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Abstract  Öz 

In this research, a novel approach for classifying colon cancer was 
developed by employing two convolutional neural network (CNN) 
models, namely GoogLeNet and AlexNet. This approach involves 
training CNNs with histopathological images segmented into color 
clusters using an augmented k-means clustering algorithm, rather than 
utilizing original-raw images. This method was applied to 20 datasets 
with distinct structural and characteristic features, derived from larger 
datasets comprising both original and segmented images. The datasets 
were used to train and test CNN models. The results indicate that 
AlexNet, trained with segmented images, showed a 2% to 23% increase 
in accuracy performance, while GoogLeNet's accuracy performance 
improved by 2% to 27%. Notably, the proposed approach yielded higher 
accuracy with datasets containing non-homogeneous data. 

 Bu araştırmada, GoogLeNet ve AlexNet olmak üzere iki evrişimli sinir 
ağı (CNN) modeli kullanılarak kolon kanserinin sınıflandırılması için 
yeni bir yaklaşım geliştirilmiştir. Bu yaklaşımda CNN'ler, orijinal ham 
görüntüleri kullanmak yerine, artırılmış bir k-ortalamalar kümeleme 
algoritması kullanılarak renk kümelerine ayrılmış histopatolojik 
görüntüleri kullanarak eğitilmektedir. Bu yöntem hem orijinal hem de 
bölütlenmiş görüntülerden oluşan daha büyük veri kümelerinden elde 
edilen farklı yapısal ve karakteristik özelliklere sahip 20 veri kümesine 
uygulanmıştır. Veri kümeleri CNN modellerini eğitmek ve test etmek 
için kullanılmıştır. Sonuçlar, bölümlere ayrılmış görüntülerle eğitilen 
AlexNet'in doğruluk performansında %2 ile %23 arasında bir artış 
gösterdiğini, GoogLeNet'in doğruluk performansının ise %2 ile %27 
arasında iyileştiğini ortaya koymuştur. Özellikle, önerilen yaklaşım 
homojen olmayan verilere sahip veri kümelerinde daha yüksek 
doğruluk sağlamıştır. 

Keywords: Convolutional neural network, Deep learning, Image 
segmentation, Image classification, Colon cancer 

 Anahtar kelimeler: Evrişimli sinir ağı, Derin öğrenme, Görüntü 
bölütleme, Görüntü sınıflandırma, Kolon kanseri 

1 Introduction 

Cancer is the second leading cause of death in Turkey and 
worldwide.  Türkyılmaz et al. [1],[2] note that rising world 
population, the increase in the numbers of the elderly, 
significant levels of exposure to potential causes of cancer and 
various environmental factors contribute to an increase in the 
number of new cancer cases and are thus expected to aggravate 
the burden posed by cancer in the future. A review of reported 
cases of cancer through years clearly shows the increasing 
burden associated with this condition.  Figure 1 presents the 
data for new cases of six major types of cancer over the years, 
while Figure 2 shows the number of deaths caused by cancer, 
with reference to statistics from the GLOBOCAN database, 
published by the International Agency for Research on Cancer 
(IARC) under the World Health Organization (WHO) umbrella. 
A review of these figures to assess the cancer burden reveals 
that lung, breast and colorectal cancers rank at the top of the 
list in terms of global incidence rates.  Colorectal cancers also 
rank second in terms of deaths caused by cancer [3],[4],[5],[6]. 

                                                           
*Corresponding author/Yazışılan Yazar 

Thus, it is obvious that early and definite diagnosis of colon 
cancer is important. 

 

Figure 1. The number of new cancer cases through the years, 
based on GLOBOCAN database figures [3],[4],[5]. 

Pathological analysis plays a most crucial part in definite 
diagnoses of colon tumors. This process entails the analysis of 
the biopsy samples taken from the relevant tissue, performed 
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by a specialized pathologist using a microscope to review the 
cells and the position of the nuclei, along with structural and 
functional deformations, culminating in a definite judgment 
about the nature of the tissue under review. 

 

Figure 2. The number of deaths caused by cancer through the 
years, based on GLOBOCAN database figures [3],[4],[5]. 

The pathological diagnosis process begins with an assessment 
of macroscopic and microscopic characteristics. These 
characteristics are analyzed with reference to the 
differentiations observed in cells, tissues, and organs [7]. This 
review is essentially based on visual interpretation and 
therefore can lead to inconsistent interpretations and non-
standard and non-objective results. Variations and a multitude 
of interpretations are considered common occurrences in 
efforts to classify the cancer [8]. Therefore, various image 
analysis systems have been developed to provide objective 
results, facilitating standardized assessments by physicians. 
The most important procedures implemented by these image 
analysis systems, in turn, are image segmentation and image 
classification [6]. 

Convolutional neural networks (CNNs) which gained 
popularity in recent years, and which have been employed in a 
wide range of applications (face recognition, segmentation, 
object detection, natural language processing etc.) also see 
extensive use for image classification as well. However, CNN did 
not draw much attention in the field of computer vision until 
2012, as it required a lot of training data and powerful 
hardware required to process the significant amount of data 
involved. However, from 2012 on, given the ability to derive 
much larger data sets in several distinct fields, the increased 
emphasis on the big data concept, increased efficiency of 
algorithms, the development of GPUs, and the fall in computing 
costs, CNN skyrocketed in popularity [9]. 

The burgeoning field of digital pathology has seen significant 
advancements with the integration of deep learning algorithms. 
Despite these advancements, accurately classifying colon 
cancer using histopathological images remains a significant 
challenge due to the complexity and variability of the data. In 
the literature, the deep learning algorithms working with 
histopathology images often utilize the original-raw RGB 
images taken in histopathology analyses as input. While 
alternative color spaces have been explored in some studies, 
raw RGB images remain the most common input for deep 
learning models.  

