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Abstract

In this paper, a state and parameter observer, based on a novel extended
Kalman filter (EKF), is designed to solve the parameter variations
dependent estimation performance deterioration of induction motor
(IM) drive systems. The proposed EKF based observer algorithm
performs online estimation of the rotor mechanical speed, stator
stationary axis component of the stator currents and rotor fluxes, stator
resistance, rotor resistance, reciprocal of the total inertia of the system,
and load torque including viscous friction term in a single EKF by using
measured rotor mechanical speed and stator currents. Thus, frequency
and temperature-dependent variations of the resistances are estimated
to be updated in the observer, which leads to control performance
enhancement of the IM drive. Moreover, to rise the dynamic
performance of the observer, the load torque and reciprocal of the total
inertia of the system which are mechanical parameters are also
estimated. To verify the robustness of the IM drive and the estimation
performance of the proposed observer, they have been tested under
challenging scenarios including changes in parameters and speed
reference. Moreover, the estimation performance of the proposed ninth
order observer is compared with that of a sixth order EKF estimating
the same electrical parameters by using directly measured speed.
Ultimately, the simulation results obviously reveal the efficacy of the
proposed IM drive.

Keywords: Extended Kalman filter, Induction motor, Rotor and stator
resistance estimation, State and parameter estimation
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Bu makalede, asenkron motor (ASM) siirticti sistemlerinin parametre
degisimlerine bagll kestirim basarimlarinin kétiilesmesi problemini
cézmek icin genisletilmis Kalman filtresine (GKF) dayali yeni bir durum
ve parametre gézlemleyicisi tasarlanmistir. Onerilen GKF tabanh
gozlemleyici algoritmasi, 6lciilen stator akimlari ve rotor mekanik hizi
kullanilarak stator akimlarinin ve rotor akilarinin stator duran eksen
bilesenlerinin, rotor mekanik hizinin, viskoz stirtiinme terimi dahil yiik
momentinin, rotor direncinin, stator direncinin ve sistemin toplam
eylemsizliginin tersinin es-zamanli kestirimlerini gerceklestirmektedir.
Béylece, direnglerin frekans ve sicaklik bagiml degisimlerinin
gobzlemleyicide giincellenmek fiizere kestirilmesi ASM siiriiciisiintin
kontrol basariminin iyilestirilmesi saglar. Ek olarak, gézlemleyicinin
dinamik basarimini artirmak icin mekanik parametreler olan yiik
momenti ve sistemin toplam eylemsizliginin tersi de kestirilmektedir.
Onerilen gézlemleyicinin kestirim basarimi ve ASM siiriiciisiiniin
saglamligi, hiz referansi ve parametrelerdeki degisimleri iceren zorlu
senaryolar altinda test edilmektedir. Ayrica, dokuzuncu dereceden
énerilen gozlemleyicinin kestirim bagsarimi, oOlgiilen hizi dogrudan
kullanarak ayni elektriksel parametreleri kestiren altinci dereceden
GKF’nin kestirim basarimi ile karsilastirimistir. Ozetle, benzetim
sonuclart 6nerilen ASM stirtictisiiniin  etkinligini acik¢a ortaya
koymaktadir.

Anahtar kelimeler: Genisletilmis Kalman filtresi, Asenkron motor,
Rotor ve stator direnci kestirimi, Durum ve parametre kestirimi

1 Introduction

In literature, there are many sophisticated studies on high-
performance control applications of the induction motors (IMs)
performed by the vector control (VC) [1], [2], the direct torque
control (DTC) [3], [4], and the model predictive control [5], [6].
These control methods require the correct values of the control
variables/states. However, the highly nonlinear structure of the
IM model and parameter variations that are caused by its
working conditions make obtaining the correct values of
control variables challenging. Thus, for the researchers
concentrating on the improvement of control performance by
estimating states and parameters, it is a research area that is
still open. In literature, there are deterministic and stochastic
based various methods proposed to solve this problem which
can be classified as full order observers [6], model reference
adaptive systems (MRAS) [7], Luenberger observers [8], sliding
mode observers (SMO) [9], and nonlinear Kalman filter based
observers [1], [3], [10].

