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Abstract

On February 6, 2023, Tiirkiye experienced its most severe earthquakes
in over 80 years, beginning with a 7.8 (Mw) earthquake, followed by two
consecutive 7.5 (Mw) earthquakes nine hours later. The most distinctive
feature of this earthquake compared to others is not only that it was
more destructive than the others, but also that its impact covered a vast
geographical area. There are many studies on earthquake prediction;
these studies address topics such as emergency preparations and
response planning, risk analysis, or damage estimation. Due to the
success of deep learning (DL) algorithms in various fields, using DL
methods in earthquake prediction has become a very popular research
topic in recent years. Studies using DL methods for earthquake
prediction were examined in terms of the DL algorithms and data sets
used, with a focus on of whether the earthquakes that occurred on
February 6, 2023 and after could be predicted before the earthquake
occurred. According to the findings suggest that ionospheric reactions
observed before and after the earthquake and the use of the earthquake
time series that occurred before the earthquake can be used to predict
future earthquakes. However, these results are still preliminary
predictions, therefore, it is crucial to expand the early warning system
network and to increase the accuracy of real-time prediction models
using DL algorithms. Additionally, this study aims to guide future
research through a multidisciplinary review of the existing literature.
Ultimately, such work will help improve prediction models and
contribute to better preparedness for earthquake risks.

Keywords: Deep learning, Earthquake prediction, February 6, 2023,
Earthquake datasets
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Tiirkiye 6 Subat 2023'te 7.8 (Mw) biiyiikliigiinde depremin ardindan
dokuz saat sonra biiytikligi 7.5 (Mw) olan art arda iki deprem ile 80
yili askin siiredir Tiirkiye de yasanan en siddetli depremleri yasamis
oldu. Bu depremi diger depremlerden ayiran en belirgin ézellik sadece
digerlerinden daha yikict olmasi degil ayni zamanda etki alaninin
oldukca genis bir cografyaya yayilmis olmasidir. Deprem tahmini ile
ilgili oldukga fazla ¢alisma bulunmakta, bunlar acil durum hazirliklar
ve miidahale planlamalari, risk analizi veya hasar tahmini gibi konulari
ele almaktadir. Derin 6grenme algoritmalarinin bir¢ok alanda elde
ettigi bagarilar sonucunda, deprem tahmininde derin &grenme
yéntemlerinin kullanimi son yillarda olduk¢a popiiler bir arastirma
konusu haline gelmistir. Deprem tahmini icin derin &grenme
yéntemlerini kullanan ¢alismalar incelenmis ve bunun sonucunda
kullanilan derin égrenme algoritmalart ve veri setleri incelenerek 6
Subat ve sonrasinda gergeklesen depremlerin, deprem gerceklesmeden
énce tahmin edilip edilemeyecegi sorusuna yanit aranmistir. Elde edilen
bulgulara gére hem deprem éncesinde hem de sonrasinda 'lyonosferik
tepkilerin' varligi ve depremden énce gerceklesen deprem zaman
serisinin  kullanimi1 ile gelecekteki depremlerin tahminlerinin
yapilabilecegi sonucuna ulasiimistir. Ancak buralardan elde edilen
sonuclar tahmin mahiyetindedirler bu sebepten erken uyari sistemleri
aginin genisletilmesi ve gercek zamanli ¢alisan derin 6grenme
algoritmalari ile yapilan tahmin sistemlerinin dogrulugunu artirmak
oldukg¢a énemlidir. Ayrica literatiirtin farkli bakis agisini iceren multi
disipliner yaklasimla inceleyerek gelecekte yapilacak c¢alismalara
rehberlik etmek amaglanmaktadir. Sonug olarak bu tiir bir arastirma
daha iyi tahmin modelleri gelistirilmesine yardimci olarak toplumlarin
deprem riskine karst daha hazirlikli olmasina katki saglayacaktir.

Anahtar kelimeler: Derin 6grenme, Deprem tahmini, 6 Subat 2023,
Deprem veri setleri.

