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Abstract  Öz 

In this study, we consider the Generalized Classical (GC) method based 
on the differential Taylor (DT) transform method for the analysis of 
transient regimes in simple electrical circuits. The approximate solution 
of nonlinear differential equations of electrical circuits with variable 
coefficients is found by using the GC method.  It is shown that, if the 
solution is decomposed as steady-state and the temporary components, 
the use of the GC method can become more advantageous, and the 
transient differential equation of the circuits can be analyzed without a 
fully solving process. The efficiency of the considered method is 
illustrated by compared with the results obtained from similar problems 
in the literature. The results reveal that the proposed method is very 
effective and simple and can be applied to the analysis of both linear and 
nonlinear problems in physical systems. The short history and real 
status of the DT transform method are mentioned briefly. 

 Bu çalışmada, basit elektrik devrelerinde geçici rejimlerin analizi için 
diferansiyel Taylor (DT) dönüşümü yöntemini temel alan 
Genelleştirilmiş Klasik (GK) yöntemini ele alıyoruz. Değişken katsayılı 
elektrik devrelerinin doğrusal olmayan diferansiyel denklemlerinin 
yaklaşık çözümü GK yöntemi kullanılarak bulunur. Çözümün kararlı 
durum ve geçici bileşenler olarak ayrıştırılması durumunda GK 
yönteminin kullanımının daha avantajlı hale gelebileceği ve devrelerin 
geçici diferansiyel denkleminin tam bir çözme işlemi olmadan analiz 
edilebileceği gösterilmiştir. Ele alınan yöntemin etkinliği literatürdeki 
benzer problemlerden elde edilen sonuçlarla karşılaştırılarak 
gösterilmiştir. Sonuçlar, önerilen yöntemin çok etkili ve basit olduğunu 
ve fiziksel sistemlerdeki hem doğrusal hem de doğrusal olmayan 
problemlerin analizine uygulanabileceğini ortaya koymaktadır. DT 
dönüşüm yönteminin kısa tarihçesi ve gerçek durumundan kısaca 
bahsedilmiştir. 

Keywords: Differential Taylor transform, Differential spectrums, 
Generalized classical method, Electrical circuit, Transient regimes, 
Differential equations 
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1 Introduction 

Electrical circuits generally consist of resistors, inductive 
windings, capacitors, semiconductor elements, devices and 
systems that convert different energies into electrical energy. 
The energy status of these systems is determined by the steady-
state and transient regimes that occur in the circuits. The 
analysis of steady-state and transient regimes in electrical 
circuits is made according to Kirchhoff’s laws and relations 
expressing the characteristics of the elements in the circuit. In 
this case, the state equations of electrical circuits are expressed 
by ordinary, partial differential or integro-differential 
equations [1]. Moreover, structurally similar equations take 
place in many different physical and technological systems 
(mechanical, heat and mass transfer, hydraulic, automation, 
etc.) [2]. Even if the characteristics of the elements of the 
electrical circuits are linear, the analytical solutions of these 
equations and therefore the analysis of transients in the circuit 
become difficult. In case the characteristics of electrical circuit 
elements are nonlinear, the examination of transient processes 
is more difficult and mainly carried out using numerical models 
[3]. Although numerical methods are advantageous for a 
particular case of transients in electrical circuits, they are not 
an effective approach for the general analysis of these circuits. 

                                                           
*Corresponding author/Yazışılan Yazar 

Because the results obtained by numerical methods are 
insufficient to explain some local events that are specific to 
transients in electrical circuits. Accordingly, it is very important 
to obtain analytical or approximate analytical solutions of 
linear, nonlinear differential or integro-differential equations 
of the circuit. In general, different approximate methods are 
used in the investigation of transients in nonlinear electric 
circuits [3]. These methods, which are effective in special cases, 
are not that advantageous in the analysis of nonlinear circuits 
in general. To simplify this process, transformation methods 
are widely used in the analysis of electrical circuits and 
automation problems in many areas [4]. Transformation 
methods such as Laplace, Fourier, Carson are used as basic 
instruments in the analysis of transients in physical processes 
whose energy states are expressed by linear differential 
equations [5,6]. However, many difficulties are encountered in 
the application of these methods in the analysis of transients in 
nonlinear systems or circuits. Because when these integral 
transformation methods are applied to nonlinear systems, 
some mathematical operations are expressed very complex. 
For this reason, the search for new methods in the analysis of 
nonlinear systems is still up-to-date. One of these methods is 
the Differential Taylor (DT) transformation method [7-19], 
which has been proposed by G.E. Pukhov in recent years and 
given its basic concepts and application examples in many 
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fields. This method, which allows obtaining both numerical and 
approximate analytical solutions of linear, nonlinear equations, 
ordinary differential equations (ODE), partial differential 
equations (PDE), and many physical models, has been used by 
many studies to solve various problems and is still widely used 
[20-58]. However, the pioneering role of G.E. Pukhov in all these 
studies presented in the literature has not been adequately 
evaluated. The studies of this scientist, who explained the 
basics of the DT transformation method with all its aspects and 
applications in five books published in 1970, were ignored. This 
method, which allows to obtain solutions of differential 
equations and functions with Taylor and Maclaurin series in 
general, has wider possibilities. Because functions (differential 
spectra) obtained by differential transform can be expressed 
not only with Taylor series, but also with any other function 
(exponent, rational fraction, Fourier series, etc.) depending on 
the physical properties of the system under consideration. This 
approach, which allows the examination of transient regimes in 
both linear and nonlinear systems using the DT transform, was 
defined by Pukhov as the Generalized Classical (GC) method 
[11,13,19].  

In this study, current and voltage changes in transient regime 
in RC circuit with time varying R(t) resistance were 
investigated by GC method. The change of the transient 
discharge current of the capacitor C under the effect of time 
varying R(t) resistance in the electrical circuit, the solution of 
the nonlinear differential equation is obtained by using the DT 
transform. In the other approach, in the RC circuit, the variation 
of the discharge voltage of the capacitor over time was 
examined by defining the voltage-current characteristic over 
the nonlinear resistor in the form of a second-order polynomial. 
The results are discussed graphically. It was emphasized that 
the GC method, which was created on the basis of the DT 
transform method, is an advantageous instrument in the 
analysis of transients in linear and nonlinear physical systems 
and models. Brief history and status of the development of the 
differential Taylor transform method are also mentioned.  

