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Abstract  Öz 

Understanding Protein - Protein interaction networks, which show the 
interactions between proteins involved in tasks that are very important 
for our organisms such as structural support, storage, signal 
transduction and defence, provides a better understanding of cellular 
processes. One of the important studies carried out for this purpose is to 
try to detect protein complexes from protein - protein interaction 
networks. Supervised and unsupervised machine learning methods were 
used to detect protein complexes. It is known that the machine learning 
methods used produce better performance when more than one method 
is used together. Based on this knowledge, a method that detects protein 
complexes from protein-protein interaction networks is proposed in this 
study. The method first weights protein-protein interaction networks 
using biological and topological properties of proteins. Then it 
estimates local and global protein complex core. Then it builds a protein 
complex detection model using the structural modularity of proteins 
and the voting regression model. We predict that XGB regression, 
gaussian process regression, catboost regression and histogram-based 
gradient boosting regression supervised learning methods can achieve 
more successful results when used together in the voting regression 
model. When we compare the success of the model with other models, it 
has shown the best performance many times among the compared 
models. 

 Yapısal destek, depolama, sinyal iletimi, savunma gibi 
organizmalarımız için çok önemli olan görevlerde yer alan proteinlerin 
birbirleriyle olan ilişkilerinin gösterildiği Protein-Protein etkileşim 
ağlarını anlayabilmek hücresel süreçleri daha iyi anlayabilmeyi 
sağlamaktadır. Bu amaçla yapılan önemli çalışmalardan birisi protein 
– protein etkileşim ağlarından protein komplekslerini tespit etmeye 
çalışmaktır. Protein komplekslerini tespit etmek için denetimli ve 
denetimsiz makine öğrenmesi yöntemleri kullanılmıştır. Kullanılan 
makine öğrenmesi yöntemlerinin birden fazla yöntem bir arada 
kullanıldığında daha iyi performans ürettiği bilinmektedir. Buna benzer 
bilgilere dayanarak bu çalışmada protein-protein etkileşim ağlarından 
protein komplekslerini tespit eden bir yöntem önerilmiştir. Yöntem, ilk 
olarak protein – protein etkileşim ağlarını proteinlerin biyolojik ve 
topolojik özelliklerini kullanarak ağırlıklandırır. Ardından yerel ve 
global protein kompleksi çekirdeklerini tahmin eder. Sonra proteinlerin 
yapısal modülerliğini ve oylama regresyon modelini kullanarak protein 
kompleksi tespit eden model oluşturur. XGB regresyonu, gauss süreci 
regresyonu, catboost regresyonu ve histogram tabanlı gradyan artırma 
regresyonu denetimli öğrenme yöntemlerinin oylamalı regresyon 
modelinde birlikte kullanıldığında daha başarılı sonuçlar elde 
edebileceğini öngörüyoruz. Modelin başarısını diğer modellerle 
kıyasladığımızda kıyaslanan modeller arasında birçok kez en iyi 
performansı göstermiştir. 

Keywords: Protein-Protein Interaction Networks, Protein Complex 
Detection, Machine Learning, Voting Regression, Bioinformatics, 
Network Embedding 

 Anahtar kelimeler: Protein-Protein Etkileşim Ağları, Protein 
Kompleksi Tespiti, Makine Öğrenmesi, Oylama Regresyon, 
Biyoenformatik, Ağ Gömme 

1 Introduction 

Proteins are a complex of molecules consisting of one or more 
chains of amino acids. Proteins, which make up more than half 
of the dry weight of many cells, take part in almost every 
metabolic work that takes place in organisms, such as 
structural support, storage, transport, signal transmission, and 
defense. While proteins can rarely perform these tasks alone, 
they are usually performed by protein complexes, which we can 
call biological machines composed of more than one protein. 
Networks used to represent the physical relationship of 
proteins to each other are called Protein-Protein Interaction 
(PPI) networks. In the last few years, it has become popular to 
conduct community identity studies in complex networks such 
as PPI networks. The crucial issue in bioinformatics is 
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investigating protein complexes in PPI networks. Researching 
protein complexes helps to better understand cellular systems 
[1]. It is also useful for predicting protein functions, disease 
genes and drug-disease associations [2]. In PPI networks, it can 
be said that densely connected subgraphs are potential protein 
complexes or functional modules. Computational methods are 
preferred because experimental methods take a lot of time and 
take up a lot of memory space in the calculation of protein 
complexes. PPI networks can be modeled as graphs. When PPI 
networks are modeled as graphs, proteins correspond to nodes 
and interprotein interactions to edges. More detailed 
information about the current study will be given in the related 
work section. 
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1.1 Related work 

In the last 15 years, various computational methods have been 
presented for the detection of protein complexes from protein-
protein interaction (PPI) networks. The methods presented can 
be considered as methods based on unsupervised learning, 
model optimization, and supervised learning. 

It has been seen that the local heuristic search strategy is used 
among many developed methods. Altaf-Ul-Amin et al. [3] 
identified the protein with the highest number of connections 
in the PPI network, that is, the highest density, and considered 
this protein as the core of the protein complex. Then, they 
expanded the core of this protein complex by using local 
heuristic search until the protein complex could no longer 
expand. Thus, the protein complex is obtained. Once the 
resulting protein complex is recorded, it is removed from the 
network, facilitating the detection of other protein complexes. 
Wang et al. [4] started by obtaining a weighted dynamic and 
static PPI network, using topological and biological information 
to detect protein complexes. They then predict the protein 
complex cores and expand the predicted core proteins by 
greedy local heuristic search. Dilmaghani et al. [5] proposed a 
local community detection algorithm (lcda-go) that uniquely 
utilises functionality information from gene ontology along 
with network topology for protein complex identification. Their 
algorithm identifies the community of each protein based solely 
on topological and functional information obtained from local 
neighbouring proteins within the ppi network. Yu and Kong [6] 
proposed a novel solution by combining node resource 
allocation and gene expression information into a weighted 
protein network (NRAGE-WPN) in which protein complexes 
are detected from PPI networks based on coreference and 
second-order neighbours. 

