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Abstract  Öz 

The objective of this study is to enhance the accuracy of diabetes 
diagnosis through the utilisation of machine learning techniques and 
resampling methods. The imbalanced nature of diabetes datasets 
presents a significant challenge for traditional classification 
algorithms, which often struggle to accurately predict results. In order 
to enhance the efficacy of the model, a comparative analysis was 
conducted to assess the performance of a range of over-sampling and 
under-sampling techniques, including SMOTE, ADASYN, Borderline 
SMOTE, SVM SMOTE, Random Under Sampler, Near Miss, One Sided 
Selection, Neighbourhood Cleaning Rule, Edited Nearest Neighbours, 
Instance Hardness Threshold, AllKNN and Tomek Links. The 
aforementioned techniques were then applied to the Decision Tree, 
Random Forest, K-Nearest Neighbours, AdaBoost, Extra Tree Classifier, 
and machine learning classifiers, and their performance was evaluated 
using the accuracy, recall, precision, F-Score, and AUC-ROC 
performance metrics. The SVMSMOTE resampling technique was 
identified as the most successful method, achieving 99.06% accuracy 
when used in combination with the decision tree classifier. The findings 
demonstrate that the incorporation of resampling techniques markedly 
enhances diagnostic proficiency and yields more dependable forecasts. 
This research makes a significant contribution to the field of medical 
informatics, providing a robust framework for diabetes diagnosis and 
offering valuable insights into the application of machine learning in 
healthcare. 

 Bu çalışmanın amacı, makine öğrenimi teknikleri ve yeniden örnekleme 
yöntemlerini kullanarak diyabet teşhisinin doğruluğunu artırmaktır. 
Diyabet veri setlerinin dengesiz yapısı, sonuçları doğru bir şekilde 
tahmin etmekte zorlanan geleneksel sınıflandırma algoritmaları için 
önemli bir zorluk teşkil etmektedir. Modelin etkinliğini artırmak 
amacıyla, SMOTE, ADASYN, Borderline SMOTE, SVM SMOTE, Random 
Under Sampler, Near Miss, One Sided Selection, Neighbourhood 
Cleaning Rule, Edited Nearest Neighbours, Instance Hardness 
Threshold, AllKNN ve Tomek Links dahil olmak üzere bir dizi aşırı 
örnekleme ve düşük örnekleme tekniklerinin performansını 
değerlendirmek için karşılaştırmalı bir analiz yapılmıştır. Yukarıda 
bahsedilen teknikler daha sonra Karar Ağacı, Rastgele Orman, K-En 
Yakın Komşular, AdaBoost, Ekstra Ağaç Sınıflandırıcı ve makine 
öğrenimi sınıflandırıcılarına uygulanmış ve performansları doğruluk, 
geri çağırma, kesinlik, F-Skoru ve AUC-ROC performans ölçütleri 
kullanılarak değerlendirilmiştir. SVMSMOTE yeniden örnekleme 
tekniği, karar ağacı sınıflandırıcısı ile birlikte kullanıldığında %99,06 
doğruluk elde ederek en başarılı yöntem olarak belirlenmiştir. Bulgular, 
yeniden örnekleme tekniklerinin dahil edilmesinin teşhis yeterliliğini 
önemli ölçüde artırdığını ve daha güvenilir tahminler sağladığını 
göstermektedir. Bu araştırma, diyabet teşhisi için sağlam bir çerçeve 
sağlayarak ve makine öğreniminin sağlık hizmetlerinde uygulanmasına 
ilişkin değerli bilgiler sunarak tıbbi bilişim alanına önemli bir katkıda 
bulunmaktadır. 
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dataset, Machine learning 
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1 Introduction 

Diabetes is a metabolic disorder resulting from insufficient 
production of insulin or the body's inability to effectively utilize 
the hormone. This chronic condition causes a sustained 
elevation in blood glucose levels. It affects millions of people 
worldwide and, if not properly managed, significantly increases 
the risk of serious complications. The management of diabetes 
primarily involves lifestyle modifications, regular monitoring of 
blood glucose levels, balanced nutrition, and consistent 
physical activity. Additionally, modern medical interventions, 
including insulin therapies and oral antidiabetic medications, 
assist patients in effectively controlling their blood glucose 
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levels. Globally, 537 million adults aged 20-79 are living with 
diabetes, indicating that one in ten adults is affected by this 
condition. It is projected that the number of individuals living 
with diabetes will increase to 643 million by 2030 and further 
escalate to 783 million by 2045, reflecting a significant upward 
trend in global prevalence. Over 75% of individuals with 
diabetes reside in low- and middle-income countries, 
highlighting the significant burden of the disease in these 
regions. In 2021, diabetes accounted for 6.7 million deaths 
globally, which corresponds to a mortality rate of one 
individual every five seconds. These statistics underscore the 
substantial global health burden posed by diabetes and the 
critical need for effective management and prevention 
strategies to mitigate its impact [1, 2]. In recent years, the use 



