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Abstract  Öz 

On February 6, 2023, Türkiye experienced its most severe earthquakes 
in over 80 years, beginning with a 7.8 (Mw) earthquake, followed by two 
consecutive 7.5 (Mw) earthquakes nine hours later. The most distinctive 
feature of this earthquake compared to others is not only that it was 
more destructive than the others, but also that its impact covered a vast 
geographical area. There are many studies on earthquake prediction; 
these studies address topics such as emergency preparations and 
response planning, risk analysis, or damage estimation. Due to the 
success of deep learning (DL) algorithms in various fields, using DL 
methods in earthquake prediction has become a very popular research 
topic in recent years. Studies using DL methods for earthquake 
prediction were examined in terms of the DL algorithms and data sets 
used, with a focus on of whether the earthquakes that occurred on 
February 6, 2023 and after could be predicted before the earthquake 
occurred. According to the findings suggest that ionospheric reactions 
observed before and after the earthquake and the use of the earthquake 
time series that occurred before the earthquake can be used to predict 
future earthquakes. However, these results are still preliminary 
predictions, therefore, it is crucial to expand the early warning system 
network and to increase the accuracy of real-time prediction models 
using DL algorithms. Additionally, this study aims to guide future 
research through a multidisciplinary review of the existing literature. 
Ultimately, such work will help improve prediction models and 
contribute to better preparedness for earthquake risks. 

 Türkiye 6 Şubat 2023'te 7.8 (Mw) büyüklüğünde depremin ardından 
dokuz saat sonra büyüklüğü 7.5 (Mw) olan art arda iki deprem ile 80 
yılı aşkın süredir Türkiye de yaşanan en şiddetli depremleri yaşamış 
oldu. Bu depremi diğer depremlerden ayıran en belirgin özellik sadece 
diğerlerinden daha yıkıcı olması değil aynı zamanda etki alanının 
oldukça geniş bir coğrafyaya yayılmış olmasıdır. Deprem tahmini ile 
ilgili oldukça fazla çalışma bulunmakta, bunlar acil durum hazırlıkları 
ve müdahale planlamaları, risk analizi veya hasar tahmini gibi konuları 
ele almaktadır. Derin öğrenme algoritmalarının birçok alanda elde 
ettiği başarılar sonucunda, deprem tahmininde derin öğrenme 
yöntemlerinin kullanımı son yıllarda oldukça popüler bir araştırma 
konusu haline gelmiştir. Deprem tahmini için derin öğrenme 
yöntemlerini kullanan çalışmalar incelenmiş ve bunun sonucunda 
kullanılan derin öğrenme algoritmaları ve veri setleri incelenerek 6 
Şubat ve sonrasında gerçekleşen depremlerin, deprem gerçekleşmeden 
önce tahmin edilip edilemeyeceği sorusuna yanıt aranmıştır. Elde edilen 
bulgulara göre hem deprem öncesinde hem de sonrasında 'İyonosferik 
tepkilerin' varlığı ve depremden önce gerçekleşen deprem zaman 
serisinin kullanımı ile gelecekteki depremlerin tahminlerinin 
yapılabileceği sonucuna ulaşılmıştır. Ancak buralardan elde edilen 
sonuçlar tahmin mahiyetindedirler bu sebepten erken uyarı sistemleri 
ağının genişletilmesi ve gerçek zamanlı çalışan derin öğrenme 
algoritmaları ile yapılan tahmin sistemlerinin doğruluğunu artırmak 
oldukça önemlidir. Ayrıca literatürün farklı bakış açısını içeren multi 
disipliner yaklaşımla inceleyerek gelecekte yapılacak çalışmalara 
rehberlik etmek amaçlanmaktadır. Sonuç olarak bu tür bir araştırma 
daha iyi tahmin modelleri geliştirilmesine yardımcı olarak toplumların 
deprem riskine karşı daha hazırlıklı olmasına katkı sağlayacaktır. 

