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Abstract

In this research, a novel approach for classifying colon cancer was
developed by employing two convolutional neural network (CNN)
models, namely GooglLeNet and AlexNet. This approach involves
training CNNs with histopathological images segmented into color
clusters using an augmented k-means clustering algorithm, rather than
utilizing original-raw images. This method was applied to 20 datasets
with distinct structural and characteristic features, derived from larger
datasets comprising both original and segmented images. The datasets
were used to train and test CNN models. The results indicate that
AlexNet, trained with segmented images, showed a 2% to 23% increase
in accuracy performance, while GooglLeNet's accuracy performance
improved by 2% to 27%. Notably, the proposed approach yielded higher
accuracy with datasets containing non-homogeneous data.

Keywords: Convolutional neural network, Deep learning, Image
segmentation, Image classification, Colon cancer

Oz

Bu arastirmada, GoogLeNet ve AlexNet olmak iizere iki evrisimli sinir
agt (CNN) modeli kullanilarak kolon kanserinin siiflandirilmast icin
yeni bir yaklasim gelistirilmistir. Bu yaklasimda CNN'ler, orijinal ham
gortintiileri kullanmak yerine, artirilmis bir k-ortalamalar kiimeleme
algoritmast kullanilarak renk kiimelerine ayrilmis histopatolojik
gértintiileri kullanarak egitilmektedir. Bu yéntem hem orijinal hem de
béliitlenmis gériintiilerden olusan daha biiytik veri kiimelerinden elde
edilen farkl yapisal ve karakteristik ézelliklere sahip 20 veri kiimesine
uygulanmistir. Veri kiimeleri CNN modellerini egitmek ve test etmek
icin kullamilmistir. Sonuglar, boltimlere ayrilmis gériintiilerle egitilen
AlexNet'in dogruluk performansinda %2 ile %23 arasinda bir artis
gosterdigini, GoogLeNet'in dogruluk performansinin ise %2 ile %27
arasinda iyilestigini ortaya koymustur. Ozellikle, énerilen yaklasim
homojen olmayan verilere sahip veri kiimelerinde daha ytiksek
dogruluk saglamigtir.

Anahtar Kelimeler: Evrisimli sinir agi, Derin 6grenme, Goriinti
bolutleme, Gorunti siniflandirma, Kolon kanseri

1 Introduction

Cancer is the second leading cause of death in Turkey and
worldwide. Tiirkyillmaz et al. [1],[2] note that rising world
population, the increase in the numbers of the elderly,
significant levels of exposure to potential causes of cancer and
various environmental factors contribute to an increase in the
number of new cancer cases and are thus expected to aggravate
the burden posed by cancer in the future. A review of reported
cases of cancer through years clearly shows the increasing
burden associated with this condition. Figure 1 presents the
data for new cases of six major types of cancer over the years,
while Figure 2 shows the number of deaths caused by cancer,
with reference to statistics from the GLOBOCAN database,
published by the International Agency for Research on Cancer
(IARC) under the World Health Organization (WHO) umbrella.
A review of these figures to assess the cancer burden reveals
that lung, breast and colorectal cancers rank at the top of the
list in terms of global incidence rates. Colorectal cancers also
rank second in terms of deaths caused by cancer [3],[4],[5],[6].

*Corresponding author/Yazisilan Yazar

Thus, it is obvious that early and definite diagnosis of colon
cancer is important.
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Figure 1. The number of new cancer cases through the years,
based on GLOBOCAN database figures [3],[4],[5]-

Pathological analysis plays a most crucial part in definite
diagnoses of colon tumors. This process entails the analysis of
the biopsy samples taken from the relevant tissue, performed
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by a specialized pathologist using a microscope to review the
cells and the position of the nuclei, along with structural and
functional deformations, culminating in a definite judgment
about the nature of the tissue under review.
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Figure 2. The number of deaths caused by cancer through the
years, based on GLOBOCAN database figures [3],[4],[5]-

The pathological diagnosis process begins with an assessment
of macroscopic and microscopic characteristics. These
characteristics are analyzed with reference to the
differentiations observed in cells, tissues, and organs [7]. This
review is essentially based on visual interpretation and
therefore can lead to inconsistent interpretations and non-
standard and non-objective results. Variations and a multitude
of interpretations are considered common occurrences in
efforts to classify the cancer [8]. Therefore, various image
analysis systems have been developed to provide objective
results, facilitating standardized assessments by physicians.
The most important procedures implemented by these image
analysis systems, in turn, are image segmentation and image
classification [6].

Convolutional neural networks (CNNs) which gained
popularity in recent years, and which have been employed in a
wide range of applications (face recognition, segmentation,
object detection, natural language processing etc.) also see
extensive use for image classification as well. However, CNN did
not draw much attention in the field of computer vision until
2012, as it required a lot of training data and powerful
hardware required to process the significant amount of data
involved. However, from 2012 on, given the ability to derive
much larger data sets in several distinct fields, the increased
emphasis on the big data concept, increased efficiency of
algorithms, the development of GPUs, and the fall in computing
costs, CNN skyrocketed in popularity [9].

The burgeoning field of digital pathology has seen significant
advancements with the integration of deep learning algorithms.
Despite these advancements, accurately classifying colon
cancer using histopathological images remains a significant
challenge due to the complexity and variability of the data. In
the literature, the deep learning algorithms working with
histopathology images often utilize the original-raw RGB
images taken in histopathology analyses as input. While
alternative color spaces have been explored in some studies,
raw RGB images remain the most common input for deep
learning models.