Although it is quite easy to perform a local search for the 
methods developed using the local heuristic search strategy, it 
is very difficult to produce successful global solutions. 

Methods using the global heuristic search strategy have been 
developed to detect protein complexes from PPI networks. Cho 
et al. [7] sent the information from an informative node to all 
other nodes in the PPI network that it could reach from every 
possible edge, and the information from which informative 
node the information came is kept with the information. Finally, 
proteins with strong connections are greedily combined into 
protein complexes. Omranian et al. [8] modeled PPI networks 
as bipartite diffuse subgraphs containing both sparse and dense 
subgraphs to detect protein complexes. Based on the 
fundamental properties of bipartite subgraphs, they designed a 
parameterless greedy approximation algorithm called Protein 
Complexes from Coherent Partition (PC2P). Wang et al. [9] 
started protein complex detection by weighting the PPI 
network. They then used gene expression and subcellular 
localisation data to identify local protein complex core. They 
then used Markov clustering algorithm to identify global 
protein complex core. Then, they defined a fitness function 
using multiple topological features to identify protein 
complexes. Then, they developed a novel protein complex 
formation strategy to expand the global and local protein 
complex kernels to form protein complexes. Finally, they used 
GO annotation data to filter candidate protein complexes and 
improve the accuracy of protein complex detection. The 
methods developed using the global heuristic search strategy 
are very successful in global searches. However, they are 
disadvantaged in terms of running times and memory space 
usage. 

The fact that PPI networks contain false interactions is a 
problem that needs to be resolved in detecting protein 
complexes from PPI networks. Various studies have been 
carried out to overcome this problem. Xu et al. [10], Using 
functional annotations of proteins, Wang et al. [11] tried to 
overcome this problem by using topological and biological 
properties. 

Some studies have suggested that the detection of protein 
complexes can be an optimization problem that can be solved 
using network topology and protein features. Zhang et al. [12] 
constructed the PPI network according to the Poisson 
distribution and smoothed the estimators of the trend 
parameters using the Laplace modifier. 

In supervised learning methods, features are extracted from 
topological and biological features and the model is trained 
with these features. This trained model is used for protein 
complex prediction. 

Several of the recent studies have proposed methods with 
supervised learning-based classification or regression to find 
protein complexes from PPI networks. Xu et al. [13] combined 
PPI information from six different sources and produced 
protein complex predictions from this PPI network using the 
SVM model. 

In some of the recent studies, graph neural networks (GNN) and 
graph convolutional networks (GCN) methods have been used. 
As a result of these studies, graph-based networks have 
achieved acceptable success in detecting protein complexes 
from PPI networks. Zaki et al. [14] proposed the graph 
convolutional network approach to increase the success of 
detecting protein complexes from PPI networks. 

1.2 Observations and contributions 

The methods developed for protein complex detection from PPI 
networks are based on supervised learning or unsupervised 
learning approaches. The biggest advantage of unsupervised 
learning methods over supervised learning methods is that 
they do not need labeled training data. Although this has been 
a major advantage, unsupervised learning methods do not use 
labeled training data, resulting in fewer topological protein 
complexes to detect, which is a disadvantage. Although 
supervised learning methods are more successful than 
unsupervised learning methods in detecting protein complexes 
in PPI networks containing different topological information, 
they are generally weak in producing successful results on data 
outside the training set because they are trained with a single 
training model.  

In this study, in order to overcome these difficulties, firstly, a 
weighted PPI network was constructed by using the similarity 
information of proteins in terms of common expression, 
function, intracellular localisation and topological structure. 
Secondly, the core of local protein complexes and the core of 
global protein complexes were determined using CPredictor2.0 
[10]. Thirdly, a voting regression model is constructed, which 
includes various regression models that play an important role 
in the detection of protein complexes with different topological 
structures. 

In this study, supervised learning, which has proven to be more 
successful in the literature, and voting regression model, which 
is based on the performance of multiple predictors so that 
unsuccessful results in one predictor can be balanced with 
successful results in another, are used. In addition to the studies 
in the literature, we predict that the use of XGB regression, 
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gaussian process regression, catboost regression and 
histogram-based gradient boosting regression models within 
the voting regression model may be more successful and 
experimental results show that our study gives more consistent 
and more successful results than most studies in the literature. 

2 Materials and Method 

The flow diagram of the proposed method for protein complex 
detection is given in Figure 1. 

 

 

Figure 1. Flow chart of the developed method for protein 
complex detection from PPI networks. 

2.1 Datasets 

Although proteins are rarely alone to perform a task in 
metabolic processes, they usually perform tasks with protein 
complexes formed by more than one protein. PPI datasets are 
datasets that contain information about the physical 
relationships of proteins with each other. They can be used for 
protein complex detection. The standard protein complexes 

dataset is a dataset of protein complexes of known accuracy. 
The standard protein complex dataset can be used for purposes 
such as measuring the accuracy of predicted protein complexes. 

In our study, four different PPI datasets were used, in which the 
repetitive interactions between two different proteins and the 
interactions of the proteins with themselves were inferred. 
These are DIP [15], Gavin [16], Krogan Core [17], and MIPS [18]. 
Detailed information about the data sets is given in Table 1. 