2 A short history and status of Differential 
Taylor (DT) transform 

Analytical solutions of differential equations used in the 
analysis of steady-state or transient events occurring in 
different fields of science are difficult or impossible in many 
cases. For this reason, various numerical methods have been 
developed to solve these problems. The development of 
modern computer systems and programs provides the 
opportunity to obtain numerical solutions of these equations. 
However, there is a need to obtain at least approximate 
analytical solutions of these equations. Because, in order to 
evaluate the effect of the changes in the different parameters of 
the physical processes expressed by these differential 
equations on the operating performance of this system, it is 
necessary to determine the relations between these 
parameters, even if they are approximate. In many cases, 
different transform techniques are used to solve these 
differential equations. These transform methods (Laplace, 
Fourier, Carson, Melville, etc.) in many cases greatly facilitate 
the process of obtaining analytical or approximate analytical 
solutions of either ODE or PDEs [4,6,59]. However, these 
methods, which are called integral transformation methods, are 
essentially more effective in solving constant coefficient and 
linear differential equations. These methods are often 
insufficient for the solutions of variable coefficient and 
nonlinear integro-differential equations. It is also difficult to 

obtain the transfer functions of control systems expressed with 
such differential equations. This can prevent the automatic 
control and design of these systems [60]. Therefore, the 
development of new and more general transform techniques to 
solve similar problems remains a current issue. In this respect, 
it may be more advantageous to use differential transforms, 
which are performed with simpler operations, instead of 
integral transforms, which are often difficult to calculate. The 
concept of differential transform in mathematics is based on a 
very old history [61,62]. However, the differential Taylor and 
non-Taylor transform method, which has been widely used in 
the solutions of integro-differential equations in recent years, is 
a relatively new transform method that started to develop in 
the 1960s. The Ukrainian scientist G.E. Pukhov (1916-1998) 
created the differential Taylor (DT) transform method for the 
first time and applied it to the solutions of various ODEs and 
PDEs, and to the examination of physical models in different 
fields of science, by giving all the basic concepts and rules of this 
method [7-19].The most important advantage of the DT 
transform method is that both approximate analytical solutions 
of differential equations in the form of finite or infinite series 
and numerical solutions in the form of differential spectra can 
be obtained. Moreover, the solutions obtained in the DT 
transform method can be both Taylor and non-Taylor series 
(polynomial, rational fraction, exponent, functions with 
different structures, etc.). On the other hand, the DT transform 
method can be easily used together with many approximate 
methods (Poincare, Fourier, moment, finite differences, etc.) 
used in general mathematics. In addition, in DT transform 
applications, mathematical operations on linear and nonlinear 
coefficients of functions and differential equations are 
transformed into simple algebraic operations, including 
convolution. All these advantages show that the DT transform 
method has wide possibilities for modeling different physical 
processes. For this reason, the applications of the DT transform 
method, which was applied and developed by G.E. Pukhov, have 
been the main subject of the studies of many researchers in 
recent years and these application areas are still being 
developed [63-66]. In this period, the concepts and rules 
required for the creation of differential transforms of many 
functions, expressions, equations and obtaining their solutions 
were given by G.E. Pukhov. Examples of the application of these 
rules to electrical and electronic, heat-mass transfer, 
mechanical and other engineering problems are given in the 
author's books [14-19]. Since the 1990s, the DT transform 
method has been applied to the solutions of different 
differential equations by many scientists and is still being 
applied [20-66]. However, as a serious mistake in all these 
studies, it was stated that the first person to apply the DT 
transform was the Chinese writer Zhou. The reason for this is 
that this author, who has no other study on DT transform in the 
literature, has a book or dissertation published in Chinese in 
1986 [67] and some Chinese scientists [21-23] have cited this 
publication. In the following period, other researchers' 
reference to these studies without extensive research caused 
this mistake to be carried to the international dimension. 
Although some studies [24-26,32,58] warned about this 
situation in the last period, the same approach still continues. 
Moreover, this serious mistake is found in the few books 
published on the application of the DT transform [63-66]. The 
main reason why G.E. Pukhov's studies on DT transform are not 
visible to world scientists may be that these studies are in 
Russian. However, there are also a few extensive studies by G.E. 
Pukhov in English in the 1980s [10,12]. In addition, the 
contents of the books [14-16,19] containing the basics of DT 
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transform are also given in English. Considering the concepts 
and symbols used in the main references to Zhou's Chinese 
book or dissertation [67], this source [67] appears to be a 
translation of G.E. Pukhov's books of the same name [14,16]. 
For this reason, researchers working on DT transform 
applications should definitely consider this issue in their 
publications and examine the G.E. Pukhov's studies. Because in 
all the studies presented in the literature, almost all of the 
concepts, definitions and transform tables of DT transform are 
included in these books [14-19]. 

In this study, current and voltage changes in transient regime 
in nonlinear electrical circuits were investigated with the 
application of the GC method, which was created on the basis of 
the DT transform method. In order to shed light on the 
researchers working on DT transform, the definitions and 
formulas used in this study are given in the original form 
created by G.E. Pukhov.  

3 Fundamentals of Differential Taylor (DT) 
transform 

DT transform is an approximate method and is used for the 
analysis or solution of integro-differential equations or 
functions according to their differential spectra. The original 
function determined by the inverse function can generally be 
expressed as a Taylor series or any rational non-Taylor series 
function form. The most important advantage of the DT 
transform method is that it is simple and useful, and it provides 
the opportunity to obtain both numerical and analytical 
solutions of differential equations. 

First of all, as in all transform techniques, in this study, the 
definition of original and inverse functions will be done as 
follows. 

The original function is the continuous function x(t), which 
depends on the real parameter t, and the inverse function is the 
transform functions X(k) depending on the real integer 
argument k=0,1,2,…,∞. 

In this case, according to G.E. Pukhov's definition [15], the DT 
transform of the function x(t) or the differential spectrum at 
t=tν would be as follows: 

𝑋𝜈(𝑘) = 𝑇{𝑥(𝑡)} =
𝐻𝑘

𝑘!
[
𝑑𝑘𝑥(𝑡)

𝑑𝑡𝑘
]
𝑡=𝑡𝜈

 (1) 

Here, H is the scale constant of the same size as the t argument. 
If tν=0, then the series expansion of x(t) would be the Maclauren 
series and the differential spectra would be simpler, 

𝑋(𝑘) = 𝑇{𝑥(𝑡)} =
𝐻𝑘

𝑘!
[
𝑑𝑘𝑥(𝑡)

𝑑𝑡𝑘
]
𝑡=0

 (2) 

Thus, according to Eq. (1) or Eq. (2), differential spectra X(0), 
X(1),… can be easily calculated, with k=0,1,2,…,∞. According to 
these differential spectra, the original function x(t) is obtained 
from the following inverse formula: 

𝑥(𝑡) = 𝑇−1{𝑋𝜈(𝑘)} = ∑(
𝑡 − 𝑡𝜈
𝐻

)
𝑘

𝑋(𝑘)

∞

𝑘=0

 (3) 

As can be seen, the x(t) function obtained from the inverse 
transform is a Taylor function expanded around the t=tν point. 