Several studies have explored the potential of deep learning 
architectures, particularly convolutional neural networks 
(CNNs), for colon cancer classification. For example, 
Parelanickal et al. [10] achieved 95% and 97% accuracies using 
VGG16 and MobileNetV2, respectively. Sari et al. [11] 

demonstrated effective results comparing CNNs with Vision 
Transformers, illustrating modern architectures' potential. 
Peng and Lee [12] achieved 99.77% accuracy with ResNet50 in 
histopathological image analysis, showcasing pre-trained 
networks' efficacy. Anju and Vimala [13] reported a 97.42% 
accuracy for InceptionV3, highlighting the impact of 
preprocessing and data augmentation on performance. 
Collectively, these studies underscore deep learning 
architectures' significant potential in colon cancer 
classification. 

Moreover, fine-tuning models like AlexNet and GoogLeNet 
enhances classification accuracy for colon cancer datasets. 
Optimized models show notable performance improvements in 
accuracy, sensitivity, and specificity. Babu et al. [14] found that 
data augmentation increased GoogLeNet’s accuracy by 2.3% to 
80% on the CrchistophenoTypes dataset, demonstrating its 
role in enhancing generalization. 

Kumar et al. [15] emphasized preprocessing steps, showing 
that median filtering and SegNet-based preprocessing 
improved AlexNet and GoogLeNet's classification accuracy. 
Their comparative evaluation revealed GoogLeNet as the best 
performer with 94.165% accuracy, 97.589% sensitivity, and 
87.359% specificity, illustrating its high sensitivity in colon 
cancer classification when fine-tuned. 

Conversely, Kumar et al. [16] showed that optimizing AlexNet 
with the WSO method raised its classification accuracy to 
99.3%, with sensitivity and specificity values of 99.76% and 
98.68%. This indicates that while GoogLeNet is effective, 
AlexNet can achieve superior accuracy through specific 
optimization strategies. 

In summary, CNN architectures like AlexNet and GoogLeNet are 
prevalent in colon cancer classification. However, optimizing 
these models and tailoring them to datasets are crucial for 
enhancing accuracy and generalization performance. The 
literature supports the efficacy of data augmentation and 
preprocessing techniques in this field. 

Nonetheless, current research primarily addresses raw, 
unsegmented images. While prior research predominantly 
utilizes unsegmented images, some studies explore alternative 
color spaces (HSV, YCbCr and RGB [17]; RGB, YCbCr, CIELab and 
HSV [18]; CIELab* and RGB [19]; RGB and HIS [20]). Research 
indicates that image conversion can enhance CNN classification 
accuracy. However, the extent of enhancement is often 
contingent upon the model architecture employed.  

Although these studies demonstrate the potential of CNNs and 
alternative preprocessing techniques, they largely focus on raw 
or color-space-modified images. To address this gap, the 
proposed method enhances model performance by segmenting 
RGB images using an augmented k-means clustering algorithm 
[21], thus reducing color complexity levels without altering the 
color space. Moreover, the tests performed found performance 
improvements with various CNN models. Moreover, even with 
problematic datasets impairing the performance of the model 
and causing overfitting in the system, the use of the method 
proposed here was seen to bring about 27% improvement in 
system performance. 

The structure of this paper is outlined as follows: Section 2 
details the dataset, including image acquisition, the 
characteristics of the images obtained, preprocessing, and 
augmentation methods. Subsection 2.4 elucidates the 
augmentation k-means clustering algorithm for segmentation, 
while Subsection 2.5 presents the CNN architectures utilized 
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for classification. Section 3 offers a comparative analysis of CNN 
models with segmented and raw images. Finally, Section 4 
summarizes the findings and emphasizes the principal findings. 

2 Materials and methods 

The methodology consists of two main phases: image 
preprocessing and CNN training. In the preprocessing stage, an 
augmented k-means clustering algorithm is applied for image 
segmentation. This algorithm simplifies the color scheme of 
each image, reducing color complexity and highlighting 
important features. After segmentation, these images are used 
to train two CNN models: GoogLeNet and AlexNet. The training 
process is conducted with a diversified dataset, ensuring a 
comprehensive learning process. 

2.1 Microscope image 

The study is based on color images of human colon tissues, 
taken with a digital camera (Nikon Coolpix E5000) mounted on 
a microscope (Nikon Eclipse E400). All images used in the study 
are microscope images processed with the H&E [22],[23] 
staining technique. H&E staining is the most popular staining 
technique in histopathology. H&E staining dyes the 
histopathology images with several dyes affecting specific parts 
of the tissue: blue and black showing the cell nuclei, pink 
presenting the cytoplasm, dark red in the case of muscle fibers, 
and an orange-red hue showing the red blood cells (RBCs). 

A study on the segmentation of microscope images using 
augmented k-means clustering algorithm [6] used microscope 
images of the colon tissue, with a size of 2560x1920 pixels.  51 
of these images belonged to benign colon tumors, and 49 
belonged to malignant colon tumors. The microscope images 
are a random sample of the dyed slides of the tissues already 
diagnosed and archived by the Medical Pathology Department 
of Necmettin Erbakan University. Furthermore, the approval 
(document ID 2015/116 and 13 Feb 2015 dated) of Necmettin 
Erbakan University Ethics Committee for Non-Pharmaceutical 
and Non-Medical Device Research was obtained for the use of 
these images. 

The classification of tumors as malignant and benign tumors 
using deep learning with segmented images, on the other hand, 
the dataset was increased to a total of 123 images (62 benign 
and 61 malignant tumor images) with additions alongside the 
images used in the segmentation analysis. Moreover, images 
provided on the website of the Department of Computer 
Science at the University of Warwick 
(https://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest
/) covered by a consent for use in research were used. These 
additional images comprise a total of 165 shots obtained from 
16 histology slides with H&E staining, taken from different 
patients. To digitize the histology slides into a whole-slide 
image form, Zeiss Mirax Midi Slide Scanner with a pixel size of 

0.465 μm pixel. The whole-slide images thus digitized are 

scaled to a pixel size of 0.620 μm, equivalent to 20x lens 
magnification [24],[25]. 74 of these images belonged to benign 
colon tumors, and 91 belonged to malignant colon tumors. 