Table 1. Detailed information about PPI datasets. 

Datasets Number of 
Nodes 

Number of 
Edges 

DIP 4930 17201 
Gavin 1855 7669 

Krogan Core 2674 7075 
MIPS 4553 12318 

In our study, two different standard protein complex datasets 
were used. The first standard protein complex dataset consists 
of protein complexes from MIPS [18], SGD [19], TAP06 [16], 
ALOY [20], CYC 2008 [21], and NEWMIPS [22]. The second 
standard protein complex dataset consists of Wodak [21], 
PINdb, and GO [23] protein complexes. Detailed information 
about protein complex datasets is given in Table 2.  

Table 2. Detailed information about standard protein complex 
datasets. 

Datasets 
Number of 

Protein Complex 
Protein 

Coverage 
Average 

Size 

Standart 
Protein 

Complex 1 
812 4930 17201 

Standart 
Protein 

Complex 2 
1045 1855 7669 

2.2 Weighting the PPI network  

When the edges of the graphs are weighted, success in detecting 
protein complexes from PPI networks increases. Similarly, 
using more than one PPI network together increases the 
success results [4]. 

Protein complexes are made up of proteins and interactions 
between proteins. This indicates that proteins may have similar 
functions and positions. For this reason, it is beneficial to 
consider a large number of topological and biological data in 
weighting the PPI network. Considering this information, 
topological structure similarities, common expression 
similarities, functional similarities, and subcellular location 
similarities of proteins were used together to weight the PPI 
network. 

2.2.1 Protein co-expression similarity 

A protein complex consists of proteins interacting with each 
other at the same time and place [24]. In other words, proteins 
in a protein complex are co-localized, co-expressed, and 
functionally similar in biology [25]. Using this similarity 
increases the success rate of protein complex detection. The 
Pearson correlation coefficient (PCC) was used to measure the 
co-expression of two interacting proteins. PCC is calculated 
according to the formula in Equation 1, where given protein 
sequences 𝑋 = {𝑋1, . . . , 𝑋𝑖 , . . . , 𝑋𝑛}, 𝑌 = {𝑌1, . . . , 𝑌𝑖, . . . , 𝑌𝑛} and 𝑋̅ 
is the average gene expression of 𝑋 proteins at a given time 
point and 𝑌̅ is the average gene expression of 𝑌 proteins at a 
given time point. 



 

4 
 

𝑃𝐶𝐶(𝑋, 𝑌) =
∑ (𝑥𝑖 − 𝑋̅) × (𝑦𝑖 − 𝑌̅)𝑚

𝑖=1

√Σ𝑖=1
𝑚 (𝑥𝑖 − 𝑋̅)2 × √Σ𝑖=1

𝑚 (𝑦𝑖 − 𝑌̅)2

 
(1) 

2.2.2 Protein function similarity 

The more common GO-slim descriptions a pair of proteins have, 
the more likely they are to have the same function. This means 
that the edges between them, namely the interactions, are 
stronger. Protein function similarity (FS) is calculated 
according to Equation 2, where |𝐹𝑆(𝑋)| is the number of GO-
slim annotations of 𝑋 proteins, |𝐹𝑆(𝑌)| is the number of GO-
slim annotations of 𝑌 proteins, and |𝐹𝑆(𝑋)  ∩  𝐹𝑆(𝑌)| is the 
number of GO-slim annotations common to 𝑋 and 𝑌 proteins. 

𝐹𝑆(𝑋, 𝑌)

= {

|𝐹𝑆(𝑋) ∩ 𝐹𝑆(𝑌)|

𝑚𝑖𝑛{|𝐹𝑆(𝑋)|, |𝐹𝑆(𝑌)|}
, 𝑚𝑖𝑛{|𝐹𝑆(𝑋)|, |𝐹𝑆(𝑌)|} ≥ 1

0 , 𝑜𝑡ℎ𝑒𝑟

 
(2) 

2.2.3 Protein subcellular location similarity  

Subcellular locations determine the environments in which 
proteins operate. Therefore, it influences protein function by 
controlling the access and availability of all types of molecular 
interaction partners. Protein subcellular location similarity is 
calculated according to Equation 3, where |𝑆𝐿(𝑋)| is the 
number of subcellular localizations of 𝑋 proteins, |𝑆𝐿(𝑋)| is the 
number of subcellular localizations of 𝑌 proteins, and |𝑆𝐿(𝑋)  ∩
 𝑆𝐿(𝑌)| is the number of subcellular localizations common to 𝑋 
and 𝑌 proteins. 

𝑆𝐿(𝑋, 𝑌) =
2 × |𝑆𝐿(𝑋) ∩ 𝑆𝐿(𝑌)|

|𝑆𝐿(𝑋)| +  |𝑆𝐿(𝑌)|
 (3) 

2.2.4 Protein topological structure similarity 

Network embedding is the process of vector representation of 
nodes corresponding to proteins in PPI networks in a 
multidimensional space without disturbing the network 
structure. Node2Vec [26] was used as the network embedding 
method in the study. 

The calculating similarity between vector representations of 
two different proteins will give us topological structure 
similarity. Cosine similarity is used to calculate vector 
similarity in the study. Protein topological structure similarity 
is calculated according to Equation 4, where F(X) = (𝑥1,..., 𝑥𝑖,..., 
𝑥𝑛) is the n-dimensional vector of protein X returned by the 
Node2Vec algorithm and 𝐹(𝑌)  =  (𝑦1, . . . , 𝑦𝑖 , . . . , 𝑦𝑛) is the n-
dimensional vector of protein 𝑌 returned by the Node2Vec 
algorithm. 