Keywords: Deep learning, Earthquake prediction, February 6, 2023, 
Earthquake datasets 
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1. Introduction 

Earthquakes are among the most devastating natural disasters, 
having caused significant loss of life and property throughout 
human history. Beyond the immediate human toll, they lead to 
the collapse of buildings and infrastructure, causing long-term 
socioeconomic disruptions. To mitigate these risks, measures 
such as advanced warning systems and structural 
reinforcement should be taken to reduce earthquake risks. 
Additionally, advances in fields like modern technology and DL 
can offer new opportunities for earthquake prediction and risk 
analysis. Despite these advances, there is no definitive method 
for predicting earthquakes with precision, including factors like 
intensity, location, depth, and timing. This uncertainty stems 
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from the complex and poorly understood factors that trigger 
earthquakes, whether linear or non-linear [1]. 

To date, scientists have not been able to predict major 
earthquakes but have instead estimated the probability of an 
earthquake occurring. A meaningful prediction must include 
specifics like date, time, location, and intensity; however, 
pinpointing the exact moment of a strong earthquake remains 
a challenge. As more earthquake-related parameters are 
identified, prediction accuracy is expected to improve [2].  

According to USGS data, approximately 700 shocks occur 
annually in inhabited areas, though very few of them are felt by 
people. In recent years, the establishment of networks of 
seismic recording devices has made it possible to detect and 
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record even minor tremors [3]. Additionally, ML algorithms 
have shown promising results in distinguishing environmental 
noise from seismic signals. Once seismic signals are isolated, 
prediction models can more accurately analyse subsurface 
changes [4]. 

Earthquake predictions fall into two main categories: short-
term, which focuses on immediate warnings, and long-term, 
which analyzes environmental and seismic change activity to 
predict earthquakes expected to occur over an extended period.  

Earthquake prediction methods can be categorized into four 
groups: precursor signal research, traditional machine learning 
(ML) algorithms, mathematical analysis, and DL algorithms [5]. 

Problems such as fatalities, disabilities, psychological effects, 
housing crises, disruptions to education, and lack of access to 
clean water can be alleviated by reducing the destructive 
impact of earthquakes through widespread implementation of 
early warning systems and improving predictive accuracy. 
Moreover, addressing the negative impacts of earthquakes on 
people and governments globally requires Global Seismic 
Monitoring Networks (GSN), which will enhance data sharing 
and research collaboration, thus improving predictive models.  

Better results have been achieved by using DL methods to 
distinguish mixed signals in monitoring seismic data collected 
for early warning systems. Based on the patterns of 
continuously occurring small earthquakes, researchers have 
concluded that the rise and fall of earthquake correlations are 
linked to the accumulation and release of stress caused by 
tectonic activity [6]. This approach, based on the correlation of 
small earthquake patterns, can be used to apply regression 
analysis to time series data using DL algorithms, similar to a 
study conducted by Kervanci, Akay, and Özceylan (2024), and 
positive results can be obtained. Future predictions made with 
time series containing data over certain time intervals have 
generally yielded good results [7]. 

The datasets in earthquake prediction typically consist of data 
related to seismic activity, crustal movements, geological 
features, and various other parameters. These datasets are 
diverse and can be obtained from a wide range of institutions 
and organizations. Some common sources include seismic 
activity data from geological survey agencies, geodetic data 
from research institutions or universities, and historical 
earthquake records from national geological organizations. 

The most important factor affecting the success of a DL 
algorithm is the data itself. While seismology is rich in data, the 
lack of high-quality labeled datasets, inconsistencies in labeling 
accuracy, and lack of standardization in metrics impact the 
speed of research and limit the comparability of results. To 
address these challenges, two datasets were prepared on a 
global scale, including the Stanford earthquake dataset 
(STEAD) [8], which includes local earthquakes and high-quality 
seismic noise. Many studies have utilized this dataset in DL 
methods, including [9], [10], and [11]. Although the dataset 
contains data from January 1984 to August 2018, it was 
updated in 2020 and has not been updated since then. 
Therefore, its use for predicting on February 6, 2023, 
earthquake should be evaluated for future years' predictions. 