Several studies have explored the potential of deep learning
architectures, particularly convolutional neural networks
(CNNs), for colon cancer classification. For example,
Parelanickal etal. [10] achieved 95% and 97% accuracies using
VGG16 and MobileNetV2, respectively. Sari et al. [11]

demonstrated effective results comparing CNNs with Vision
Transformers, illustrating modern architectures' potential.
Peng and Lee [12] achieved 99.77% accuracy with ResNet50 in
histopathological image analysis, showcasing pre-trained
networks' efficacy. Anju and Vimala [13] reported a 97.42%
accuracy for InceptionV3, highlighting the impact of
preprocessing and data augmentation on performance.
Collectively, these studies wunderscore deep learning
architectures' significant potential in colon cancer
classification.

Moreover, fine-tuning models like AlexNet and GoogLeNet
enhances classification accuracy for colon cancer datasets.
Optimized models show notable performance improvements in
accuracy, sensitivity, and specificity. Babu et al. [14] found that
data augmentation increased GoogLeNet’s accuracy by 2.3% to
80% on the CrchistophenoTypes dataset, demonstrating its
role in enhancing generalization.

Kumar et al. [15] emphasized preprocessing steps, showing
that median filtering and SegNet-based preprocessing
improved AlexNet and GoogLeNet's classification accuracy.
Their comparative evaluation revealed GoogLeNet as the best
performer with 94.165% accuracy, 97.589% sensitivity, and
87.359% specificity, illustrating its high sensitivity in colon
cancer classification when fine-tuned.

Conversely, Kumar et al. [16] showed that optimizing AlexNet
with the WSO method raised its classification accuracy to
99.3%, with sensitivity and specificity values of 99.76% and
98.68%. This indicates that while GoogLeNet is effective,
AlexNet can achieve superior accuracy through specific
optimization strategies.

In summary, CNN architectures like AlexNetand GoogLeNet are
prevalent in colon cancer classification. However, optimizing
these models and tailoring them to datasets are crucial for
enhancing accuracy and generalization performance. The
literature supports the efficacy of data augmentation and
preprocessing techniques in this field.

Nonetheless, current research primarily addresses raw,
unsegmented images. While prior research predominantly
utilizes unsegmented images, some studies explore alternative
color spaces (HSV, YCbCr and RGB [17]; RGB, YCbCr, CIELab and
HSV [18]; CIELab* and RGB [19]; RGB and HIS [20]). Research
indicates that image conversion can enhance CNN classification
accuracy. However, the extent of enhancement is often
contingent upon the model architecture employed.

Although these studies demonstrate the potential of CNNs and
alternative preprocessing techniques, they largely focus on raw
or color-space-modified images. To address this gap, the
proposed method enhances model performance by segmenting
RGB images using an augmented k-means clustering algorithm
[21], thus reducing color complexity levels without altering the
color space. Moreover, the tests performed found performance
improvements with various CNN models. Moreover, even with
problematic datasets impairing the performance of the model
and causing overfitting in the system, the use of the method
proposed here was seen to bring about 27% improvement in
system performance.

The structure of this paper is outlined as follows: Section 2
details the dataset, including image acquisition, the
characteristics of the images obtained, preprocessing, and
augmentation methods. Subsection 2.4 elucidates the
augmentation k-means clustering algorithm for segmentation,
while Subsection 2.5 presents the CNN architectures utilized



for classification. Section 3 offers a comparative analysis of CNN
models with segmented and raw images. Finally, Section 4
summarizes the findings and emphasizes the principal findings.

2 Materials and methods

The methodology consists of two main phases: image
preprocessing and CNN training. In the preprocessing stage, an
augmented k-means clustering algorithm is applied for image
segmentation. This algorithm simplifies the color scheme of
each image, reducing color complexity and highlighting
important features. After segmentation, these images are used
to train two CNN models: GoogLeNet and AlexNet. The training
process is conducted with a diversified dataset, ensuring a
comprehensive learning process.

2.1 Microscope image

The study is based on color images of human colon tissues,
taken with a digital camera (Nikon Coolpix E5000) mounted on
amicroscope (Nikon Eclipse E400). All images used in the study
are microscope images processed with the H&E [22],[23]
staining technique. H&E staining is the most popular staining
technique in histopathology. H&E staining dyes the
histopathology images with several dyes affecting specific parts
of the tissue: blue and black showing the cell nuclei, pink
presenting the cytoplasm, dark red in the case of muscle fibers,
and an orange-red hue showing the red blood cells (RBCs).

A study on the segmentation of microscope images using
augmented k-means clustering algorithm [6] used microscope
images of the colon tissue, with a size of 2560x1920 pixels. 51
of these images belonged to benign colon tumors, and 49
belonged to malignant colon tumors. The microscope images
are a random sample of the dyed slides of the tissues already
diagnosed and archived by the Medical Pathology Department
of Necmettin Erbakan University. Furthermore, the approval
(document ID 2015/116 and 13 Feb 2015 dated) of Necmettin
Erbakan University Ethics Committee for Non-Pharmaceutical
and Non-Medical Device Research was obtained for the use of
these images.

The classification of tumors as malignant and benign tumors
using deep learning with segmented images, on the other hand,
the dataset was increased to a total of 123 images (62 benign
and 61 malignant tumor images) with additions alongside the
images used in the segmentation analysis. Moreover, images
provided on the website of the Department of Computer
Science at the University of Warwick
(https://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest
/) covered by a consent for use in research were used. These
additional images comprise a total of 165 shots obtained from
16 histology slides with H&E staining, taken from different
patients. To digitize the histology slides into a whole-slide
image form, Zeiss Mirax Midi Slide Scanner with a pixel size of
0.465 pm pixel. The whole-slide images thus digitized are
scaled to a pixel size of 0.620 pum, equivalent to 20x lens
magnification [24],[25]. 74 of these images belonged to benign
colon tumors, and 91 belonged to malignant colon tumors.