𝑇𝑆𝑆(𝑋, 𝑌) =
∑ 𝑥𝑖 × 𝑦𝑖

𝑛
𝑖=1

√∑ 𝑥𝑖
2𝑛

𝑖=1 × √∑ 𝑦𝑖
2𝑛

𝑖=1

 (4) 

The weight of an edge is calculated as in Equation 5 by 
averaging the similarity measures.  

𝑊(𝑋, 𝑌) =
𝑃𝐶𝐶(𝑋, 𝑌) + 𝐹𝑆(𝑋, 𝑌) + 𝑆𝐿(𝑋, 𝑌) + 𝑇𝑆𝑆(𝑋, 𝑌)

4
 (5) 

2.3 Prediction of protein complex core 

Since we weight the edges of PPI networks using biological and 
topological features, a high edge weight means that the two 
terminal proteins are more likely to be in the same protein 

complex. Also, protein complex cores often correspond to 
dense subgraphs in PPI networks [27][28]. 

To find the local protein complex core, the edges are first sorted 
by weight. The protein with the highest weighted edge is then 
expanded to become the core of the protein complex according 
to the proximity with its neighbouring proteins. The core of the 
protein complex formed is preserved if it contains two or more 
proteins. Meanwhile, the core edge cannot be used as the core 
edge of another cluster. Process of prediction a distinct protein 
complex core continues with the selection of the next highest 
weighted edge. 

CPredictor2.0[10] was also used to detect global protein 
complex cores. CPredictor2.0 first groups proteins with similar 
functions. Then, for each group, it discovers clusters within the 
group using the Markov Clustering Algorithm and merges the 
discovered clusters according to a certain concordance rate. 
Finally, the local protein complex cores found by us and the 
global protein complex cores found by CPredictor2.0 were 
merged. 

2.4 Ensemble learning model 

2.4.1 Voting regression model 

Several steps were followed to train the regression model. 
Firstly, the protein complexes, whose accuracy has been proven 
by experiments, were collected from the standard protein 
complex dataset and the PPI network was weighted using the 
biological and topological similarities between the proteins. 
Secondly, the protein complexes collected from the standard 
protein complex dataset were matched with weighted and 
unweighted PPI networks. Thirdly, false protein complexes 
were produced in weighted and unweighted PPI networks. 
Then, topological feature extraction was performed for the 
protein complexes that were collected from the standard 
protein complexes dataset, that is, proven by experiments, and 
the false protein complexes produced. Fourthly, from the 
extracted topological features, the most important features that 
most influence protein complex prediction were selected. 
Fifthly, XGB regression, gaussian process regression, catboost 
regression and histogram-based gradient boosting regression, 
which we individually believe to produce the most successful 
results, were included in the voting regression model. The 
regression models were then trained. 

The purpose of generating false protein complexes and 
extracting topological features is that the model needs 
topological properties to compare true and false protein 
complexes during the training phase to predict protein 
complexes correctly. 

Since standard protein complexes 1 and 2 databases are 
determined experimentally in the laboratory, it is very 
important to obtain protein complexes with known accuracy 
from these two databases. They are used as experimentally 
proven protein complexes to train a model. 

Because the voting regression model relies on the performance 
of more than one estimator, unsuccessful results in one 
estimator can be balanced with successful results in other 
estimators. For this reason, the voting regression model was 
chosen. In the voting regression model, XGB regression, 
Gaussian processes regression, Catboost regression, and 
Histogram-based gradient boosting regression models were 
used. Voting regression model estimators used with default 
parameters. 
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2.4.1.1 XGB regression model 

XGB, which has features such as result generation speed, 
parallelization, and performance, is a gradient boost-based 
supervised machine learning model that is frequently used for 
regression prediction modeling.  

2.4.1.2 Gauss process regression model 

The Gaussian processes model is a probabilistic supervised 
machine learning framework widely used for regression and 
classification tasks. A Gaussian process regression (GPR) model 
can make predictions that contain preliminary information 
(kernels) and provide measures of uncertainty on the 
predictions [29]. 

2.4.1.3 Catboost regression model 

Catboost is an open-source machine learning method based on 
gradient boost theory and decision trees, developed by Yandex 
company in 2017. 

The main idea of the catboost regression model is to 
sequentially combine models that perform slightly better than 
randomness, thereby creating a greedy, robust competitive 
prediction model through search. 

2.4.1.4 Histogram-based gradient boosting regression 
model 

Gradient boosting algorithms use decision trees. They are quite 
popular for classification and regression. The main problem 
with gradient boosting algorithms is that model training takes 
quite a long time, especially on datasets containing tens of 
thousands of rows of data. The histogram-based gradient 
boosting model was developed to train models faster than 
gradient boosting approaches. 

2.4.2 Structural modularity of protein complexes 

𝐶 = (𝑉𝑐, 𝐸𝑐 , 𝑊𝑐) is the set of proteins in a PPI network, where 𝑉𝑐 
is the vertices corresponding to the proteins belonging to set 𝑐, 
𝐸𝑐  is the edges corresponding to the interaction between 
proteins belonging to set 𝑐, and 𝑊𝑐  is the weights of the edges 
belonging to set 𝑐. Structural modularity[30] is an effective 
quantitative measurement method used to estimate the 
probability that cluster C is a protein complex. Structural 
modularity is achieved by using the Cohesion and Coupling 
equations. Cohesion is calculated according to equation 6, 
where 𝑊𝑖𝑛 is the total weight of edges that belong to cluster 𝐶 
and do not go outside the cluster, and |𝐶| is the number of nodes 
in cluster 𝐶. Coupling is calculated according to equation 7, 
where 𝑊𝑜𝑢𝑡  is the weight of boundary edges connecting cluster 
𝐶 to other clusters and proteins. Structural modularity is 
calculated according to equation 8. 
 

𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛(𝐶) =
2 × 𝑊𝑖𝑛(𝐶)

𝑠𝑞𝑟𝑡(|𝐶|) × (|𝐶| − 1)
 (6) 

𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔(𝐶) =
𝑊𝑜𝑢𝑡(𝐶)

|𝐶|
 (7) 

𝑆𝑀(𝐶) =
𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛(𝐶)

𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛(𝐶) + 𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔(𝐶)
 (8) 

2.4.3 Ensemble learning model building 

At this stage, an ensemble learning model was constructed 
using the voting regression model and structural modularity to 
measure the probability of a 𝐶 = (𝑉𝑐, 𝐸𝑐 , 𝑊𝑐) cluster being a 
protein complex. The Ensemble learning model for a C set is as 
in Equation 9, where 𝑉𝑅(𝐶) is the voting regression score, a 
measure of the probability that cluster 𝐶 is a true protein 
complex, and 𝑆𝑀(𝐶) is the structural modularity score of 
cluster 𝐶. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐶) = 𝑉𝑅(𝐶) × 𝑆𝑀(𝐶) (9) 

2.5 Formation of protein complexes  

Based on the knowledge that the protein, that is the core of the 
protein complex can pass through the edges and form a protein 
complex with junction proteins that are not included in the core 
of the protein complex, some cores of protein complexes were 
obtained. A set of outer boundary proteins based on 
interprotein neighbourhood was then constructed for each 
protein complex core. The outer boundary proteins are 
proteins that are not present in the protein complex core. When 
a new protein is added to the cluster, the score of the cluster is 
calculated according to equation 9. The proteins for which the 
cluster achieves the best score are provisionally recognised as 
protein complexes. Then, for the provisionally recognised 
protein complex, the proteins in the core of the protein complex 
are sequentially removed from the provisional protein 
complex, and after each modification the score is calculated 
according to equation 9. The transient protein complex with the 
best score is recognised as the permanent protein complex. 
Finally, the protein complex is deleted if it has less than three 
proteins. 

3 Results 

The work was implemented in the PyCharm 2022.2.3 IDE using 
python 3.9. Successfully executed on a computer with Intel i7-
6700HQ 2.60 GHz CPU and 16 GB RAM. 

3.1 Parameter Selection 

We examined how effective the parameter ratio was on our 
study by increasing the parameter ratio by 5 from 1 to 20. 
According to the results we obtained, parameter ratio=5 
obtained the best total score for standard protein complex 1 
and standard protein complex 2. In addition, as we can see from 
the results obtained, the parameter ratio does not affect the 
total score much and the total score tends to be constant. Figure 
2 shows how much the change in parameter ratio in standard 
protein complex 1 changes the total score. Figure 3 shows how 
much the change in parameter ratio in standard protein 
complex 2 changes the total score.
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Figure 2. Total score change in standard protein complex 1 depending on the parameter ratio. 

 

Figure 3. Total score change in standard protein complex 2 depending on the parameter ratio. 

 

3.2 Performance evaluation 

In the study, accuracy, f-score, highest matching rate, coverage 
ratio, and Jaccard were used to measure the success of the 
model developed to predict protein complexes from PPI 
networks and to compare with other models. S represents 
protein complexes obtained by experiments, that is, known to 
be accurate, and D represents protein complexes detected by 
the model developed to detect protein complexes. 

3.2.1 Accuracy 

𝑇𝑖𝑗 , is the number of proteins included in both the standard 

protein complex 𝑆𝑖  and the protein complex 𝐷𝑗 detected by the 

model, and 𝑁𝑖  is the number of proteins included in the 
standard protein complex S. To calculate the accuracy (ACC) 
value, the Sensivity (𝑆𝑛) and Positive Predictive Value (𝑃𝑃𝑉) 
values must be calculated. Equation 10 is used to calculate the 
𝑆𝑛 value, Equation 11 is used to calculate the 𝑃𝑃𝑉 value, and 
Equation 12 is used to calculate the accuracy value. 
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𝑆𝑛 =
∑ 𝑚𝑎𝑥𝑗=1

|𝐷|
{𝑇𝑖𝑗 }

|𝑆|
𝑖=1

∑ 𝑁𝑖
|𝑆|
𝑖=1

 (10) 

𝑃𝑃𝑉 =
∑ 𝑚𝑎𝑥𝑖=1

|𝑆|
{𝑇𝑖𝑗}

|𝐷|
𝑗=1

∑ ∑ 𝑇𝑖𝑗
|𝑆|
𝑖=1

|𝐷|
𝑗=1

 (11) 

𝐴𝐶𝐶 = √𝑆𝑛 × 𝑃𝑃𝑉 (12) 

3.2.2 F-score 

𝑁𝑖𝑚 , is the number of protein complexes detected by the model 
that match at least one standard protein complex, 𝑁𝑠𝑚, is the 
number of standard protein complexes detected by the model 
that match at least one protein complex. To calculate the F-
score, recall (R) and precision (P) must be calculated first. 
Equation 13 is used for precision calculation, Equation 14 is 
used for precision calculation, and Equation 15 is used to 
calculate f-score. 

