡
𝑖 − 𝑋𝑡

𝑖) + 𝑘𝑔𝑟2(𝐺𝐵𝑡 − 𝑋𝑡
𝑖); 

             𝐢𝐟 |𝑉𝑡+1
𝑖 | > 𝑉𝑚𝑎𝑥

   𝐭𝐡𝐞𝐧 clamp it to 𝑉𝑚𝑎𝑥
 ;   

             end if  

            𝑋𝑡+1
𝑖 = 𝑋𝑡

𝑖 + 𝑉𝑡+1
𝑖 ; 

       end  
end 

 



 

 

that the basic steps of both algorithms are included in each 
iteration. The innermost loop in the algorithm performs 
creating an ensemble of alternative particles by SPSA and 
determining agbest in the ensemble. At the beginning of the 
SPSA steps of the algorithm, the gain sequences at and ct are 
updated accordingly before a new ensemble of alternative 
particles is generated.  

The idea of using multiple SPSA-generated positions, instead of 
one, yields more increased diversity in the search space, 
proportional to the size s, thus granting better ability to escape 
from local optimum. Recall that SPSA can approach the 
optimum value faster than other stochastic optimization 
methods by simultaneously perturbing all parameters based on 
the approximate gradient of the objective function. The PSO and 
similar metaheuristic algorithms using only the exploration 
and exploitation ability of the population require a high 
computational load per iteration since they have to evaluate the 
objective function as many times as the number of individuals 
in the population. Therefore, improving metaheuristic 
algorithms to reach the optimum value with fewer iterations is 
of great importance in practice, especially when the number of 
unknowns is very large. Our algorithm uses the fast gradient 
approximation (owing to simultaneous perturbations) of the 
SPSA in the calculation of a better next position (codebook) for 
gbest by making different gradient approximations s times and 
selecting the best one. The classical PSO which does not use 
gradient information can benefit from this guidance provided 
by a reliable gradient approximation. It is obvious that, by 
SPSA-FPSO, the optimum solution can be reached with many 
fewer iterations due to such a valuable guidance to the gbest, 
which is known to be the only guide by the swarm.  

3.2 Implementation on codebook optimization  

Figure 2 illustrates the block-based lossy image compression 
system including the proposed optimization algorithm used for 

codebook estimation. At the beginning, the original image data 
is converted to a list of vectors based on 4×4 image blocks as 
explained in Section 2.1. Then, a separate initial codebook is 
prepared for each particle using the standard K-Means 
algorithm while velocity of each particle is initialized randomly.  
After the initialization, the iterative algorithm given in Table 3 
is applied to find the optimal codebook. In each iteration, the 
codebook gbest evolved by the PSO rules is passed to the SPSA 
algorithm where it produces an ensemble of size s new 
codebooks each of which corresponds to an alternative particle. 
Among the SPSA generated ensemble, the best one is selected 
and recorded as agbest. If the codebook of agbest is better than 
that of gbest, then it replaces the poorer codebook. Finally, the 
PSO swarm of codebooks are updated by Equations (7) and (8) 
for the next iteration. When the iteration number reaches to the 
maximum number, the best codebook of the swarm (gbest) is 
determined by the SPSA-FPSO. To achieve a lossy compression, 
each image block is simply replaced by index of the relevant 
codeword in the best codebook. This process results in an 
indexed image which is further encoded for a communication 
channel by a lossless technique such as arithmetic coding or 
Huffman coding. After the encoding process, the best codebook 
and the encoded image are sent over the channel. The indexed 
image is extracted after channel decoding at the receiver end. 
Finally, the reconstructed image is obtained by using the best 
codebook. 

4 Experimental work 

The experimental study presented in this section was 
conducted to obtain and compare the performance of codebook 
estimation of the base algorithms and the proposed hybrid 
algorithm on a test image set. In addition, the effect of s on the 
performance of the hybrid algorithm was also investigated.  

 

Figure 2. Block diagram of the VQ-based lossy image compression system using SPSA-FPSO.   