1. Introduction

Earthquakes are among the most devastating natural disasters,
having caused significant loss of life and property throughout
human history. Beyond the immediate human toll, they lead to
the collapse of buildings and infrastructure, causing long-term
socioeconomic disruptions. To mitigate these risks, measures
such as advanced warning systems and structural
reinforcement should be taken to reduce earthquake risks.
Additionally, advances in fields like modern technology and DL
can offer new opportunities for earthquake prediction and risk
analysis. Despite these advances, there is no definitive method
for predicting earthquakes with precision, including factors like
intensity, location, depth, and timing. This uncertainty stems
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from the complex and poorly understood factors that trigger
earthquakes, whether linear or non-linear [1].

To date, scientists have not been able to predict major
earthquakes but have instead estimated the probability of an
earthquake occurring. A meaningful prediction must include
specifics like date, time, location, and intensity; however,
pinpointing the exact moment of a strong earthquake remains
a challenge. As more earthquake-related parameters are
identified, prediction accuracy is expected to improve [2].

According to USGS data, approximately 700 shocks occur
annually in inhabited areas, though very few of them are felt by
people. In recent years, the establishment of networks of
seismic recording devices has made it possible to detect and



record even minor tremors [3]. Additionally, ML algorithms
have shown promising results in distinguishing environmental
noise from seismic signals. Once seismic signals are isolated,
prediction models can more accurately analyse subsurface
changes [4].

Earthquake predictions fall into two main categories: short-
term, which focuses on immediate warnings, and long-term,
which analyzes environmental and seismic change activity to
predict earthquakes expected to occur over an extended period.

Earthquake prediction methods can be categorized into four
groups: precursor signal research, traditional machine learning
(ML) algorithms, mathematical analysis, and DL algorithms [5].

Problems such as fatalities, disabilities, psychological effects,
housing crises, disruptions to education, and lack of access to
clean water can be alleviated by reducing the destructive
impact of earthquakes through widespread implementation of
early warning systems and improving predictive accuracy.
Moreover, addressing the negative impacts of earthquakes on
people and governments globally requires Global Seismic
Monitoring Networks (GSN), which will enhance data sharing
and research collaboration, thus improving predictive models.

Better results have been achieved by using DL methods to
distinguish mixed signals in monitoring seismic data collected
for early warning systems. Based on the patterns of
continuously occurring small earthquakes, researchers have
concluded that the rise and fall of earthquake correlations are
linked to the accumulation and release of stress caused by
tectonic activity [6]. This approach, based on the correlation of
small earthquake patterns, can be used to apply regression
analysis to time series data using DL algorithms, similar to a
study conducted by Kervanci, Akay, and Ozceylan (2024), and
positive results can be obtained. Future predictions made with
time series containing data over certain time intervals have
generally yielded good results [7].

The datasets in earthquake prediction typically consist of data
related to seismic activity, crustal movements, geological
features, and various other parameters. These datasets are
diverse and can be obtained from a wide range of institutions
and organizations. Some common sources include seismic
activity data from geological survey agencies, geodetic data
from research institutions or universities, and historical
earthquake records from national geological organizations.

The most important factor affecting the success of a DL
algorithm is the data itself. While seismology is rich in data, the
lack of high-quality labeled datasets, inconsistencies in labeling
accuracy, and lack of standardization in metrics impact the
speed of research and limit the comparability of results. To
address these challenges, two datasets were prepared on a
global scale, including the Stanford earthquake dataset
(STEAD) [8], which includes local earthquakes and high-quality
seismic noise. Many studies have utilized this dataset in DL
methods, including [9], [10], and [11]. Although the dataset
contains data from January 1984 to August 2018, it was
updated in 2020 and has not been updated since then.
Therefore, its use for predicting on February 6, 2023,
earthquake should be evaluated for future years' predictions.

Additionally, satellite imagery and remote sensing data
collected by space agencies can be used to monitor tectonic
movements. Overall, the sources of earthquake prediction
datasets are diverse and may include government agencies,
research institutions, universities, and international
organizations, such as the European-Mediterranean

Seismological Centre (EMSC), The National Earthquake
Information Center (NEIC), USGS, the Japan Meteorological
Agency (JMA), and the California Institute of Technology
(Caltech) Seismological Laboratory. In Tiirkiye, earthquake
data can be accessed from two main sources: the Disaster and
Emergency Management Presidency (AFAD) and Bogazici
University Kandilli Observatory and Earthquake Research
Institute. Additionally, the earthquakes of August 17 and
November 12, 1999, raised significant concerns in Istanbul and
the Marmara Region. In response, the "Earthquake Emergency
Response and Early Warning System" was established by
Bogazi¢i University Kandilli Observatory and Earthquake
Research Institute in 2002, following a decision by the Council
of Ministers, as part of the country’s earthquake preparedness
efforts.