*Corresponding author/Yazisilan Yazar

Considering the deterministic based approaches concentrating
on the parameter estimation of the IM, [11] introduces a neural
network estimator utilizing the flux estimation of a
programmable cascade filter for rotor resistance (R,)
estimation and a fuzzy logic based estimator for stator
resistance (R;) estimation. [12] considers an adaptive observer
to perform online estimations of R, and R; by utilizing one
phase current measurement. In order to perform R, estimation,
motor torque and reactive power based MRAS algorithms are
performed in [13]. Online estimations of R, and magnetizing
inductance (L,,) are realized in [14] by using MRAS algorithm
which utilizes the rotor flux obtained by SMOs series
implemented. In order to attain improved dynamic
performance, [15] presents a decoupling mechanism for the R,
and L,, estimations performed in [14]. [16] presents reactive
and active power based-MRAS (Q-MRAS and P-MRAS)
algorithms to perform simultaneous R, and R estimations. The
parameter and noise sensitivity of the deterministic based
methods affect their estimation performances. Contrary to the
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deterministic approaches, stochastic ones such as the extended
Kalman filter (EKF), a commonly used methods for the state and
parameter estimations of IMs despite its computational load,
take into account noises called the measurement (R) and
process (Q) noises.

There are many EKF based studies focusing on the state and
parameter estimation of the IMs in the current literature. For
the speed-sensorless case, it is stated in [17] that the estimation
performance deteriorations occur when a limited number of
measurement is used in a single EKF to estimate a high number
of parameters. In [18], an eight-order EKF is designed to
perform simultaneous estimation of R, and R; in a single EKF;
however, when simultaneous changes are performed in R, and
R;, the eight-order EKF fails to realize the correct estimation of
one of the estimated R, and R, values in simulations. The
experimental results demonstrate that R; is not estimated
correctly while R, is estimated successfully in the eight-order
EKF. In the literature, to overcome the simultaneous estimation
problem of R, and R, EKF observer structures, known as
switching EKF [19], [20], braided EKF [17], [21] and bi-input
EKF [22], [23] are proposed for estimation of the high number
of states and the other parameters together with R, and R;.
Moreover, to perform estimation of more states and
parameters with a lower computational burden, a hybrid
structure of the EKF and the MRAS algorithms is proposed in
[4]. Even if these structures enable high number of estimated
parameters, the main drawbacks of these methods can be given
as follows:

e  The switching of the different EKF algorithms in [20],
[21] and different IM models in [22] lead to
computational load increase as well as the tuning
difficulty and design complexity as in hybrid structure
in [4].

e Increased memory requirement in [4], [20]-[22]
compared to the standard EKF.

Along with the proposed EKF studies for speed-sensorless
operation, there are also some studies using EKF algorithm in
state and parameter estimations of the IM when the rotor speed
is measured. For this case, [24] presents the online estimation
of stationary axis (aff — axis) component of the rotor fluxes and
stator currents (@,q, @, iser and igp,) together with the R, and
R, by an EKF algorithm for direct VC (DVC) based IM drive. As
opposed to the [24], [25] proposes a DTC based IM drive, which
uses EKF algorithm estimating iy, isgp ¥sq) @sp, Ry, and R; by
using the six-order the stator flux based dynamic model of the
IM. Furthermore, [26] presents a reduced-order EKF based
observer, which performs the online estimation of ¢,4, @, Ry
and L,,, both in real-time experiments and simulation. In these
studies, The EKF algorithm directly uses the measured rotor
speed (wy,), which results in the only use of the electrical
subsystem in the IM model. Thus, it is not possible for these
studies to perform online estimation of the mechanical states,
resulting in dynamic performance enhancement, with the
electrical ones. For this purpose, an EKF algorithm that
simultaneously performs the estimations of isy, isg, @ra
©rp, Wm, ty, Ry, and Ly, in a single EKF algorithm without
switching operation is proposed in [27], and the proposed EKF
algorithm is compared to the six-order EKF directly using the
measured w,,. The experimental results show that with the
help of equation of motion and measurement matrix (H)
extension, t; estimation improves the dynamic performance of
the EKF algorithm compared to the six-order EKF.