Within the radius of convergence, the function x(t) is always 
analytical. In the DT transform, the radius of convergence ρc can 
be easily evaluated, 

𝜌𝑐 = 𝐻 lim
𝑘→∞

|
𝑋(𝑘)

𝑋(𝑘 + 1)
| (4) 

In general, the DT transform has many similar properties that 
are characteristic of all integral transforms. However, it is very 
important to consider the following main features in DT 
transform applications, whether in the solution of differential 
equations or in the examination of physical models [14-19]. 
Although c is a constant, the following equations are valid for 
any two analytic functions x(t) and y(t); 

𝑇{𝑥(𝑡) ± 𝑦(𝑡)} = 𝑋(𝑘) ± 𝑌(𝑘) (5) 

𝑇{𝑐𝑥(𝑡)} = 𝑐𝑋(𝑘) (6) 

𝑇 {
𝑑𝑥(𝑡)

𝑑𝑡
} = 𝑋(𝑘 + 1) (7) 

𝑇{𝑥(𝑡)𝑦(𝑡)} =∑(
𝑘
𝑙
)

𝑘

𝑙=0

𝑋(𝑙)𝑌(𝑘 − 𝑙) (8) 

Here (
𝑘
𝑙
) =

𝑘!

𝑙!(𝑘−𝑙)!
 is the binomial coefficients. 

The similarities and differences between Laplace and Fourier 
integral transforms and DT transform are given in Table 1. 
However, unlike integral transforms, the transforms of many 
functions, especially the convolution theorem, are determined 
by simple algebraic expressions in the DT transform. This result 
reveals that the DT transform is more advantageous than 
integral transforms in solving nonlinear equations and 
modeling systems with varying parameters. 

The fundamental principle and scientific basis of the 
application of the DT transform to the solutions of many 
electrotechnical problems, such as the investigation of linear 
and nonlinear electric circuits and systems with distributed 
parameters, are studied in detail in Pukhov's books [14-16]. 
The DT transforms of some important functions used in these 
applications are given in Table 2. DT transforms of more 
complex functions and equations are explained in Pukhov's 
books [14-19] with examples and tables. 

By using Table 2, DT models of many linear, nonlinear, and 
variable coefficient differential equations can be created and 
simpler solutions are obtained. The most important point here 
is to obtain both analytical (Taylor and non-Taylor series) and 
numerical solutions in spectral form from DT models. For 
example, a firs-order linear differential equation in general 
form is given as follows: 

𝑑𝑥(𝑡)

𝑑𝑡
+ 𝑎(𝑡)𝑥(𝑡) = 𝑓(𝑡) (9) 

Considering Table 2, the DT model of this differential equation 
becomes as follows: 

𝑘 + 1

𝐻
𝑋(𝑘 + 1) +∑𝐴(𝑘 − 𝑙)𝑋(𝑙) = 𝐹(𝑘)

𝑘

𝑙=0

 (10) 
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Table 1. Integral transforms and DT transform properties. 

Operations Laplace Fourier DT 

{𝑥(𝑡)} 𝑋(𝑠) = ∫ 𝑥(𝑡)𝑒−𝑠𝑡𝑑𝑡

∞

0

 𝑋(𝑗𝑤) =
1

2𝜋
∫ 𝑥(𝑡)𝑒−𝑗𝑤𝑡𝑑𝑡

∞

−∞

 𝑋(𝑘) = [
𝜕𝑘𝑥(𝑡)

𝜕𝑡𝑘
]
𝑡=0

 

{
𝑑𝑥(𝑡)

𝑑𝑡
} 𝑠𝑋(𝑠) − 𝑋(0) 𝑗𝑤𝑋(𝑗𝑤) 𝑋(𝑘 + 1) 

{𝑥(𝑡)𝑦(𝑡)} 
1

𝑗2𝜋
∫ 𝑋(𝜏)𝑌(𝑡 − 𝜏)𝑑𝑡

𝑠+𝑗𝑤

𝑠−𝑗𝑤

 
1

2𝜋
∫ 𝑋(𝑗)𝑌(𝑗𝑤 − 𝑗)𝑑

∞

−∞

 ∑(
𝑘
𝑙
)𝑋(𝑙)𝑌(𝑘 − 𝑙)

𝑘

𝑙=0

 

Table 2. DT transformations of some functions and mathematical operations [14-19]. 

Number Original function or expressions Differential spectrum 

1 𝑥(𝑡) 𝑋(𝑘) =
𝐻𝑘

𝑐!
[
𝑑𝑘𝑥(𝑡)

𝑑𝑡𝑘
]
𝑡=0

 

2 1 𝛿(𝑘) = {
1, 𝑘 = 0
0, 𝑘 ≠ 0

 

3 𝑡 𝑇(𝑘) = 𝐻𝛿(𝑘 − 1) = {
𝐻, 𝑘 = 1
0, 𝑘 ≠ 0

 

4 𝑡𝑚, (m ϵ N) 𝑇𝑚(𝑘) = 𝐻𝑚𝛿(𝑘 − 𝑚) = {
𝐻𝑚, 𝑘 = 𝑚
0, 𝑘 ≠ 𝑚

 

5 (1 + 𝑡)𝑚 

{
 

 𝐻𝑘
𝑚!

𝑘! (𝑚 − 𝑘)!
,      𝑖𝑓 m ϵ N

𝐻𝑘
𝑚(𝑚 − 1)… (𝑚 − 𝑘 + 1)

𝑘!
, 𝑖𝑓 𝑚 𝑖𝑠 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟

 

6 𝑒𝑐𝑡  𝐸𝑐(𝑘) =
(𝑐𝐻)𝑘

𝑘!
 

7 𝑠𝑖𝑛𝜔𝑡 𝑆𝜔(𝑘) =
(𝜔𝐻)𝑘

𝑘!
𝑠𝑖𝑛

𝜋𝑘

2
 

8 𝑐𝑜𝑠𝜔𝑡 𝐶𝜔(𝑘) =
(𝜔𝐻)𝑘

𝑘!
𝑐𝑜𝑠

𝜋𝑘

2
 

9 𝑠ℎ𝑐𝑡 𝑆ℎ𝜔(𝑘) =
(𝑐𝐻)𝑘

𝑘!
𝑠𝑖𝑛2

𝜋𝑘

2
 

10 𝑐ℎ𝑐𝑡 𝐶ℎ𝜔(𝑘) =
(𝑐𝐻)𝑘

𝑘!
𝑐𝑜𝑠2

𝜋𝑘

2
 

11 ln (1 + 𝑐𝑡) 𝑙𝑛(𝑘) =
(𝑐𝐻)𝑘

𝑘!
[𝛿(𝑘) − 𝑐𝑜𝑠𝜋𝑘] 

12 𝑥(0) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
𝑋(0)𝛿(𝑘) 

 

13 𝑐𝑥(𝑡) 
𝑐𝑋(𝑘) 

 

14 𝑥(𝑐𝑡) 
𝑐𝑘𝑋(𝑘) 
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𝑥(𝑡)𝑦(𝑡) 
∑𝑋(𝑘 − 𝑙)𝑌(𝑙)

𝑘

𝑙=0

 

16 𝑥2(𝑡) ∑𝑋(𝑘 − 𝑙)𝑋(𝑙)

𝑘

𝑙=0
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17 𝑥𝑚(𝑡) ∑𝑋(𝑘 − 𝑙)𝑋𝑚−1(𝑙)

𝑘

𝑙=0

 

18 𝑡𝑚𝑥(𝑡) 𝐻𝑚𝑋(𝑘 −𝑚) 

19 
𝑑𝑥(𝑡)

𝑑𝑡
 

𝑘 + 1

𝐻
𝑋(𝑘 + 1) 

20 
𝑑𝑥𝑚(𝑡)

𝑑𝑡𝑚
 

(𝑘 + 𝑚)!