In the remainder of this paper, the literature review section is
organized under subheadings and focuses on the datasets
utilized in earthquake prediction. Studies employing machine
learning (ML) algorithms are summarized in Table 1, while
those specifically addressing the February 6, 2023 earthquake
are detailed in Table 2.

The Results and Discussion section will analyze the studies
related to the prediction of the February 6, 2023 earthquake,
exploring the challenges of earthquake prediction. It will also
evaluate the datasets and methodologies that could enhance
future earthquake predictions in Tiirkiye.

2. Literature review

DL methods have attracted great attention thanks to recent
technological developments. Due to their promising results in
various fields, DL algorithms have also been applied to
earthquake prediction. Although a complete technique has not
yet been developed for earthquake prediction many studies
aim to reduce uncertainties. The use of DL methods in these
studies offers significant potential for earthquake prediction. It
is expected that such studies conducted to reduce uncertainties
in prediction will contribute to more effective measures against
earthquakes in the future. Researchers have applied various ML
and DL algorithms, such as Random Forest (RF), Pattern
Recognition Neural Network (PRNN), Gradient Boosted
Regression Trees (GBRT), Recurrent Neural Network (RNN),
Naive Bayes (NB), Linear programming Boost Ensemble
Classifier (LPBoost), K-Nearest Neighbors (KNN), Logistic
Regression (LR), Hill Climbing (HC), Decision Tree (DT),
Multiple Linear Regression (MLR), Support Vector Machine
(SVM), Naive Bayes (NB), Stochastic Gradient Descent (SGD), a
Bayesian Belief Network (BBN),Linear Discriminant Analysis
(LDA), Back propagation neural network (BP), Multi-Layer
Perceptron (MLP), Light Gradient Enhancement Machine
(LGBM) to predict earthquake occurrences, damage, and
seismicity.

In addition to the algorithms, datasets also play a critical role in
earthquake prediction. During the literature review, studies
related to earthquake prediction are examined under
subheadings based on the datasets used, providing a more
structured analysis.

2.1. Laboratory earthquake simulation data

For instance, [12] used the RF method in their study
investigating the prediction of when damage will occur by using
only acoustic signals in laboratory earthquake simulation. The
experimental results where they applied RF method, where the



test dataset was not used in model training, is quite successful
with R-squared score (R2) = 0.89. Thus, they reported that they
provided accurate fault predictions based on instantaneous
analysis of the acoustic signal.

[13] estimating the time and magnitude of earthquakes for
laboratory earthquakes, they reported that they obtained a
good generalization result by using GBRT algorithm to obtain
the result of Rz = 0.3 using the complex surface deformation
history. Also they reported accurate earthquake magnitude and
timing estimations using the GBRT algorithm for the next
experimental earthquake.

In the paper [14], they compiled the results they obtained from
the competition they held by sharing only a small part of the
laboratory seismic data on Kaggle between January 10, 2019
and June 3, 2019. While the best Mean Absolute Error (MAE)
value fell to 1.080 on the last day of the competition from the
data set consisting of 13% of the test data set, the best MAE
value was 2.2650 for the 87% data set they called the “private
leader board”. Since the dataset was not stationary, it caused a
difference between the training and test results, which is an
indication of over fitting. The winner of the competition
achieved the best result using the LGBM with triple mixed
cross-validation.

2.2. Soil liquefaction

In their study, the authors used SVM analysis on a dataset
obtained from [15], which consists of 133 liquefied, and 93 non-
liquefied soil samples collected from 52 regions affected by six
different earthquakes. After normalizing the dataset containing
six input variables, which they considered as a classification
problem, between 0 and 1, they conducted experiments for
different parameters of the dimension (power) d, and the
penalty parameter C. They concluded that the C parameter was
not very sensitive to the classification results [16].