Furthermore, [1] proposes an EKF observer performing the
online estimations of isy, isg Pra) Prg, Wm, tr, Ry, Ly, and yr by
using the ninth-order extended model of the IM. Therefore,
thanks to the H matrix extension used as in [27], both the
mechanical parameters and the electrical parameters except
for R;, rotor leakage inductance (L;), and stator leakage
inductance (L,5) are estimated both in real-time experiments
and simulations by using measured i, isg, and w,, values.

The main contribution of this paper is to perform simultaneous
estimation of isq, isg Pra) Prp, Wm, tr, Ry, Rs, and yr, in a single
EKF without any model/EKF switching operation or hybrid
method. To perform the estimation of overall all nine states and
parameters in a single EKF, the H matrix is extended by the
measured w,,, which leads to use of the priori estimation error
in rotor speed together with the currents in the posteriori
estimations in the proposed EKF, similar to recent study [1]
estimating isq, isg @rar Prgr Oms tr, Ryy Ly, and yr. Thus, this
paper aims to obtain enhanced estimation performance of the
EKF and thus the control performances of the IM drive
specifically at very low and up to rated speed operations which
are sensitive to variations in R,. and R,. Furthermore, compared
to the other speed-sensored EKF studies, using directly the
measured w,, in [24]-[26], the proposed EKF is also estimates
the mechanical parameters (¢, and y7) to increase the dynamic
performance. By performing t; estimation with the proposed
observer, it is also possible to use the estimated ¢, value in the
feed forward control loop to improve the torque response, as in
[28]. yr estimation is also required for the position control
system to perform robust control, as demonstrated in [1].
Moreover, in order to demonstrate the effectiveness of the
proposed ninth order observer, its estimation performance is
compared with that of a sixth order observer, proposed in [24],
directly using the measured wy, to perform isq, isg Oras @rp, Ry,
and Ry estimations. Therefore, the estimation performance
deteriorations based on the effect of the frequency and
temperature variations on resistances as well as the unknown
mechanical parameters is eliminated by estimating t;, R,, Ry,
and yr parameters.

This study organized as five sections, the detailed literature
analysis is given in section I. The ninth-order IM model
development is presented in Sections II. EKF algorithm with the
effect of H matrix extension is detailed in Sections III. Section IV
presents the simulation studies of the proposed EKF based IM
drive. Lastly, section V clarifies the results of the paper.

2 Development of the Extended IM Model

So as to perform simultaneous estimation of overall nine states
and parameters (isq, isg Prar Prp» Om, tr, Ry, R, and yr), the
rotor flux based dynamic IM model is extended. From this point
of view, with the assumption of slow changes in t;, R,, R, and
yr values against operation conditions and time [27], these
values are determined as additional constant states in the IM
model. The steady state representation of the rotor flux based
ninth-order dynamic model of the IM is given in (1) and (2) in
continuous form.

