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Abstract  Öz 

This paper presents the calibration and evaluation of two genetic 
programming (GP) methods, namely classis GP and gene expression 
programming (GEP) for turbidity prediction at drinking water 
distribution networks. Classic GP first method was used to model 
turbidity at the main water source of Bihac town (Bosnia and 
Herzegovina) and GEP second method was used to model turbidity at 
one of the water monitoring stations of city of Antalya, Turkey. The 
former various predictive models were built based on the mean monthly 
turbidity measurements recorded during 2006-2018. Moreover, hourly 
measurements at Gürkavak Station during low turbidity period were 
used. The results showed that the modelling of turbidity is a challenging 
task which required careful data analysis especially in the context of 
determining the optimum lag times/input parameters. No meaningful 
relation between discharge and turbidity was found at Antalya water 
supply pipeline. The results also indicated that the predictive models 
based on the presented algorithms may provide more accurate 
estimations in comparison to the traditional regression approach. The 
findings are useful for sustainable urban water management whereby a 
high quality water supply is aimed. 

 Bu çalışmada, içme suyu dağıtım şebekelerinde bulanıklık tahmini için 
klasik genetik programlama (GP) ve gen ekspresyon programlama 
(GEP) olmak üzere iki GP yönteminin kalibrasyonu ve değerlendirilmesi 
sunulmaktadır. İlk yöntem olan Klasik GP, Bihać kentinin  
(Bosna Hersek) ana su kaynağındaki bulanıklığı modellemek için 
kullanılmıştır. İkinci yöntem olan GEP, Türkiye’de bulunan Antalya ili su 
izleme istasyonlarından birinde bulanıklık modellemesi için 
kullanılmıştır. Birincisinde, 2006-2018 döneminde kaydedilen ortalama 
aylık bulanıklık ölçümlerine dayanarak çeşitli tahmin modelleri 
oluşturuldu. İkincisinde ise, düşük bulanıklık dönemindeki Antalya-
Gürkavak İstasyonu'ndaki saatlik ölçümler kullanılmıştır. Sonuçlar, 
bulanıklık modellemesinin, özellikle optimum gecikme süreleri ve girdi 
parametrelerinin belirlenmesi bağlamında, dikkatli veri analizi 
gerektiren zorlu bir görev olduğunu göstermiştir. Antalya su temin 
hattında debi ve bulanıklık arasında anlamlı bir ilişki bulunamamıştır. 
Bulunan sonuçlar ayrıca sunulan algoritmalara dayanan tahmin 
modellerinin geleneksel regresyon yaklaşımına kıyasla daha doğru 
tahminler sağlayabileceğini göstermiştir. Bulgular, yüksek kalitede su 
temininin hedeflendiği sürdürülebilir kentsel su yönetimi için 
kullanışlıdır. 

Keywords: Genetic programming, Gene expression programming, 
Turbidity, Drinking water 

 Anahtar kelimeler: Genetik programlama, Gen ekspresyon 
programlama, Bulanıklık, İçme suyu 

1 Introduction 

Turbidity is one of the main quality parameter of drinking 
water. It can be defined as an optical determination of water 
clarity or cloudiness of a fluid which is caused by large number 
of invisible (to the bare eye) particles. Turbidity in water can be 
considered like smoke in air. It is defined as the measure of 
relative clarity of water and its optical characteristics. It is an 
expression of the amount of light scattering by materials in the 
water. The higher intensity of scattered light means the higher 
turbidity and consequently the lower quality. High level of 
turbidity in drinking water can cause problems for 
immunocompromised people due to suspended solids. Suspend 
solids can contain various types of viruses or bacteria and 
develop diseases while consuming such kind of water. In order 
to protect the people governments have set standards for 
allowable turbidity in drinking water. In Europe, each country 
developed its own standard which is based on the European 
standards for turbidity ISO 7027-1:2016. Usually, the turbidity 
is measured in nephelometric turbidity units (NTU). Different 

standards define different allowable levels of NTU. In USA, 
allowable value of turbidity must be less than 5 NTU while as 
per European standards the maximum values must not be more 
than 4 NTU. 