2.2 Computer hardware and software 

Segmentation or classification of an image at a high level of 
detail poses a very complex problem. In the same vein, the use 
of deep learning algorithms for the classification of images with 
a high level of detail also represents a highly complex problem 
requiring significant processing power. Powerful hardware 
capable of meeting significant processing requirements is used. 

Graphics processing units (GPUs) are employed, given their 
architecture based on very high numbers of parallel processors. 
Thus, GPUs stand out as crucial hardware for deep learning 
algorithms. In the present study, the deep learning system 
working with segmented images was a PC with Gigabyte X299 
Aorus Gaming 9 main board, 3.5 Ghz Intel Core i7 7800X 
processor for socket 2066, with 8.25MB cache, Kingston DDR4 
64GB RAM 3000Mhz, 2 x GeForce GTX 1080Ti Gaming X-Trio 
GDDR5X 11GB 352 Bit Nvidia graphics cards installed in an SLI 
arrangement, and 3 x 4TB Sata 3.0 128MB cache 7200 Rpm NAS 
hard drives. The software used was NVIDIA Digits 6 [26], a web-
based software running on Ubuntu 18.10 operating system. The 
parallel processing architecture was CUDA 9.0 [27], which 
increased processing performance by using NVIDIA GPU, 
complemented with the CuDNN [28] library enabling the tasks 
required for deep learning. The software was installed on the 
Docker, which is the recommended solution for virtualization 
at the operating system level. Moreover, Caffe v0.15.14 
[29],[30] based on Python programming language served as the 
deep learning library, while Stochastic Gradient Descent (SGD) 
algorithm, which is the most popular choice in optimization 
processes, was used for determining the minimum level in the 
loss function. 

2.3 Data augmentation and pre-processing 

Data augmentation refers to the process whereby a smaller 
dataset is used to produce a larger one, all the while 
maintaining the ability to represent real-world data. Several 
data augmentation methods have been proposed for this 
purpose. Many images are required in architectures where 
CNN, a leading DL algorithm, is used. If the dataset contains only 
a limited number of images, data augmentation could help 
against overfitting. 

In the present study, with a view to increasing the number of 
images, first of all, the 62 images of benign colon tumors and 61 
images of malignant colon tumor, each with a size of 
2560x1920 pixels, received from the archives of the Medical 
Pathology Department of Necmettin Erbakan University, were 
processed to produce completely distinct 464 images of benign 
tumors and 407 images of malignant tumors, based on different 
sections of the original-raw images. In the same vein, 74 images 
of benign colon tumors and 91 images of malignant colon 
tumors published on the website of the Department of 
Computer Science at the University of Warwick and covered by 
a consent for use in research were used to produce completely 
distinct 354 images of benign tumors and 424 images of 
malignant tumors, based on different sections of the original-
raw images. This process resulted in a dataset of 818 images of 
benign colon tumors, and 831 images of malignant colon 
tumors. 

These microscopic images of colon tumors were then subjected 
to data augmentation in a process imitating the cases with real 
world data, through vertical and horizontal flipping, 90o 180o 
and 270o rotation, and adding gaussian noise. Figure 3 presents 
examples of images obtained through data augmentation on a 
malignant tumor image. By applying the data augmentation 
methods shown in Figure 3, the number of images in the dataset 
was increased to a total of 11543, comprising 5726 benign and 
5817 malignant tumor images. 
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(a) 

  

(b) (c) 

  

(d) (e) 

  

(f) (g) 

Figure 3. Data augmentation applied on a malignant tumor 
image: (a) original image, (b) horizontal flip, (c) vertical flip, 

(d) 90o rotation, (e) 180o rotation, (f) 270o rotation, (g) 
gaussian noise. 

2.4 Augmented k-means clustering algorithm 

Determining the number of clusters involved and defining the 
pixel clusters is a difficult and important step in the 
segmentation of color images through clustering-based 
processes. In particular, accurate and optimal determination of 
the number of clusters and the initial cluster centers is crucial 
in terms of performance, segmentation quality, and 
segmentation success. Moreover, from a system stability 
perspective, it is imperative to come up with identical results 
when producing images through segmentation using clustering 
methods, in other words, to get the same clusters and the same 
pixel values associated with those clusters in every reiteration 
of the process. In medicine getting accurate and consistent 
results in every iteration using an identical histopathology 

image is crucial regarding the system’s reliability. The initial 
cluster centers should be chosen based on a specific and well-
defined algorithm to ensure such consistency. Yet, when doing 
so, one should also consider the need to avoid excessive 
processing requirements and present a simple and stable 
structure. For this purpose, to ensure an optimal distance and 
separation between the initial cluster centers, the augmented 
k-means clustering algorithm proposed in the previous study 
was used [6]. This algorithm is essentially a further 
development on the weighted k-means clustering algorithm 
[31],[32]. Processing steps of the augmented k-means 
clustering algorithm: 

Step 1: First, the number of clusters (k) to group the data 
elements (pixels in the case of images) into will be established. 

Step 2: The initial cluster center (Ck) (centroid) value will be 
established for each cluster, based on Equation 1. Doing so 
ensures that the initial cluster centers are located at an optimal 
distance from each other. 

𝐾𝑐 =
𝐷ℎ

𝑘 + 1
 (1) 

𝑓𝑜𝑟  𝑖 = (1, … , 𝑘), 𝐶𝑖 = 𝐾𝑐 ∗ 𝑖  

Here, Kc refers to the cluster center creation coefficient, Dh 
refers to the number of bins in histogram, k refers to the cluster 
number and Ci refers to the cluster center value. 