𝑘!𝐻𝑚
𝑋(𝑘 +𝑚) 

21 ∫𝑥(𝑡)𝑑𝑡 𝐻
𝑋(𝑘 − 1)

𝑘
+ 𝑐𝛿(𝑘),    𝑐 𝑖𝑠 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 
X(k) differential spectra can be easily calculated from Eq. (10) 
when given as k=0,1,2,…,∞. According to the calculated X(k) 
spectra, the original function x(t) from Eq. (3) is obtained in 
Taylor series form or as an exact function. This approach was 
described by G.E. Pukhov as the “DT direct method” or the DT-
1 model [14-19]. Although it seems simple in theory, the DT-1 
model is not advantageous in many practical applications. 
Because X(k) differential spectra have different dimensions. In 
addition, since the convergence of the Taylor series in Eq. (3) is 
not fast enough in many cases, the calculation process becomes 
difficult and the resulting calculation errors can reach 
undesired levels. In order to eliminate these difficulties, G.E. 
Pukhov suggested the more efficient non-Taylor method by 
combining the X(k) differential spectra obtained by the DT 
method with different approximation methods such as Picard, 
Newton-Kantorovich, Poincare, Bubnov-Galerkin, small 
squares approximation, finite elements method, etc. [14-19]. 
Pukhov had been shown that the GC approach is more effective 
in addition to the DT-1 method in the solution of 
electrotechnical problems [12]. Many properties specific to 
processes in electrical circuits and systems (e.g. commutation 
laws, stability, limited values of parameters such as current-
voltage-magnetic flux in the circuit, etc.) facilitate the creation 
of a DT model of these problems. Accordingly, in the next 
section, the creation of the DT model of some electrotechnical 
problems and the examination of simple transients with the DT-
based GC method are discussed. 

4 Differential transform and generalized 
classical method 

Let's assume that the state equation of the physical model or 
process to be investigated is given as the following differential 
equation, 

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑓[𝑡, 𝑥(𝑡)],        𝑥(0) = 𝑥0 (11) 

The solution of this equation is generally obtained with the 
following integral equation, 

𝑥(𝑡) = 𝑥(0) + ∫ 𝑓[𝜏, 𝑥(𝜏)]𝑑𝜏
𝑇

0

 (12) 

Here x(t) and f(t, x(t)) are the basis functions and x(0) is the 
initial value of the function x(t) for t=0.  

If Eq. (11) or Eq. (12) has only one solution, it can be assumed 
that the solution consists of two components: 

𝑥(𝑡) = 𝑥𝑆(𝑡) + 𝑥𝑇(𝑡) (13) 

Here, 𝑥𝑆(𝑡) is steady-state component and 𝑥𝑇(𝑡) is temporary 
component [12, 19]. In physical systems, the function of the 
system that stabilizes over time (t→∞) can be selected as a 
steady-state component. It is a unique function with a limited 
amplitude and independent of the initial moment (t =0). 

In general, the steady-state component can also be chosen as 
approximately equal to one particular solution of the given 
equation. The analytic structure of the temporary component 
𝑥𝑇(𝑡) should be chosen in such a way that the approximate 
function 𝑥𝑇(𝑡, 𝑐) representing this function is complete and 
damped. Here 𝑐 = 𝑐0, 𝑐1, … , 𝑐𝑛  are undetermined coefficients 
and are determined according to the initial, boundary 
conditions or any other property of the system. The DT method 
can be used to determine these coefficients. For this purpose, 
differential Taylor spectra of Eq. (13) are obtained. 

𝑋(𝑘) =
𝐻𝑘

𝑘!
[
𝑑𝑘𝑥(𝑡)

𝑑𝑡𝑘
]
𝑡=0

 (14) 

𝑋𝑆(𝑘) =
𝐻𝑘

𝑘!
[
𝑑𝑘𝑥𝑆(𝑡)

𝑑𝑡𝑘
]
𝑡=0

 (15) 

𝑋𝑇(𝑘) =
𝐻𝑘

𝑘!
[
𝑑𝑘𝑥𝑇(𝑡)

𝑑𝑡𝑘
]
𝑡=0

 (16) 

If the DT spectra of the function f[t, x(t)] are assumed to be F(k), 
then the X(k) spectra [X(0),X(1),...,X(k)] can be easily 
determined from Eq. (11) or Eq. (12). Here, in accordance with 
the DT method, if it is desired to form the differential spectra of 
the functions according to the main differential equation of the 
physical process under investigation, then these spectra are 
determined from formulas or tables [14-19]. 

The structure of the temporary function (rational fraction, 
exponent, Fourier series, etc.) is selected according to the 
character of the problem and initial conditions, 

𝑥𝑇(𝑡, 𝑐) = 𝑥𝑇[𝑡, 𝑐0𝛽0(𝑡), 𝑐1𝛽1(𝑡), … , 𝑐𝑛𝛽𝑛(𝑡)] (17) 

Using Eq. (14), (15), and (16), we obtain the spectrum equation 
of the given nonlinear problem, 

𝑋(𝑘) = 𝑋𝑆(𝑘) + 𝑋𝑇[𝑇(𝑘), 𝑐0𝐵0(𝑘), 𝑐1𝐵1(𝑘),… , 𝑐𝑛𝐵𝑛(𝑘)] (18) 

Here, 𝐵0(𝑘), 𝐵1(𝑘), 𝐵3(𝑘), … . , 𝐵𝑛(𝑘) are differential spectra of 
selected 𝛽0(𝑡), 𝛽1(𝑡), 𝛽3(𝑡),… , 𝛽𝑛(𝑡) functions. The T(k) 
spectrum is determined as follows. 
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𝑇(𝑘) = 𝑇{𝑡} =
𝐻𝑘

𝑘!
[
𝑑𝑘𝑡

𝑑𝑡𝑘
]
𝑡=0

= 𝐻𝛿(𝑘 − 1)

= (0, 𝐻, 0, … , 0) 

(19) 