For predictions, they first combined three soil liquefaction
datasets from previous studies [17]. They employed seven
different algorithms for these predictions: LR, BP, MLR, DT,
KNN, SVM, and NB, using the Area Under the Curve (AUC) score
metric. One of these datasets included 620 soil liquefaction
samples collected from earthquakes in Tiirkiye and Taiwan.
The second dataset contained 226 liquefaction samples
obtained from the paper published in 2003 [15], and the third
included 185 soil liquefaction datasets from [18]. Additionally,
they combined three soil liquefaction datasets with the location
and magnitude of all major earthquakes of magnitude 5.5 and
above that occurred worldwide from 1965 to 2016.

For parameter learning, they used K2, Tree Augmented Naive
(TAN) Bayes, HC, and Tabu Search, employing the Netica
software with a BBN. To compare the results, they used four
different outcome metrics: F-measure, Overall Accuracy (0A),
Recall, Precision, and AUC. They found that the cone tip
resistance and vertical effective stress were the most sensitive
parameters for estimating liquefaction from six different
features in seismic soil liquefaction datasets collected from nine
earthquakes occurring from 1964 to 1989. The best results
were achieved with K2 and TAN Bayes, yielding an OA value of
97.4790% [19].

2.3. Seismic activity

They evaluated earthquake prediction results using ML
classifiers LPBoost ensemble, RF, RNN, and PRNN with
seismically activity dataset from Hindukush and United States
Geological Survey. To analyze the results of the classification
model, they evaluated them in terms of performance evaluation

criteria such as sensitivity, specificity, correct and incorrect
prediction values, which are widely used in earthquake
prediction studies. They achieved the best accuracy results of
79% with PRNN and LPBoost ensemble [20].

In the paper where they proposed a spatiotemporal approach
for earthquake prediction due to crustal motion, they proposed
an LSTM structure that can learn not only earthquakes that
occur in a certain region but also two-dimensional
relationships between earthquakes at different locations. They
assigned earthquakes that occurred in the regions they divided
into rectangular study areas using latitude and longitude
information to the areas they determined. They created an
event frequency matrix for each time interval and region. They
employed the Softmax activation function, which is commonly
used in classification tasks, and applied dropout to prevent over
fitting in the cascaded LSTM structures. This allowed the model

to retain temporal dependencies of LSTMs across each sub-
region. In order to separate unrelated sub-regions, they put
sub-regions within the same fault zone into the same group and
to get better results, so they divided the Chinese mainland into
9 regions and predicted earthquakes over 4.5 from 1966 to
2016 and achieved 63.50% overall prediction accuracy but all
region overall prediction accuracy is 85.12% [5].

In the paper where they obtained new dataset groups by using

an ML clustering algorithm to characterize seismic indicators
for earthquakes, they used seven different datasets from Japan,
Iberian Peninsula, and Chile. After determining the seismic
features and the most characteristic features of large
earthquakes containing n previous events (n=50), they created
the model called precursor tree by selecting general precursors
and shared that they achieved 70% and above accuracy in
general [21].

Shodiq and colleagues used Hierarchical K-means clustering, a
clustering algorithm, to predict the aftershock that will occur 5
days after a certain threshold value. In the study, where they
first determined the optimum number of clusters, then
performed the clustering process and visualized these results,
they obtained better results in experiments where the
threshold value was 6 or higher [22].

The dataset obtained from the Cyprus earthquake catalogue is
cleaned from artificial or man-made seismic activity, and they
used Artificial Neural Networks (ANN), RF, and SVM where they
made earthquake predictions for multiple Threshold
Magnitudes (TM) and multiple Forecast Periods (TP). In the
problem they considered as a binary classification problem,
experiments were conducted with prediction periods of 5,7, 10,
15 days later and it was observed that MCC values significantly
increased as the prediction period extended. It was also
observed that the performance decreased with increasing
threshold magnitude [20].

In their paper on earthquake magnitude estimation, they
determined the basic features using the feature extraction
method from earthquake precursor signals obtained from an
electromagnetic sensors. Then, they used the data obtained
from the space satellite regarding earth activities in the
classification. Finally, they trained the dataset they prepared
using noise simulation and SMOTE oversampling technology on
the CNN network they proposed for the earthquake magnitude
classification problem [23].