2.2 Computer hardware and software

Segmentation or classification of an image at a high level of
detail poses a very complex problem. In the same vein, the use
of deep learning algorithms for the classification of images with
a high level of detail also represents a highly complex problem
requiring significant processing power. Powerful hardware
capable of meeting significant processing requirements is used.

Graphics processing units (GPUs) are employed, given their
architecture based on very high numbers of parallel processors.
Thus, GPUs stand out as crucial hardware for deep learning
algorithms. In the present study, the deep learning system
working with segmented images was a PC with Gigabyte X299
Aorus Gaming 9 main board, 3.5 Ghz Intel Core i7 7800X
processor for socket 2066, with 8.25MB cache, Kingston DDR4
64GB RAM 3000Mhz, 2 x GeForce GTX 1080Ti Gaming X-Trio
GDDR5X 11GB 352 Bit Nvidia graphics cards installed in an SLI
arrangement, and 3 x4TB Sata 3.0 128MB cache 7200 Rpm NAS
hard drives. The software used was NVIDIA Digits 6 [26], a web-
based software running on Ubuntu 18.10 operating system. The
parallel processing architecture was CUDA 9.0 [27], which
increased processing performance by using NVIDIA GPU,
complemented with the CuDNN [28] library enabling the tasks
required for deep learning. The software was installed on the
Docker, which is the recommended solution for virtualization
at the operating system level. Moreover, Caffe v0.15.14
[29],[30] based on Python programming language served as the
deep learning library, while Stochastic Gradient Descent (SGD)
algorithm, which is the most popular choice in optimization
processes, was used for determining the minimum level in the
loss function.

2.3 Data augmentation and pre-processing

Data augmentation refers to the process whereby a smaller
dataset is used to produce a larger one, all the while
maintaining the ability to represent real-world data. Several
data augmentation methods have been proposed for this
purpose. Many images are required in architectures where
CNN, aleading DL algorithm, is used. If the dataset contains only
a limited number of images, data augmentation could help
against overfitting.

In the present study, with a view to increasing the number of
images, first of all, the 62 images of benign colon tumors and 61
images of malignant colon tumor, each with a size of
2560x1920 pixels, received from the archives of the Medical
Pathology Department of Necmettin Erbakan University, were
processed to produce completely distinct 464 images of benign
tumors and 407 images of malignant tumors, based on different
sections of the original-raw images. In the same vein, 74 images
of benign colon tumors and 91 images of malignant colon
tumors published on the website of the Department of
Computer Science at the University of Warwick and covered by
a consent for use in research were used to produce completely
distinct 354 images of benign tumors and 424 images of
malignant tumors, based on different sections of the original-
raw images. This process resulted in a dataset of 818 images of
benign colon tumors, and 831 images of malignant colon
tumors.

These microscopic images of colon tumors were then subjected
to data augmentation in a process imitating the cases with real
world data, through vertical and horizontal flipping, 90° 180°
and 270° rotation, and adding gaussian noise. Figure 3 presents
examples of images obtained through data augmentation on a
malignant tumor image. By applying the data augmentation
methods shown in Figure 3, the number of images in the dataset
was increased to a total of 11543, comprising 5726 benign and
5817 malignant tumor images.
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Figure 3. Data augmentation applied on a malignant tumor
image: (a) original image, (b) horizontal flip, (c) vertical flip,
(d) 900 rotation, (e) 180° rotation, (f) 270° rotation, (g)
gaussian noise.

2.4 Augmented k-means clustering algorithm

Determining the number of clusters involved and defining the
pixel clusters is a difficult and important step in the
segmentation of color images through clustering-based
processes. In particular, accurate and optimal determination of
the number of clusters and the initial cluster centers is crucial
in terms of performance, segmentation quality, and
segmentation success. Moreover, from a system stability
perspective, it is imperative to come up with identical results
when producing images through segmentation using clustering
methods, in other words, to get the same clusters and the same
pixel values associated with those clusters in every reiteration
of the process. In medicine getting accurate and consistent
results in every iteration using an identical histopathology

image is crucial regarding the system’s reliability. The initial
cluster centers should be chosen based on a specific and well-
defined algorithm to ensure such consistency. Yet, when doing
so, one should also consider the need to avoid excessive
processing requirements and present a simple and stable
structure. For this purpose, to ensure an optimal distance and
separation between the initial cluster centers, the augmented
k-means clustering algorithm proposed in the previous study
was used [6]. This algorithm is essentially a further
development on the weighted k-means clustering algorithm
[31],[32]. Processing steps of the augmented k-means
clustering algorithm:

Step 1: First, the number of clusters (k) to group the data
elements (pixels in the case of images) into will be established.

Step 2: The initial cluster center (Cx) (centroid) value will be
established for each cluster, based on Equation 1. Doing so
ensures that the initial cluster centers are located at an optimal
distance from each other.

Dp,

. 1
Ke k+1 M

for i=(@1,..,k),

Ci=K *i

Here, K¢ refers to the cluster center creation coefficient, Dn
refers to the number of bins in histogram, k refers to the cluster
number and C; refers to the cluster center value.