The main cause of sudden appearance of turbidity in water 
flows is typically appearance of short-term rainfall causing soil 
erosion. However, researches have shown that it was a bit more 
complex process (Nebbache et al., 2001) and mainly depends 
on the soil structure, level of underground water and variety of 
natural and anthropogenic factors and processes. Due to the 
fact the turbidity is very important parameter and directly 
influences the quality of drinking water, engineers use different 
approaches to predict it (Najah et al., 2009), (Makic et al. 
2015a) and (Makić et al., 2015b). In this paper, turbidity models 
were developed based on different genetic programming 
methods and comparison analysis was performed. The GP 
method has been proved by many engineers as an effective and 
suitable method in modelling and developing predictive models 
of hydrological parameters (Danandeh et al., 2017) and (Olyaie 
et al., 2016). Due to its importance, the turbidity is of constant 
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interest for engineers using different approaches in order to 
develop a good and reliable model. For example, (Mulia et al., 
2013) used artificial neural networks (ANN) in combination 
with genetic algorithm (GA) developing data-driven models in 
order to predict turbidity and chlorophyll-a concentrations. 
(Ogston et al., 2010) predicted the turbidity based on enhanced 
sediment resuspension which is the result of sea level rise. 
Recently, (Nakao et al., 2017) proposed a new method of 
inverse analysis of turbidity currents based on turbidity in 
order to reconstruct the hydraulic conditions of ancient 
turbidity. Using different machine learning methods, in 
modelling water parameters, it is proved to be very effective 
way of monitoring and handling environmental resources. 
(Wang et al., 2013) analysed large complex water data set in 
order to monitor 12 parameters at 13 different sites, by using 
different methods and techniques. In this large research study 
several methods like cluster analysis, principal component 
analysis, factor and discriminant ones were used in the water 
parameters evaluation. (Iglesias et al., 2014) studied the 
importance of the turbidity where they developed turbidity 
models with influence of several water quality parameters by 
using ANN. More recent studies about turbidity and prediction 
models by using different machine learning techniques can be 
seen in the literature (Huang et al., 2018), (Kazemi et al., 2018), 
(Koven et al., 2019), (Savary et al., 2018) and (Wang JD et al., 
2010). Undoubtedly, turbidity is one of the most important 
quality parameter in managing drinking water and it is the 
subject of interest for many engineers. This paper developed 
new models in order to decrease costs and increase quality of 
managing this important resource for two case study locations. 

2 Methods 

The use of artificial intelligence (AI) techniques to solve a wide 
range of engineering problems was increased by the quick 
growth of information technology at the outset of the 1990s. As 
hardware components start to be more powerful every year AI 
methods and machine learning solutions have got more 
attention in recent years. Genetic programming (GP) widely 
used in water engineering (Danandeh et al., 2017) is of the 
recent AI methods that’s frequently used to create symbolic 
regression models between a set of predictors and a given 
predictand. Comparing to earlier AI methods such as artificial 
neural networks (ANN), GP provides explicit model easy to be 
applied in practice. Thus this method was considered in the 
present study.  

2.1 Genetic programming 

GP evolved as a generalisation of 40 years old genetic algorithm 
(GA). Unlike GA where chromosomes were represented as 
binary numbers which was found as constraining factor, in GP 
chromosomes were created as tree structures representing the 
computer programs that conduct mutation and crossover 
operations and thus produces a computer program which 
solves a particular problem. Chromosomes in GP are 
represented in population shaped like a hierarchical structure 
which contains primitive functions and terminals for particular 
problem area. Set of primitive functions are in fact arithmetic 
operations, mathematical functions, Boolean operators and 
special functions for particular problems. Terminal set is also a 
part of chromosome structure and it is usually formed from 
input parameters and numerical constants. Population growth 
in GP is consistence with the biological principle of “survival of 
the fittest”, through evolutionary crossover and mutation 
operations adopted to mating of computer programs. 

GP begins with formation of initial population of randomly 
generated computer programs. Each computer program 
(chromosome) in the population possesses the fitness function 
by which its ability for solving the problem can be evaluated 
and measured. Once the initial population is evaluated the 
population is checked if satisfied with given termination 
criteria. If the termination criteria is satisfied the program 
terminates by returning the best solution found. Otherwise the 
GP goes into the iteration loop where it repeats several steps. 
Within the loop, each population is breeding by performing 
crossover, mutation and reproductions. Once the breeding 
phase is over the population is reevaluated and checked if 
satisfied with the termination criteria. When the termination 
criterion is met the program ends the evolutionary progresses 
and the best program is returned as the output. Typical 
flowchart of GP was shown on Figure 1 (Hrnjica et al., 2019). 

 

Figure: 1 GP flowchart. 