Additionally, satellite imagery and remote sensing data 
collected by space agencies can be used to monitor tectonic 
movements. Overall, the sources of earthquake prediction 
datasets are diverse and may include government agencies, 
research institutions, universities, and international 
organizations, such as the European-Mediterranean 

Seismological Centre (EMSC), The National Earthquake 
Information Center (NEIC), USGS, the Japan Meteorological 
Agency (JMA), and the California Institute of Technology 
(Caltech) Seismological Laboratory. In Türkiye, earthquake 
data can be accessed from two main sources: the Disaster and 
Emergency Management Presidency (AFAD) and Boğaziçi 
University Kandilli Observatory and Earthquake Research 
Institute. Additionally, the earthquakes of August 17 and 
November 12, 1999, raised significant concerns in Istanbul and 
the Marmara Region. In response, the "Earthquake Emergency 
Response and Early Warning System" was established by 
Boğaziçi University Kandilli Observatory and Earthquake 
Research Institute in 2002, following a decision by the Council 
of Ministers, as part of the country’s earthquake preparedness 
efforts. 

In the remainder of this paper, the literature review section is 
organized under subheadings and focuses on the datasets 
utilized in earthquake prediction. Studies employing machine 
learning (ML) algorithms are summarized in Table 1, while 
those specifically addressing the February 6, 2023 earthquake 
are detailed in Table 2. 

The Results and Discussion section will analyze the studies 
related to the prediction of the February 6, 2023 earthquake, 
exploring the challenges of earthquake prediction. It will also 
evaluate the datasets and methodologies that could enhance 
future earthquake predictions in Türkiye. 

 

2. Literature review 

DL methods have attracted great attention thanks to recent 
technological developments. Due to their promising results in 
various fields, DL algorithms have also been applied to 
earthquake prediction. Although a complete technique has not 
yet been developed for earthquake prediction many studies 
aim to reduce uncertainties. The use of DL methods in these 
studies offers significant potential for earthquake prediction. It 
is expected that such studies conducted to reduce uncertainties 
in prediction will contribute to more effective measures against 
earthquakes in the future. Researchers have applied various ML 
and DL algorithms, such as Random Forest (RF), Pattern 
Recognition Neural Network (PRNN), Gradient Boosted 
Regression Trees (GBRT), Recurrent Neural Network (RNN), 
Naïve Bayes (NB), Linear programming Boost Ensemble 
Classifier (LPBoost), K-Nearest Neighbors (KNN), Logistic 
Regression (LR), Hill Climbing (HC), Decision Tree (DT), 
Multiple Linear Regression (MLR), Support Vector Machine 
(SVM), Naive Bayes (NB), Stochastic Gradient Descent (SGD), a 
Bayesian Belief Network (BBN),Linear Discriminant Analysis 
(LDA), Back propagation neural network (BP), Multi-Layer 
Perceptron (MLP), Light Gradient Enhancement Machine 
(LGBM) to predict earthquake occurrences, damage, and 
seismicity. 

In addition to the algorithms, datasets also play a critical role in 
earthquake prediction. During the literature review, studies 
related to earthquake prediction are examined under 
subheadings based on the datasets used, providing a more 
structured analysis. 

2.1. Laboratory earthquake simulation data 

For instance, [12] used the RF method in their study 
investigating the prediction of when damage will occur by using 
only acoustic signals in laboratory earthquake simulation. The 
experimental results where they applied RF method, where the 
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test dataset was not used in model training, is quite successful 
with R-squared score (R2) = 0.89. Thus, they reported that they 
provided accurate fault predictions based on instantaneous 
analysis of the acoustic signal.  

[13] estimating the time and magnitude of earthquakes for 
laboratory earthquakes, they reported that they obtained a 
good generalization result by using GBRT algorithm to obtain 
the result of R2 = 0.3 using the complex surface deformation 
history. Also they reported accurate earthquake magnitude and 
timing estimations using the GBRT algorithm for the next 
experimental earthquake.  