 

 

4.1 Test images and experimental arrangements 

In the experiments, six gray level test images, known from the 
image processing research field were used. The test images are 
of 256×256 pixels size and show different contrast levels and 
degree of detail. Of these, Aerial and Barbara are categorized as 
high contrast images. While Cameraman, Lena and Peppers have 
a fair contrast, the Clock image presents a low contrast with 
uneven distribution of details. To allow visual comparison of 
test results, only two representative samples were selected for 
the sake of space saving: Lena with medium contrast and Clock 
with low contrast and uneven detail distribution. The results 
are shown in the Section 4.2.   

The experiments were conducted as follows. Each original test 
image divided into 4×4 pixel image blocks were converted to a 
list of vectors of size 16×1 with 256 gray levels. Thus, each 
image consists of 4096 vectors to be quantized and encoded, in 
total. A unique initial codebook for each particle in the swarm 
was computed by the K-Means algorithm based on the Forgy 
selection method [36]. The initial codebooks were also 
recorded for using in every run of the algorithms on each test 
image. For the PSO and SPSA-FPSO algorithms, all particles’ 
initial positions and the initial best positions were set to these 
initial codebooks. Similarly, the solution vector 1 in the SPSA 
algorithm was also initialized to the first recorded codebook.  

Since the visual error of the reconstructed image is more 
evident at high compression ratios, a codebook size of 8 
codewords was preferred in all experiments. This codebook 
size corresponds to the image compression ratio of 0.203 bpp. 
Therefore, the number of unknowns (i.e., pixel gray level 
values) in any codebook was 128 since each codeword has 16 
unknown gray levels. Thus, an optimum codebook for any test 
image must be found by any algorithm in the 128-dimensional 
search space. The MSE given by Equations (1)-(3), between an 
original image and its reconstructed form obtained from any 
individual codebook C were computed in the optimization 
algorithms. Each algorithm tested in the experiments tried to 
converge to the optimum codebook with a global minimum 
MSE value for each test image. However, when the maximum 
number of iterations was reached, the goodness of their 
estimation was revealed by the difference between the MSE of 
the final codebook they could produce and the global minimum. 
For all test runs on all the algorithms, the maximum number of 
iterations was determined as T=1500. This number was used as 
the single termination rule for every run of an optimization 
algorithm as seen in Tables 1-3.  

The parameters of the optimization algorithms were chosen as 
follows. The number of particles (i.e., size p) in both the PSO and 
SPSA-FPSO algorithms was set to 100. The number of 
alternative particles in the SPSA-FPSO algorithm was set to 
different values of s=1, 3, 10, 25, and 50, for performance 
comparisons. The user-defined parameter of 𝑘𝑤 was selected as 
0.7 while 𝑘𝑝 and 𝑘𝑔 were determined as 1.0 and 2.0, 

respectively. The velocity of the particles was restricted to 
𝑉𝑚𝑎𝑥 =  10 for both the PSO and SPSA-FPSO algorithms. For A, 
 and  in the SPSA algorithm, the recommended values were 
used as 60, 0.602 and 0.101, respectively, while a and c were set 
to 15 and 0.25, respectively. Because the last two parameters 
must be determined with respect to the optimization problem 
and the range of values for the unknowns, they were adjusted 
to best values after conducting a series of trial runs. However, 
for the SPSA-FPSO algorithm, we needed to dynamically change 
the value of a during the iterations to boost the acceleration 
ability of the proposed hybrid algorithm. While some smaller 

value of a contributes to the acceleration of convergence at 
early iterations, a larger value as in the SPSA algorithm 
strikingly reduces the probability of getting stuck in a local 
minimum in the subsequent iterations. A function of t for a was 
determined empirically to use in the SPSA-FPSO algorithm as 
given in Equation (13). 

          𝑎 = 𝑡 50 + 5⁄  (13) 

The equation should be inserted into the pseudo-code in Table 
3 before the line where the gain sequences 𝑎𝑡 and 𝑐𝑡 are 
computed.  