The whole GP process is controlled by several GP parameters. 
According to GP algorithm the evolutionary process is 
commonly controlled through 19 parameters. Two of them are 
main parameters. There are also 11 secondary and 6 qualitative 
parameters that must be carefully chosen with alternative 
methods of executing the algorithm. The main GP parameters 
are M- population size and G- maximum number of generations. 
Secondary GP parameters represent a probability value that a 
certain event will occur or specific value level of the GP tree 
structure. Here is the list of the most important secondary 
parameters. The probability of the crossover (the 
recommended value should be greater than 90%), the 
probability of the reproduction (the recommended value 
should be about 20% of the total population), the probability of 
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the mutation (the recommended value should be about 5% of 
the total population), maximum initial level of the chromosome 
tree structure, maximum operation level of the chromosome 
tree structure etc. The secondary parameters are included in 
the algorithm depending on the method of the GP 
implementation and are considered as optional.  

For more than 20 years, GP has been one of the most successful 
AI technique applied to solve a wide diversity of water 
engineering problems. The main reason for its great success 
over time is its capability to generate explicit expressions that 
are easily analysed and validated. One of the main issue that 
most of the AI techniques have to tackle is setting constraints 
on the complexity of the system to be developed. For instance, 
a polynomial regression model needs to set the polynomial 
order in advance or ANN needs to set the number of hidden 
neurons/layers within the network. Hence, those constraints 
limit the complexity of the problems that the polynomial or 
network would be able to solve.  In contrast, GP has no 
beforehand constraints on problem complexity. Since the most 
common expression in GP has the shape of a tree and given the 
possibility that this tree may grow the corresponding 
mathematical expression can be of arbitrary complexity, 
although some measures may be taken to avoid excessively 
large trees like limiting the maximum height of the tree. 

2.2 Gene Expression Programming 

Gene expression programming (GEP) is an advanced AI 
technique from GP family that selects some of the evolved 
programs to link and improve them with respect to a given 
objective function and obtains the best combination of 
individuals using a linking operator. As firstly described by 
(Ferreira et al., 2001), there is primary difference between GEP 
and GP algorithms principally residing in the nature of their 
evolved programs. In classic GP the evolutionary algorithm 
output is the individual with the best fitness in the training set. 
However, in GEP each individual includes one or more genes 
called sub-expressions (sub-ET) and the best result is built by 
linking the sub-expressions using mathematic or Boolean 
functions such as AND, OR, NOT etc. For example, the GEP 
chromosome shown in Figure 2 d) represents a model (i.e., ET) 
as the linear combination of tree sub-expression functions 
(Hrnjica et al., 2019). Mathematically, the model was presented 
as follows: 

(𝑥1 × 𝑠𝑖𝑛 𝑥2 + 𝑥2 × 𝑐𝑜𝑠 𝑥1) + (𝑥1 × 𝑥2 + 𝑐𝑜𝑠 𝑥2)
+ (𝑐1 × 𝑥2 + 𝑥1 + 𝑥2) 

(1) 

where x1 and x2 are the vectors of input variables. Each 
expression within the brackets represents a sub-ET and the 
addition function between the sub-ETs is the linking function. 
Therefore, equation (1) indicates a GEP program by which 
three nonlinear individuals were linearly combined. It can be 
implied that each sub-ET is a part of the best solution with less 
complexity than main one. Therefore, it can be concluded that 
GEP employs the power of small GP blocks (i.e., sub-ETs) to 
capture nonlinear behaviour of a complex system through a 
multigene structure. Bearing in mind that the best solution 
must be checked for the likely overfitting problem. 

Despite several advantages of GEP over classic GP (see 
(Ferreira et al., 2001) for more details) one of its main 
drawbacks is the expressional complexity of the final solution 
that may also become overfitted to the training set. In such 
cases noise within the training set is treated as a feature and the 
generated expressions and also  learned for the noise 

information. Usually this effect is evidenced by very low errors 
on the training set, whereas the evaluation on the test set 
achieved high errors.  

A common approach to address this issue is to use lower 
number of sub-ETs as well as limiting the maximum height of 
the associated trees. To overcome the overfitting problem, the 
validation dataset that allows to calculate the validation error 
on the expressions generated by both GP and GEP can be used. 
Nonetheless, this is not an easy decision because the error in 
the validation set may decline in future generations. 

 

Figure 2: An example of GEP chromosome comprising 3 Sub-
ETs summed by addition linking function. 