X = f(xp, up) +w

. (1)
Xy = A(X)X¢ + Bu, +w
z; =h(xy) +v @

z, = Hx, +v



Here, the nonlinear state and input function is represented by f
while the output function is referred by h. A and B extended
system and control input matrix, respectively. The
measurement matrix extended by measured w,, in this paper
as in [1], [27] is represented by H. X, z, and u are the extended
state, measurement, and control input vectors, respectively. the
measurement and process noises are referred by v and w,
respectively. The details of ninth-order rotor flux based IM
model whose general form is presented in (1) and (2) can be
given as follows:
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where, L, is the stator inductance; L, = Ly — L2, /L, represents
stator transient inductance; L, is the rotor inductance; ug,
and uzp represent the aff — components of stator voltages,
respectively; p, is the number of pole pairs. It should be
emphasized that the viscous friction term is not included in the
presented IM model, which means that it is counted in the
estimated t;. Here, the steady state form of the IM model
presented in (1) and (2) is discretized by the use of the first-
order forward Euler approximation presented in (3), and the
obtained discretized model of the IM can be given as in (4) and

(5).

o Xe+1 — Xk
X (3)
Xpe1 = T X E(Xp, ug) + Igyg X X + W @
Xpe1 = AXp)Xy + By, +w
Z, = h(x,) +v 5)

z, = Hx, +v

Here, I is the identity matrix. The EKF algorithm proposed in
this paper is constituted by using the discretized IM model in
(4) and (5) in the EKF algorithm presented below.

3 The EKF Observer

In this paper, in order to estimate izo, isg Pra, Prg, ©Om, tr, Ry,
Rg, and yr in a single EKF without any hybrid approach or
switching operation, the H matrix is extended by the measured
Wy, which means that w,, is both measured and the estimated

by the proposed EKF just as is, and isg asin [1], [27]. Instead of
direct usage of the measured w,, in EKF, this extension enables
using of the speed error, the difference between the measured
and priori estimated speed, along with the current errors to
obtain posterior values of the estimations in the measurement
update step of the standard EKF. Moreover, due to the
definition of w,, in the IM model as a state thanks to the
equation of motion, the dynamic performance increase is
provided thanks to the estimation of t; and y; as in [1], [27].
Due to the fact that t; estimation is performed in this paper, it
can be used to obtain enhanced torque response as in [28]. With
the advantages of H matrix extension and the use of the
equation of motion, the standard EKF algorithm presented in
(6) and (11) is used to perform simultaneous estimation of the
total nine states and parameters.

Fger =] ©
Ry = F(Ry-1, W) (7)

P = Fie-1Pe-1Fji-1 + Q 8
Ky = P HT[HP HT + R]! (9
Ry = Ry + Ky (z — HRY) (10)
P = (I - KyH)P (11)

Here, F is the function that is used in the linearization of the
nonlinear IM model. Py and Py, are the priori and the posteriori
estimation error covariance matrices. X; and Xy are the priori
and the posteriori estimations of the state vector, respectively.
K is the Kalman gain which is used to correct and update the
outputs of the estimation stage. R and Q are the covariance
matrices for the measurement and process noises. I is the
Identity matrix.

4 Simulations Studies

In simulation studies, the proposed EKF algorithm,
simultaneously estimating isq, isg Prar Prg, @m tr, Rr, R, and
yr in a single EKF, and the proposed drive are verified under
the challenging scenarios. Furthermore, the estimation
performance comparison of the proposed ninth order observer
and a sixth order observer proposed in [24] is performed. While
the proposed ninth order observer utilizes the H extension to
perform estimations of nine states and parameters, the sixth
order observer proposed in [24] directly uses the measured w,,
to realize online estimations of isy, isp Pra, Prp, Ry, and R;. To
perform simulations, the proposed DVC based IM drive
demonstrated in Figure 1 is implemented and realized in
Matlab/Simulink. Therefore, by using the DVC based IM drive,
the close loop comparison of the proposed ninth order and the
sixth order observers are carried out. In Figure 1, the required
phase angle @Tf and the magnitude of the rotor flux is obtained
by the use of estimated rotor flux components. Moreover, trial
and error method based tuned conventional PI controllers are
used in the drive system presented in Figure 1. Table I presents
the rated parameter values of the IM used in Figure 1, which are
the same as in previous studies to make an easy comparison
with the previous ones. As it can be seen directly in Figure 1, the
estimations of t;, R,, R;, and y; are only realized to eliminate
the performance deteriorations of the proposed EKF algorithm
and thus the drive system.
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Figure 1. The proposed DVC based drive.