In the paper [14], they compiled the results they obtained from 
the competition they held by sharing only a small part of the 
laboratory seismic data on Kaggle between January 10, 2019 
and June 3, 2019. While the best Mean Absolute Error (MAE) 
value fell to 1.080 on the last day of the competition from the 
data set consisting of 13% of the test data set, the best MAE 
value was 2.2650 for the 87% data set they called the “private 
leader board”. Since the dataset was not stationary, it caused a 
difference between the training and test results, which is an 
indication of over fitting. The winner of the competition 
achieved the best result using the LGBM with triple mixed 
cross-validation. 

2.2. Soil liquefaction 

In their study, the authors used SVM analysis on a dataset 
obtained from [15], which consists of 133 liquefied, and 93 non-
liquefied soil samples collected from 52 regions affected by six 
different earthquakes. After normalizing the dataset containing 
six input variables, which they considered as a classification 
problem, between 0 and 1, they conducted experiments for 
different parameters of the dimension (power) d, and the 
penalty parameter C. They concluded that the C parameter was 
not very sensitive to the classification results [16].  
For predictions, they first combined three soil liquefaction 
datasets from previous studies [17]. They employed seven 
different algorithms for these predictions: LR, BP, MLR, DT, 
KNN, SVM, and NB, using the Area Under the Curve (AUC) score 
metric. One of these datasets included 620 soil liquefaction 
samples collected from earthquakes in Türkiye and Taiwan. 
The second dataset contained 226 liquefaction samples 
obtained from the paper published in 2003 [15], and the third 
included 185 soil liquefaction datasets from [18]. Additionally, 
they combined three soil liquefaction datasets with the location 
and magnitude of all major earthquakes of magnitude 5.5 and 
above that occurred worldwide from 1965 to 2016. 
For parameter learning, they used K2, Tree Augmented Naive 
(TAN) Bayes, HC, and Tabu Search, employing the Netica 
software with a BBN. To compare the results, they used four 
different outcome metrics: F-measure, Overall Accuracy (OA), 
Recall, Precision, and AUC. They found that the cone tip 
resistance and vertical effective stress were the most sensitive 
parameters for estimating liquefaction from six different 
features in seismic soil liquefaction datasets collected from nine 
earthquakes occurring from 1964 to 1989. The best results 
were achieved with K2 and TAN Bayes, yielding an OA value of 
97.4790% [19]. 

2.3. Seismic activity 

They evaluated earthquake prediction results using ML 
classifiers LPBoost ensemble, RF, RNN, and PRNN with 
seismically activity dataset from Hindukush and United States 
Geological Survey. To analyze the results of the classification 
model, they evaluated them in terms of performance evaluation 

criteria such as sensitivity, specificity, correct and incorrect 
prediction values, which are widely used in earthquake 
prediction studies. They achieved the best accuracy results of 
79% with PRNN and LPBoost ensemble [20].  

In the paper where they proposed a spatiotemporal approach 
for earthquake prediction due to crustal motion, they proposed 
an LSTM structure that can learn not only earthquakes that 
occur in a certain region but also two-dimensional 
relationships between earthquakes at different locations. They 
assigned earthquakes that occurred in the regions they divided 
into rectangular study areas using latitude and longitude 
information to the areas they determined. They created an 
event frequency matrix for each time interval and region. They 
employed the Softmax activation function, which is commonly 
used in classification tasks, and applied dropout to prevent over 
fitting in the cascaded LSTM structures. This allowed the model  

to retain temporal dependencies of LSTMs across each sub-
region. In order to separate unrelated sub-regions, they put 
sub-regions within the same fault zone into the same group and 
to get better results, so they divided the Chinese mainland into 
9 regions and predicted earthquakes over 4.5 from 1966 to 
2016 and achieved 63.50% overall prediction accuracy but all 
region overall prediction accuracy is 85.12% [5]. 