Step 3: The distance between all data elements and the cluster 
centers will be calculated with the Euclidean distance formula 
provided in Equation 2. All data elements will then be assigned 
to the nearest cluster center, based on the results thus 
produced. 

𝑑(𝑎, 𝑏) = √∑(𝑎𝑖 − 𝑏𝑖)2

3

𝑖=1

 (2) 

When calculating the distance between the two colors (a, b), the 
i value in Equation 2 stands for the color channel, as the color 
values of the color images in the dataset are expressed as RGB 
values. 

Step 4: The cluster center values for these sets which are now 
populated with new elements will then be recalculated using 
the formula presented in Equation 3. The new cluster centers 
thus found will be compared against the previous cluster 
center. In this equation, the values of the elements of the set, 
along with the histogram data for those elements, are also 
included in the formula. 

𝐶𝑘 =
1

∑ ℎ𝑖
𝑚
𝑖=1

∑ ℎ𝑗𝑍𝑗

𝑚

𝑗=1

 (3) 

Here, k refers to the cluster number, C = {C1, C2, ..., Ck} refer to 
the cluster center values, m refers to the number of elements 
assigned to each cluster center, C{1...k} = {Z1, Z2, ..., Zm} refer to the 
elements corresponding to the cluster center, and hj refers to 
the histogram value for the color Zj. 

Step 5: In case the cluster centers are the same with the 
previous cluster center values, the clusters will be assumed to 
have remained unchanged, and the process shall conclude. In 
case any changes are observed with the cluster centers, all steps 
from step 3 on will be repeated. 
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2.5 Convolutional neural network 

Convolutional neural network (CNN) is a deep learning 
algorithm, which is a type of artificial neural networks (ANN) 
and refers to a specific type of deep feedforward neural 
networks, characterized by a grid-like structure and often used 
for data processing in the context of analyzing images. In other 
words, it refers to neural networks employing convolution as a 
mathematical operation, instead of matrix multiplication in 
layers [33]. 

Deep learning offers solutions based on deep neural network 
algorithms for complex problems requiring variable functions 
in voice recognition, face recognition, visual object recognition, 
object detection, bioinformatics, natural language processing, 
image segmentation, and classification, as well as for 
segmentation, detection, classification, and registration 
problems regarding medical imaging [9],[34]-[37]. As one such 
deep neural network algorithms, CNN finds extensive use in 
several fields such as classification, object detection, and 
natural language processing, due to its high performance in 
computer vision. The first layers of CNNs often derive simpler 
and cruder properties. However, as the number of layers 
increase, a range of more complex properties can also be 
derived in deeper layers. Such complex properties are the ones 
representing the image much better [38]. 

Yet, CNN did not draw much attention in the field of computer 
vision till 2012, as it required a lot of training data and powerful 
hardware required to process the significant amount of data 
involved. In 2012, after Krizhevsky et al. won the top place in 
ImageNet image classification competition, modern deep 
learning models gained popularity and began to be used in 
various fields [9]. LeNet [39] and AlexNet [40] were the first 
modern deep learning models introduced in this paradigm and 
were soon followed by several others including ZFNet [41], 
GoogLeNet [42],[43], VGGNet [44], and ResNet [45]. AlexNet 
and GoogLeNet models were used extensively and can be 
considered popular models. The present study is based on 
AlexNet and GoogLeNet models. 

In this study, AlexNet and GoogLeNet architecture were 
preferred due to their widespread applications in the literature 
and compatibility with existing resources The modularly 
designed architecture of GoogLeNet is a significant advantage 
over complex and more resource-intensive models such as 
ResNet in terms of reduced computational complexity and 
architectural flexibility. This attribute renders it especially 
beneficial in scenarios where computational resources are 
constrained or where the minimization of computational 
expenses is of paramount importance. Nevertheless, research 
has demonstrated that GoogLeNet exhibits competitive 
performance across a spectrum of tasks while sustaining a 
judicious equilibrium between accuracy and computational 
efficiency [42,43]. 

In a similar vein, AlexNet [40], recognized as one of the 
foundational architectures in deep learning, is often favoured 
its status as a benchmark model within the domain of image 
classification. Its comparatively straightforward architecture 
renders it an exemplary option for conducting comparative 
analyses. The employment of AlexNet offers a robust 
framework for the validation of the proposed methodologies by 
facilitating a direct comparison of the results of this study with 
existing research. 

While more contemporary architectures, such as ResNet, are 
engineered to attain superior accuracy on more complex tasks, 

they frequently necessitate greater computational resources 
and larger datasets. Therefore, in this study, where the primary 
aim was to evaluate the impact of using histopathological 
images segmented into color clusters by an augmented k-
means clustering algorithm instead of original raw images on 
the performance of CNNs, AlexNet and GoogLeNet architectures 
were preferred over more advanced models such as ResNet. 
This preference was based on their ability to provide an optimal 
balance between computational efficiency and classification 
accuracy. For these reasons, these architectures were deemed 
suitable for achieving the objectives of this study. 

The AlexNet and GoogLeNet architectures were trained on the 
dataset using the Nvidia-DIGITS 6 platform, which applied 
default hyperparameter settings. The learning rate was set to 
0.01, batch size to 32, and the number of epochs to 30. The 
models were initialized with standard random weights since no 
pre-trained networks were employed. 

2.5.1 AlexNet 

Developed by Alex Krizhevsky, Ilya Sutskever and Geoff Hinton, 
the AlexNet model [40] won the ImageNet challenge in image 
classification in year 2012, with an error rate of 16.4%, and is 
based on multiple convolutions. It has an 8-layer architecture, 
5 of which are convolution layers, complemented by 3 fully 
connected layers. The activation function employed is Rectified 
Linear Unit (RELU). Figure 4 presents the architecture of 
AlexNet. 

 

Figure 4. AlexNet architecture [40]. 