Step 3: The distance between all data elements and the cluster
centers will be calculated with the Euclidean distance formula
provided in Equation 2. All data elements will then be assigned
to the nearest cluster center, based on the results thus
produced.

d(a,b) = (2

When calculating the distance between the two colors (a, b), the
i value in Equation 2 stands for the color channel, as the color
values of the color images in the dataset are expressed as RGB
values.

Step 4: The cluster center values for these sets which are now
populated with new elements will then be recalculated using
the formula presented in Equation 3. The new cluster centers
thus found will be compared against the previous cluster
center. In this equation, the values of the elements of the set,
along with the histogram data for those elements, are also
included in the formula.

1 m
Ce =Sm 1 E hiZ; 3)
i=1 l].=1

Here, k refers to the cluster number, C = {Cy, Cz, .., Cx} refer to
the cluster center values, m refers to the number of elements
assigned to each cluster center, C{1.xy = {Z1, Z2, ..., Zm} refer to the
elements corresponding to the cluster center, and hj refers to
the histogram value for the color Z;.

Step 5: In case the cluster centers are the same with the
previous cluster center values, the clusters will be assumed to
have remained unchanged, and the process shall conclude. In
case any changes are observed with the cluster centers, all steps
from step 3 on will be repeated.



2.5 Convolutional neural network

Convolutional neural network (CNN) is a deep learning
algorithm, which is a type of artificial neural networks (ANN)
and refers to a specific type of deep feedforward neural
networks, characterized by a grid-like structure and often used
for data processing in the context of analyzing images. In other
words, it refers to neural networks employing convolution as a
mathematical operation, instead of matrix multiplication in
layers [33].

Deep learning offers solutions based on deep neural network
algorithms for complex problems requiring variable functions
in voice recognition, face recognition, visual object recognition,
object detection, bioinformatics, natural language processing,
image segmentation, and classification, as well as for
segmentation, detection, classification, and registration
problems regarding medical imaging [9],[34]-[37]. As one such
deep neural network algorithms, CNN finds extensive use in
several fields such as classification, object detection, and
natural language processing, due to its high performance in
computer vision. The first layers of CNNs often derive simpler
and cruder properties. However, as the number of layers
increase, a range of more complex properties can also be
derived in deeper layers. Such complex properties are the ones
representing the image much better [38].

Yet, CNN did not draw much attention in the field of computer
vision till 2012, as it required a lot of training data and powerful
hardware required to process the significant amount of data
involved. In 2012, after Krizhevsky et al. won the top place in
ImageNet image classification competition, modern deep
learning models gained popularity and began to be used in
various fields [9]. LeNet [39] and AlexNet [40] were the first
modern deep learning models introduced in this paradigm and
were soon followed by several others including ZFNet [41],
GoogLeNet [42],[43], VGGNet [44], and ResNet [45]. AlexNet
and GoogleNet models were used extensively and can be
considered popular models. The present study is based on
AlexNet and GoogLeNet models.

In this study, AlexNet and GoogLeNet architecture were
preferred due to their widespread applications in the literature
and compatibility with existing resources The modularly
designed architecture of GoogLeNet is a significant advantage
over complex and more resource-intensive models such as
ResNet in terms of reduced computational complexity and
architectural flexibility. This attribute renders it especially
beneficial in scenarios where computational resources are
constrained or where the minimization of computational
expenses is of paramount importance. Nevertheless, research
has demonstrated that GoogLeNet exhibits competitive
performance across a spectrum of tasks while sustaining a
judicious equilibrium between accuracy and computational
efficiency [42,43].

In a similar vein, AlexNet [40], recognized as one of the
foundational architectures in deep learning, is often favoured
its status as a benchmark model within the domain of image
classification. Its comparatively straightforward architecture
renders it an exemplary option for conducting comparative
analyses. The employment of AlexNet offers a robust
framework for the validation of the proposed methodologies by
facilitating a direct comparison of the results of this study with
existing research.

While more contemporary architectures, such as ResNet, are
engineered to attain superior accuracy on more complex tasks,

they frequently necessitate greater computational resources
and larger datasets. Therefore, in this study, where the primary
aim was to evaluate the impact of using histopathological
images segmented into color clusters by an augmented k-
means clustering algorithm instead of original raw images on
the performance of CNNs, AlexNet and GoogLeNet architectures
were preferred over more advanced models such as ResNet.
This preference was based on their ability to provide an optimal
balance between computational efficiency and classification
accuracy. For these reasons, these architectures were deemed
suitable for achieving the objectives of this study.

The AlexNet and GoogLeNet architectures were trained on the
dataset using the Nvidia-DIGITS 6 platform, which applied
default hyperparameter settings. The learning rate was set to
0.01, batch size to 32, and the number of epochs to 30. The
models were initialized with standard random weights since no
pre-trained networks were employed.

2.5.1 AlexNet

Developed by Alex Krizhevsky, Illya Sutskever and Geoff Hinton,
the AlexNet model [40] won the ImageNet challenge in image
classification in year 2012, with an error rate of 16.4%, and is
based on multiple convolutions. It has an 8-layer architecture,
5 of which are convolution layers, complemented by 3 fully
connected layers. The activation function employed is Rectified
Linear Unit (RELU). Figure 4 presents the architecture of
AlexNet.
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Figure 4. AlexNet architecture [40].