 In the paper where they obtained new dataset groups by using 
an ML clustering algorithm to characterize seismic indicators 
for earthquakes, they used seven different datasets from Japan, 
Iberian Peninsula, and Chile. After determining the seismic 
features and the most characteristic features of large 
earthquakes containing n previous events (n=50), they created 
the model called precursor tree by selecting general precursors 
and shared that they achieved 70% and above accuracy in 
general [21]. 

Shodiq and colleagues used Hierarchical K-means clustering, a 
clustering algorithm, to predict the aftershock that will occur 5 
days after a certain threshold value. In the study, where they 
first determined the optimum number of clusters, then 
performed the clustering process and visualized these results, 
they obtained better results in experiments where the 
threshold value was 6 or higher [22]. 

The dataset obtained from the Cyprus earthquake catalogue is 
cleaned from artificial or man-made seismic activity, and they 
used Artificial Neural Networks (ANN), RF, and SVM where they 
made earthquake predictions for multiple Threshold 
Magnitudes (TM) and multiple Forecast Periods (TP). In the 
problem they considered as a binary classification problem, 
experiments were conducted with prediction periods of 5, 7, 10, 
15 days later and it was observed that MCC values significantly 
increased as the prediction period extended. It was also 
observed that the performance decreased with increasing 
threshold magnitude [20]. 

In their paper on earthquake magnitude estimation, they 
determined the basic features using the feature extraction 
method from earthquake precursor signals obtained from an 
electromagnetic sensors. Then, they used the data obtained 
from the space satellite regarding earth activities in the 
classification. Finally, they trained the dataset they prepared 
using noise simulation and SMOTE oversampling technology on 
the CNN network they proposed for the earthquake magnitude 
classification problem [23]. 

In the earthquake prediction study covering a 200 km region in 
the Aegean region of Türkiye, they used traditional methods 
such as Autoregressive Integrated Moving Average (ARIMA) 
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and Singular Spectrum Analysis (SAS), and DL methods such as 
CNN and LSTM. They organized the medium-sized earthquakes 
that occurred between January 1970 and December 2020 
monthly. So LSTM achieved the best results in their predictions 
for the next 36 months. Mean Squared Error (MSE) values for 
each method are LSTM = 0.0100, SSA = 0.0229, CNN = 0.0300, 
and ARIMA = 0.0324 [24]. 

Using the dataset consisting of earthquake records of 
magnitude 5.5 and above from NEIC between 1965 and 2016, 
they compared the hybrid CNN+GRU model with the RF, 
ARIMA, CNN and GRU models with MSE, Root Mean Squared 
Error (RMSE), MAE, and Mean Absolute Percentage Error 
(MAPE) metrics and concluded that CNN+GRU outperformed 
other models [25]. 

They used a dataset of 3271 earthquake events with 
magnitudes between 4 to 9 from 650 stations of the National 
Institute of Earth Science and Disaster Resilience Research 
(KiK-net) in Japan. They used an end-to-end DL model (DLPGA) 
based on CNN to estimate the peak ground acceleration (PGA) 

using the feature parameters of the P wave obtained from the 
on-site earthquake early warning (EEW) systems. They 
compared their method with the peak displacement (Pd) 
commonly used in earthquake prediction. They concluded that 
the accuracy of distinguishing the destructiveness of ground 
motion was improved by 35-150% [26]. 

2.4. Other datasets 

Furthermore, Senkaya and others where they evaluated the 
damage status of the stations in the February 6, 2023 
earthquake zone, they applied ML algorithms RF, KNN, LR, DT, 
SVM, SGD, and MLP to the damage status of the stations in the 
north, south, east and west directions. As a result of 5-fold 
cross-validation, they achieved 93% accuracy, which is the best 
result from RF. However, since this dataset contains station 
data and there are a limited number of stations, the data set is 
quite limited. By obtaining them from the Damage Assessment 
Inquiry systems, 44 stations belonging to AFAD, and the 
structural integrity status of the buildings close to these 
stations [27].