 

2 
 

of advanced technologies such as machine learning (ML) and 
data analytics in diabetes management has positively 
influenced the progression of the disease. The literature 
increasingly focuses on ML-based approaches for diabetes 
diagnosis, with numerous studies investigating various 
algorithms and models to enhance the accuracy and efficiency 
of early diagnosis and risk prediction [3]. These studies 
highlight the significant capabilities of ML techniques, including 
support vector machines (SVM), neural networks (NNs), and 
ensemble learning (EL), in processing complex datasets and 
uncovering patterns that may remain undetected using 
conventional methods. This approach has been instrumental in 
enhancing diagnostic accuracy and advancing diabetes 
management strategies. In their 2020 study, Pradhan et al. 
critically evaluate common data mining techniques for early 
diabetes prediction, such as Naïve Bayes (NB), Decision Tree 
(DT), and SVM, highlighting their limitations. They propose an 
artificial neural network (ANN) model for diabetes detection 
and classification, which also effectively reduces complications. 
Validation with the 'PIMA Indian Diabetes' dataset yielded a 
high accuracy (ACC) of 85.09%, demonstrating strong 
performance [4]. Maniruzzaman et al. (2020) developed a ML-
based system for predicting diabetes. The study employed 
logistic regression (LR) to identify risk factors including age, 
education level, body mass index (BMI), blood pressure, and 
cholesterol levels. To predict diabetes, four classifiers (NB, DT, 
AdaBoost, and Random Forest (RF)) were utilized and 
evaluated across three partition protocols. The findings 
indicated that the combination of LR and RF provided the best 
performance, achieving an ACC of 94.25% [5]. Daghistani and 
Alshammari (2020) evaluated the performance of LR and 
Random Optimization (RO) algorithms in diabetes diagnosis 
using a dataset obtained from a healthcare institution in Saudi 
Arabia. Their analysis determined that RO achieved the highest 
classification ACC at 88% [6]. Shuja et al. (2020) compared the 
performance of five different ML algorithms in diabetes 
diagnosis using an imbalanced diabetes dataset obtained from 
a laboratory in Kashmir. They applied the Synthetic Minority 
Over-Sampling Technique (SMOTE) to address the dataset 
imbalance. The analysis revealed that the highest performance 
was achieved using DT in conjunction with SMOTE [7]. In the 
study conducted by Butt et al. (2021), a ML-based system is 
introduced for the early detection and classification of diabetes. 
The research also presents an Internet of Things (IoT) based 
system for monitoring blood glucose levels in individuals. The 
classification task employs RF, multilayer perceptron (MLP), 
and LR, with the MLP model achieving the highest ACC at 
86.08%. Furthermore, in predictive analysis, the long short-
term memory (LSTM) model demonstrated notable 
effectiveness, achieving an ACC of 87.26% [8]. In the study by 
Chaves and Marques (2021), various data mining techniques 
were comparatively analyzed for the early diagnosis of 
diabetes. The research utilized a publicly available dataset 
consisting of 520 instances, each with 17 attributes. The 
methods evaluated included NB, NNs, AdaBoost, k-Nearest 
Neighbors (KNN), RF and SVM. The findings of the study 
indicated that NNs achieved the highest performance in 
predicting diabetes, with the proposed model yielding an area 
under the curve (AUC) of 98.3%, demonstrating notable 
effectiveness [9]. Kumari et al. (2021) employ an ensemble of 
ML algorithms to predict diabetes with high ACC. Experiments 
were conducted using PIMA dataset, incorporating a soft voting 
classifier (SVC) that combines RF, LR and NB. The proposed 
methodology was compared against contemporary methods 
such as AdaBoost, SVM, Bagging, Gradient Boosting (GB), 