𝑅 =
𝑁𝑠𝑚

|𝑆|
 (13) 

𝑃 =
𝑁𝑖𝑚

|𝐷|
 (14) 

𝐹 =
2 × 𝑅 × 𝑃

𝑅 + 𝑃
 (15) 

3.2.3 Coverage rate 

The coverage rate (CR) is used to measure how many proteins 
in standard protein complexes can be covered by the predicted 
complexes [31]. T matrix |S| × |D| generated from the process. 
𝑇𝑖𝑗 , is the number of proteins shared between the 𝑖'th 

experimentally proven protein complex and the 𝑗'th protein 
complex predicted by model. The coverage rate is calculated by 
Equation 16. 

𝐶𝑅 =
∑ 𝑚𝑎𝑥{𝑇𝑖𝑗}

|𝑆|
𝑖=1

∑ 𝑁𝑖
|𝑆|
𝑖=1

 (16) 

3.2.4 Maximum matching rate 

For the highest matching rate, a binary graph is first created 
between S and D. The highest matching rate (MMR) is calculated 
by Equation 17. 

𝑀𝑀𝑅 =
∑ 𝑚𝑎𝑥𝑗𝑁𝐴(𝑆𝑖 , 𝐷𝑗)

|𝑆|
𝑖=1

|𝑆|
 (17) 

3.2.5 Jaccard 

A standard protein complex is 𝑆𝑖  ∈  𝑆  and a protein complex 
𝐷𝑗 ∈ 𝐷 detected by the model is calculated by Jaccard Equation 

23. To calculate the Jaccard value, Equation 18, Equation 19, 
Equation 20, Equation 21, and Equation 22 must be calculated. 

𝐽𝑎𝑐(𝑆𝑖 , 𝐷𝑗) =
|𝑆𝑖 ∩ 𝐷𝑗|

|𝑆𝑖 ∪ 𝐷𝑗|
 (18) 

𝐽𝑎𝑐(𝑆𝑖) = 𝑚𝑎𝑥𝐷𝑗∈𝐷𝐽𝑎𝑐(𝑆𝑖 , 𝐷𝑗) (19) 

𝐽𝑎𝑐(𝐷𝑗) = 𝑚𝑎𝑥𝑆𝑖∈𝑆𝐽𝑎𝑐(𝐷𝑖, 𝑆𝑖) (20) 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑆 =
∑ |𝑠𝑖|𝐽𝑎𝑐(𝑆𝑖)𝑆𝑖∈𝑆

∑ |𝑠𝑖|𝑆𝑖∈𝑆
 (21) 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝐷 =
∑ |𝐷𝑗|𝐽𝑎𝑐(𝐷𝑗)𝐷𝑗∈𝐷

∑ |𝐷𝑗|𝐷𝑗∈𝐷

 (22) 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =
2 × 𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝐷 × 𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑆

𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝐷 + 𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑆
 (23) 

3.3 Comparison of the model with other models 

The model developed in the study was tested in four different 
PPI networks, Gavin, Krogan Core, DIP and MIPS, using two 
different standard protein complexes, which are factual to help 
train and evaluate the model. Five different criteria mentioned 
in the title of success criteria were used to evaluate the 
performance of the model. The sum of these five different 
criteria is called the total score, and a different criterion has 
been produced to facilitate comparison. To compare the 
performance of the model, seven different unsupervised 
learning models including DPClus [3], ClusterONE [32], PEWCC 
[33], WPNCA [31], CPredictor2.0 [10], Zhang [34], PC2P [8] and 
ClusterEPs [35], ClusterSS [36] and ELF-DPC [30], three 
different supervised learning models were used. 

The comparison of the model developed for standard protein 
complex 1 with other models is in Table 3, and the comparison 
of the model developed for standard protein complex 2 with 
other models is in Table 4. In Table 3 and Table 4, the highest 
values are written in bold numbers. 

The developed model uses standard protein complex 1 as the 
known protein complex. 

• Compared to other models for the Gavin dataset, it 
ranked first on f-score and Jaccard, second on total 
score, sixth on accuracy and MMR, and fourth on CR. 

• Compared to other models for the Krogan Core 
dataset, it ranked first on f-score, Jaccard, and total 
score, second on CR and MMR, and sixth on accuracy. 

• Compared to other models for the DIP dataset, it 
ranked first on f-score, CR, Jaccard, and total score, 
second on accuracy, and fifth on MMR. 

• Compared to other models for the MIPS dataset, it 
ranked first on CR, second on f-score and total score, 
third on MMR, fourth on Jaccard, and fifth on accuracy. 

The developed model uses standard protein complex 2 as the 
known protein complex. 

• Compared to other models for the Gavin dataset, it 
ranked first on f-score, Jaccard, and total score, fourth 
on CR, fifth on MMR, and seventh on accuracy. 

• Compared to other models for the Krogan Core 
dataset, it ranked first on f-score, CR, Jaccard and total 
score, second on MMR, and fifth on accuracy. 

• Compared to other models for the DIP dataset, it 
ranked first on f-score, Jaccard, and total score, second 
on accuracy and CR, and fourth on MMR. 

• Compared to other models for the MIPS data set, it 
ranked first on f-score, CR, and total score, third on 
Jaccard, fourth on MMR, and seventh on accuracy. 
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Table 3. Comparison of the model we created with other models for standard protein complex 1. 