Table 1. Summary of literature review. 
 Models Results Datasets 

[16] SVM  classification Accuracy=98% 226 seismic soil liquefaction from [15] 
[12] RF R2 =0.89  Data from a well-characterized laboratory 

system 
[20] LPBoost ensemble, RF, RNN, PRNN Accuracy=79% Hindukush region seismically activity dataset 

from Hindukush and United States Geological 
Survey. 

[5] LSTM (two layers) Accuracy=85.12% USGS 
[22] Hierarchical K-means clustering Cluster-1 Results 

TP=2, TN=424, FP=2, FN=61 
Indonesian Agency for Meteorological, 

Climatological and Geophysics (BMKG) and USGS 
[21] Tree-based ML clustering algorithm Accuracy=70% Seven different datasets from [28], [29], and [30] 
[13] GBRT R = 0.3 Data from the laboratory system 
[31] ANN, RF, and SVM ANN, SVM and RF with MCC 

value of 0.601, 0.630, and 
0.724 respectively. 

Cyprus region seismic data from Cyprus 
earthquake catalog. 

[17] LR, BP, MLR, DT, KNN, SVM, and 
NB. 

AUC values respectively for 
datasets 0.91733, 0.99535, 

and 0.97926, 

Three different datasets from [32], [15], and, 
[18] 

[33] SVM MCC=0.72806 GNSS network, EPN, and NASA Goddard Space 
Flight Center OMNIWeb 

[14] LGBM and lots of other algorithms Test  
MAE= 2.2650 

The laboratory seismic data of small samples. 

[19] K2, hill climbing (HC), tree 
augmented naive (TAN) Bayes, and 

Tabu search 

OA= 97.4790% 9 earthquakes in different parts of the world 
between 1964 to 1989. 

[34] SVM, LSTM, RF, and LDA Accuracy=0.703 % TEC data from http://ionolab.org/ 
earthquake data from 

https://earthquake.usgs.gov/ 
[35] LSTM RMSE= 3.2582 

MSE= 10.6162 
Awaran earthquake TEC data from GNSS 

[24]  singular spectrum analysis (SSA), 
ARIMA, CNN, and LSTM 

MSE of ARIMA=0.0324 
SSA=0.0229 
CNN=0.03 

LSTM=0.01 

Average and maximum earthquake dataset 
between 1900-2019 

[25] CNN+GRU, RF, ARIMA, CNN, and 
GRU 

MSE=1220365.74 NEIC 1965 to 2016 earthquake >=5.5 

[26] DLPGA based on CNN  MCC of DLPGA=0.8384 and  
Pd=0.6195 

650 stations of the National Institute of Earth 
Science and Disaster Resilience Research (KiK-

net) in Japan 
[37] STDEV and NARX They detected abnormal 

fluctuations over the 
earthquake epicenter 6 to 7 

days ago 

AP, RH, OLR, and AT from NOAA (National 
Oceanic and Atmospheric Administration) 

Physical Sciences Laboratory (PSL), TEC from 
GNSS, STS from Japan Aerospace Exploration 
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Agency (JAXA), LST from MODIS (Terra) satellite, 
and earthquake dataset from USGS 

 

To determine the time periods for the probability of a 
devastating earthquake like the one that occurred on February 
6, 2023, along the East Anatolian Fault System—where the 
Arabian, African, and Anatolian plates converge—
mathematical pattern recognition algorithms were applied. 
Specifically, the morpho-structural zoning Kora-3 pattern 
recognition algorithm, developed by IM Gelfand, VI Keilis-
Borok, and colleagues in 1973, was used to analyze earthquake 
centers with magnitudes ≥ 6.5. The analysis suggested that 
earthquakes are likely to occur at certain points with a 
probability of a magnitude 6.5 or higher in the identified 
locations, confirming the thesis of morpho-structural nodes 
[38].  