Extreme Gradient Boosting (XGBoost), and Categorical 
Boosting (CatBoost). The results demonstrate ACC, precision, 
recall, and F1-score values of 79.04%, 73.48%, 71.45%, and 
80.6%, respectively, on the PIMA dataset [10]. In the study by 
Khanam et al. (2021), data mining, ML algorithms, and NN 
methods were utilized to predict diabetes using PIMA dataset. 
Seven ML algorithms were applied to the dataset for diabetes 
prediction. LR and SVM demonstrated effective performance. 
Additionally, a NN model with two hidden layers achieved an 
ACC of 88.6% [11]. Mesquita et al. (2021) examined the 
performance of ten different ML algorithms combined with six 
different over-sampling techniques for diabetes diagnosis 
using the PIMA dataset. Simulation studies revealed that the 
best result, with an ACC of 83.12%, was achieved using the 
AdaBoost algorithm in conjunction with SVM-SMOTE [12]. 
Özlüer Başer et al. (2021) analyzed the performance of six 
different ML algorithms for detecting diabetic conditions using 
K-fold cross-validation and SMOTE. The analysis revealed that 
RF achieved the highest performance with an ACC of 84.78% 
[13]. Harman (2021) investigated the performance of SVM and 
NB algorithms on an imbalanced diabetes dataset using SMOTE. 
The analysis revealed that the highest classification 
performance, at 90%, was achieved by SVM [14]. In the study 
by Saxena et al. (2022), various classifiers and feature selection 
methods were compared to enhance the accuracy of diabetes 
prediction. The classifiers evaluated included MLP, DT, KNN 
and RF. Using the PIMA dataset, the accuracies achieved were 
77.60% for MLP, 76.07% for DT, 78.58% for KNN, and 79.8% 
for RF [15]. In the study by Mushtaq et al. (2022), various 
classifiers (LR, SVM, KNN, GB, NB and RF) were employed to 
evaluate prediction performance. After applying SMOTE, RF 
achieved the highest ACC at 80.7%. Additionally, three high-
performing models were assessed using a voting algorithm, 
resulting in the model attaining an ACC of 82.0% on the default 
dataset and 81.7% on the balanced dataset [16]. Özkan et al. 
(2022) compared the performance of eight different ML 
algorithms using two different approaches to detect 
individuals' diabetic status. The study evaluated the 
performance of models that utilized statistically and clinically 
significant features for diabetes diagnosis using 10-fold cross-
validation. The analysis revealed that, within both approaches, 
RF demonstrated superior classification performance 
compared to other algorithms [17]. Sevli (2022) analyzed the 
performance of six different ML algorithms on an imbalanced 
diabetes dataset using fourteen different resampling 
techniques. The study found that resampling techniques 
positively impacted classification performance, with the 
highest ACC of 96.296% achieved when applying the 
InstanceHardnessThreshold undersampling technique to RF 
[18]. In the study by Özoğur and Orman (2023), successful 
methods for addressing issues related to missing values in 
imbalanced data classification were compared using the PIMA 
dataset. The results show that the combination of the 
SMOTEENN algorithm and multiple imputation methods using 
chained equations achieved an F-score of 91%, outperforming 
other methods by approximately 9% [19]. Ali et al. (2023) 
introduced an optimized random forest algorithm (RFWBP) for 
early diabetes detection, utilizing RF algorithms and feature 
engineering. After applying data preprocessing and mining 
techniques, RFWBP achieved accuracies of 95.83% with 5-fold 
cross-validation and 90.68% without it. The results 
demonstrate that RFWBP surpasses traditional ML methods 
[20]. Febrian et al. (2023) conducted a comparative study of 
KNN and NB algorithms for diabetes prediction. Utilizing 
supervised ML techniques, the analysis on the PIMA dataset 
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revealed that NB outperformed KNN. Specifically, NB achieved 
an average ACC of 76.07%, precision of 73.37%, and recall of 
71.37%, whereas KNN achieved an average ACC of 73.33%, 
precision of 70.25%, and recall of 69.37% [21]. In the study by 
Khaleel et al. (2023), a model for predicting diabetes onset is 
proposed. Evaluated using PIMA dataset, the model 
demonstrated precision rates of 94%, 79%, and 69% for LR, NB, 
and KNN, respectively [22]. In the study by Modak et al. (2024), 
various ML techniques and EL methods were employed to 
predict diabetes. The techniques included LR, SVM, NB and RF, 
alongside ensemble methods such as XGBoost, LightGBM, 
CatBoost, AdaBoost, and Bagging. The study found that 
CatBoost achieved the highest performance with an ACC of 
95.4% and an approximate AUC-ROC score of 99%, while 
XGBoost achieved an ACC of 94.3% and an approximate AUC-
ROC score of 98% [23]. In the study by NG et al. (2024), the En-
RfRsK model is proposed for predicting diabetes risk. This 
ensemble approach combines RF, Radial SVM, and KNN. Testing 
with PIMA dataset demonstrated that the En-RfRsK model 
achieved an ACC of 88.89%, outperforming existing methods 
[24].  