The initial convolutional layer processes the 224x224x3 input
image utilizing 96 filters with dimensions of 11x11x3 and a
stride of 4, culminating in an output dimension of 55x55x96.
Subsequent convolutional layers systematically enhance the
feature maps by employing diminutive filter sizes (5x5 or 3x3)
and diverse strides. The second convolutional layer utilizes 256
filters measuring 5x5x48 on the normalized and pooled output
generated by the first layer. The third convolutional layer
implements 384 filters of size 3x3x256 on the output produced
by the second layer. The fourth convolutional layer employs
384 filters of size 3x3x192, while the fifth convolutional layer
utilizes 256 filters of size 3x3x192. In the aftermath of the
convolutional layers, the architecture incorporates three fully
connected layers, each comprising 4096 neurons, facilitating
feature extraction and classification [40].

2.5.2 GoogLeNet

GoogLeNet [42],[43] architecture was developed by Google
employees and introduced as a participant in the ImageNet
challenge in 2014. GoogLeNet architecture has 22 layers and
can operate with 12 times fewer parameters than AlexNet while
achieving a higher accuracy (with an error rate of 6.7%). The
basic building block of this architecture is the inception module.
The architecture contains a total of 9 inception modules. The
block diagram showing the inception module of the GoogLeNet
architecture is presented in Figure 5.



convolution 7x7 s:2 inception 4a inception 4d
{ max pool 3x3 s:2 ‘ [ max pool 3x3 s:2 J inception 4e dropout (40%)

convolution 3x3 s:1 inception 3b { max pool 3x3 s:2 J L avg. pool 7x7 s:1 ‘

{ max pool 3x3 s:2 » inception 3a +
Figure 5. GoogLeNet block diagram.

inception 5a inception 5b

In Figure 5, each number corresponds to the size of the feature
maps, filter dimensions, or stride values used in the respective
layers. This modular and hierarchical architecture facilitates
GoogLeNet in attaining superior accuracy while utilizing a
reduced number of parameters, thereby rendering it
exceptionally effective for extensive image -classification
endeavors.

The input image adheres to the standard RGB format and
measures 224x224x3. The initial convolutional layer employs
a 7x7 filter with a stride of 2, diminishing the input's spatial
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dimensions. Subsequent convolutional layers utilize 3x3 filters
to capture features at more granular scales. Max-pooling layers
follow the initial convolutional layers to condense spatial
dimensions while preserving critical features. For instance, the
first max-pooling layer decreases the dimensions to 56x56x64.

The inception modules, which form the core of GoogLeNet, are
represented in yellow boxes (e.g., Inception 3a, 4b). These
modules execute concurrent convolutions with filters of sizes
1x1, 3x3, and 5x5, alongside max-pooling. The resultant
outputs from these processes are amalgamated to constitute
the ultimate output of each inception module. For instance,
Inception 3a combines outputs from multiple filter sizes to
create a feature map that captures information at various
scales.

To improve training and prevent vanishing gradients, auxiliary
classifiers (e.g, Inception 4a and 4d) are included. These
classifiers provide intermediate supervision during training.
After passing through the inception modules, the network
transitions to fully connected layers, incorporating a dropout
rate of 40% to reduce overfitting.
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3 Results and discussion

CNNs, a kind of deep learning algorithms gaining popularity in
recent years allow the feeding of the images in their original-
raw forms as input for the neural network model, without any
pre-processing other than data augmentation, for the purposes
of image classification in general, and histopathology image
classification in particular. As seen in Figure 6, the present
study proposed the use of images after some processing to
reduce their detail levels prior to the classification process,
rather than using the full original image with all the details it
offers, on the grounds of simplifying the procedures and
improving the performance in the context of the efforts to
classify histopathology images as images of malignant or
benign colon tumors. To do so, a fast and simple method of
segmentation process was applied to reduce the level of details
all the while processing the basic properties of the original-raw
images. The segmentation was based on a proposed augmented
k-means clustering algorithm to operate in a simple, fast, and
consistent manner.

The original-raw images of benign and malignant tumor tissues
were subjected to augmented k-means clustering algorithm to

produce 4 distinct models in terms of cluster count, with k = {3,
4, 5 and 6} for each of the respective iterations. In the
segmentation process, the colors assigned to the clusters in
accordance with the cluster count were red, green, and blue
for the 3-cluster model; red, , green, and blue for the 4-
cluster model; red, ,green, dark green, and blue for the
5-cluster model; and red, , green, dark green, blue, and
light blue for the 6-cluster model.

Then came a comparative analysis of the impact on the model
performance, of the use of un-preprocessed original-raw colon
cancer microscope images, against the use of RGB (3 channel)
images segmented through the present algorithm on CNNs. The
comparative analysis was performed on a deep learning
algorithm, namely a CNN, based on AlexNet and GoogLeNet
architectures.

First, through random selection, 70% of the dataset comprised
of the original-raw images were assigned to the training set,
15% to the validation set, and 15% to the test set. In the next
step, the AlexNet and GoogLeNet models were trained using the
dataset. The process was repeated through 10 iterations. In
each iteration the training, validation and test datasets were
refreshed, and the models were trained on the new datasets



thus presented. Through the iterations, the low levels of model
performance associated with specific datasets were noted. In
the present study, the dataset noted for a particularly low level
of performance was the "ozel" dataset. Distinct sub-images
were produced by segmentation through the cropping
procedure applied on the original-raw images. The dataset
comprised of all sub-images derived from a given original-raw
image is designated as the "bir" dataset, whereas the dataset
comprised of sub-images derived from the images distributed
randomly, without the requirement to contain all such sub-
images associated with a given original-raw image is
designated as the "par” dataset.