In order to verify both estimation accuracy of the proposed EKF
based observer and the robustness of the proposed IM drive,
they are verified under a comprehensive scenario, which is
specially designed to show their capability against varying
parameters as seen in Figure 2. In order to make a fair
comparison, the six order observer is also tested under same
scenario given in Figure 2. Whole details of the designed
comprehensive scenario are given below.

e This scenario includes the wide speed range
operation of the IM, which can be summarized as
rated speed at clockwise and counterclockwise
directions (1500 r/min and -1500 r/min), low speed
(-100 r/min), and the continuously zero-speed
operation.

e t; applied to the IM is changed to its rated value (20
Nm), half of its rated value (10 Nm), and unloaded
condition (0 Nm) by step-like and linear variations.

e R, and R; values of the IM are doubled (4.266 and
4.566 respectively) and decreased to their nominal
values in the different operating conditions of the IM.

e  yrvalue is changed to its halved value (27.3 1/kg.m2)
and increased to rated one in different speed regions.

e So as to make estimations more difficult, the initial
conditions for estimations are chosen as zero, and the
DC condition is included in the different parts of the

scenario.
Table 1. IM parameters
P(kW) f(Hz) 48] I1(4)
2 50 380 6.9
R (1) R, () Ls (H) L, (H)
2.283 2.133 0.2311 0.2311
Ly (H ) N (rpm) T, (N m) Pp
0.22 1430 20 2
J, (kg m?) B (Nm/(rad/s))
0.0183 0.001
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Figure 2. n:,f variation and applied t;, R,,, R, and y for DVC

based IM system.

The applied IM values and reference signals for the IM drive to
obtain this detailed comprehensive scenario are presented in
Figure 2. Here, “7¢/” represents the reference value applied to
the drive system. Figure 3 shows the resulting estimation
performances of the proposed ninth order EKF and the control
performance proposed EKF based IM drive. Figure 4 indicates
the estimation results of the sixth order observer proposed in
[24] and control performance of sixth order observer based IM
drive. Figure 5 demonstrates the resulting estimation errors for
proposed observer which is obtained by calculating the
difference between estimated and actual values. Figure 6 shows
the corresponding estimation errors for sixth order observer.
Here in Figure 3 and 4, “"” represents the estimations. In Figure
5 and 6, “e)” represents the estimation error between actual
and estimated values. In simulations, Q and R matrices that are



crucial for the EKF algorithm are chosen as diagonal, and their
diagonal elements are selected by the trial and error method.
Moreover, to perform a fair comparison between the proposed
ninth order observer and sixth order observer in [24], the
elements of Q and R matrices are used as the same in both
observers for corresponding states.
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Figure 3. The tracking performance of the proposed drive and
the proposed ninth order EKF estimations.

The resulting selected noise covariance matrices for the

proposed ninth order EKF observer are given below.

pProposed EKF — diaef10 10 10 10 10 10 10 10 10}

QProposed EKF _ diag{lo—lo 1019 1012 1012 105 1074
1075 1075 5x107%}

RProposed EKF _ diag{10‘6 10-6 10—6}

The corresponding noise covariance matrices used in the sixth

order observer are as follows:

pothorder EKF — dizg10 10 10 10 10 10}

Q6th order EKF _ diag{lo—lo 10710 10-12 10-12 10—5 10—5}

R6th order EKF _ diag{10_6 10—6}

The mean square error (MSE) values for R, and R, estimations

of both the proposed ninth order observer and sixth order

observer are presented in Table 2. Here, R, and R parameters

are the only parameters that are estimated by both observers,

which is the main reason why the corresponding MSE values
are presented for only R, and R parameters.
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Figure 4. The sixth order EKF estimations and tracking
performance of the sixth order EKF based drive.
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observer.
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Table 2. MSE values related to estimations

