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ABSTRACT

This study is concerned with the stress analysis of a rotating disc with a constant surface velocity. It is assumed
that the mass of the disc is variable and is a function of time. Decrease in angular velocity causes angular
acceleration and, therefore, shear stress field. Differential equations of motion for this case are solved
anaytically and shown that the present study is a generalization of the problem of a disc rotating with constant
angular velocity. Stresses occurring in the problem are obtained for different values of surface velocity.
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SABIT YUZEY HIZIYLA DONEN DISKTE GERILME ANALIZI

OZET

Bu calisma sabit ylzey hiziyla dénen bir diskteki gerilme analizi ile ilgilidir. Diskin kiitlesinin degisken ve
zamanin bir fonksiyonu oldugu farzedilmektedir. Acgisal hizdaki azalma ivmeye dolayisiyla da kayma gerilmesi
alaninin ortaya cikmasina sebebiyet verir. Bu hale ait hareket denklemleri analitik olarak ¢oziilmekte ve mevcut
calismanin sabit agisal hizda dénen disk probleminin bir genellestirilmesi oldugu gosterilmektedir. Problemde
ortaya ¢ikan gerilmeler, yuzey hizinin farkli degerleri igin elde edilmektedir.

Anahtar Kelimeler : Gerilme analizi, Donen disk, Agisal ivme, Kayma gerilmesi

1. INTRODUCTION

A disc with variable mass represents a fundamental
working element of large number of textile
machines (Cheviticanin, 1988). Mass and geometry
are varying in the course of running period of the
machine. Although the disc with constant angular
velocity has been studied extensively, the problem
of disc with variable mass has not been extensively
investigated. Therefore, the aim of this paper is to
analyze the stress distribution in a disc on which the
textile band is wound up with constant velocity. In
this case, the winding up is regular and the force in
the textile band is constant. But, to have a constant
velocity, it is necessary to connect the disc with a
variator of velocity. This machinery makes the
system more complex, complicated and expensive.
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Because of that, in every day use, the textile band is
wound with constant velocity.

Stress distribution in a disc which rotates with
constant angular velocity has been investigated in
references (Venkatraman and Sharad, 1970;
Alexander and Gunesekara, 1991; Shames, et al.,
1992). Since the disc rotates with constant angular
velocity, angular acceleration becomes zero and
therefore the problem considered is reduced to
determining the stresses o, and oy . Whereas, in the
case that the angular velocity is variable, in addition
to the inertial forces in the radial direction, shear
stresses must occur since the acceleration field will
occur in the tangential direction. With this form, the
problem forms a generalization of the disc problem
with constant angular velocity.
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2. ANALYSIS

The simplified model of adisc is shown in Figure 1.

Figure 1. Rotating disc with constant surface
velocity

It is assumed here that the shaft on which the disc is
mounted is so short that the deflection in the z
direction can be omitted. Mass m(t), radius r (t) are
varying with time and are functions of the number of
winding.

Now, we assume that the textile band is wound up
with the constant surface velocity v. Let the initial
radius of the disc be ry . Then, we can write the
radius at any time as

r=r,+(n-1/2) (1)
where n is the number of winding. The
instantaneous angular velocity will be given by

w=Y- Y 2

ror+(n-12a

where a, rgare the thicknesses of the textile band and
outer radius of the disc, respectively. The angular
acceleration can be found by differentiating Eq. (2):

v (dr
a:__ —_
rz(dt)

In order to find the term dr/dt in Eq.(3), we consider
a control volume as in Figure2. In the course of
time dt, it can be written for the part that is wound
up on the disc that

©)

V = 2nur(— dr) = av(dt) 4

or

ar_—av
da 2nr
Substituting Eq.(5) into Eq.(3), we have

©)

3 (6)

Figure 2. Control volume
2. 1. Stress Analysis

In order to find the stress distribution in the disc
occurring because of the radial and circumfrential
forces, as different from the case of disc with
constant angular velocity, we assume that the stress
field will include the shear stress 1,4, that is, the
stress field will include the stresses o, o4 and t.
Because of the symmetry, we can assume that the
stresses are independent of the angle 0. Although
there exists a difference of one layer between the
lower and upper parts of the disc, this difference is
negligibly small and can be neglected. The equation
of motion in this case will be

0o, o©,—-0,
+—

r

—r +p,Wir=0
or r Po

()

2
Oty 20 o

or L

where pq is the density of the disc. On the other
hand, strain rates caused by these stresses are given
by (Venkatraman, and Sharad, 1970)

dv v

T T T

du u
€, =—,g, =

8
g ®)
Here, again, the dependence of strain rates upon the
angle 6 is not considered.