The PIMA dataset is a frequently referenced resource in 
existing literature pertaining to the prediction of diabetes. 
However, this study employs a publicly accessible dataset 
comprising health records from 130 hospitals across the United 
States, encompassing a substantial patient cohort (Diabetes 
130-US Hospitals). The expanded and more diverse patient 
profile offered by this dataset enhances the robustness of our 
findings. However, as is the case with a significant proportion 
of datasets employed in the medical field, this dataset exhibits 
an imbalance in the number of samples drawn from different 
groups, which may impact the reliability of the results. In the 
literature, a variety of resampling techniques are employed 
with the objective of reducing the impact of data set imbalances 
on classification performance. Gaso et al. (2024) predicted 
early hospitalisations of diabetic patients by examining missing 
and imbalanced data problems in the preprocessing process 
with the SMOTE method using the Diabetes 130-US Hospitals 
database. Among the compared methods, the multilayer deep 
learning architecture (MDLA) showed the most successful 
performance with 98% accuracy and 99% recall value when 
used with SMOTE [25]. In a similar study, Zarghani (2024) 
compared classical machine learning models with the deep 
learning-based LSTM model. The LSTM model demonstrated an 
accuracy of 97.65%, exhibiting sensitivity to time series data. 
The SHAP analysis emphasised the effect of variables such as 
the number of laboratory procedures and discharge status on 
classification performance [26]. Kanu and Khanal (2023) aimed 
to develop machine learning models to predict hospital 
readmissions of diabetic patients by analysing the same dataset 
with big data analytics methods. Using big data tools Hadoop 
and PySpark, data preprocessing processes were applied to 
select 23 important features that directly affect patient 
readmission from an initial set of 50 features. Logistic 
Regression, Decision Trees and Random Forest algorithms 
were analysed comparatively; Random Forest algorithm 
showed superior performance compared to other algorithms 
with 100% accuracy in training and testing phases [27]. 
However, within the context of diabetes research, there is a 
notable absence of comprehensive comparative analyses 
examining the impact of different techniques on performance 
outcomes and the extent of this impact. This study examines a 
range of resampling techniques with the objective of 
minimising the impact of dataset imbalances on classification 

performance. The results of these analyses demonstrate the 
efficacy of classifiers in predicting diabetes risk. Furthermore, 
this study aims to present more effective methodologies for 
predicting diabetes by conducting analyses based on more 
recent and comprehensive datasets, while simultaneously 
providing a more profound understanding of the impact of 
resampling and feature selection on classifier performance.  

2 Material and methods 

The initial phase of the study entailed the implementation of 
editing operations within the database. Subsequently, a feature 
selection process was conducted, and all features proceeded 
through a normalisation stage. Following the execution of 
diverse resampling operations, the efficacy of various 
classifiers was evaluated, and the most optimal model was 
identified. The sequence of stages involved in the process is 
illustrated in Figure 1.  

 

Figure 1. Process stages. 

2.1 Dataset preprocessing 

In this study, a publicly available dataset from the UCI Machine 
Learning Repository was utilized. This dataset comprises 10 
years (1999–2008) of clinical care data from 130 hospitals 
across US, provided by the Cerner Corporation (Kansas City, 
MO) [28]. Initially, the dataset included 55 features. However, 
variables such as 'patient ID,' 'admission ID,' 'payment code,' 
and 'admission location' were excluded as they were deemed 
irrelevant for diabetes classification. Additionally, the 'medical 
specialty' variable was removed due to a large amount of 
missing data, and variables with highly imbalanced categories 
(e.g., repaglinide, nateglinide) were excluded as they 
contributed no significant information for classification. Expert 
consultations suggested that body weight could be associated 
with diabetes [29]. Consequently, the analysed dataset was 
limited to observations where body weight was recorded, 
yielding a total of 3,197 patients. 

The data preprocessing involved removing duplicate entries 
based on patient IDs, retaining only the most recent entry for 
each patient. When multiple class labels were associated with 
the same patient ID, entries reflecting a diabetes diagnosis were 
prioritized, and non-relevant entries were excluded. Following 
this procedure, the dataset was reduced to 24 variables (23 
independent variables and one class label) with a total of 2,866 
observations. As depicted in Figure 2, the class distribution 
reveals that 1,961 observations correspond to diabetic 
individuals (labeled as 1), while 905 represent non-diabetic 
individuals (labeled as 0).  
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Figure 2. Distribution of diabetic and non-diabetic individuals 
in the dataset. 

Following data preprocessing, the influence of each feature on 
diabetes classification was assessed through an analysis of 
dependencies and information gain. Mutual information (MI) 
was utilized to quantify the relationships between the 
independent variables and the class label. This method is a 
commonly employed approach in the field of medical data 
analysis [30].  Additionally, data scaling was applied using the 
Standard Scaler to normalize all features, which is essential for 
improving the consistency and performance of classification 
algorithms.  

2.2 Feature importance assessment 

Mutual Information (MI) is a statistical measure that quantifies 
the amount of information obtained about one variable through 
another. Mathematically, MI between two variables X (feature) 
and Y (class label) is defined as in Equation (1). 

𝑀𝐼(𝑋, 𝑌) =∑∑𝑝𝑋𝑌(𝑥, 𝑦)log⁡(
𝑝𝑋𝑌(𝑥, 𝑦)

𝑝𝑋(𝑥)𝑝𝑌(𝑦)
)

𝑦𝑥

 (1) 

where 𝑝𝑋𝑌(𝑥, 𝑦) represents the joint probability distribution of 
X and Y, 𝑝𝑋(𝑥) and 𝑝𝑌(𝑦)denote the marginal probability 
distributions of X and Y, respectively. This metric identifies 
which features contribute the most to the predictive power of 
the model. Higher MI values indicate a stronger relationship 
between a feature and the class label, making those features 
more relevant for classification purposes. In this study, MI was 
calculated to quantify how much each independent variable 
contributed to distinguishing between diabetic and non-
diabetic individuals. The MI scores for all variables were 
computed and ranked to determine their significance in the 
model.  As shown in Figure 3, features such as 'change', 'insulin', 
and 'metformin' exhibit the highest mutual information scores, 
indicating their significant contribution to the prediction of the 
target variable.  