4.2 Test results 

Here, the proposed SPSA-FPSO algorithm is compared to the 
basic PSO and SPSA algorithms in an experimental framework. 
The visual results of the base algorithms and the proposed 
algorithm for the two selected test images are shown in Figures 
3 and 4 after a test run for each algorithm was completed. For 
Lena, when the last iteration was completed, the SPSA and PSO 
algorithms reached the unsatisfactory values of MSE=368.7 and 
MSE=329.6, respectively while the proposed SPSA-FPSO 
algorithm achieved the almost global optimum value of 
MSE=323.5 with only three alternative particles (i.e., s=3). 
When the low contrast image Clock was used by the algorithms, 
the SPSA-FPSO algorithm reached the value of MSE=271.9 
which is nearly global minimum again. On the other hand, SPSA 
and PSO appeared with MSE=305.9 and MSE=281.9, 
respectively at the last iteration, still struggling for the global 
optimum. This superiority of the proposed algorithm over the 
others can also be visually noticed in the reconstructed images 
shown in Figures 3 and 4.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 Figure 3. Visual comparison of the reconstructed images for 
Lena. (a) Original, (b) SPSA result (MSE=368.7), (c) PSO result 
(MSE=329.6), and (d) SPSA-FPSO result for s=3 (MSE=322.0). 



 

 

 The convergence curves of the all algorithms used to estimate 
the optimum codebooks for the all test images are shown in 
Figure 5. Here, each algorithm was run nine times for each of 
the test images. Then, the median value of the nine MSE curves 
was computed point by point to obtain an average curve. 
Therefore, every curve plotted in Figure 5 is actually a median 
average and represents the convergence characteristics of an 
algorithm with a fair approximation. The PSO algorithm either 
got stuck at a local minimum or fails to complete its 
convergence when the maximum number of iterations was 
reached for all images except Aerial and Peppers. On the other 
hand, the SPSA-FPSO algorithm reached the global minimum or 
settled at a very close value for all images except Cameraman. 
For this image, the proposed algorithm converged to a nearby 
value only with s=50. This is a difficult image for optimization 
algorithms used in codebook estimation of block-based 
compression. The image contains long strong edges at many 

different orientations. This forces the optimization algorithms 
to concentrate on those edges, leading to the ignorance of the 
rest of the image when MSE is the objective function. As a result, 
the algorithms mostly got trapped into a local minimum for this 
image. Note that the proposed algorithm converges quickly to 
the global minimum even for small values of s (i.e., 3 and 10). 
These results prove that the SPSA guidance provided by several 
alternative particles increases the diversity of the basic PSO in 
the search space and moves gbest to a more efficient position in 
each iteration. In short, we can say that SPSA can guide (or 
drive) gbest better than PSO can.   

The descent rate in the convergence curves of the SPSA-FPSO 
algorithm, especially in the early iterations is also remarkable. 
Considering only the number of iterations, the proposed 
algorithm clearly outperforms the base algorithms in terms of 
convergence speed. The fact that SPSA lags far behind other 
algorithms in the descent of convergence curves can be 
explained by its low exploration effort per iteration (one new 
codebook generation only). This algorithm needs more 
iterations for convergence, although this does not mean that it 
needs more time. On the contrary, it may require less time when 
the number of function evaluations is taken into account. 
However, it is shown in [35] that the SPSA algorithm fails if the 
target function has too many local optima or the number of 
unknown parameters is large.  

An overview of the results regarding the convergence accuracy 
and speed on the test images is given in Table 4. The optimal 
MSE values (MSEop) obtained with 𝑁𝐶 = 8 for each image are 
appended next to the image name and shown underlined. For 
each algorithm, the median of the final MSE values is written in 
gray cells. It is seen that SPSA-FPSO can rapidly converge to the 
corresponding MSEop for all images except Cameraman. 
However, note that all the algorithms fail to reach the MSEop 
value of this image due to its characteristics explained above. 
To simplify the comparison of the convergence accuracies, a 
near optimal MSE value was chosen at 1% above the global 
optimum and represented by MSEno.  All the median MSE values 
that are less than or equal to MSEno (i.e., within 1% tolerance) 
were considered accurate and shown in bold. In conclusion, it 
can be said that SPSA-FPSO is clearly superior to the base 
algorithms when the convergence accuracy is taken into 
account. It should also be noticed that the effect of s on the 
convergence accuracy of the SPSA-FPSO algorithm is small. 
However, the opposite is true when the convergence speed is 
concerned. To compare the convergence speeds, the numbers 
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Figure 4. Visual comparison of the reconstructed images for 
Clock. (a) Original, (b) SPSA result (MSE=302.3), (c) PSO result 
(MSE=281.7), and (d) SPSA-FPSO result for s=3 (MSE=271.9). 