Based on these arrangements, the original-raw images
numbering 11543 in total, and the segments thereof through
the use of 3, 4, 5, and 6 color clusters were used to produce 20
image clusters with distinct structures and characteristics,
named bir, bir_ozel, par, and par_ozel based on each image
cluster. These datasets are designated as orj_bir, orj_bir_ozel,
orj_par, orj_par_ozel, k3_bir, k3_bir_ozel, k3_par, k3_par_ozel,
k4 _bir, k4_bir_ozel, k4_par, k4_par_ozel, k5_bir, k5_bir_ozel,
k5_par, k5_par_ozel, k6_bir, k6_bir_ozel, ké6_par and
k6_par_ozel. Following their creation, these datasets were then
divided into three categories: the training dataset, the
validation dataset, and the test dataset. All the generated
datasets were subsequently utilized to train and test the
AlexNet and GoogLeNet CNN models.

Table 1. The confusion matrix obtained from testing AlexNet and GoogLeNet on the test dataset.

AlexNet GoogLeNet

b m Abs Acc b m Abs Acc
Dataset TP TN FN FP (%) (%) (%) (%) TP TN FN  FP (%) (%) (%) (%)
orj_par dataset 830 24 25 843 97.19 97.14 0.05 97.15 825 29 22 846 966 97.47 0.87 97.04
orj_par_ozel dataset 386 468 13 855 452 98.5 53.3 72.07 372 482 16 852 4356 98.16 54.6 71.08
orj_bir dataset 898 54 85 727 9433 89.53 4.8 92.12 872 80 51 761 916 93.72 212 92.57
orj_bir_ozel dataset 357 539 34 771 38.84 95.78 56.94 66.31 379 517 45 760 423 9441 5211 66.96
Avg. acc. for original-raw images 68.89 95.24 28.77 81.91 68.52 9594 2743 8191
k3_par dataset 790 64 49 819 92.51 94.35 1.84 93.44 824 30 20 848 9649 97.7 1.21 97.1
k3_par_ozel dataset 795 59 32 836  93.09 96.31 3.22 94.72 765 89 20 848 89.58 97.7 8.12 93.67
k3_bir dataset 902 50 122 690 9475 84.98 9.77 90.25 922 30 55 757 9685 9323 3.62 95.18
k3_bir_ozel dataset 734 162 7 798 8192 99.13 17.21 90.06 816 80 18 787 91.07 97.76 6.69 94.24
Avg. acc. for 3 cluster segmented images 90.57 93.69 8.01 92.12 93.50 96.60 491 95.05
k4_par dataset 812 42 49 819 95.08 94.35 0.73 94.72 827 27 52 816 96.84 94.01 2.83 9541
k4_par_ozel dataset 697 157 33 835 81.62 96.2 14.58 88.97 794 60 53 815 9297 9399 1.02 93.44
k4 _bir dataset 871 81 69 743 91.49 91.5 0.01 91.5 903 49 50 762 9485 93.84 1.01 94.39
k4 _bir_ozel dataset 666 230 86 719 74.33 89.32 14.99 81.42 813 83 31 774 9074 9615 5.41 93.3
Avg. acc. for 4 cluster segmented images 85.63 92.84 7.58 89.15 9385  94.50 2.57 94.14
k5_par dataset 835 19 20 848  97.78 97.7 0.08 97.74 | 837 17 24 844 9801 97.24 0.77 97.63
k5_par_ozel dataset 653 201 13 855 76.46 98.5 22.04 87.57 717 137 27 841 8396 9689 1293 9048
k5_bir dataset 921 31 71 741 96.74 91.26 5.48 94.22 919 33 68 744 9653 91.63 49 94.27
k5_bir_ozel dataset 581 315 10 795 64.84 98.76 33.92 80.89 800 96 15 790 89.29 9814 8.85 93.47
Avg. acc. for 5 cluster segmented images 83.96 96.56 15.38 90.11 9195 9598 6.86 93.96
k6_par dataset 798 56 46 822 93.44 94.7 1.26 94.08 838 16 36 832 9813 9585 2.28 96.98
k6_par_ozel dataset 682 172 35 833 79.86 95.97 16.11 87.98 735 119 59 809 86.07 93.2 7.13 89.66
k6_bir dataset 907 45 127 685 95.27 84.36 1091 90.25 912 40 86 726 958 89.41 6.39 92.86
ké6_bir_ozel dataset 638 258 27 778 7121 96.65 25.44 83.25 811 85 22 783 9051 97.27 6.76 93.71
Avg. acc. for 6 cluster segmented images 84.95 92.92 13.43 88.89 92.63 9393 5.64 93.30

The training based on the AlexNet and GoogLeNet models
produced the confusion matrix results presented in Table 1.
The model was run 3 times for each dataset, and the training
model performing best was employed ultimately. In Table 1,
benign tumors are labeled with the letter b, malignant tumors
are labeled with the letter m, while accuracy in the diagnosis of
benign tumors is b (%), and the accuracy in the diagnosis of
malignant tumors is m (%). The absolute margin between the
accuracy rates for the benign tumors and malignant tumors is
Abs (%). Finally, the model’s overall accuracy is shown as Acc
(%). The cases where the microscope images of benign tumors
were correctly classified as benign were labeled true positive
(TP), whereas the cases where they were misdiagnosed as
malignant were labeled false negative (FN). In line with the
same naming convention, the cases where the microscope
images of malignant tumors were correctly classified as
malignant were labeled true negative (TN), while the cases
where they were misclassified as benign were labeled false
positive (FP).