 

Figure 3. Feature importance ranking based on mutual 
information. 

Once the feature importance had been determined using MI, 
data scaling was achieved using the Standard Scaler for the 
normalisation process. This is a necessary step to ensure that 
all features are on the same scale and thus improve the 
consistency and performance of the classification algorithms. 
The Standard Scaler method standardizes features by removing 
the mean and scaling them to unit variance. This ensures that 
each feature has a mean of 0 and a standard deviation of 1. 
Where 𝑥 is the original feature value, 𝜇 is the feature mean and 
𝜎 is the standard deviation, Mathematically, the transformation 
is given as in Equation (2). 

𝑧 =
𝑥 − 𝜇

𝜎
 (2) 

2.3 Resampling techniques 

Resampling techniques are strategies developed to address 
class imbalance in datasets. When class imbalance is present, 
classification models often disproportionately focus on the 
majority class. To mitigate this issue and create a more 
balanced dataset, resampling techniques are employed. These 
techniques ensure that the model can effectively learn from 
both classes by either increasing the number of samples from 
the minority class or reducing the number of samples from the 
majority class. There are two main approaches to resampling: 
undersampling and oversampling. Undersampling seeks to 
achieve class balance by decreasing the number of samples 
from the majority class, whereas oversampling utilizes various 
techniques to increase the number of samples from the 
minority class [31, 32].   

Figure 4 is the block diagram visually explaining 
undersampling and oversampling side by side. The diagram 
effectively highlights the before and after states of both 
techniques, demonstrating how the majority and minority 
classes are adjusted. In this study, the dataset used exhibits a 
distribution where 37.97% of the individuals are diabetic, while 
62.03% are healthy, which could potentially lead the model to 
overfit on the healthy cases. To address this imbalance and 
assess its impact on model performance, twelve different 
resampling techniques were employed in addition to the 
default classification approach. The oversampling and 
undersampling methods implemented in this study were 
outlined in Table 1. 
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(a) 

 

(b) 

Figure 4. Block diagram of oversampling (a) and 
undersampling (b) techniques. 

 
Table 1. The resampling techniques employed in the study. 

Undersampling Techniques Oversampling Techniques 

RandomUnderSampler 
NearMiss 

OneSidedSelection 
NeighbourCleaningRule 

EditedNearestNeighbours 
InstanceHardnessThreshold 

AIIKNN 
TomekLinks 

SMOTE 
ADASYN 

BorderlineSMOTE 
SVMSMOTE 

2.4 Classifier algorithms 

In this study, the ten most highly scoring features were input to 
the classifiers as a result of feature selection. The selected 
features were num_medications, A1Cresult, metformin, 
glimepiride, glipizide, glyburide, pioglitazone, rosiglitazone, 
insulin and change values. Validation methods are essential to 
prevent overfitting in machine learning classification models.  
Therefore, the k-fold cross-validation method, which is widely 
adopted in the literature, is also used in this study. In this 
method, the dataset is randomly divided into k parts. Each part 
is used once as the test set, while the remaining parts are used 
for training in each iteration [33]. The overall performance of 
the model is calculated as the average of the results in all 
iterations. Figure 5 illustrates a schematic representation of the 
5-fold cross-validation procedure applied in this study. 

 

Figure 5. 5-fold cross validation procedure. 

In this study, to achieve more stable and reliable results, the 
cross-validation process was repeated 10 times due to the 
randomness of the initial data partitioning, and the final 
performance metrics were calculated as the average of all 
repetitions. Furthermore, the classification model was 
constructed using a variety of algorithms, including Decision 
Tree, Random Forest, K-Nearest Neighbors, AdaBoost, and 
Extra Trees. The selection of these algorithms was made on the 
basis of their proven effectiveness in the handling of 
classification tasks involving complex, high-dimensional, and 
imbalanced medical datasets [34]. 

2.4.1 Decision tree (DT) 

DT are a widely utilized ML algorithm, known for their ability 
to address classification and regression problems by iteratively 
splitting data into branches based on defined rules. The 
intuitive structure of DT makes them particularly valuable for 
interpretability, even in complex models. However, they are 
prone to overfitting, especially when dealing with intricate 
datasets, making it necessary to employ techniques like 
pruning to enhance the model’s generalization performance 
[35]. 

2.4.2 Random forest (RF) 

RF is an EL method that combines multiple decision trees to 
create a cohesive predictive model. In this technique, each DT 
is trained on a randomly selected subset of features from the 
dataset, fostering diversity among the trees. The final 
classification outcome is determined by aggregating the 
predictions of all individual trees, typically through a majority 
voting scheme. This ensemble strategy significantly reduces the 
risk of overfitting. Moreover, RF exhibits strong performance 
on high-dimensional datasets and provides valuable insights by 
generating feature importance rankings, which are crucial for 
uncovering underlying data patterns [36]. 