Table 4. Results of convergence accuracy (final MSE) and iteration number (tno) on test images.  

Image name 
MSEop 

MSEno 
SPSA PSO SPSA-FPSO 

s=1 s=3 s=10 s=25 s=50 

Aerial 
 

518.4 
523.6 

529.1 523.4 522.6 520.5 519.6 519.6 519.8 
- 975 268 149 140 97 89 

Clock 
271.4 
274.1 

303.3 280.5 272.5 271.9 274.0 271.9 272.2 
- - 412 362 399 218 133 

Barbara 
 

338.6 
342.0 

339.8 342.4 338.9 338.9 338.8 338.7 338.8 
934 1500 142 117 67 36 19 

Peppers 
 

309.5 
312.6 

317.2 310.1 309.6 309.6 309.6 309.6 309.8 
- 659 375 224 114 71 44 

Lena 
 

322.8 
326.0 

348.8 330.4 323.3 323.4 323.6 323.6 323.6 
- - 623 512 253 150 99 

Cameraman 
 

405.5 
409.6 

447.8 423.1 422.7 422.3 423.0 425.2 414.8 
- - - - - - - 

 



 

 

in the white cells in Table 4 can be used. They are the iteration 
numbers, denoted by tno, at which the algorithms reached the 
MSEno value for each image. Each tno number is the median of 
such iteration numbers found over nine runs. Let us take the 
aerial image for example. The table points out that PSO reach 
MSEno at 975th iteration while SPSA cannot achieve it in 1500 
iterations. The proposed algorithm reaches the same value at 

268th, 149th, 140th, 97th and 89th iterations for the values of s =1, 
3, 10, 25 and 50, respectively. When all the tno numbers are 
examined, it is seen that the SPSA-FPSO algorithm converges 
much faster than both PSO and SPSA algorithms for all test 
images. Even with 𝑠 =1, the proposed algorithm can reduce the 
number of iterations required for the convergence of the PSO 
algorithm quite a lot. In addition, the experimental results show 

 
Figure 5. Convergence curves of SPSA-FPSO with different s values (given between parenthesis) on codebook estimation for six 

test images (𝑁𝐶 = 8).  

 



 

 

that as the number of alternative particles (codebooks) 
increases, the speed in iteration axis also increases. This result 
clearly indicates the effectiveness of multiple alternative 
particles generated by SPSA in our hybrid algorithm for 
increasing diversity and providing accurate guidance in a 
search space.   

4.3 Comparison of computational loads  

When computational complexities of optimization algorithms 
are compared, considering the number of objective function 
evaluations instead of the iteration number at the global 
optimum is a more accurate approach. For most algorithms, the 
computational cost of a single objective function evaluation is 
much heavier than the implementation cost of the optimization 
algorithm itself. This is also true for the proposed algorithm and 
the base algorithms since MSE computation between an 
original image and a reconstructed image by using a codebook 
is relatively long. Assuming that the necessary function 
evaluations are stored in memory once computed, the PSO 
algorithm requires 𝑝 function evaluations while SPSA-FPSO 
requires 𝑝 + 3𝑠 evaluations per iteration. Although this 
relationship makes SPSA-FPSO seem to be computationally 
expensive, the reality is different because SPSA-FPSO 
converges earlier by the iteration number. Therefore, it is more 
sensible to find the total number of function evaluations that 
each algorithm does until it reaches the iteration number 𝑡𝑛𝑜. 
Then, the costs of the algorithms can be compared according to 
their number of function evaluations. The total number of 
function evaluations, denoted by 𝑛𝑓 , for PSO and SPSA-FPSO 

until they reach the associated iteration number 𝑡𝑛𝑜  given in 
Table 4 is computed by  