In the earthquake prediction study covering a 200 km region in
the Aegean region of Tiirkiye, they used traditional methods
such as Autoregressive Integrated Moving Average (ARIMA)



and Singular Spectrum Analysis (SAS), and DL methods such as
CNN and LSTM. They organized the medium-sized earthquakes
that occurred between January 1970 and December 2020
monthly. So LSTM achieved the best results in their predictions
for the next 36 months. Mean Squared Error (MSE) values for
each method are LSTM = 0.0100, SSA = 0.0229, CNN = 0.0300,
and ARIMA = 0.0324 [24].

Using the dataset consisting of earthquake records of
magnitude 5.5 and above from NEIC between 1965 and 2016,
they compared the hybrid CNN+GRU model with the RF,
ARIMA, CNN and GRU models with MSE, Root Mean Squared
Error (RMSE), MAE, and Mean Absolute Percentage Error
(MAPE) metrics and concluded that CNN+GRU outperformed
other models [25].

They used a dataset of 3271 earthquake events with
magnitudes between 4 to 9 from 650 stations of the National
Institute of Earth Science and Disaster Resilience Research
(KiK-net) in Japan. They used an end-to-end DL model (DLPGA)
based on CNN to estimate the peak ground acceleration (PGA)

using the feature parameters of the P wave obtained from the
on-site earthquake early warning (EEW) systems. They
compared their method with the peak displacement (Pd)
commonly used in earthquake prediction. They concluded that
the accuracy of distinguishing the destructiveness of ground
motion was improved by 35-150% [26].

2.4. Other datasets

Furthermore, Senkaya and others where they evaluated the
damage status of the stations in the February 6, 2023
earthquake zone, they applied ML algorithms RF, KNN, LR, DT,
SVM, SGD, and MLP to the damage status of the stations in the
north, south, east and west directions. As a result of 5-fold
cross-validation, they achieved 93% accuracy, which is the best
result from RF. However, since this dataset contains station
data and there are a limited number of stations, the data set is
quite limited. By obtaining them from the Damage Assessment
Inquiry systems, 44 stations belonging to AFAD, and the
structural integrity status of the buildings close to these
stations [27].

Table 1. Summary of literature review.

Models Results Datasets
[16] SVM classification Accuracy=98% 226 seismic soil liquefaction from [15]
[12] RF R2 =0.89 Data from a well-characterized laboratory
system
[20] LPBoost ensemble, RF, RNN, PRNN Accuracy=79% Hindukush region seismically activity dataset
from Hindukush and United States Geological
Survey.
[5] LSTM (two layers) Accuracy=85.12% USGS
[22] Hierarchical K-means clustering Cluster-1 Results Indonesian Agency for Meteorological,
TP=2, TN=424, FP=2,FN=61  Climatological and Geophysics (BMKG) and USGS
[21]  Tree-based ML clustering algorithm Accuracy=70% Seven different datasets from [28], [29], and [30]
[13] GBRT R=03 Data from the laboratory system
[31] ANN, RF, and SVM ANN, SVM and RF with MCC Cyprus region seismic data from Cyprus
value of 0.601, 0.630, and earthquake catalog.
0.724 respectively.
[17] LR, BP, MLR, DT, KNN, SVM, and AUC values respectively for Three different datasets from [32], [15], and,
NB. datasets 0.91733, 0.99535, [18]
and 0.97926,
[33] SVM MCC=0.72806 GNSS network, EPN, and NASA Goddard Space
Flight Center OMNIWeb
[14] LGBM and lots of other algorithms Test The laboratory seismic data of small samples.
MAE= 2.2650
[19] K2, hill climbing (HC), tree 0A=97.4790% 9 earthquakes in different parts of the world
augmented naive (TAN) Bayes, and between 1964 to 1989.
Tabu search
[34] SVM, LSTM, RF, and LDA Accuracy=0.703 % TEC data from http://ionolab.org/
earthquake data from
https://earthquake.usgs.gov/
[35] LSTM RMSE= 3.2582 Awaran earthquake TEC data from GNSS
MSE=10.6162
[24] singular spectrum analysis (SSA), MSE of ARIMA=0.0324 Average and maximum earthquake dataset
ARIMA, CNN, and LSTM SSA=0.0229 between 1900-2019
CNN=0.03
LSTM=0.01
[25] CNN+GRU, RF, ARIMA, CNN, and MSE=1220365.74 NEIC 1965 to 2016 earthquake >=5.5
GRU
[26] DLPGA based on CNN MCC of DLPGA=0.8384 and 650 stations of the National Institute of Earth
Pd=0.6195 Science and Disaster Resilience Research (KiK-
net) in Japan
[37] STDEV and NARX They detected abnormal AP, RH, OLR, and AT from NOAA (National

fluctuations over the
earthquake epicenter 6 to 7
days ago

Oceanic and Atmospheric Administration)
Physical Sciences Laboratory (PSL), TEC from
GNSS, STS from Japan Aerospace Exploration