2.4.3 K-nearest neighbors (KNN) 

KNN algorithm assigns a class to an unknown instance by 
considering the labels of its nearest neighbors, operating on the 
assumption that data points with similar feature values are 
likely to belong to the same class or yield comparable outcomes. 
The algorithm relies on spatial proximity within the feature 
space, typically employing distance metrics such as Euclidean 
distance to make predictions or classifications. A critical 
parameter, K, denotes the number of neighbors considered and 
significantly impacts the algorithm's performance. Although 
KNN is recognized for its simplicity and effectiveness, it is also 
prone to high computational costs, particularly when dealing 
with large datasets or high-dimensional spaces [37, 38]. 
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2.4.4 AdaBoost 

The primary goal of AdaBoost is to improve the model’s 
generalization by modifying sample distribution, assigning 
greater weights to misclassified instances. Initially, all samples 
are weighted equally, and the classifier with the lowest error is 
selected. Misclassified instances are then assigned higher 
weights in subsequent iterations, allowing the algorithm to 
focus on correcting previous errors. This iterative process 
continues until the stopping criteria are met, forming a stronger 
classifier. In recent years, AdaBoost and its derivatives have 
attracted much attention due to their ability to handle complex 
and diverse datasets [39, 40].  

2.4.5 Extra tree classifier 

Extra Trees Classifier (ETC) is an advanced EL method designed 
to enhance predictive accuracy by constructing a large 
ensemble of decision trees and aggregating their outputs. 
Unlike traditional DT algorithms, ETC introduces a greater 
degree of randomness during the tree-building process. 
Specifically, it selects split points at each node from a randomly 
chosen subset of features rather than optimizing the split based 
on the entire feature set. This heightened randomness 
effectively reduces model variance and improves 
generalization performance on unseen data, making ETC a 
robust choice for various machine learning tasks [41]. 

2.5 Performance Metrics 

The efficacy of a classifier is commonly assessed through 
metrics derived from the confusion matrix, which offers a 
comprehensive understanding of the model's capability to 
differentiate between various classes. In this study, the 
accurate classification of a diabetic was categorized as a True 
Positive (TP), whereas a misclassification as non-diabetic was 
categorized as a False Negative (FN). Conversely, the correct 
identification of a non-diabetic was classified as a True 
Negative (TN), and the misclassification of a non-diabetic as 
diabetic was labeled as a False Positive (FP). These 
categorizations served as the basis for calculating key 
performance metrics, which were detailed in Table 2. 
Furthermore, the calculation of accuracy is provided in 
Equation (3), while sensitivity is calculated in Equation (4). 
Precision is calculated in Equation (5), F-score in Equation (6) 
and AUC in Equation (7). AUC was utilized to provide a more 
comprehensive evaluation of the model's performance. AUC 
metric offers a broader perspective by illustrating the balance 
between sensitivity and specificity across varying classification 
thresholds, thereby facilitating a more nuanced assessment of 
the classifier's effectiveness under different conditions [42].  

Table 2. Performance metrics. 

Metric 
Name 

Definition 

Accuracy 
(ACC) 

Accuracy represents the proportion of correctly 
predicted instances by the model. 

Sensitivity 
(Recall) 

Sensitivity measures the proportion of true 
positives within all positive instances, indicating 

how well the model identifies true positives. 
Precision Precision represents the proportion of true 

positives out of the total predicted positives, 
showing how many of the model’s positive 

predictions are actually correct. 
F1-Score The F-Score represents the harmonic mean of 

precision and recall (sensitivity). 
AUC-ROC AUC-ROC denotes the area under the Receiver 

Operating Characteristic (ROC) curve, which plots 

the true positive rate (TPR) against the false 
positive rate (FPR) as a function. 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡ × 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡ + 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

(6) 

 

𝐴𝑈𝐶 − 𝑅𝑂𝐶 = ∫𝑇𝑃𝑅⁡𝑑(𝐹𝑃𝑅) 

 

(7) 

3 Results 

In this study, a dataset related to diabetes from UCI was used to 
evaluate the performance of classifiers such as DT, RF, XGBoost, 
KNN, GB, and ETC. In order to address the adverse effects of 
data imbalance, a range of resampling techniques was 
individually applied to each classifier, followed by 
comprehensive performance evaluations. In order to improve 
the performance of the classifiers, the most relevant features in 
the dataset were selected using MI-based feature selection 
method.  Additionally, the features were normalized using the 
Standard Scaler method. The performance of each classifier, 
with and without the application of resampling techniques 
based the extracted features, was evaluated based on 
performance metrics. All classification procedures were 
conducted using 5-fold cross-validation, and the average values 
of the results were reported. The effects of resampling 
techniques on the classifiers are presented in Table 3 to Table 
7, respectively. 