The initial convolutional layer processes the 224×224×3 input 
image utilizing 96 filters with dimensions of 11×11×3 and a 
stride of 4, culminating in an output dimension of 55×55×96. 
Subsequent convolutional layers systematically enhance the 
feature maps by employing diminutive filter sizes (5×5 or 3×3) 
and diverse strides. The second convolutional layer utilizes 256 
filters measuring 5×5×48 on the normalized and pooled output 
generated by the first layer. The third convolutional layer 
implements 384 filters of size 3×3×256 on the output produced 
by the second layer. The fourth convolutional layer employs 
384 filters of size 3×3×192, while the fifth convolutional layer 
utilizes 256 filters of size 3×3×192. In the aftermath of the 
convolutional layers, the architecture incorporates three fully 
connected layers, each comprising 4096 neurons, facilitating 
feature extraction and classification [40]. 

2.5.2 GoogLeNet 

GoogLeNet [42],[43] architecture was developed by Google 
employees and introduced as a participant in the ImageNet 
challenge in 2014. GoogLeNet architecture has 22 layers and 
can operate with 12 times fewer parameters than AlexNet while 
achieving a higher accuracy (with an error rate of 6.7%). The 
basic building block of this architecture is the inception module. 
The architecture contains a total of 9 inception modules. The 
block diagram showing the inception module of the GoogLeNet 
architecture is presented in Figure 5. 
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Figure 5. GoogLeNet block diagram. 

In Figure 5, each number corresponds to the size of the feature 
maps, filter dimensions, or stride values used in the respective 
layers. This modular and hierarchical architecture facilitates 
GoogLeNet in attaining superior accuracy while utilizing a 
reduced number of parameters, thereby rendering it 
exceptionally effective for extensive image classification 
endeavors. 

The input image adheres to the standard RGB format and 
measures 224×224×3. The initial convolutional layer employs 
a 7×7 filter with a stride of 2, diminishing the input's spatial 

dimensions. Subsequent convolutional layers utilize 3×3 filters 
to capture features at more granular scales. Max-pooling layers 
follow the initial convolutional layers to condense spatial 
dimensions while preserving critical features. For instance, the 
first max-pooling layer decreases the dimensions to 56×56×64. 

The inception modules, which form the core of GoogLeNet, are 
represented in yellow boxes (e.g., Inception 3a, 4b). These 
modules execute concurrent convolutions with filters of sizes 
1×1, 3×3, and 5×5, alongside max-pooling. The resultant 
outputs from these processes are amalgamated to constitute 
the ultimate output of each inception module. For instance, 
Inception 3a combines outputs from multiple filter sizes to 
create a feature map that captures information at various 
scales. 

To improve training and prevent vanishing gradients, auxiliary 
classifiers (e.g., Inception 4a and 4d) are included. These 
classifiers provide intermediate supervision during training. 
After passing through the inception modules, the network 
transitions to fully connected layers, incorporating a dropout 
rate of 40% to reduce overfitting. 

 

 

Figure 6. Overall scheme of the system 

 

3 Results and discussion 

CNNs, a kind of deep learning algorithms gaining popularity in 
recent years allow the feeding of the images in their original-
raw forms as input for the neural network model, without any 
pre-processing other than data augmentation, for the purposes 
of image classification in general, and histopathology image 
classification in particular. As seen in Figure 6, the present 
study proposed the use of images after some processing to 
reduce their detail levels prior to the classification process, 
rather than using the full original image with all the details it 
offers, on the grounds of simplifying the procedures and 
improving the performance in the context of the efforts to 
classify histopathology images as images of malignant or 
benign colon tumors. To do so, a fast and simple method of 
segmentation process was applied to reduce the level of details 
all the while processing the basic properties of the original-raw 
images. The segmentation was based on a proposed augmented 
k-means clustering algorithm to operate in a simple, fast, and 
consistent manner. 

The original-raw images of benign and malignant tumor tissues 
were subjected to augmented k-means clustering algorithm to 

produce 4 distinct models in terms of cluster count, with k = {3, 
4, 5 and 6} for each of the respective iterations. In the 
segmentation process, the colors assigned to the clusters in 
accordance with the cluster count were red, green, and blue 
for the 3-cluster model; red, yellow, green, and blue for the 4-
cluster model; red, yellow, green, dark green, and blue for the 
5-cluster model; and red, yellow, green, dark green, blue, and 
light blue for the 6-cluster model. 

Then came a comparative analysis of the impact on the model 
performance, of the use of un-preprocessed original-raw colon 
cancer microscope images, against the use of RGB (3 channel) 
images segmented through the present algorithm on CNNs. The 
comparative analysis was performed on a deep learning 
algorithm, namely a CNN, based on AlexNet and GoogLeNet 
architectures. 

First, through random selection, 70% of the dataset comprised 
of the original-raw images were assigned to the training set, 
15% to the validation set, and 15% to the test set. In the next 
step, the AlexNet and GoogLeNet models were trained using the 
dataset. The process was repeated through 10 iterations. In 
each iteration the training, validation and test datasets were 
refreshed, and the models were trained on the new datasets 

input image

convolution 7x7 s:2

max pool 3x3 s:2

convolution 3x3 s:1

max pool 3x3 s:2

inception 4b

inception 4a

max pool 3x3 s:2

inception 3b

inception 3a

inception 4c

inception 4d

inception 4e

max pool 3x3 s:2

inception 5a

softmax

linear

dropout (40%)

avg. pool 7x7 s:1

inception 5b
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thus presented. Through the iterations, the low levels of model 
performance associated with specific datasets were noted. In 
the present study, the dataset noted for a particularly low level 
of performance was the "ozel" dataset. Distinct sub-images 
were produced by segmentation through the cropping 
procedure applied on the original-raw images. The dataset 
comprised of all sub-images derived from a given original-raw 
image is designated as the "bir" dataset, whereas the dataset 
comprised of sub-images derived from the images distributed 
randomly, without the requirement to contain all such sub-
images associated with a given original-raw image is 
designated as the "par" dataset. 