Agency (JAXA), LST from MODIS (Terra) satellite,
and earthquake dataset from USGS

To determine the time periods for the probability of a
devastating earthquake like the one that occurred on February
6, 2023, along the East Anatolian Fault System—where the
Arabian, African, and Anatolian plates converge—
mathematical pattern recognition algorithms were applied.
Specifically, the morpho-structural zoning Kora-3 pattern
recognition algorithm, developed by IM Gelfand, VI Keilis-
Borok, and colleagues in 1973, was used to analyze earthquake
centers with magnitudes = 6.5. The analysis suggested that
earthquakes are likely to occur at certain points with a
probability of a magnitude 6.5 or higher in the identified
locations, confirming the thesis of morpho-structural nodes
[38].

In another study, the performance of four deep learning
models—Pyramid Scene Parsing Network (PSPNet), LinkNet,
U-Net, and Feature Pyramid Network (FPN)—was evaluated
for identifying collapsed buildings in satellite images following
the February 6 earthquakes. Although this study did not focus
on earthquake prediction, it used deep learning methods for
post-earthquake damage assessment and was therefore
included in the analysis [39].

Nicholas (2024) explored the use of Seismic Electrical Signals
(SES) from NTA to estimate the probable location, time, and
magnitude of impending earthquakes. The study detected
crustal movements associated with strong earthquakes, using
partial statistical methods. The dataset from this study has the
potential to be further analyzed with deep learning algorithms
and is therefore relevant to the discussion [40].

[41] demonstrates a comparative analysis of several machine
learning algorithms for predicting outcomes using a dataset
spanning January 2015 to February 2023. The researchers
evaluated performance using algorithms such as XGBoost,
LightGBM, CatBoost, Extra-Trees Regressor (ET), Random
Forest Regressor (RF), Bayesian Ridge Regressor (BR),

Decision Tree Regressor (DT) and three different Artificial
Neural Network (ANN) algorithms. The best training result they
achieved was with R2 = 0.99 and 0.98. The error metrics they
used for evaluation were MSE, R2, RMSE and MAE. The team
applied these models to a test period from March 1 to March 31,
2023, and found that the LightGBM model performed best, with
MSE=0.0607, RMSE=0.2464, R2=0.2010, MAE=0.1997.

Another study by [42] examined the CSID dataset on Total
Electron Content (TEC) to assess ionospheric responses to the
February 6 earthquake and its aftershocks. A strong
ionospheric response was observed following the first
earthquake, while weaker responses were noted after three
aftershocks. Although the study did not investigate potential
precursor distortions in TEC dataset prior to the earthquake,
the findings support the use of TEC data in future earthquake
prediction models.

In summary, Table 1 highlights valuable insights into the use of
ML and DL for earthquake prediction. However, there are
significant opportunities for improvement in terms of dataset
size, evaluation metrics, real-world applicability, and model
interpretability. The comparability of these models is also
limited due to inconsistent metrics. Integrating diverse
datasets could lead to more comprehensive earthquake
forecasts through multidisciplinary approaches, although most
studies to date have used only one or a few datasets together
for ML predictions.

Table 2 includes studies on the February 6, 2023 earthquake. It
is seen that mathematical, seismic and deep learning
approaches are used for earthquake prediction in these studies.
TEC, morpho-structural dataset, satellite images and seismic
signals are the main datasets used to predict the occurrence of
earthquakes. Different models and methods offer significant
advances in earthquake prediction, but it is clear that datasets
need to be further diversified and improved.

Table 2. Earthquake prediction methods about the 6 February 2023 earthquake.