3 Case studies 

In the present study, the canonical GP and GEP were trained 
and tested by using observations at two different locations of 
Bihac town (Bosnia and Herzegovina) and Antalya (Turkey), 
respectively. In the first case study the GP was applied for 
turbidity forecasting of drinking water at the location of Klokot, 
the main water supply source of Bihac town in Bosnia and 
Herzegovina (Figure 3). 

 

Figure 3: Klokot spring location at Bihac town. 
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The turbidity of drinking water was measured at the water 
source. Measurements were monthly data sets which were 
collected for the period from 2006-2018. All the collected data 
were split into training and testing data sets. The training set 
was used to build a model and the testing one was employed to 
validate the model considering both overfitting problem and 
accuracy of turbidity predictions for the next 6 months. 
GPdotNET computer program was used for modelling and 
determination of the best GP model. The software provides a 
user friendly framework capable of providing all three common 
steps of modelling: a data pre-processing, function generation 
(i.e., predictive modelling) and data post-processing. Technical 
features of the software (user guide manual) are available in 
(Hrnjica et al., 2019). Satisfactory application of GPdotNET in 
hydrological predictions was reported recently (e.g., Danandeh 
et al., 2018).   

Figure 4 shows turbidity values measured from 2006 to 2018 
with calculated three months moving average (hereafter MA), 
used as input data set for classic GP modelling. 

 

Figure 4: Turbidity of drinking water measured at Klokot 
spring, and MA (3): 3 months moving average. 

In the second case study the GEP was applied to model the 
turbidity of drinking water at the 13th measurement point of 
Gürkavak water supply pipeline located in Antalya, Turkey 
(Figure 5). The station was monitored via central Supervisory 
Control and Data Acquisition (SCADA) control system by 
Antalya Water and Sewage Administration (ASAT). Beside 
turbidity some other water flow characteristics such as 
discharge and point pressure were measured and recorded 
continuously. The ultimate goal in this case study was to 
investigate if there was a noteworthy relation between low 
turbidity values (0.6<NTU<1.0) and flow discharge or not. To 
this end hourly mean measurements at the station during 
24.09.2017 to 12.11.2017 were used in this study (Figure 6). 
Figure 6 shows 1054 turbidity samples and their 
corresponding discharges as well (See Figure 6a). 

 

Figure 5: Location of the second case study, Gürkavak, Antalya. 

 

Figure 6: Hourly (a) discharge and (b) turbidity measurements 
at Gürkavak Station, Antalya, Turkey. 

4 Results 

In the first case study the GPdotNET computer program was 
used in order to determine GP model of three months moving 
average turbidity. The measured data were prepared in order 
to optimize searching algorithm by defining set of data 
transformation (Makic et al., 2015a). During modelling the 
following GP parameters were used: 

 Function set F= {+, -, *, /, 1/x, tanh}, terminal set T = 
{𝑡𝑛−1, 𝑡𝑛−2, 𝑡𝑛−3, 𝑡𝑛−4, }, where 𝑡𝑛 - turbidity of the 𝑛 
month parameters,  - set of random constants.  

 Population size M= 1000, number of generation G = 
500 and probability of the genetic operations pc= 
95%, pm=20% pr = 10%, dinitial = 5, dformed = 9. 

Since the time series dataset was used in the first case study, it 
was necessary to define a time lag in order to create the 
modelling input datasets. For this case study different lag times 
were tested and the best result was achieved using time lag of 
4 months. Once the time lag was determined the searching and 
improving process of GP started. Firstly, the training and 
testing datasets were defined by splitting experimental 
measurements into two datasets with the ratio of 75% - 25%. 
In other words, 75% of all data formed the training dataset and 
the remaining 25% (27 months) formed validation dataset. 
Once the datasets were setup the termination criterion was 
setup on 500 generations. At the beginning of the searching 
process several different configurations were applied in order 
to get best possible combination of all GP parameters. The time 
execution of the searching process in GP depends on the 
complexity of the process and the accuracy to be achieved. 
When an acceptable GP model is developed post-processing of 
the results may require to distill knowledge from the GP model. 
GP model of turbidity is given in analytical form in the following 
expression. 