The last five compatibility equations that must be
satisfied by Eq.(6) are identically satisfied. The first
compatibility equation

r%_a_azr_g r rai_% =0 (9)
or do or o 00
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Lo (10)

for this case (Venkatraman and Sharad, 1970)

Now, substitution of stress-strain relations and Egs.
(7) in EQ. (10), and the simplification gives

2 ddcz +3rddi
r r (11)
_1dfs = —(3+v)pw?r?
Trdr dr P
The solution of this equation is
csrz_(:ﬂv)pwzrz—i+c2 (12)
8 C

2

as is given in standard books on differentia
equations. Here, ¢; and ¢, are the constants that must
be determined by means of the boundary conditions.

The explicit form of t,4 can be found from the
second of Eqs(?). The solution of the homogenous
part is T0=C4/r*. Let the proper solution be ty=Cs/r.
Substituting this expression into the second equation
in Egs.(7), we find cs= -pgav®/2r. Thus, the general
solution isin the following form

C, PV’
R o 13
" 2ar (13

2. 2. Boundary Condition

In order to obtain the boundary condition concerned
with o, , we remark that this stress will equal to the
difference between inertia and weight forces per unit
width. The force AF, acting upon the angular
element shown in Figure 2 is

VF, =p,d0] . p,r(wr)drdo

= 1pmwz((rd +a) - rd3)d9

3

(14)

where pp, is the density of the textile material. On
the other hand, the mass force in the radial direction
isgiven by

r=rq+d

VE = dd [rcosO dr
ky gpm r:J;d (15)

- gpm[(rd +a) - rdz]cose do

Here, d0 is the angle made by the horizontal
direction and g is the acceleration of gravity. The
difference of these two forces gives the net radial
force acting upon the disc surface. Dividing this
difference by rqd6 we obtain the stress o, per unit
line element in the radial direction:

—p““{vg[(wa)a—ﬂ—

fy

(1s)
gsind]+4l)]=a

Here, it will be assumed that there is no separation
and diding between the textile band and the disc
surface. Since the angular velocity will decrease
with the increase in the number of winding up, this
assumption will be valid with the increase in time,
and is in agreement with the experimenta
evidences. Likewise, inertia and mass forces
occurring in the second layer are found to be

VF, :%p [(r +2a)’ - (r, +a) ]de 17)
and
VF, =0p, [[rd +2af —(r, +a)’sin ede] (18)

Division of the difference of these two forces by
(rg+a)do gives the radial stress o, in the second
layer:

= Po W—2r+a3—r+a3—
Grz_( )|:3|:(d 2) (u )] (19)

g[(rd +2a)’ —(r, +a)2]sin9 }: b,

Continuing in this way, we have for the stress o,
between the n th. and (n-1) th. windings

0, = uggltd ]
i+ {1 +{n-3ef] =6,

Now, the resultant radial stress o, on the disc
surface, which will be taken as the boundary
condition depending upon the number of winding
up, will be the summation of these n stresses:

(20)
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0 | b 2]

—guirt, +kgF —(;+ (4] } (21)

= +,+.4,=20, =vlp, 1, aw0

Here, it can readily be shown that the relation
between the number of winding and angular velocity
isn=wt, wherein t is time parameter.

In the same manner, we will proceed to obtain the
boundary value for shear stress. The force occurring
on the first winding up due to angular acceleration is

a rzdr:ap%(jelnﬁ (22)
T

2nr® r,

AF, ="p,r(or)drdo=p,d0 [
Shear forces per unit line element between first and
second layersisfound to be

TR N delnrd+a (23)
2nr® 2n r

d

oF, = " larkios . 6']
rd d

In the same manner, it is found for the n th and (n-1)
th layers that the shear force per unit line element is

v: r, +a
AR, =®n¥ pfeta

24
2 onr r 24

d d

The frictional force per unit line segment between
the disc and the winding up is
AF, = o, (29)
where o, is given by Eq.(20). Likewise, frictional
force between first and second layers, and n th and
(n-1) th layers are, respectively, given by

AF, = po, (26)
and
AR, =Ho,

(27)

= ”S(r+(‘|)<m—])a){m§ [, +kal —(r, +(k —:I)aﬂ}
gsirtf+ ke~ + (k-] }

where ,isgiven as

a, :pmé{ " +(E_M{g[(a+k§]
ol |-

gsare[<rd+ker4rd+<k—:>aﬂ}

(29)

Here, usis the static coefficient of friction. Again,
we have accepted in deriving the above equations
that there is no diding among the layers, and this
fact is supported by experimental evidences.