The review of Table 1 reveals that, with “par” and “bir” datasets
the highest model accuracy for AlexNet is achieved with the use
of segmented images (k=5). In the same vein, with “par_ozel”
and “bir_ozel” datasets, the highest model accuracy for AlexNet
is achieved with the use of segmented images (k=3) for training
the model. In particular, in the case of the datasets named
“par_ozel” and “bir_ozel”, the AlexNet model trained on
segmented images achieved vastly improved model accuracy
compared to the AlexNet model trained on original-raw images,
with 22% better performance observed with the “par_ozel”
dataset, and 23% better performance observed with the
“bir_ozel” dataset. Thus, model performance is clearly
increased with the use of segmented images for model training
and testing processes for the AlexNet model.

The training based on the GoogLeNet model produced the
confusion matrix results presented in Table 1. The review of the
average accuracy rates of the model as presented in Table 1
reveals that the use of segmented images in general, and images



segmented into three clusters (k=3) in particular, for model
training and testing processes leads to increased model
performance. When trained on “par” dataset alone, the
GoogLeNet model trained with images segmented into 5- and
3-color clusters achieved an accuracy rate less than 1% better
than the accuracy of the model trained with original-raw
images. Such a small margin is arguably a consequence of the
information leak from the training dataset to the test dataset,
occurring both with the AlexNet and GoogLeNet models. In the
case of the datasets named “par_ozel”, “bir”, and “bir_ozel”, the
GoogLeNet model trained on segmented images achieved
improved model accuracy compared to the GoogLeNet model
trained on original-raw images, with more than 2% better
performance observed with the “bir” dataset, and 22% and
27% better performance respectively observed with the
“par_ozel” and “bir_ozel” datasets.

The review of the model accuracy rates presented in Table 1,
obtained through the testing of the neural network built with
AlexNet and GoogLeNet CNN models reveals that the
GoogLeNet model performs better in the classification of
histopathology images of colon cancer as benign or malignant
type cancer. Furthermore, the GoogLeNet model trained on
images segmented into three clusters performs better in
classification compared to GoogLeNet models trained on other
datasets.

Although the confusion matrix results presented in Table 1
suggest that the wuse of segmented images increases
performance of CNN models, it is still imperative to investigate
the diagnostic ability associated with such performance levels,
using receiver operating characteristic (ROC) analysis used
extensively in the field of medicine.
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Figure 7. ROC curves of the AlexNet model trained on original-
raw images and images segmented with 3, 4, 5, and 6 clusters:
(a) "par"” dataset, (b) "par_ozel" dataset, (c) "bir" dataset, (d)
"bir_ozel" dataset.

ROC analysis is a graphical analysis method used frequently in
identifying the model with the best classification performance
among various machine learning applications in the field of
medicine. In this context, the performance levels of the CNN

models ran with distinct datasets labeled “par”, “par_ozel”, “bir”
and “bir_ozel” in the present study were also evaluated using

ROC analysis. The ROC analysis assessed the diagnosis
performance of the model in question, with reference to the
area under the curve (AUC) value.

The ROC curves and AUC values pertaining to the performance
results obtained through training of the AlexNet with 20
distinct datasets are presented in Figure 7. A glance at the ROC
curves (see Figure 7) showing the diagnosis ability of the
AlexNet model reveals that the images included in the
“par_ozel” and “bir_ozel” datasets, which cannot be considered
good representatives of the sample space for the purposes of
classification of colon cancer images, lead to very low AUC
values in case they are used without any pre-processing. On the
other hand, the training of the AlexNet model using the
segmented versions of the same images as per the method
proposed in the study, leads to an AUC value approaching 1. In
the light of these observations, the ROC graphs run in parallel
to the model accuracy rates presented in Table 1.
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Figure 8. ROC curves of the GoogLeNet model trained on
original-raw images and images segmented with 3, 4, 5, and 6
clusters: (a) "par” dataset, (b) "par_ozel" dataset, (c) "bir"
dataset, (d) "bir_ozel" dataset.

The ROC curves and AUC values pertaining to the performance
results obtained through training of the GoogLeNet with 20
distinct datasets are presented in Figure 8. A glance at the ROC
curves (see Figure 8) for the GoogLeNet model reveals that the
images included in the “par_ozel” and “bir_ozel” datasets, which
cannot be considered good representatives of the sample space
for the purposes of classification of colon cancer images, lead to
very low AUC values in case they are used without any pre-
processing, as was the case with the AlexNet model. Thus, the
performance margin between the AlexNet and GoogLeNet
models using original-raw versions of the images and the
AlexNet and GoogLeNet models using the dataset comprises of
images segmented through the method proposed is statistically
significant.

The impact of the images used in the datasets on model
performance is assessed through the confusion matrix,
whereas the ROC curves helped analyze the confidence levels of
the results obtained, and to ascertain the optimal match of the
CNN models with specific datasets. In the end, it was found that
the GoogLeNet model trained with images segmented through
augmented k-means clustering performed better. On the other
hand, results or errors affecting performance of the successful



model, due to certain distribution patterns of the images across
the training and test databases, may have occurred. To
eliminate such errors, and to verify the accuracy and reliability
of the model performance assessment independent of the
specific dataset distribution involved, the data sample was split
into k groups, using the k-fold cross validation method.
Thereafter, k distinct instances of training and test datasets
were produced, with one item being assigned to the test set, and
the rest being assigned to the training set. The CNN model was
trained separately with each training set, and thereafter tested
with the associated test sets. The mean performance level thus
assessed represents the true performance of the model. The
GoogLeNet model was trained separately with images
segmented into 3 clusters, as well as with the original-raw
images. With the k-fold cross validation, the k was set to 10 for
“par” and “bir” datasets, to 6 for “par_ozel” dataset, and 7 for
“bir_ozel” dataset. Doing so allowed the verification of the
model's accuracy, independent of the positive or negative
potential impact the data in the chosen dataset may have on the
model's performance. The average performance figures
established using k-fold cross validation for the GoogLeNet
model with “par”, “par_ozel”, “bir”, and “bir_ozel” datasets
comprised of the original images are presented in Table 2.