An examination of the results in Table 3 reveals that DT 
performed notably without resampling, achieving an ACC of 
98.99% and an AUC of 99.40%. Among the oversampling 
techniques, SVMSMOTE demonstrated the highest 
performance, with an ACC of 99.06% and an AUC of 99.50%, 
reflecting a marked improvement in both metrics. SMOTE and 
ADASYN also resulted in accuracies of 99.02%, accompanied by 
AUC values of 99.45% and 99.41%, respectively, indicating a 
modest improvement over the non-resampled condition. In 
contrast, BorderlineSMOTE did not contribute to any 
performance improvement, as both ACC (98.99%) and AUC 
(99.40%) remained identical to the non-resampled condition. 
For undersampling techniques, the RandomUnderSampler 
yielded the best results, achieving the highest ACC of 99.06% 
and an AUC of 99.47%, as compared to the non-resamlping 
condition. NeighbourhoodCleaningRule, 
EditedNearestNeighbours, AIIKNN and 
InstanceHardnessThreshold achieved the same ACC (99.06%); 
however, their AUC values were comparatively lower, at 
99.31%. Although TomekLinks exhibited a slight reduction in 
ACC (99.02%), its AUC value of 99.45% represented a little 
improvement. However, NearMiss yielded the lowest 
performance, with an ACC of 93.65% and an AUC of 95.79%. 

As seen in Table 4, RF achieved 98.99% ACC and an AUC of 
99.49% without resampling. Among the oversampling 
techniques, SVMSMOTE showed the highest performance, with 
99.06% accuracy and 99.51% AUC. Both SMOTE and ADASYN 
achieved similar ACC (99.02%), with minor differences in AUC 
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values (99.50% and 99.48%, respectively). BorderlineSMOTE, 
with 98.99% ACC and 99.48% AUC, closely mirrored the results 
obtained without resampling. For undersampling techniques, 
RandomUnderSampler, AllKNN EditedNearestNeighbours and 
NeighbourhoodCleaningRule all surpassed the no-resampling 
condition, each reaching 99.06% ACC, where their AUC values 
ranged from 99.30% to 99.48%. TomekLinks, despite a slight 
drop in ACC (99.02%), maintained an AUC of 99.49%. 
OneSidedSelection and InstanceHardnessThreshold showed 
marginally lower ACCs (98.92%) with AUC values of 99.50% 
and 99.34%, respectively. NearMiss exhibited the lowest 
performance, with 93.65% ACC and a 95.84% AUC, making it 
the least effective resampling method. 

As observed in Table 5, Adaboost classifier without any 
resampling scored 98.99% ACC and 99.47% AUC. Among the 
oversampling techniques, SVMSMOTE gave the highest 
performance with 99.06% ACC and 99.44% AUC. Both SMOTE 
and BorderlineSMOTE gave the same ACC (98.99%) results as 
in the non-resampled case, while SMOTE performed slightly 
better in terms of AUC (99.48%). In contrast, ADASYN produced 
a slightly lower AUC (99.43%), while improving accuracy 
(99.02%). Among undersampling techniques, 
RandomUnderSampler exhibited the best performance with 
99.06% ACC and 99.52% AUC. NeighbourhoodCleaningRule, 

EditedNearestNeighbours, InstanceHardnessThreshold, and 
AllKNN all had the same ACC result, but with slightly lower AUC 
metric (99.31%). TomekLinks and OneSidedSelection 
maintained the same ACC and AUC as the non-resampled case, 
though other metrics varied. NearMiss, on the other hand, 
exhibited the lowest performance, with an ACC of 93.65% and 
an AUC of 96.08%. 

Table 6 reveals that KNN classifier without resampling 
performed 98.99% ACC and 99.34% AUC. Among the 
oversampling techniques, SMOTE maintained the same ACC, 
though it resulted in a slight reduction in the AUC metric. In 
contrast, BorderlineSMOTE and SVMSMOTE provided the best 
results, achieving 99.02% ACC and 99.35% AUC. ADASYN, 
however, demonstrated a slightly lower ACC of 98.92%, while 
maintaining the same AUC of 99.35%. On the other hand, all 
undersampling techniques resulted in comparatively lower 
ACC than the case without resampling. The highest and lowest 
performance were obtained for OneSidedSelection and 
NearMiss. Based on the AUC metric, all methods, except 
NearMiss and TomekLinks, also exhibited lower performance. 
The lowest AUC value was obtained with NearMiss, while the 
highest AUC value was achieved with TomekLinks. Finally, as 
demonstrated in Table 7, the ETC classifier without resampling 
achieved an ACC of 99.02% and an AUC of 99.53%.  
 

Table 2. Impact of various resampling techniques on DT classifier performance metrics. 