In caculating the forces in the longitudina
direction, it is necessary to include the projection of
these forces in that direction. Thus, the mass on the
first layer between the angles 6 and 6+d0 is

PITIB [, oy 1], @)

Then, the mass per unit line segment is

p,,gcos6do [(r +a)
d

> (30)

* - rdz]z P,
The weights on the second and n th layers are

me(;OSQ ((rd + a)z - rdz)

(31)

d
and

op,,coP

m [(rd +n692 —(rd +(n—1)8)2] =0, (32)

The expressions (28), (29), (31) and (32) will be
used in calculating the shear stress 1,q.

Since we assume that there is no dliding between
layers, the shear stress on the surface of the disc will
be the summation of the frictional forces and the

components of the weights of layers in the
longitudinal direction:
T, = LAR +X ¢, —po, (33)

or, in the explicit form,

2
. :apmv{ 1

r, + ka
0 In
2n |G, +(k-Da] r, +(k-Da

GOl L i)y - (k-D@n))]

2 &+ -1d
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5 %{W{[(mkaf—m+<k—1>3)]} (34)

—gsino(r, + ka)® - (r, + (k —1)a)*]

Now, we can find the constants in Eq.(12) and
Eq.(13) by means of these boundary values
obtained. Since Eq.(12) gives o= a the point r =
0, cz must be zero: c;=0. On the other hand, by
Eq.(21), since y=c, on the boundary surface, we
have

-3+pu

y= pwirs +c, (35)
or
C4:‘P+3+pr2rj (36)

Substituting Eq.(30) into the expression for o, and
making the necessary changes, we find

2
3+p 2.2 r
=y+——pwWr,|1-| —
Gr \V 8 p d rd

The longitudinal stress o, is obtained by substituting
Eq.(37) into the first of Egs.(7):

2
c, :\'/4.3_{—_!'t 1- ﬂ L szl‘dz (38)
8 3+p AT,

In order to find 1, we remind that t,,=y4 on the disc
surface. Utilizing this condition, we have for the
constant ¢4 in Eq. (34)

(37)

pavr,

2n (39)

2
C,=rv,+

Substituting this expression into the expression for
T, We Obtain

2
r pavir, (r
To = —| +——-1
" Wd(rdJ 2nr (rd ]

When we look at this equation carefully, we can see
that it gives the stress value as infinity at the center.
In this case , it must be expected that Eq.(40) can
give results in satisfactory agreement with the
experimental results near disc center since the
expression (13) contains only one constant.

(40)

2. 3. Displacement Field

In order to find displacement components u,v and vy
due to o, oy and 1, Stressstrain relations
(Venkatraman and Sharad, 1970) must be utilized.
Taking the first equation in (8) into account and
substituting Eq. (37) and Eq.(38) into the expression
for radial strain rate g, in the stress-strain relations,
we have

Ue B+v)@A-v)(r/r)r,
- 8E '

oo 2 e

In the same manner, calculating the same equality
10=Gyrp With the help of third one of Egs.(8) and
substituting the resulting equation into the second
onein Eqgs.(7), we arrive at the equation

(41)

(42)
from which it can easily be found that the solution is

c
V=—+C,l+C, (43
r

It must be seen that the term c,r in the expression
corresponds to the rigid body motion and does not
contribute to deformation. Thus, ¢, must be zero. On
the other hand, since it must be necessary that v=0 at
r = 0. ¢ must also be zero. Thus, Eqg. (43) gives
V=Co. C; can be found from the condition t,,=yyq

dv v \Y
Tr(J (dt r} gr ( )
S0 asto have
c, :_Gd (45)

Thus, using Eq.(45), we finally have from Eq. (43)
and Eq.(44)

r
Tre = Wd[?dj’

r (46)
v:—wda", 0<r<r,

We see that Eq.(46) so obtained and Eq.(40) are
different from each other. The difference between
these two equations is that some limitations
concerned with displacements are put in finding the
second one. It must be expected that the second
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expression will give smaler values and therefore
more expectable results compared to those obtained
by means of the first equation for .

2. 4. The Annular Disc Case

For an annular disc, the constant ¢; does not have to
be zero. But, in this case, the boundary condition
o(r)=twe(r)=0, olre)=y and t(rg)=ys must be
utilized. Using Eq.(40) and the last of Egs.(7), it is
found from the condition t,q(r;)=0 that

1 [ y,r’r’ 1( y,r°
C.=— d’d i C.o=— d'd 47
1 ZG irdz_rizj 0 G[rz_rin ( )

d

Substituting these constants into the expression for
Tr9 , WE have

=L{(r—) - } (48)
I'i —I’d r

In a like manner, using the boundary conditions
or)= o(rg)=0 in Eq.(12), we have for two
constants

2r’r?
Cl=—[w+3;sv(f§ —f.z)PWZ}#

2 2
rn—r

=T oW (49

2

r? 3+v

_(rizirdz)[WJr 5 pwz(rf—riz)}

Substituting these expressions into EQ.(12), we
obtain

3nv|(, 17 (1+3/ AN
69:7 1+7 - 2_ A | rd
8 o) /)y \3+v At
+ Zurd - + (rd /rd )2 (50)
(2 -r2) (il