Based on these arrangements, the original-raw images 
numbering 11543 in total, and the segments thereof through 
the use of 3, 4, 5, and 6 color clusters were used to produce 20 
image clusters with distinct structures and characteristics, 
named bir, bir_ozel, par, and par_ozel based on each image 
cluster. These datasets are designated as orj_bir, orj_bir_ozel, 
orj_par, orj_par_ozel, k3_bir, k3_bir_ozel, k3_par, k3_par_ozel, 
k4_bir, k4_bir_ozel, k4_par, k4_par_ozel, k5_bir, k5_bir_ozel, 
k5_par, k5_par_ozel, k6_bir, k6_bir_ozel, k6_par and 
k6_par_ozel. Following their creation, these datasets were then 
divided into three categories: the training dataset, the 
validation dataset, and the test dataset. All the generated 
datasets were subsequently utilized to train and test the 
AlexNet and GoogLeNet CNN models. 

Table 1. The confusion matrix obtained from testing AlexNet and GoogLeNet on the test dataset. 

AlexNet GoogLeNet 

Dataset TP TN FN FP 

b 

(%) 

m 

(%) 

Abs 

(%) 

Acc 

(%) TP TN FN FP 

b 

(%) 

m 

(%) 

Abs 

(%) 

Acc 

(%) 

orj_par dataset 830 24 25 843 97.19 97.14 0.05 97.15 825 29 22 846 96.6 97.47 0.87 97.04 

orj_par_ozel dataset 386 468 13 855 45.2 98.5 53.3 72.07 372 482 16 852 43.56 98.16 54.6 71.08 

orj_bir dataset 898 54 85 727 94.33 89.53 4.8 92.12 872 80 51 761 91.6 93.72 2.12 92.57 

orj_bir_ozel dataset 357 539 34 771 38.84 95.78 56.94 66.31 379 517 45 760 42.3 94.41 52.11 66.96 

Avg. acc. for original-raw images 68.89 95.24 28.77 81.91     68.52 95.94 27.43 81.91 

k3_par dataset 790 64 49 819 92.51 94.35 1.84 93.44 824 30 20 848 96.49 97.7 1.21 97.1 

k3_par_ozel dataset 795 59 32 836 93.09 96.31 3.22 94.72 765 89 20 848 89.58 97.7 8.12 93.67 

k3_bir dataset 902 50 122 690 94.75 84.98 9.77 90.25 922 30 55 757 96.85 93.23 3.62 95.18 

k3_bir_ozel dataset 734 162 7 798 81.92 99.13 17.21 90.06 816 80 18 787 91.07 97.76 6.69 94.24 

Avg. acc. for 3 cluster segmented images 90.57 93.69 8.01 92.12     93.50 96.60 4.91 95.05 

k4_par dataset 812 42 49 819 95.08 94.35 0.73 94.72 827 27 52 816 96.84 94.01 2.83 95.41 

k4_par_ozel dataset 697 157 33 835 81.62 96.2 14.58 88.97 794 60 53 815 92.97 93.99 1.02 93.44 

k4_bir dataset 871 81 69 743 91.49 91.5 0.01 91.5 903 49 50 762 94.85 93.84 1.01 94.39 

k4_bir_ozel dataset 666 230 86 719 74.33 89.32 14.99 81.42 813 83 31 774 90.74 96.15 5.41 93.3 

Avg. acc. for 4 cluster segmented images 85.63 92.84 7.58 89.15     93.85 94.50 2.57 94.14 

k5_par dataset 835 19 20 848 97.78 97.7 0.08 97.74 837 17 24 844 98.01 97.24 0.77 97.63 

k5_par_ozel dataset 653 201 13 855 76.46 98.5 22.04 87.57 717 137 27 841 83.96 96.89 12.93 90.48 

k5_bir dataset 921 31 71 741 96.74 91.26 5.48 94.22 919 33 68 744 96.53 91.63 4.9 94.27 

k5_bir_ozel dataset 581 315 10 795 64.84 98.76 33.92 80.89 800 96 15 790 89.29 98.14 8.85 93.47 

Avg. acc. for 5 cluster segmented images 83.96 96.56 15.38 90.11     91.95 95.98 6.86 93.96 

k6_par dataset 798 56 46 822 93.44 94.7 1.26 94.08 838 16 36 832 98.13 95.85 2.28 96.98 

k6_par_ozel dataset 682 172 35 833 79.86 95.97 16.11 87.98 735 119 59 809 86.07 93.2 7.13 89.66 

k6_bir dataset 907 45 127 685 95.27 84.36 10.91 90.25 912 40 86 726 95.8 89.41 6.39 92.86 

k6_bir_ozel dataset 638 258 27 778 71.21 96.65 25.44 83.25 811 85 22 783 90.51 97.27 6.76 93.71 

Avg. acc. for 6 cluster segmented images 84.95 92.92 13.43 88.89     92.63 93.93 5.64 93.30 

The training based on the AlexNet and GoogLeNet models 
produced the confusion matrix results presented in Table 1. 
The model was run 3 times for each dataset, and the training 
model performing best was employed ultimately. In Table 1, 
benign tumors are labeled with the letter b, malignant tumors 
are labeled with the letter m, while accuracy in the diagnosis of 
benign tumors is b (%), and the accuracy in the diagnosis of 
malignant tumors is m (%). The absolute margin between the 
accuracy rates for the benign tumors and malignant tumors is 
Abs (%). Finally, the model’s overall accuracy is shown as Acc 
(%). The cases where the microscope images of benign tumors 
were correctly classified as benign were labeled true positive 
(TP), whereas the cases where they were misdiagnosed as 
malignant were labeled false negative (FN). In line with the 
same naming convention, the cases where the microscope 
images of malignant tumors were correctly classified as 
malignant were labeled true negative (TN), while the cases 
where they were misclassified as benign were labeled false 
positive (FP). 