The term δ(k) in this expression is defined as follows [13-18], 

δ(𝑘) = {
1, 𝑘 = 0
0, 𝑘 ≠ 0

 (20) 

𝑐𝑛 coefficients are determined from Eq. (18) according to the 
𝑋(𝑘) spectra determined from the fundamental differential 
function or equation and the spectra of the steady-state 
component 𝑋𝑆(𝑘). Considering Eq. (17), an approximate 
analytical solution of the problem given from Eq. (13) is 
obtained according to certain 𝑐𝑛 coefficients. As can be seen, 
while Eq. (13) is being created, no constraint conditions other 
than the physical properties of the nonlinear system are 
required. In other words, the detailed procedure of the 
solutions of the differential equations expressing the transient 
events occurring in the nonlinear system may not be taken into 
account. Moreover, when the DT transform is applied, the 
procedure followed for examining transients in nonlinear 
systems can be similar to the procedure performed for 
examining transient regimes in linear systems. For this reason, 
this method was named as GC method is tolerable both linear 
and nonlinear transient processes by G.E. Pukhov [12,19]. 
When this method is applied, many transient events in 
electrical circuits and systems can be easily examined. 

5 Basic concepts of investigation of electrical 
circuits and systems with DT transform 

5.1 Creation of DT models of circuit elements and 
fundamental laws in electrical circuits 

The laws of electrophysics constitute the theoretical basics of 
electrotechnical. These laws are Kirchhoff's laws, which 
determine the relationship between currents and voltages in 
the circuit, the state equations of electrical circuit elements, and 
Maxwell's equations. Usually these equations take the form of 
specific ODE and PDE. DT models of Ohm and Kirchhoff's laws 
and circuit elements such as resistors, diodes, inductive 
windings, capacitors, transformers are obtained as follows [14-
16] 

∑ 𝐼𝑚(𝑘)

𝜇

𝑚=1

= 0,      ∑ 𝑈𝑚(𝑘)

𝜇

𝑚=1

= 0 (21) 

𝑈𝑚(𝑘) = 𝑅𝐼(𝑘) (22) 

Here I(k)=T{i(t)} and U(k)=T{u(t)} is the T model of current i(t) 
and voltage u(t), respectively.  

As can be seen, while R is constant, Kirchhoff's first and second 
laws and Ohm's law provide their original form in the DT 
transform. Since electrical circuit elements (resistor, 
inductance, and capacitance) can be both linear and nonlinear, 
the voltage-current characteristics of these elements are 
expressed with differential or integral relations. Therefore, the 
expressions of these elements in the state equations of the 
electrical circuits should also be subjected to the DT transform. 
DT models of voltage-current characteristics over resistance, 
inductance and capacitance are shown in Table 3. 

For example, in the RLC circuit shown in Figure 1, the state 
equation in transient (when the switch is turned on) is written 
as follows: 

𝑑2𝑄(𝑡)

𝑑𝑡2
+
𝑅

𝐿

𝑑𝑄(𝑡)

𝑑𝑡
+
1

𝐿𝐶
𝑄(𝑡) =

𝐸

𝐿
 (23) 

Here Q(t) is the electric charge. By using Table 3, the DT model 
of this differential equation becomes as follows: 

(𝑘 + 1)(𝑘 + 2)

𝐻2
𝑄(𝑘 + 2) +

𝑅

𝐿

(𝑘 + 1)

𝐻
 𝑄(𝑘 + 1)

+
1

𝐿𝐶
𝑄(𝑘) =

𝐸

𝐿
𝛿(𝑘) 

(24) 

According to the calculated Q(k) spectra (k =0,1,2,…) from Eq. 
(24), Q(t) original function and then i(t) current change can be 
determined in accordance with Eq. (3). However, the RLC 
circuit elements in Figure 1 can be both constant and variable. 
Although Eq. (23) is relatively easy to solve if the RLC elements 
are constant. If any of these elements are variable over time, the 
DT model becomes difficult and the convergence rate of the 
Taylor series in Eq. (3) decreases, and the margin of error of the 
calculations increases. However, if the variation characteristics 
(such as linear, exponent, increasing or decreasing function, 
etc.) of the electrical circuit parameters are known beforehand, 
the solution of the problem can be facilitated. Because we can 
define the variation of current or voltage in the circuit as a 
series, polynomial or any other function with uncertain 
coefficients that can satisfy the boundary conditions in this 
circuit. Then, using the spectra obtained from the DT model in 
Eq. (24), the uncertain coefficients of these functions can be 
easily determined [12, 19]. 

 

Figure 1. Transients in a simple RLC electrical circuit: R, L, C = 
constant. 

In the following section, the analysis of the current and voltage 
changes in the discharge event of the capacitor C over the 
nonlinear R(t) resistor in the simplified RC electrical circuit 
with the GC method is discussed. 

5.2 Investigation of discharge events in nonlinear RC 
electric circuits by GC method 

First of all, let's create the general model of transients in simple 
nonlinear RC electric circuits using the DT transform on the 
basis of the GC method. As an example, the discharge event of 
the capacitor in the RC circuit containing the non-linear resistor 
R(t) will be considered. In the circuit without current source 
shown in Figure 2, the transient regime is determined as 
follows: 
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Table 3. Integral transforms and DT transform properties. 

Circuit Element Voltage-Current Relationship DT Model 

Resistor 

 
𝑈𝑅(𝑡) = 𝑖𝑅(𝑡)𝑅   𝑅 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑡 

𝑈𝑅(𝑡) = 𝑖𝑅(𝑡)𝑅(𝑡)  𝑅 = 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 

𝑈(𝑘) = 𝑅𝐼(𝑘) 

𝑈(𝑘) = 𝑅(𝑘)𝐼(𝑘) =∑𝑅(𝑘 − 𝑙)𝐼(𝑙)

𝑘

𝑙=0

 

Inductance 

 

 

𝑈𝐿(𝑡) = 𝐿
𝑑𝑖𝐿(𝑡)

𝑑𝑡
 𝑈(𝑘) =

𝐿

𝐻
(𝑘 + 1)𝐼(𝑘 + 1) 

Capacitance 

 

 

𝑖𝐶(𝑡) = 𝐶
𝑑𝑈𝐶(𝑡)

𝑑𝑡
 𝐼(𝑘) =

𝐶

𝐻
(𝑘 + 1)𝑈(𝑘 + 1) 

 

𝑖(𝑡)𝑅(𝑡) +
1

𝐶
∫ 𝑖(𝑡)𝑑𝑡 = 𝑈0

𝑡

0

 (25) 

Here U0 is the voltage of the capacitance at time t=0. The R(t) 
resistor in the circuit changes over time as a result of the 
heating caused by the effect of the discharge current i(t). In this 
case, the change of current i(t) in the circuit can be determined 
as follows [68]. 

 

Figure 2. Transients in a simple nonlinear RC circuit: u(0) = U0. 