𝑡𝑛

= 0.8(𝑡𝑛−1 

− 0.28)( 
0.65(𝑡𝑛−2 + 2.44)(𝑡𝑛−1 − 0.28)3(1.27 𝑡𝑛−4 + 𝑡𝑛−1 − 0.64)

(𝑡𝑛−2 + 2.5)
 

1/(7.77𝑡𝑛−4𝑡𝑛−3 − 2.17𝑡𝑛−4 + 6.11𝑡𝑛−3𝑡𝑛−1 − 3.89𝑡𝑛−3 + 𝑡𝑛−1
4

− 1.12𝑡𝑛−1
3 + 0.47𝑡𝑛−1

2 − 1.8 𝑡𝑛−1 + 1.1) 

+
0.13(𝑡𝑛−2 − 0.28)2(𝑡𝑛−2 − 3.07)

𝑡𝑛−1 + 𝑡𝑛−4 − 0.56
− 0.33(𝑡𝑛−3 − 0.28)

− 0.33(𝑡𝑛−1 − 0.28) + 1.73) + 0.28 

(2) 

where 𝑡𝑛 is turbidity of the current month 𝑛, and 𝑡𝑛−1, 
𝑡𝑛−2, 𝑡𝑛−3, 𝑡𝑛−4 turbidity of the previous 1, 2, 3 and 4 months. 
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Once the GP model is calculated the prediction for the next two 
years is evaluated and the result is shown on Figure 7. It can be 
seen that the predicted values follow the actual turbidity values 
in most of the points which means the GP model is trained 
within satisfactory prediction ranges. However, it must be 
declared that the solution (equation 2) is complicated and 
implied a chaotic relation among turbidity and its historical 
values.  

 

Figure 7: Observed and predicted turbidity at testing period. 

Table 1 shows performance parameters for the training and 
testing sets of the monthly scenario. Four performance 
parameters were calculated: correlation coefficient (R), root 
mean squared error (RMSE), mean absolute percentage error 
(MAPE), and mean squared error (MSE). The parameters 
indicated that the model had higher performance for training 
set. This also may indicate overfitting of the model in some 
amount but also randomness of the data.  

Table 1: Performance result of the GP model.  

 Training  Testing 
R 0.9022 0.6730 

RMSE 0.2332 0.2898 
MAPE 0.1983 0.2720 
MSE 0.0544 0.0840 

In the second case study GEP was trained using 70% of the 
standardized observed data and tested by the remaining 30 
percent to formulate the relationship between low turbidity 
values and flow discharge. 20 different functions were 
randomly selected to setup GeneXproTool and the tool was 
allowed to use five genes and run up to 3000 generations.  To 
avoid overfitting problem the toll was forced to stop the 
generation of new populations once it starts to decrease the 
model accuracy at validation set. The prediction results at 
testing period were depicted in Figure 8. 

 

Figure 8: Observed and predicted turbidity at Gürkavak 
Station (Antalya). 

It is clear that even the best solution was unable to provide 
reliable prediction.  The best GEP model produced R2 (i.e., 
coefficient of efficiency) values less than 0.2 in both training 
and testing periods. Regarding to the prediction accuracy root 
mean squared error and root relative squared error measures 

were calculated at testing period that were 1.04 and 1.54, 
respectively. These were standardised errors that were rather 
high with respect to standardised NTU (-3 to 3) range at the 
station. Thus, it can be concluded that there was no trustworthy 
interrelation between flow discharge and turbidity in the case 
study station. Such conclusion was also found by the 
application of classic GP tool (not given here). 

5 Conclusion 

GP is an evolutionary modelling technique which is able to solve 
different problems through the development of mathematical 
expressions. While the classic GP evolves a single expression 
the GEP provides several expressions that are combined using 
a user-specified mathematic or Boolean linking function. In the 
present study classic GP and GEP techniques were used for 
turbidity forecasting of drinking water at Bihac town (Bosnia 
and Herzegovina) and Antalya (Turkey) respectively. To this 
end, GPdotNET a free open source GP software developed by 
the authors was introduced and applied together with the well-
known commercial GeneXproTools®. In order to avoid 
overfitting problem in the use of these evolutionary 
programming tools 25% to 30% of the observed data were used 
only for testing (validation) the evolved models.  

In both use cases the results of the study pointed out that 
modelling of turbidity was a challenging task which required 
careful data analysis especially in the context of determining 
the optimum lag times/input parameters. Considering the 
results at Gürkavak Station no meaningful relation between the 
flow discharge and low turbidity amounts was found. Although 
the predictive models based on the GEP and GP algorithms may 
provide more accurate estimations in comparison to the 
traditional regression approaches it would be informative to 
conduct a similar study where other AI techniques are tried to 
model the turbidity process. Evaluation of hybrid AI models and 
ensemble modeling methods might be of great interest for 
future studies.  
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