In another study, the performance of four deep learning 
models—Pyramid Scene Parsing Network (PSPNet), LinkNet, 
U-Net, and Feature Pyramid Network (FPN)—was evaluated 
for identifying collapsed buildings in satellite images following 
the February 6 earthquakes. Although this study did not focus 
on earthquake prediction, it used deep learning methods for 
post-earthquake damage assessment and was therefore 
included in the analysis [39]. 

Nicholas (2024) explored the use of Seismic Electrical Signals 
(SES) from NTA to estimate the probable location, time, and 
magnitude of impending earthquakes. The study detected 
crustal movements associated with strong earthquakes, using 
partial statistical methods. The dataset from this study has the 
potential to be further analyzed with deep learning algorithms 
and is therefore relevant to the discussion [40]. 

[41] demonstrates a comparative analysis of several machine 
learning algorithms for predicting outcomes using a dataset 
spanning January 2015 to February 2023. The researchers 
evaluated performance using algorithms such as XGBoost, 
LightGBM, CatBoost, Extra-Trees Regressor (ET), Random 
Forest Regressor (RF), Bayesian Ridge Regressor (BR),  

Decision Tree Regressor (DT) and three different Artificial 
Neural Network (ANN) algorithms. The best training result they 
achieved was with R2 = 0.99 and 0.98. The error metrics they 
used for evaluation were MSE, R2, RMSE and MAE. The team 
applied these models to a test period from March 1 to March 31, 
2023, and found that the LightGBM model performed best, with 
MSE=0.0607, RMSE=0.2464, R2=0.2010, MAE=0.1997. 

Another study by [42] examined the CSID dataset on Total 
Electron Content (TEC) to assess ionospheric responses to the 
February 6 earthquake and its aftershocks. A strong 
ionospheric response was observed following the first 
earthquake, while weaker responses were noted after three 
aftershocks. Although the study did not investigate potential 
precursor distortions in TEC dataset prior to the earthquake, 
the findings support the use of TEC data in future earthquake 
prediction models. 

In summary, Table 1 highlights valuable insights into the use of 
ML and DL for earthquake prediction. However, there are 
significant opportunities for improvement in terms of dataset 
size, evaluation metrics, real-world applicability, and model 
interpretability. The comparability of these models is also 
limited due to inconsistent metrics. Integrating diverse 
datasets could lead to more comprehensive earthquake 
forecasts through multidisciplinary approaches, although most 
studies to date have used only one or a few datasets together 
for ML predictions. 

Table 2 includes studies on the February 6, 2023 earthquake. It 
is seen that mathematical, seismic and deep learning 
approaches are used for earthquake prediction in these studies. 
TEC, morpho-structural dataset, satellite images and seismic 
signals are the main datasets used to predict the occurrence of 
earthquakes. Different models and methods offer significant 
advances in earthquake prediction, but it is clear that datasets 
need to be further diversified and improved. 

 

 

Table 2. Earthquake prediction methods about the 6 February 2023 earthquake. 

 Methods Models Results Datasets 
[27] Structural integrity status of 

buildings after earthquake 
RF, KNN, LR, DT, 
SVM, SGD, MLP 

Accuracy=93% Structural integrity status of 
the buildings near the 44 

AFAD stations. 
[36] Anomaly detection  LSTM, ACO, 

Kalman Filter, 
median method, 

and MLP 

The result obtained from TEC dataset 
is that abnormal behaviors started to 

be observed 10 days before the 
earthquake. 

USGS, GIM-TEC satellite 
dataset NASA 

[38] Mathematical pattern 
recognition algorithms 

Kora-3 pattern 
recognition 
algorithm 

It was concluded that earthquakes of 
magnitude=6.5 and above are 

connected to morpho-structural 
nodes. 