If it is assumed that the heat transfer between the resistor and 
the external environment is negligible during the transient 
regime, the amount of heat generated on the resistor is 
completely spent on heating the resistor. In this case, it can be 
assumed that the dependence of the resistance R(t) on the 
temperature ϴ is linear. 

𝑅(𝑡) = 𝑅0(1 + 𝛼[𝛳(𝑡) − 𝛳0]) = 𝑅0 +
𝛼𝑅0
𝐶𝑅

∫𝑖2(𝑡)𝑅(𝑡)𝑑𝑡

𝑡

0

 (26) 

Here, α is the temperature coefficient of the resistor, R0 is the 
initial value of the resistor, 𝐶𝑅 is the heat susceptibility of the 
resistor. 

By taking the derivatives of Eq. (25) and (26), the state equation 
for the discharge event of the capacitor is obtained, 

𝑑[𝑖(𝑡)𝑅(𝑡)]

𝑑𝑡
+
𝑖(𝑡)

𝐶
= 0 (27) 

𝑑𝑅(𝑡)

𝑑𝑡
=
𝛼𝑅0
𝐶𝑅

𝑅(𝑡)𝑖2(𝑡),     𝑅(0) = 𝑅0,    𝑖(0) = 𝐼0 (28) 

Here I0=U0/R0 is the initial value of the current. Eq. (27) and 
(28) are expressed as dimensionless as follows: 

𝑑(𝑥𝑦)

𝑑𝜃
+ 𝑦 = 0 (29) 

𝑑𝑥

𝑑𝜃
= 2𝜀𝑥𝑦2     𝑥(0) = 1,    𝑦(0) = 1 (30) 

Here, 

𝑥(𝑡) =
𝑅(𝑡)

𝑅0
,   𝑦(𝑡) =

𝑖(𝑡)

𝐼0
=
𝑅0
𝑈0
𝑖(𝑡),   𝜃 =

𝑡

𝐶𝑅0

𝜀 =
𝛼𝐶𝑈0

2

2𝐶𝑅
=
𝛼𝑄𝑚𝑎𝑥
𝐶𝑅

= 𝛼∆𝑇𝑚𝑎𝑥 =
𝑅∞ − 𝑅0
𝑅0

 (31) 

𝑄𝑚𝑎𝑥 = 0.5𝐶𝑈0
2 in Eq. (31) is the amount of heat received by the 

resistor during the whole discharge period. During this time the 
resistor value increases from R0 to R∞. 

If ε=0 in Eq. (31), R becomes constant, that is, the transient 
regime of the linear RC circuit is examined. For easier 
understanding of the solution of the problem, the parameter q, 
which is always less than 1, can be used instead of ε in Eq. (31), 

𝑞 =
𝜀

1 + 𝜀
=
𝑅∞ − 𝑅0
𝑅∞

= 1 −
𝑅0
𝑅∞

< 1 (32) 

In this case, the dimensionless time calculated according to the 
resistor R∞ can be expressed as follows: 

𝜏 = (1 − 𝑞)𝜃 =
𝜃

1 + 𝜀
=

𝑡

𝐶𝑅∞
 (33) 

Considering these definitions, the final form of Eq. (29) and (30) 
can be written as follows [68]. 

𝑑(𝑥𝑦)

𝑑𝜏
+

1

1 − 𝑞
𝑦 = 0 (34) 

𝑑𝑥

𝑑𝜏
=

2𝑞

(1 − 𝑞)2
𝑥𝑦2,     𝑥(0) = 1,    𝑦(0) = 1 (35) 

Eq. (29) and (30) or Eq. (34) and (35), which are nonlinear 
differential equations, allow the examination of the transient 
regime in a RC circuit containing nonlinear R(t). The analytical 
solution of this equation is not easy and requires special 
approaches [68]. However, this transient regime can be easily 
studied using the GC method [12, 32]. For the solution of these 

i L 

u 

Q,i 

u 

C 

i R 

u 
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equations with the DT method, the DT spectrum model of Eq. 
(34) and (35) is as follows [11-18]: 

1

𝐻
∑𝑌(𝑘 − 𝑙)(𝑙 + 1)𝑋(𝑙 + 1)

𝑘

𝑙=𝑜

+
1

𝐻
∑𝑋(𝑘 − 𝑙)(𝑙 + 1)𝑌(𝑙 + 1)

𝑘

𝑙=0

+
1

1 − 𝑞
𝑌(𝑘) = 0 

(36) 

𝑘 + 1

𝐻
𝑋(𝑘 + 1) =

2𝑞

(1 − 𝑞)2
∑𝑋(𝑘 − 𝑙)

𝑘

𝑙=𝑜

∑𝑌(𝑙 − 𝑠)

𝑙

𝑠=0

𝑌(𝑠),

𝑋(0) = 1, 𝑌(0) = 1 

(37) 

The solutions of Eq. (34) and (35), which express the state 
equation of the RC circuit in accordance with the GC method 
created on the basis of DT, can be written as follows: 

𝑦(𝜏) = 𝑦𝑠(𝜏) + 𝑦𝑇(𝜏) (38) 

𝑥(𝜏) = 𝑥𝑠(𝜏) + 𝑥𝑇(𝜏) (39) 

According to the characteristics of the problem under 
investigation, the following boundary conditions must be met 
for the solutions given in Eq. (38) and (39), 

(𝜏 = 0) = 1, 𝑥(𝜏 → ∞) =
𝑅∞
𝑅0

=
1

1 − 𝑞
 (40) 

𝑦(𝜏 = 0) = 1, 𝑦(𝜏 → ∞) = 0 (41) 

Hence, the steady-state components for Eq. (38) and (39) are 

𝑥𝑠(𝜏) =
𝑅∞
𝑅0

 (42) 

𝑦𝑠(𝜏) = 0 (43) 

The following criteria should be considered in determining the 
functional relations of the temporary components 𝑥𝑇(𝜏), and 
𝑦𝑇(𝜏): If the time variation of the resistor R(t) in the circuit 
occurs approximately exponentially, the time variation of the 
current and voltage in the nonlinear RC circuit can also be 
chosen as an exponential function. Accordingly, the functional 
structure of temporary components can be as follows: 

𝑥𝑇(𝜏) = 𝐶0 + 𝐶1𝑒
−𝑠𝑡 (44) 

𝑦𝑇(𝜏) =
 1 + 𝑎1𝜏 

1 + 𝑏1𝜏 + 𝑏2𝜏
2 (45) 

Here, 𝐶0, 𝐶1, 𝑎1, 𝑏1, 𝑏2 and s>0 are undetermined coefficients. 
The DT spectra of Eq. (44) and (45) are obtained for H=1 as 
follows: 

𝑋(𝑘) = 𝐶0𝛿(𝑘)+𝐶1
(−𝑠)𝑘

𝑘!
 (46) 