The review of Table 1 reveals that, with “par” and “bir” datasets 
the highest model accuracy for AlexNet is achieved with the use 
of segmented images (k=5). In the same vein, with “par_ozel” 
and “bir_ozel” datasets, the highest model accuracy for AlexNet 
is achieved with the use of segmented images (k=3) for training 
the model. In particular, in the case of the datasets named 
“par_ozel” and “bir_ozel”, the AlexNet model trained on 
segmented images achieved vastly improved model accuracy 
compared to the AlexNet model trained on original-raw images, 
with 22% better performance observed with the “par_ozel” 
dataset, and 23% better performance observed with the  
“bir_ozel” dataset. Thus, model performance is clearly 
increased with the use of segmented images for model training 
and testing processes for the AlexNet model. 

The training based on the GoogLeNet model produced the 
confusion matrix results presented in Table 1. The review of the 
average accuracy rates of the model as presented in Table 1 
reveals that the use of segmented images in general, and images 
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segmented into three clusters (k=3) in particular, for model 
training and testing processes leads to increased model 
performance. When trained on “par” dataset alone, the 
GoogLeNet model trained with images segmented into 5- and 
3-color clusters achieved an accuracy rate less than 1% better 
than the accuracy of the model trained with original-raw 
images. Such a small margin is arguably a consequence of the 
information leak from the training dataset to the test dataset, 
occurring both with the AlexNet and GoogLeNet models. In the 
case of the datasets named “par_ozel”, “bir”, and “bir_ozel”, the 
GoogLeNet model trained on segmented images achieved 
improved model accuracy compared to the GoogLeNet model 
trained on original-raw images, with more than 2% better 
performance observed with the “bir” dataset, and 22% and 
27% better performance respectively observed with the 
“par_ozel” and “bir_ozel” datasets. 

The review of the model accuracy rates presented in Table 1, 
obtained through the testing of the neural network built with 
AlexNet and GoogLeNet CNN models reveals that the 
GoogLeNet model performs better in the classification of 
histopathology images of colon cancer as benign or malignant 
type cancer.  Furthermore, the GoogLeNet model trained on 
images segmented into three clusters performs better in 
classification compared to GoogLeNet models trained on other 
datasets. 

Although the confusion matrix results presented in Table 1 
suggest that the use of segmented images increases 
performance of CNN models, it is still imperative to investigate 
the diagnostic ability associated with such performance levels, 
using receiver operating characteristic (ROC) analysis used 
extensively in the field of medicine.  

  

(a) (b) 

  

(c) (d) 

Figure 7. ROC curves of the AlexNet model trained on original-
raw images and images segmented with 3, 4, 5, and 6 clusters:  
(a) "par" dataset, (b) "par_ozel" dataset, (c) "bir" dataset, (d) 

"bir_ozel" dataset. 

ROC analysis is a graphical analysis method used frequently in 
identifying the model with the best classification performance 
among various machine learning applications in the field of 
medicine. In this context, the performance levels of the CNN 
models ran with distinct datasets labeled “par”, “par_ozel”, “bir” 
and “bir_ozel” in the present study were also evaluated using 

ROC analysis. The ROC analysis assessed the diagnosis 
performance of the model in question, with reference to the 
area under the curve (AUC) value. 

The ROC curves and AUC values pertaining to the performance 
results obtained through training of the AlexNet with 20 
distinct datasets are presented in Figure 7. A glance at the ROC 
curves (see Figure 7) showing the diagnosis ability of the 
AlexNet model reveals that the images included in the 
“par_ozel” and “bir_ozel” datasets, which cannot be considered 
good representatives of the sample space for the purposes of 
classification of colon cancer images, lead to very low AUC 
values in case they are used without any pre-processing. On the 
other hand, the training of the AlexNet model using the 
segmented versions of the same images as per the method 
proposed in the study, leads to an AUC value approaching 1. In 
the light of these observations, the ROC graphs run in parallel 
to the model accuracy rates presented in Table 1.  

  

(a) (b) 

  

(c) (d) 

Figure 8. ROC curves of the GoogLeNet model trained on 
original-raw images and images segmented with 3, 4, 5, and 6 

clusters: (a) "par" dataset, (b) "par_ozel" dataset, (c) "bir" 
dataset, (d) "bir_ozel" dataset. 

The ROC curves and AUC values pertaining to the performance 
results obtained through training of the GoogLeNet with 20 
distinct datasets are presented in Figure 8. A glance at the ROC 
curves (see Figure 8) for the GoogLeNet model reveals that the 
images included in the “par_ozel” and “bir_ozel” datasets, which 
cannot be considered good representatives of the sample space 
for the purposes of classification of colon cancer images, lead to 
very low AUC values in case they are used without any pre-
processing, as was the case with the AlexNet model. Thus, the 
performance margin between the AlexNet and GoogLeNet 
models using original-raw versions of the images and the 
AlexNet and GoogLeNet models using the dataset comprises of 
images segmented through the method proposed is statistically 
significant. 

The impact of the images used in the datasets on model 
performance is assessed through the confusion matrix, 
whereas the ROC curves helped analyze the confidence levels of 
the results obtained, and to ascertain the optimal match of the 
CNN models with specific datasets. In the end, it was found that 
the GoogLeNet model trained with images segmented through 
augmented k-means clustering performed better. On the other 
hand, results or errors affecting performance of the successful 
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model, due to certain distribution patterns of the images across 
the training and test databases, may have occurred. To 
eliminate such errors, and to verify the accuracy and reliability 
of the model performance assessment independent of the 
specific dataset distribution involved, the data sample was split 
into k groups, using the k-fold cross validation method. 
Thereafter, k distinct instances of training and test datasets 
were produced, with one item being assigned to the test set, and 
the rest being assigned to the training set. The CNN model was 
trained separately with each training set, and thereafter tested 
with the associated test sets. The mean performance level thus 
assessed represents the true performance of the model. The 
GoogLeNet model was trained separately with images 
segmented into 3 clusters, as well as with the original-raw 
images. With the k-fold cross validation, the k was set to 10 for 
“par” and “bir” datasets, to 6 for “par_ozel” dataset, and 7 for 
“bir_ozel” dataset. Doing so allowed the verification of the 
model’s accuracy, independent of the positive or negative 
potential impact the data in the chosen dataset may have on the 
model’s performance. The average performance figures 
established using k-fold cross validation for the GoogLeNet 
model with “par”, “par_ozel”, “bir”, and “bir_ozel” datasets 
comprised of the original images are presented in Table 2. 