Methods Models Results Datasets
[27] Structural integrity status of =~ RF, KNN, LR, DT, Accuracy=93% Structural integrity status of
buildings after earthquake SVM, SGD, MLP the buildings near the 44
AFAD stations.
[36] Anomaly detection LSTM, ACO, The result obtained from TEC dataset USGS, GIM-TEC satellite
Kalman Filter, is that abnormal behaviors started to dataset NASA
median method, be observed 10 days before the

and MLP earthquake.

[38] Mathematical pattern Kora-3 pattern It was concluded that earthquakes of  Based on morpho-structural

recognition algorithms recognition magnitude=6.5 and above are zonation dataset by IM
algorithm connected to morpho-structural Gelfand, VI Keilis-Borok and
nodes. colleagues in 1973
[39] DL image segmentation for PSPNet, LinkNet, Accuracy of Maxar and Planet
the identification of U-Net, and FPN U-Net=0.970 LinkNet=0.969 Earthquake Zone satellite
collapsed buildings FPN=0.973 images.
PSPNet=0.963

[40] statistical methods partial statistical Seismic electrical activities indicating NTA's Seismic Electrical

methods the onset of seismicity three and a Signals (SES)
half months before the earthquake.
[41] ML and ANN XGBoost, LGBM, MSE=0.0607, RMSE=0.2464, USGS dataset from

CatBoost, ET, RF,
BR, DT, ANN

R2=0.2010, MAE=0.1997

January 2015 to February
2023



[42]  They were able to obtain a TEC time
smaller TEC perturbation derivative and D1-
from the Mw 5.6 GNSS-RT

earthquake.

They were able to obtain a smaller
TEC perturbation from the Mw=5.6

CYPOS GNSS network

earthquake.

3. Conclusions

The situation of bridges, telecommunications, airlines, public
institutions, hospitals, etc. structures that need to continue to
be used after the February 6, 2023 earthquake has shown that
the use of seismic performance enhancing technologies in
newly constructed structures is essential [43]. Earthquake
prediction is crucial for preparing communities for potential
earthquake risks. Accurate predictions allow timely warnings
and the creation of emergency plans, helping to minimize both
loss of life and property damage. Furthermore, long-term
earthquake predictions can aid in urban planning, identifying
high-risk areas, and enabling appropriate safety measures.
Earthquake prediction is particularly important for countries
like ours, which are located in seismically active regions,
including Taiwan, Southern California, Iran, Japan, Indonesia,
and Tiirkiye. Following the recent major earthquakes, seismic
datasets have increasingly been used to predict future
earthquakes, complemented by improved methods. The studies
summarized in Table 1 highlight the potential of deep learning
(DL) techniques in advancing earthquake prediction
capabilities. In Tirkiye, estimating earthquake magnitudes
using DL algorithms, combined with parameters such as
historical dataset, sensors, magnetic and electric waves, and
seismic indicators, is critical. Expanding sensors networks and
modernizing the technological infrastructure will facilitate
more accurate and real-time predictions. This paper has
reviewed various ML and DL techniques applied to earthquake
prediction, particularly for the February 6, 2023 earthquake in
Table 2. Although these predictive models have made progress,
challenges such as datasets limitations, overfitting, and the
complexity of seismic systems remain. For example,
ionospheric responses such as TEC disturbances reported by
Maletckii and colleagues at the Table 2. provide valuable clues
but are not consistently observed before each earthquake. We
also see that the popular approach of using time series of
seismic activity in past years, has not been used in the February
6, 2023 earthquake prediction except Biswas, and colleagues.
In addition, combining historical earthquake datasets, seismic,
ionospheric, and satellite datasets show potential to improve
predictions, but there are difficulties in dataset integration and
no studies combining the dataset. In addition, limited region-
specific datasets, especially for high-risk areas such as Tiirkiye,
hinders the generalizability of these models.

Future research has the potential to achieve better prediction
results by focusing on hybrid models and optimization
techniques that integrate seismic, ionospheric, and geographic
datasets for improved prediction accuracy. It is also important
to address overfitting issues and expand region-specific
datasets, specially for earthquake-prone areas. Improving
sensors  networks and  modernizing technological
infrastructure will enable more accurate and real-time
earthquake predictions and reduce the risk of loss of life and
property in future earthquakes.
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Bu bolimiin kullanimi istege baghdir. Ekler en sonda
siniflandirilarak verilmelidir. Ekler gerektiginde ayr1 bir
sayfadan baslayabilir.