Table 2. The comparison of the average performance levels of
the GoogLeNet model with original-raw images and images
segmented into 3 clusters.

Segmented image Original-raw image

Dataset b(%) m(%) Acc(%) b(%) m(%) Acc(%)

par 97.57 97.72 97.64 96.37 98.02 97.20
par_ozel 97.67 9749 9759 8795 9794 9299
bir 9540 93.75 94.54 90.27 9584 93.06

bir_ozel = 92.89 93.29 93.08 81.86 94.06 88.05
Average 95.88 95.56 95.71 89.11 96.47 92.83

4 Conclusion

The present study is based on color images of human colon
tissues, which underwent histology analysis with H&E routine
staining. The first step had been to apply a simple and fast
segmentation of the images of colon tumors. To do so,
augmented k-means clustering algorithm proposed and
subjected to a performance assessment in our previous study
[6] was employed. After that, a DL-based approach utilizing
these segmented images was applied to classify colon tumor
images as malignant or benign. Then, the performance of the
DL-based classification using segmented versions of
histopathology images of colon tumors was compared against
the DL-based classification using the original-raw images.

Two CNN models, AlexNet and GoogLeNet, were employed,
leading to an innovative method for classifying colon tumors.
Within this framework, 136 images of benign tumors and 152
images of malignant tumors, totaling 288 tumor images, were
used to generate 818 segmented images of benign tumors and
831 segmented images of malignant tumors, by taking various
cross-sections of these images. These processes were followed
by data augmentation involving vertical flipping, horizontal
flipping, 90°, 180° and 270° rotation, and adding gaussian noise
to come up with a sample of 11543 images to represent real
world data better for the deep learning processes. To train the
deep learning-based CNNs, segmented images divided into
color clusters via the segmentation method used in the initial
stage were utilized, rather than the original, unprocessed

images. To assess the performance of this proposed approach,
a total of 20 datasets with distinct structures and
characteristics, named after the “par”, “par_ozel”, “bir” and
“bir_ozel” pattern, comprised of original-raw images and
segmented images were employed. The datasets created were
subsequently employed with the AlexNet and GoogLeNet CNN
models for training and testing. These test outcomes were the
basis for constructing confusion matrices, plotting ROC curves,
and computing AUC values.

The comparison revealed that, with the “par” dataset, the
AlexNet model trained with segmented images (97.74%)
achieved 0.59% higher accuracy compared to the AlexNet
model trained with original-raw images (97.15%). The
closeness of the accuracy levels in the two distinct training
settings is probably due to information leaks involving the
training dataset and the test dataset. With the “bir” dataset, on
the other hand, the AlexNet model trained with segmented
images was observed to achieve 2.1% better than the model
trained with original-raw images. With the “par_ozel” dataset,
the AlexNet model trained with segmented images achieved
22.65% higher accuracy compared to the AlexNet model
trained with original-raw images, whereas with the “bir_ozel”
dataset, the model trained with segmented images achieved
23.75% higher accuracy. Thus, one can conclude that the
AlexNet model trained with segmented images achieves up to
23% higher performance.

In case the same datasets are used to train the GoogLeNet deep
learning model, the GoogLeNet model trained on segmented
images performed less than 1% better accuracy compared to
the GoogLeNet model trained on original-raw images.
Moreover, compared against the GoogLeNet model trained on
original-raw images, the GooglLeNet model trained on
segmented images achieved 2.61% better performance for the
“bir” dataset, 22.59% better performance for the “par_ozel”
dataset, and 27.28% better performance for the “bir_ozel”
dataset. Thus, one can conclude that the GoogLeNet model
trained with segmented images achieves up to 27% higher
performance. Furthermore, the GoogLeNet model was found to
be more successful in the classification of colon tumor images
as benign or malignant. On the other hand, in cases with non-
homogenous data distribution between training and test
datasets (par_ozel and bir_ozel datasets), the standard deep
learning models were observed to perform with very poor
accuracy, whereas deep learning models based on the proposed
approach achieved very high levels of accuracy. In other words,
deep learning models used for the classification of colon tumor
images would perform much better if trained on images
segmented with the augmented k-means clustering algorithm
proposed in the first part of the study, instead of original-raw
images.

Deep learning methods perform much better with larger
datasets. Therefore, subsequent studies can utilize much larger
datasets to build on the findings of the present analysis. In
addition to the AlexNet and GoogLeNet models employed in the
present study, further research can use other models such as
ResNet or DenseNet. Moreover, the performance of the initial
cluster center determination method employed in the
augmented k-means clustering algorithm proposed for the
segmentation of the images, was compared against those of
random and non-linear methods. Further research can engage
in comparisons with other cluster initialization methods such
as random sampling, distance optimization, or density
estimation. However, a fast and stable method with lower



processing requirements would be a better choice. For, the
images to be segmented through the chosen method will be
used as input for deep learning models. The processing time
and processing load involved in the segmentation stage will
have consequences for the deep learning model and the overall
system.
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