Now, substituting Eq.(50) into the first of Eqgs.(7),
we have for o9

TRV I I [1+3v (Y]
G =— |13 |- 2o | Ty
8 ) /)y \3+vAr,
2 2
+ \Zvrd ~ + (ri /rd )2 (51)
(rd -, ) (rfry)

Displacement component u can be found by
replacing Eq.(49) and Eq.(50) in the stress-strain
relations:

L BRI K“ I3 j_lw I
1-v (/)

e = r’
(1+3/Ir}:|wz ,
_ — rd
3Hv AL

yr i) [ (n/r)
’ -1’ {1 (r/rd)z:l (52)

In order to find the displacement component v, we
remind that the shear stress 1,4 can be written by
means of Eq.(44) as

T, = (_ %, _ ije (53)

r r
Using the boundary conditions t,4(r = ;) = 0 and
Tro(r = rg) = g, wefind

AR var,

= ,C, =— 54
o1-2rr, Tt 1-2rr, 4

Finally, substituting these expressions into Eqs.(44)
and (53), we obtain

T, :MF_@ (55)
@-2rr)Lr
v =M[r _l}
@-2arr)L" r
3. RESULTS

In this study, we have dealt with the stress analysis
in a disc on which the textile band is wound with a
constant surface velocity and shown that the shear
stress must also occur in the disc, as different from
the case of rotating disc with a constant angular
velocity. In the calculations, stresses on the disc
surface due to centrifugal and gravitational forces
have also been taken into account. With this form,
the present analysis is a generalization of the
rotating disc with constant angular velocity. Indeed,
it can easily be seen that Eqs.(37), (38), (41), (50)
and (52) give the results for rotating disc with
constant angular velocity if the boundary values on
the disc surface arising from the winding of textile
material are taken as zero. Since the shear stress
givesinfinity at the disc center for a solid disc , two
formulas have been developed. Although both
formulas give infinity at r=0, the second one gives
smaller values near the center and it must be
expected that this formula gives results in agreement
with the experimental ones for the values bigger
than r/ry> 0.1, asisclear from Figure3.
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The stresses o, and oy belonging to annular disc are
shown in Figure 3 for different values of the surface
velocity.
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Figure 3. The variation of radial and hook stresses
o, and o, with r/ry
Here, the ratio r; /rg =1/5 and v = 0.3 are taken and
or and o, show o, /E and o, /E, respectively.
Figure3 shows the variation of o, and o4 wiht r/ry .
As is seen from this figure, o, takes its maximum
value at the point x = 0.4(r/rg) while o, decreases
with r/rq. In Figure 4, the variation of o, with the
number of winding for a sold disc is shown so asto
have an idea on the effect of the number of winding,
and it is seen that the stress o, decreases with the
increase in the number of winding.

Selid
Disc

slress
>
<
3
T

Figure 4. The variation of radia stress o, with the
number of winding for asolid disc

Figure 5 shows the variation of displacement u
corresponding to o, with the ratio r/ry . Dotted lines
belong to annular disc with r; /rqy =1/5 while solid
lines show results for a solid disc.

 Aanulae
Dise

Displacemont o

<
i

velmis o o

Figure 5. The variation of Displacement u with r/ry

We see from these curves that the displacement u
does not excessively depend on the surface velocity.
Thisis especialy clear in the case of solid disc.

In order to visualize the difference between formulas
(40) and (46) for shear stress, Figure 6 has been
plotted. It can clearly be seen that the values
obtained by using Eq.(46) is smaller than those
obtained from Eq.(40) near the disc center in the
case of solid disc.

1500

<

1000

Shoar Sless

500r

sook A

-10G

07 08 09 t
firy

Figure 6. Shear stress Distribution with r/ry for a
solid disc

We aso observe from these results that the shear
stress does not have excessive increase with the
increase in the surface velocity. Dotted lines give the
results obtained from Eq.(55) for the case of solid
disc. For the annular disc of radius ratio r; /rq =1/5
and v = 0.3, shear stress distribution is plotted in
Figure 7. It isalso observed from this figure that the
shear stress does not seemingly depend on the
surface velocity. Dotted lines give the values
obtained by means of Eq. (55).

Muhendidik Bilimleri Dergisi 2000 6 (1) 39-45

45

Journal of Engineering Sciences 2000 6 (1) 39-45




Stress Analysisin A Rotating Disc with Constant Surface Velocity, E. Gilli, Y. Pala

1000+
¥=100 m/s
o

Shoar Stress Ty

Figure 7. Shear stress distribution with r/ry for an
annular disc
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