Table 2. The comparison of the average performance levels of 
the GoogLeNet model with original-raw images and images 

segmented into 3 clusters. 

 Segmented image Original-raw image 

Dataset b(%) m(%) Acc(%) b(%) m(%) Acc(%) 

par 97.57 97.72 97.64 96.37 98.02 97.20 

par_ozel 97.67 97.49 97.59 87.95 97.94 92.99 

bir 95.40 93.75 94.54 90.27 95.84 93.06 

bir_ozel 92.89 93.29 93.08 81.86 94.06 88.05 

Average 95.88 95.56 95.71 89.11 96.47 92.83 

4 Conclusion 

The present study is based on color images of human colon 
tissues, which underwent histology analysis with H&E routine 
staining. The first step had been to apply a simple and fast 
segmentation of the images of colon tumors. To do so, 
augmented k-means clustering algorithm proposed and 
subjected to a performance assessment in our previous study 
[6] was employed. After that, a DL-based approach utilizing 
these segmented images was applied to classify colon tumor 
images as malignant or benign. Then, the performance of the 
DL-based classification using segmented versions of 
histopathology images of colon tumors was compared against 
the DL-based classification using the original-raw images. 

Two CNN models, AlexNet and GoogLeNet, were employed, 
leading to an innovative method for classifying colon tumors. 
Within this framework, 136 images of benign tumors and 152 
images of malignant tumors, totaling 288 tumor images, were 
used to generate 818 segmented images of benign tumors and 
831 segmented images of malignant tumors, by taking various 
cross-sections of these images. These processes were followed 
by data augmentation involving vertical flipping, horizontal 
flipping, 90o, 180o and 270o rotation, and adding gaussian noise 
to come up with a sample of 11543 images to represent real 
world data better for the deep learning processes. To train the 
deep learning-based CNNs, segmented images divided into 
color clusters via the segmentation method used in the initial 
stage were utilized, rather than the original, unprocessed 

images. To assess the performance of this proposed approach, 
a total of 20 datasets with distinct structures and 
characteristics, named after the “par”, “par_ozel”, “bir” and 
“bir_ozel” pattern, comprised of original-raw images and 
segmented images were employed. The datasets created were 
subsequently employed with the AlexNet and GoogLeNet CNN 
models for training and testing. These test outcomes were the 
basis for constructing confusion matrices, plotting ROC curves, 
and computing AUC values. 

The comparison revealed that, with the “par” dataset, the 
AlexNet model trained with segmented images (97.74%) 
achieved 0.59% higher accuracy compared to the AlexNet 
model trained with original-raw images (97.15%). The 
closeness of the accuracy levels in the two distinct training 
settings is probably due to information leaks involving the 
training dataset and the test dataset. With the “bir” dataset, on 
the other hand, the AlexNet model trained with segmented 
images was observed to achieve 2.1% better than the model 
trained with original-raw images. With the “par_ozel” dataset, 
the AlexNet model trained with segmented images achieved 
22.65% higher accuracy compared to the AlexNet model 
trained with original-raw images, whereas with the “bir_ozel” 
dataset, the model trained with segmented images achieved 
23.75% higher accuracy. Thus, one can conclude that the 
AlexNet model trained with segmented images achieves up to 
23% higher performance. 

In case the same datasets are used to train the GoogLeNet deep 
learning model, the GoogLeNet model trained on segmented 
images performed less than 1% better accuracy compared to 
the GoogLeNet model trained on original-raw images. 
Moreover, compared against the GoogLeNet model trained on 
original-raw images, the GoogLeNet model trained on 
segmented images achieved 2.61% better performance for the 
“bir” dataset, 22.59% better performance for the “par_ozel” 
dataset, and 27.28% better performance for the “bir_ozel” 
dataset. Thus, one can conclude that the GoogLeNet model 
trained with segmented images achieves up to 27% higher 
performance. Furthermore, the GoogLeNet model was found to 
be more successful in the classification of colon tumor images 
as benign or malignant. On the other hand, in cases with non-
homogenous data distribution between training and test 
datasets (par_ozel and bir_ozel datasets), the standard deep 
learning models were observed to perform with very poor 
accuracy, whereas deep learning models based on the proposed 
approach achieved very high levels of accuracy. In other words, 
deep learning models used for the classification of colon tumor 
images would perform much better if trained on images 
segmented with the augmented k-means clustering algorithm 
proposed in the first part of the study, instead of original-raw 
images. 

Deep learning methods perform much better with larger 
datasets. Therefore, subsequent studies can utilize much larger 
datasets to build on the findings of the present analysis. In 
addition to the AlexNet and GoogLeNet models employed in the 
present study, further research can use other models such as 
ResNet or DenseNet. Moreover, the performance of the initial 
cluster center determination method employed in the 
augmented k-means clustering algorithm proposed for the 
segmentation of the images, was compared against those of 
random and non-linear methods. Further research can engage 
in comparisons with other cluster initialization methods such 
as random sampling, distance optimization, or density 
estimation. However, a fast and stable method with lower 
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processing requirements would be a better choice. For, the 
images to be segmented through the chosen method will be 
used as input for deep learning models. The processing time 
and processing load involved in the segmentation stage will 
have consequences for the deep learning model and the overall 
system. 
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