     𝑛𝑓 = (𝑝 + 3𝑠)𝑡𝑛𝑜 (14) 

where 𝑛𝑓  for PSO is found by taking 𝑠 = 0. Let us define 

experimental computational advantage as the ratio of the 𝑛𝑓  

value for PSO to the 𝑛𝑓  value for SPSA-FPSO. The computational 

advantage of SPSA-FPSO over PSO for varying number of 
alternative particles are listed in Table 5 where the 𝑛𝑓  value for 

PSO on each test image is given next to the image name. 
Comparisons were made only for test images where PSO 
reached MSEno. One can notice that the computational 

advantage is unsuprisingly image dependent and can be up to 
order of 30 times.  

To investigate the effect of using multiple alternative particles 
on the convergence speed in the time dimension, the 
computational advantages of SPSA-FPSO with multiple 
particles over single particle use were obtained and listed in 
Table 6. Here, the 𝑛𝑓  value for 𝑠 = 1 on each test image is given 

next to the image name and taken as the reference in the 
calculations of the computational advantages. As seen from the 
table, the number of multiple alternative particles increases the 
computational advantage of SPSA-FPSO (i.e., less run time) 
compared to using a single particle. However, the increase in 
the computational advantage by the number of alternative 
particles can be high or remain within marginal limits 
depending on the image content.  

4.4 Performance comparison to other metaheuristic 
algorithms  

Finally, some tests were conducted to compare the 
performance of the SPSA-FPSO algorithm with the 
performances of other well-known metaheuristic algorithms in 
the application of codebook optimization. Bat algorithm (BA), 
firefly algorithm (FA), genetic algorithm (GA) and improved 
adolescent identity search algorithm (IAISA) were included in 
these tests, respectively. The parameters of the SPSA-FPSO 
algorithm were kept the same as given in Section 4.1. The tests 
were performed by selecting the number of alternative global 
particles as 3 and 25. In all algorithms, the population size and 
codebook size were fixed as 100 and 8, respectively. The 
parameter values of other metaheuristic algorithms were 
selected as given in Table 7, which are considered appropriate 
in [17] for the codebook optimization problem. Convergence 
curves of all algorithms were obtained for the two selected test 
images. The results are given in Figure 6. It is seen that SPSA-
FPSO is superior not only to PSO algorithm but also to other 
metaheuristic algorithms in terms of both convergence 
accuracy and convergence speed.  

Table 5. Computational complexity comparison: PSO vs. SPSA-FPSO on the test images. 

Image name 
PSO 
𝑛𝑓  

 Computational advantage of SPSA-FPSO over PSO 

s=1 s=3 s=10 s=25 s=50 

Aerial 97500  3.53 6.00 5.36 5.74 4.38 

Barbara 150000  10.26 11.76 17.22 23.81 31.58 

Peppers 65900  1.71 2.70 4.45 5.30 5.99 
 

Table 6. Computational complexity comparison: single vs. multiple alternative particles in SPSA-FPSO. 

Image name 

SPSA-FPSO 
(s=1) 
𝑛𝑓  

Computational advantage of SPSA-FPSO with multiple alternative particles 

s=3 s=10 s=25 s=50 

Aerial 27604 1.70 1.52 1.63 1.24 

Clock 42436 1.08 0.82 1.11 1.28 

Barbara 14626 1.15 1.68 2.32 3.08 

Peppers 38625 1.58 2.61 3.11 3.51 

Lena 64169 1.15 1.95 2.44 2.59 
 



 

 

5 Conclusions 

The use of VQ offers an effective approach to lossy image 

compression by mapping image blocks into codebook vectors, 

significantly reducing the image size. Key to the success of VQ-

based compression is the estimation of an optimal codebook, 

which directly impacts the quality of the reconstructed image. 