Based on morpho-structural 
zonation dataset by IM 

Gelfand, VI Keilis-Borok and 
colleagues in 1973 

[39] DL image segmentation for 
the identification of 
collapsed buildings 

PSPNet, LinkNet, 
U-Net, and FPN 

Accuracy of  
U-Net=0.970 LinkNet=0.969 

FPN=0.973 
PSPNet=0.963 

Maxar and Planet 
Earthquake Zone satellite 

images. 

[40] statistical methods partial statistical 
methods 

Seismic electrical activities indicating 
the onset of seismicity three and a 
half months before the earthquake. 

NTA's Seismic Electrical 
Signals (SES) 

 
[41] ML and ANN 

 
XGBoost, LGBM, 
CatBoost, ET, RF, 

BR, DT, ANN 

MSE=0.0607, RMSE=0.2464, 
R2=0.2010, MAE=0.1997 

USGS dataset from 
January 2015 to February 

2023 
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[42] They were able to obtain a 
smaller TEC perturbation 

from the Mw 5.6 
earthquake. 

TEC time 
derivative and D1-

GNSS-RT 

They were able to obtain a smaller 
TEC perturbation from the Mw=5.6 

earthquake. 

CYPOS GNSS network 

 

 

 

3. Conclusions 

The situation of bridges, telecommunications, airlines, public 
institutions, hospitals, etc. structures that need to continue to 
be used after the February 6, 2023 earthquake has shown that 
the use of seismic performance enhancing technologies in 
newly constructed structures is essential [43]. Earthquake 
prediction is crucial for preparing communities for potential 
earthquake risks. Accurate predictions allow timely warnings 
and the creation of emergency plans, helping to minimize both 
loss of life and property damage. Furthermore, long-term 
earthquake predictions can aid in urban planning, identifying 
high-risk areas, and enabling appropriate safety measures. 
Earthquake prediction is particularly important for countries 
like ours, which are located in seismically active regions, 
including Taiwan, Southern California, Iran, Japan, Indonesia, 
and Türkiye. Following the recent major earthquakes, seismic 
datasets have increasingly been used to predict future 
earthquakes, complemented by improved methods. The studies 
summarized in Table 1 highlight the potential of deep learning 
(DL) techniques in advancing earthquake prediction 
capabilities. In Türkiye, estimating earthquake magnitudes 
using DL algorithms, combined with parameters such as 
historical dataset, sensors, magnetic and electric waves, and 
seismic indicators, is critical. Expanding sensors networks and 
modernizing the technological infrastructure will facilitate 
more accurate and real-time predictions. This paper has 
reviewed various ML and DL techniques applied to earthquake 
prediction, particularly for the February 6, 2023 earthquake in 
Table 2. Although these predictive models have made progress, 
challenges such as datasets limitations, overfitting, and the 
complexity of seismic systems remain. For example, 
ionospheric responses such as TEC disturbances reported by 
Maletckii and colleagues at the Table 2. provide valuable clues 
but are not consistently observed before each earthquake. We 
also see that the popular approach of using time series of 
seismic activity in past years, has not been used in the February 
6, 2023 earthquake prediction except Biswas, and colleagues. 
In addition, combining historical earthquake datasets, seismic, 
ionospheric, and satellite datasets show potential to improve 
predictions, but there are difficulties in dataset integration and 
no studies combining the dataset. In addition, limited region-
specific datasets, especially for high-risk areas such as Türkiye, 
hinders the generalizability of these models. 

Future research has the potential to achieve better prediction 
results by focusing on hybrid models and optimization 
techniques that integrate seismic, ionospheric, and geographic 
datasets for improved prediction accuracy. It is also important 
to address overfitting issues and expand region-specific 
datasets, specially for earthquake-prone areas. Improving 
sensors networks and modernizing technological 
infrastructure will enable more accurate and real-time 
earthquake predictions and reduce the risk of loss of life and 
property in future earthquakes. 
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Ek A 

Bu bölümün kullanımı isteğe bağlıdır. Ekler en sonda 
sınıflandırılarak verilmelidir. Ekler gerektiğinde ayrı bir 
sayfadan başlayabilir.  