Model Number ACC F-score CR MMR Jaccard Total Score 
Gavin 

MCL 220 0.3657 0.5358 0.4891 0.1494 0.3610 1.9010 
DPClus 285 0.3466 0.5972 0.4382 0.1736 0.4025 1.9581 

ClusterONE 258 0.3458 0.5976 0.4514 0.1921 0.3974 1.9844 
PEWCC 664 0.3146 0.6576 0.4316 0.3538 0.3969 2.1546 
WPNCA 484 0.3114 0.6428 0.4949 0.2557 0.3554 2.0602 

CPredictor2.0 266 0.3062 0.6286 0.3750 0.2144 0.4124 1.9365 
Zhang 438 0.3156 0.6475 0.3976 0.3182 0.4084 2.0872 
PC2P 219 0.3551 0.5769 0.4439 0.1825 0.3922 1.9505 

ClusterEPs 271 0.2841 0.6014 0.3656 0.2166 0.4090 1.8766 
ClusterSS 482 0.3218 0.5600 0.3941 0.2535 0.3685 1.8979 
ELF-DPC 286 0.3391 0.6674 0.4792 0.2516 0,4330 2.1702 

Our Model 327 0.3308 0.6757 0.4666 0.2422 0.4519 2.1671 
Krogan Core 

MCL 370 0.3192 0.4004 0.3895 0.1361 0.2902 1.5354 
DPClus 497 0.3071 0.4138 0.3672 0.1745 0.3235 1.5861 

ClusterONE 240 0.2829 0.4694 0.3085 0.1523 0.3324 1.5454 
PEWCC 383 0.2309 0.5289 0.3231 0.1471 0.3786 1.6085 
WPNCA 369 0.2758 0.5446 0.3897 0.1912 0.3415 1.7428 

CPredictor2.0 236 0.2725 0.5895 0.3037 0.1954 0.3688 1.7298 
Zhang 326 0.2549 0.5563 0.2884 0.2182 0.3408 1.6585 
PC2P 249 0.2970 0.4356 0.3458 0.1337 0.3190 1.5310 

ClusterEPs 410 0.2621 0.5836 0.3352 0.2209 0.3448 1.7467 
ClusterSS 722 0.3072 0.4377 0.3758 0.2402 0.3357 1.6966 
ELF-DPC 304 0.2984 0.6287 0.4239 0.2687 0.4302 2.0499 

Our Model 325 0.2939 0.6397 0.4186 0.2533 0.4550 2.0606 
DIP 

MCL 628 0.2684 0.3106 0.3578 0.0932 0.2155 1.2455 
DPClus 909 0.2720 0.3085 0.3792 0.1237 0.2645 1.3480 

ClusterONE 904 0.3270 0.5118 0.5062 0.1752 0.3297 1.8499 
PEWCC 648 0.2262 0.6004 0.3783 0.1573 0.3514 1.7136 
WPNCA 623 0.2594 0.5888 0.4307 0.2070 0.3360 1.8219 

CPredictor2.0 293 0.2287 0.5008 0.2302 0.1110 0.2825 1.3533 
Zhang 502 0.2426 0.5622 0.3257 0.1811 0.3223 1.6339 
PC2P 441 0.2542 0.3419 0.3401 0.0854 0.2324 1.2540 

ClusterEPs 804 0.2147 0.5730 0.2954 0.2154 0.3087 1.6073 
ClusterSS 2375 0.2577 0.3230 0.3335 0.2331 0.2573 1.4047 
ELF-DPC 564 0.2768 0.6200 0.4922 0.2273 0.3454 1.9617 

Our Model 570 0.2820 0.6235 0.4985 0.1968 0.3754 1.9762 
MIPS 

MCL 594 0.1577 0.0681 0.1686 0.0214 0.1064 0.5221 
DPClus 207 0.2133 0.3784 0.2031 0.0820 0.2264 1.1031 

ClusterONE 690 0.2489 0.2925 0.2719 0.0989 0.2044 1.1167 
PEWCC 382 0.1389 0.2802 0.1900 0.0566 0.1679 0.8335 
WPNCA 527 0.1824 0.3301 0.2603 0.1017 0.1798 1.0543 

CPredictor2.0 265 0.2288 0.4344 0.2212 0.1140 0.2545 1.2529 
Zhang 406 0.2025 0.3702 0.2051 0.1077 0.2176 1.1031 
PC2P 374 0.2137 0.2347 0.2371 0.0652 0.1662 0.9170 

ClusterEPs 645 0.1943 0.4610 0.2426 0.1580 0.2543 1.3102 
ClusterSS 1266 0.2320 0.2309 0.2400 0.1242 0.1942 1.0213 
ELF-DPC 483 0.2237 0.4811 0.2914 0.1678 0.2599 1.4239 

Our Model 458 0.2208 0.4725 0.2940 0.1352 0.2525 1.3704 
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Table 4. Comparison of the model we created with other models for standard protein complex 2. 

Model Number ACC F-score CR MMR Jaccard Total Score 

Gavin 
MCL 220 0.3587 0.3756 0.4091 0.1153 0.3126 1.5713 

DPClus 285 0.3293 0.3854 0.3483 0.1405 0.3147 1.5182 
ClusterONE 258 0.3359 0.4090 0.3633 0.1419 0.3200 1.5703 

PEWCC 664 0.3137 0.4185 0.3483 0.2152 0.2999 1.5955 
WPNCA 484 0.3305 0.4217 0.4116 0.1670 0.2962 1.6270 

CPredictor2.0 266 0.2816 0.4820 0.3076 0.1564 0.3309 1.5584 
Zhang 438 0.2942 0.4365 0.3209 0.2057 0.3186 1.5758 
PC2P 219 0.3413 0.4025 0.3610 0.1295 0.3204 1.5547 

ClusterEPs 271 0.2715 0.4331 0.2906 0.1670 0.3173 1.4795 
ClusterSS 487 0.3170 0.3729 0.3279 0.1716 0.2924 1.4819 
ELF-DPC 265 0.3259 0.4546 0.3838 0.1745 0.3619 1.7006 