Figure 5 Figure 6
eg, () eg (1) eg, () eg ()
4.44x107° 1.65x1073 8.13x107* 1.60x10™*

As to the estimation results of the proposed EKF, the
effectiveness of the proposed IM drive, and comparison studies
given in Figures 3-6, it can be convenient to deduce the
following remarks:

e  While all initial conditions are zero, the estimations of
the proposed EKF observer converge to their actual
values in a swift manner. In the obtained results, the
transient state is nearly completed for R, R,, and 77
values in 0.2s (e, = 7.19x107*[Q]), 0.155 (e, =
—7.13x107*[Q]), and 03s (e, =8.62x107*[1/
(kg.m?]), respectively. Furthermore, it is clear that
the proposed EKF based observer can easily handle
the DC condition occurring in the time interval of
14s <t <19sand 40s < t < 45s.

e The estimation accuracy and thus the control
robustness of the proposed IM drive is highly
impressive against this challenging scenario for all
speed regions.

e  Although a fair comparison, meaning test under same
scenario with the same Q and R matrices elements for
corresponding states, is performed between the
proposed ninth order observer and sixth order
observer in [24], it is clear from Table 2 and Figure 3-
6 that the proposed ninth order observer has better
estimation performance for both R, and R, which are
the estimated parameters for both observers. The
proposed ninth order observer has also advantages
over the sixth order observer in [24] since t; and y7
estimated by the proposed ninth order observer are
able to improve control performances as shown in
[28] and [1], respectively.

e Evenifthere are challenging changes in ¢, R, R, and
yr parameters, the proposed EKF still presents
magnificent estimation performance with
instantaneous small peaks, which are caused by the
transients at momentary parameter changes.

e  Although the trial and error method is chosen in the
determination of the R and Q matrices, highly
promising estimation results for proposed EKF and
robust control performance for proposed IM drive is
obtained against the changesin t;, R,, R;, and y7.

e In Figure 5, it is clear that there is a DC bias in e;,.
However, as it is stated in Section II, the viscous
friction term is estimated in t; in the proposed EKF
observer. Hence, the DC bias in e, represents the
viscous friction term. It can be proven as follows:

ey, = —frwpy () (12)
1500x2xm
—0.157 = —0.001x—— (13)
60
~0.157 = —0.15707 (14)

Overall, these simulation results for proposed observer show
how effectively all these states and parameters, which are also
estimated in [23] by using bi-input EKF resulting in IM model
switching requiring for an extra difficulty in determining the

values of the additional R and Q matrices, are estimated in a
single EKF without using a hybrid structure or a switching
operation.

5 Conclusion

In this study, a DVC based IM drive, which contains an EKF
algorithm estimating isq, isg @ra) Prp) Om, tr, Ry, Rs, and yr, is
proposed. So as to verify the proposed IM drive in simulation, a
comprehensive and challenging scenario is designed. The
estimation performance of the proposed ninth order observer
is compared with that of a sixth order EKF, proposed in [24],
using directly measured w,,. Thanks to the extension made in
the H matrix and the use of the equation of motion in the IM
model, the proposed EKF algorithm can easily estimate overall
nine states and parameters. The obtained results demonstrate
the impressive estimation accuracy of the proposed ninth order
EKF and the highly satisfactory tracking results of the IM drive
as opposed to the challenging variations in t;, R,,, R, and yr as
well as the speed reference and show superior performance
over the sixth order EKF, proposed in [24]. Another striking
point of the study is that the estimation of all nine states and
parameters are performed in a single EKF observer without
using a hybrid structure or a switching operation, it reveals the
superiority of this study over the previous one that estimates
the same parameters and states. Thus the simulations prove
that the proposed IM drive is reliable in order to solve the high
performance control problem by updating parameter
variations in the proposed EKF. As a future study, to increase
the robustness of the proposed EKF based observer in the field-
weakening region, inductance values in IM model can be
estimated and thus updated in both the observer and control
system.
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