𝑌(𝑘) + 𝑏1𝑌(𝑘 − 1) + 𝑏2𝑌(𝑘 − 2) = 𝛿(𝑘)+𝑎1𝛿(𝑘 − 1) (47) 

When Eq. (37) is taken into account, the spectra of Eq. (46) at k 
= 0, 1, 2, … values are as follows: 

𝐶0 =
𝑅∞
𝑅0

,    𝐶0 + 𝐶1 = 1,   𝑋(1) = −𝑠𝐶1 (48) 

The coefficients are determined from the X(k) spectra 
calculated from here and Eq. (37): 

𝐶0 =
𝑅∞
𝑅0

=
1

1 − 𝑞
, 𝐶1 = 1 −

𝑅∞
𝑅0

= −
1

1 − 𝑞
,

𝑠 =
−𝑋(1)

𝐶1
=

2

1 − 𝑞
 

(49) 

Considering these values, the variation of the resistor with time 
is obtained from Eq. (39) as dimensionless: 

𝑥(𝜏) =
1

1 − 𝑞
−

1

1 − 𝑞
exp (−

2

1 − 𝑞
𝜏)

=
1

1 − 𝑞
[1 − 𝑞𝑒𝑥𝑝 (−

2

1 − 𝑞
𝜏)] 

(50) 

As can be seen from Eq. (50), the boundary conditions 
x(τ=0)=1, and x(τ→∞)=R∞/R0 are provided. 

In order to examine the change of current in the circuit, Y(k) 
spectra are determined from Eq. (36): 

𝑌(1) = −
(1 + 𝑞)𝐻

(1 + 𝑞)2

𝑌(2) =
𝐻2(1 + 8𝑞 + 𝑞2)

2! (1 − 𝑞)4

𝑌(3) = −
𝐻3(1 + 32𝑞 + 64𝑞2 + 20𝑞3 + 3𝑞4)

3! (1 − 𝑞)6

 (51) 

By considering these spectra in Eq. (47), the coefficients 𝑎1, 𝑏1 
and 𝑏2 are easily determined as follows: 

𝑎1 =
3𝑞4 + 8𝑞3 + 16𝑞2 − 4𝑞 + 1

3(1 − 𝑞)2(𝑞2 + 4𝑞 − 1)

𝑏1 =
3𝑞4 + 11𝑞3 + 31𝑞2 + 5𝑞 − 2

3(1 − 𝑞)2(𝑞2 + 4𝑞 − 1)

𝑏2 =
6𝑞5 + 19𝑞4 + 24𝑞3 − 18𝑞2 + 18𝑞 − 1

6(1 − 𝑞)4(𝑞2 + 4𝑞 − 1)

 (52) 

Thus, the temporary component function expressed by Eq. (45) 
is determined. This expression corresponds to the 
dimensionless variation of the transient discharge current in 
the nonlinear RC circuit according to Eq. (38) together with Eq. 
(43). In the literature [68], the result was calculated with O(q2) 
error in the Lambert W-function method. According to these 
results, the changes of current and resistor over time in the RC 
charging circuit were obtained approximately as follows [68]: 

𝑖(𝑡)

𝐼0
= 𝑒−𝜏[1 − 1.5𝑞(1 − 𝑒−𝜏)] (53) 

𝑅(𝑡)

𝑅0
=  1 + 𝑞(1 − 𝑒−2𝜏) (54) 

When such an approach is applied in Eq. (52), the coefficients 
in GC method are simplified: 

𝑎1 =
−1

3(1 − 𝑞)2
,       𝑏1 =

2 + 3𝑞

3(1 − 𝑞)2
,         𝑏2 =

1 + 22𝑞

6(1 − 𝑞)4
 (55) 

In this case, the variation of the transient current with time in 
the linear RC circuit is obtained from Eq. (38) as follows: 

𝑦(𝜏) =
6(1 − 𝑞)4 − 2(1 − 𝑞)2𝜏

6(1 − 𝑞)4 + 2(2 + 3𝑞)(1 − 𝑞)2𝜏 + (1 + 22𝑞)𝜏2
 (56) 
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In many cases, the variation of the resistor with time in the 
nonlinear RC circuit shown in Figure 2 is not given directly, for 
example, by the nonlinear voltage-current characteristic. These 
voltage-current characteristics can be given with different 
functional relationships (eg exponent, harmonic sine or cosine, 
series or polynomials etc.). In this case, current or voltage 
changes in the circuit can be easily solved by GC method using 
DT transform. For example, let's assume that the voltage-
current characteristic on the nonlinear resistor in the above RC 
circuit is given as follows: 

𝑖(𝑡) = 𝐵1𝑢(𝑡) + 𝐵2𝑢
2(𝑡), 𝑢(0) = 𝑈0 (57) 

In this case, the variation of the voltage u(t) with time is as 
follows with the GC method. The variation of the voltage u(t) in 
the circuit with time is determined according to the differential 
equation of the circuit written in dimensionless form [18]: 

𝑑𝑧(𝜏)

𝑑𝜏
+ 𝑧(𝜏) + 𝜇𝑧2(𝜏),         𝑧(0) = 1 (58) 

Here, 𝑧 = 𝑢(𝑡) 𝑈0⁄ , 𝜏 = (𝐵1 𝐵2)⁄ 𝑡, 𝜇 = (𝐵2 𝐵1⁄ )𝑈0 

The variation of the voltage with time in the transients in the 
circuit is written dimensionless as follows: 

𝑧(𝜏) = 𝑧𝑠(𝜏) + 𝑧𝑇(𝜏) (59) 

According to the flow character of the transient, 𝑧(𝜏 → ∞) must 
be zero. In this case, 𝑧(0) = 1, so 𝑧𝑠(𝜏) = 0. The temporary 
component 𝑧𝑇(𝜏) can be chosen as any function that satisfies 
the above properties, for example as in Eq. (45). For a different 
approach, the temporary component is considered as follows: 

𝑧𝑇(𝜏) = 𝑐3𝑒
−𝜏 + 𝑐4𝜏𝑒

−𝜏 (60) 

Here 𝑐3 and 𝑐4 are undetermined coefficients. Therefore, the 
solution of Eq. (58) is as follows: 

𝑧(𝜏) = 𝑐3𝑒
−𝜏 + 𝑐4𝜏𝑒

−𝜏 (61) 

T models of these equations are obtained as follows [18], H=1 

(𝑘 + 1)𝑍(𝑘 + 1) + 𝑍(𝑘)

+ 𝜇∑𝑍(𝑘 − 𝑙)𝑍(𝑙) = 0       𝑍(0) = 1

𝑘

𝑙=0

 
(62) 

∑
(1)𝑘−𝑙

(𝑘 − 𝑙)!