Optimal codebook generation through metaheuristic 

algorithms has gained significant attention in many research 

areas. Although the hybridization of these methods, 

particularly in a coupled way to enhance both convergence 

speed and accuracy has been applied in various research areas, 

it has not received much attention in solving the codebook 

estimation problem.  

The motivation for this work is to overcome the inherit 
diversity limitations of PSO by hybridizing it with SPSA which 
can generate new codebooks by fast gradient approximations 
to the objective function MSE. In the proposed hybrid 
algorithm, the codebook owned by gbest of PSO is passed to the 
SPSA algorithm to have it generate an ensemble of s new 
codebooks, so-called alternative global codebooks, to guide 
gbest further. The best of the alternative codebooks in the 
ensemble replaces, (if it is better than) that of gbest to provide 
a more efficient guidance to the entire swarm in the next 
iteration. The second contribution of this work is the 
presentation and discussion of the results obtained from the 
first-time application of this high performance optimization 
algorithm to codebook estimation in VQ-based lossy image 

compression. The results of the experiments conducted on six 
test images highlight the superiority of the SPSA-FPSO 
algorithm over the base algorithms PSO and SPSA in the context 
of VQ-based image compression. By embedding the SPSA 
within the PSO framework, the hybrid algorithm successfully 
reduces the premature convergence issues typically observed 
in PSO, enabling it to escape local minima and reach or 
approximate the global minimum. It is shown that the SPSA-
FPSO algorithm increases the diversity by using multiple 
alternative codebooks and provides more accurate guidance in 
the search space. The algorithm not only achieves lower MSE 
values for the test images, but also significantly improves the 
convergence speed without sacrificing accuracy. The proposed 
algorithm reaches or settles very close to the global minimum 
for all test images except a troublesome image. However, the 
best performer among the algorithms in competition happens 
to be SPSA-FPSO again. Especially in the early iterations, the 
speed at which the proposed algorithm approaches the global 
minimum is remarkable, which can also make it a good global 
optimization partner for a faster local optimizer. 

When the computational loads are compared, it is seen that 
SPSA-FPSO algorithm requires a smaller number of objective 
function evaluations than PSO does and therefore the total 
computational cost is lower. However, the computational 
advantage offered by the algorithm is data dependent and 
cannot be foreseen exactly. Although the computational 
advantages experimented from the test images may give a 
rough idea, there are also other issues affecting the range of 
figures, namely, selection of the initial codebook and 
optimization of the algorithm parameters. The experimental 
results also show that the number of alternative global 
codebooks (i.e., value of s) positively influence the convergence 
speed while it has a small or trivial effect on accuracy. However, 
the computational advantage gained by increasing the number 
of alternative particles can either be significant or minimal, 
depending on the image content.  

The study concludes that the enhanced convergence features of 
SPSA-FPSO make it a promising method for optimizing 
codebook in VQ-based lossy image compression tasks. It 
outperforms not only the basic PSO but also other well-known 
metaheuristic algorithms. Considering that the target of this 

        

Figure 6. Convergence curves of the metaheuristic algorithms for comparison to SPSA-FPSO on codebook estimation for two test 
images (𝑁𝐶 = 8).  

 

Table 7. Parameters of the metaheuristic algorithms 

Algorithm Parameter values 

FA =0.5, γ=0.01, 𝛽0 = 0.9 

BA 
=0.997, γ=0.996, [min max] frequencies: [0,1] 

initial values (random): frequency [0,1], pulse rate 
[0.5, 1], loudness [0,1]  

GA 
crossover rate=10%, mutation rate=3%, selection 

method is K-Tournament (K=3) 

IASIA 
search diameter=0.025, 

Chebyshev polynomial degree=3 

 



 

 

research is image compression, the results could potentially 
pave the way for the utilization of the suggested approach in 
related areas that prioritize compression and optimization, 
including data compression and signal processing. From a 
broader perspective, the findings of this work suggest that the 
SPSA-driven PSO algorithm employing an ensemble of 
alternative global particles can also be effectively applied to 
optimization problems in other research areas, offering a fast 
and stable solution especially for complex, high-dimensional 
problems. 
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