Our Model 324 0.3189 0.4837 0.3717 0.1704 0.3632 1.7080 
Krogan Core 

MCL 370 0.3088 0.3214 0.3534 0.0944 0.2559 1.3339 
DPClus 497 0.2899 0.3577 0.3335 0.1200 0.2893 1.3904 

ClusterONE 240 0.2756 0.3913 0.2729 0.1058 0.2826 1.3282 
PEWCC 383 0.2125 0.4228 0.2913 0.0987 0.3247 1.3500 
WPNCA 369 0.2614 0.4361 0.3572 0.1250 0.2960 1.4757 

CPredictor2.0 236 0.2421 0.4932 0.2787 0.1258 0.3216 1.4614 
Zhang 326 0.2373 0.4637 0.2634 0.1456 0.2957 1.4057 
PC2P 249 0.2884 0.3636 0.3141 0.0951 0.2818 1.3429 

ClusterEPs 410 0.2390 0.4658 0.3021 0.1444 0.2975 1.4488 
ClusterSS 342 0.2705 0.4304 0.3201 0.1318 0.3140 1.4669 
ELF-DPC 281 0.2827 0.5336 0.3768 0.1750 0.3785 1.7467 

Our Model 313 0.2813 0.5459 0.3771 0.1629 0.3887 1.7560 
DIP 

MCL 628 0.2504 0.2409 0.3025 0.0613 0.1921 1.0473 
DPClus 909 0.2493 0.2784 0.3424 0.0898 0.2445 1.2044 

ClusterONE 904 0.2937 0.4232 0.4358 0.1184 0.2874 1.5585 
PEWCC 648 0.2182 0.4812 0.3336 0.0950 0.2986 1.4266 
WPNCA 623 0.2472 0.4603 0.3709 0.1226 0.2866 1.4876 

CPredictor2.0 293 0.2077 0.4653 0.2265 0.0736 0.2635 1.2367 
Zhang 502 0.2215 0.4929 0.2928 0.1223 0.2818 1.4113 
PC2P 441 0.2337 0.2662 0.2967 0.0558 0.2083 1.0636 

ClusterEPs 804 0.1929 0.4611 0.2646 0.1323 0.2652 1.3162 
ClusterSS 2179 0.2360 0.3676 0.3168 0.1588 0.2340 1.3132 
ELF-DPC 545 0.2607 0.5126 0.3998 0.1386 0.3020 1.6137 

Our Model 565 0.2694 0.5261 0.4147 0.1243 0.3103 1.6447 
MIPS 

MCL 594 0.1475 0.0551 0.1640 0.0125 0.1031 0.4822 
DPClus 207 0.1948 0.3307 0.1934 0.0547 0.2049 0.9785 

ClusterONE 690 0.2148 0.2473 0.2384 0.0630 0.1801 0.9435 
PEWCC 382 0.1166 0.2309 0.1700 0.0296 0.1301 0.6773 
WPNCA 527 0.1549 0.2640 0.2383 0.0621 0.1522 0.8716 

CPredictor2.0 265 0.1966 0.3843 0.2086 0.0672 0.2264 1.0831 
Zhang 406 0.1857 0.3413 0.1944 0.0710 0.2002 0.9925 
PC2P 374 0.1941 0.2078 0.2136 0.0432 0.1524 0.8112 

ClusterEPs 645 0.1720 0.3582 0.2115 0.0884 0.2120 1.0421 
ClusterSS 1581 0.2074 0.2539 0.2566 0.0894 0.1867 0.9940 
ELF-DPC 469 0.1937 0.4026 0.2599 0.1011 0.2249 1.1822 

Our Model 469 0.1927 0.4163 0.2791 0.0823 0.2235 1.1938 

4 Conclusions 

Although there are many models proposed to detect protein 
complexes from PPI networks, the lack of a model that can 
achieve perfect performance is still a problem for 
bioinformatics that needs to be solved. In this study, we 
developed a model as an alternative to the solutions produced 

for this problem. First, the common expression, function, 
subcellular location, and topological structure similarities of 
the proteins were used to create the weighted PPI network. 
Secondly, protein complex core has been predicted. Third, 
correct protein complexes and incorrect protein complexes 
were produced using standard protein complexes. A voting 
regression model was then trained using these protein 
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complexes. Fourth, structural modularity was measured, which 
is used to measure the probability of a protein cluster being a 
protein complex. An ensemble learning model has been built in 
which voting regression and structural modularity are used 
together. Protein complexes were produced using the ensemble 
learning model constructed fifth. Finally, the success of the 
community learning model was measured with success criteria.  

In our study, we used a voting regression model based on 
supervised learning and the performance of multiple 
predictors, which have proven to be more successful in the 
literature, so that unsuccessful results in one predictor can be 
balanced with successful results in the other, and in addition to 
the studies in the literature, we proved that the use of XGB 
regression, gaussian process regression, catboost regression 
and histogram-based gradient boosting regression models 
within the voting regression model may be more successful. 
When we compare our study with other studies, for standard 
protein complex 1, DIP and Krogan Core PPI networks showed 
the best performance and Gavin and MIPS PPI networks 
showed the second-best performance. For standard protein 
complex 2, it showed the best performance in Gavin, Krogan 
Core, DIP and MIPS PPI networks.  

In future studies, it is planned to include different data sources 
to discover protein complexes where the number of proteins is 
low, which we believe will positively affect the success of the 
model we have developed, to treat the manual parameter 
selection as an optimization problem and to test optimization 
algorithms and to use deep learning methods. 
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