𝑘

𝑙=0

𝑍(𝑙) = 𝑐3𝛿(𝑘) + 𝑐4𝛿(𝑘 − 1) (63) 

From here, for example, since 𝑍(0) = 1, 𝑍(1) = −1.5, and 
𝑍(2) = 1.5 for 𝜇 = 0.5, 𝑐3 = 1 is found as 𝑐4 = −0.5. The final 
approximate solution of Eq. (58) is as follows: 

𝑧(𝜏) = 𝑒−𝜏 − 0.5𝜏𝑒−𝜏 (64) 

6 Results and discussion 

As can be seen from the above analysis, it is possible to obtain 
approximate analytical and numerical solutions of the problem 
by examining the transient regimes in the RC circuit with 
nonlinear varying resistor using the DT method. This approach 
can also be used effectively in the analysis of state equations 
expressed in linear and nonlinear integro-differential 
equations in many physical models. The GC method based on 
DT transform has many advantages for investigating the state 
equations of transient events in electrical circuits and systems. 

Because by using the GC method, transients in both linear and 
nonlinear electric circuits can be obtained with an approach 
expressed by Eq. (13) without detailed solutions of the 
differential state equations of these circuits. Especially in cases 
where the analytical solutions of transient equations, which are 
expressed with nonlinear and variable coefficient differential 
equations, are difficult or impossible in many cases. The GC 
method provides the opportunity to obtain analytical solutions 
of the problem, although it is always approximate. In this case, 
the steady-state 𝑥𝑠(𝜏), and temporary 𝑥𝑇(𝜏) functions of the 
electric circuit can be chosen as sufficiently convergent 
functions that satisfy the physical properties of the transients 
in this circuit. 

In Figure 3, the results of the variation of the discharge current 
of the capacitor in the nonlinear RC circuit with respect to time, 
calculated according to Eq. (56), are given. For comparison, the 
variation of the current in the constant resistive state is also 
shown as dashed lines on the graph. In Figure 4, the variation 
of the normalized value of the resistor in the circuit with 
respect to dimensionless time is shown. 

 

Figure 3. Variation of the discharge current in the capacitor 
with respect to dimensionless time with different q. 

 

Figure 4. Variation of the resistor with respect to 
dimensionless time with different q. 

As can be seen from Figure 3, the change of transient current in 
the nonlinear RC circuit is affected by the change of the resistive 
resistance from q parameter. According to the results 
presented in the literature [68], this change can be 
approximately determined by Eq. (53). Moreover, the time 
variation of the transient current changes faster initially, then 
decreases exponentially, compared to the case where 
R=constant. 
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Figure 5. Comparison of the results obtained according to 
different approximate solutions of the variation of the 

discharge current in the capacitor with respect to 
dimensionless time: Eq. (53) shown as dash line; Eq. (56) 

shown as solid line, q =0.06. 

Figure 5 shows the graphs of the approximate solution obtained 
from Eq. (56) by GC method compared to the approximate 
solution presented in the literature [68] and given in Eq. (53). 
As can be seen from Figure 5, the transient current change in 
the nonlinear RC circuit is in principle correctly expressed by 
the results obtained from both solutions. However, the 
approximate solution in Eq. (56) expresses the dependence of 
the variation of the transient current on q more sensitively. In 
order to increase the convergence of the solution of the 
problem to the real solution, it is necessary to increase the 
number of components in the approximate solution. However, 
it is not mathematically easy to increase the number of 
components in the approximate solution (Eq. (53)) obtained in 
the literature [68]. In Eq. (45) in the GC method, it is possible to 
increase the number of components and the DT spectra of these 
components sufficiently. On the other hand, we can 
mathematically choose the shape of these components to be 
similar to the components in Eq (53). The variation of the 
resistor R(t) with time in Figure 4 is given in Eq. (50) and (54). 
Both approximate solutions obtained by the GC method (Eq. 
(50)) and presented in the literature [68] (Eq. (54)) show that 
the variation of this resistor changes by twice the time constant 
according to the transient current. However, as can be seen 
from equation (50), the variation of the resistor R(t) with 
respect to q in the approximate formula obtained by the GC 
method is more sensitive than Eq. (54). Therefore, these results 
show that the GC method has wider possibilities than the 
method presented in the literature [68] in the investigation of 
transients in nonlinear electrical circuits generally. 

7 Conclusions 

The following results are obtained from the analysis of the 
possibilities of using the GC method, which is formed on the 
basis of the DT transform, in the analysis of transients in non-
linear electrical circuits.  

i) DT transform method is a spectral model created on the basis 
of determination of differential spectra. This method was 
determined for the first time by the Ukrainian scientist GE 
Pukhov, and it has been applied in solving basic concepts and 
different mathematical problems, and in the creation of 
physical models. 

ii) DT transforms of linear or nonlinear ODEs or PDEs with 
varying coefficients are easier and more useful in practical 
applications than the integral transform methods commonly 
used in the literature, since they involve simple algebraic 
operations. The results obtained by this method can be both 
numerically in the form of spectra and analytically in the form 
of an approximate serial or functional relationship. Although 
the inverse transform of the original function according to the 
differential spectra is essentially in the form of Taylor series, 
the DT method is a more universal method that allows to 
determine the original function in the form of different 
functions as non-Taylor. 

iii) With the DT-based GC method, it is possible to consider the 
solution of transients occurring in any dynamic system 
expressed with nonlinear ODE or PDE as a function consisting 
of steady-state and temporary components. The steady-state 
component can be determined according to the stable condition 
in the system. The temporary component can be chosen as an 
approximate function that satisfies the initial or boundary 
conditions in the system or can satisfy any conditions. The 
uncertain coefficients contained in this function are determined 
using the differential spectra obtained from the differential 
transform of the fundamental differential equation of the 
system. 

iv) The basic criterion in the selection of the temporary 
component is that this function is an entire function that can 
satisfy the initial, boundary or any special conditions. 
Therefore, the functional structure of this component can be 
chosen as any function (Taylor or Maclaurin series, rational 
fraction, polynomial, exponent, Fourier series, etc.) with 
uncertain coefficients. The basic principle here is that the 
selected functions can provide a fast convergence. The use of 
numerical methods, which are widely used in traditional 
mathematics, can accelerate these calculation processes in 
finding the uncertain coefficients. 

v) The DT-based GC method has extensive possibilities to 
examine transients in both linear and nonlinear electrical 
circuits with the same approach or a similar procedure. If there 
is a stable steady-state regime in nonlinear electric circuits and 
this solution is unique, we can obtain the transient regimes in 
such electric circuits without solving the basic integro-
differential state equation of the circuit using the GC method. 

vi) Analysis of the transients in a simple nonlinear RC circuit 
with DT transform showed that the results of the transient 
current or voltage changes in the circuit obtained by the GC 
method are more comprehensive than the solutions presented 
in the literature and determined by other approximate 
methods. Studies also show that the GC method can be used as 
an advantageous instrument for the analysis of transients in 
more complex electrical circuits and systems. 
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