Sampling Category Resampling Technique Mean ACC Mean AUC Mean Precision Mean Recall Mean F1 Score 

No Resampling - 98.99 99.40 99.90 98.62 99.26 

Over Sampling 

SMOTE 99.02 99.45 99.95 98.62 99.28 
ADASYN 99.02 99.41 99.95 98.62 99.28 

BorderlineSMOTE 98.99 99.40 99.90 98.62 99.26 
SVMSMOTE 99.06 99.50 100 98.62 99.31 

Under Sampling RandomUnderSampler 99.06 99.47 100 98.62 99.31 
 NearMiss 93.65 95.79 99.89 90.82 95.12 
 OneSidedSelection 98.99 99.40 99.90 98.62 99.26 
 NeighbourhoodCleaningRule 99.06 99.31 100 98.62 99.31 
 EditedNearestNeighbours 99.06 99.31 100 98.62 99.31 
 InstanceHardnessThreshold 99.06 99.31 100 98.62 99.31 
 AllKNN 99.06 99.31 100 98.62 99.31 
 TomekLinks 99.02 99.45 99.95 98.62 99.28 

Table 4. Impact of various resampling techniques on RF classifier performance metrics. 

Sampling Category Resampling Technique Mean ACC Mean AUC Mean Precision Mean Recall Mean F1 Score 

No Resampling - 98.99 99.49 99.26 99.90 98.62 

Over Sampling 

SMOTE 99.02 99.50 99.28 99.95 98.62 
ADASYN 99.02 99.48 99.28 99.95 98.62 

BorderlineSMOTE 98.99 99.48 99.26 99.90 98.62 
SVMSMOTE 99.06 99.51 99.31 100 98.62 

Under Sampling RandomUnderSampler 99.06 99.48 99.31 100 98.62 
 NearMiss 93.65 95.84 95.12 99.89 90.82 
 OneSidedSelection 98.92 99.50 99.20 99.90 98.52 
 NeighbourhoodCleaningRule 99.06 99.30 99.31 100 98.62 
 EditedNearestNeighbours 99.06 99.32 99.31 100 98.62 
 InstanceHardnessThreshold 98.92 99.34 99.20 100 98.42 
 AllKNN 99.06 99.32 99.31 100 98.62 
 TomekLinks 99.02 99.49 99.28 99.95 98.62 
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Table 5. Impact of various resampling techniques on Adaboost classifier performance metrics. 

Sampling Category Resampling Technique Mean ACC Mean AUC Mean Precision Mean Recall Mean F1 Score 

No Resampling - 98.99 99.47 99.26 99.90 98.62 

Over Sampling 

SMOTE 98.99 99.48 99.26 99.90 98.62 
ADASYN 99.02 99.43 99.28 99.95 98.62 

BorderlineSMOTE 98.99 99.47 99.26 99.90 98.62 
SVMSMOTE 99.06 99.44 99.31 100 98.62 

Under Sampling RandomUnderSampler 99.06 99.52 99.31 100 98.62 
 NearMiss 93.65 96.08 95.12 99.89 90.82 
 OneSidedSelection 98.99 99.47 99.26 99.90 98.62 
 NeighbourhoodCleaningRule 99.06 99.31 99.31 100 98.62 
 EditedNearestNeighbours 99.06 99.31 99.31 100 98.62 
 InstanceHardnessThreshold 99.06 99.31 99.31 100 98.62 
 AllKNN 99.06 99.31 99.31 100 98.62 
 TomekLinks 98.99 99.47 99.26 99.90 98.62 

Table 6. Impact of various resampling techniques on KNN classifier performance metrics. 

Sampling Category Resampling Technique Mean ACC Mean AUC Mean Precision Mean Recall Mean F1 Score 

No Resampling - 98.99 99.34 99.25 100 98.52 

Over Sampling 

SMOTE 98.99 99.35 99.25 100 98.52 
ADASYN 98.92 99.35 99.20 100 98.42 

BorderlineSMOTE 99.02 99.35 99.28 100 98.57 
SVMSMOTE 99.02 99.35 99.28 100 98.57 

Under Sampling RandomUnderSampler 98.74 99.28 99.07 100 98.16 
 NearMiss 93.72 95.39 95.18 100 90.82 
 OneSidedSelection 98.95 99.28 99.23 100 98.47 
 NeighbourhoodCleaningRule 98.92 99.29 99.20 99.95 98.47 
 EditedNearestNeighbours 98.92 99.29 99.20 99.95 98.47 
 InstanceHardnessThreshold 97.91 99.21 98.44 99.95 96.99 
 AllKNN 98.92 99.29 99.20 99.95 98.47 
 TomekLinks 98.95 99.34 99.23 100 98.47 

Table 7. Impact of various resampling techniques on ETC classifier performance metrics. 

Sampling Category Resampling Technique Mean ACC Mean AUC Mean Precision Mean Recall Mean F1 Score 

No Resampling - 99.02 99.53 99.28 99.95 98.62 

Over Sampling 

SMOTE 99.02 99.54 99.28 99.95 98.62 
ADASYN 99.02 99.48 99.28 99.95 98.62 

BorderlineSMOTE 99.02 99.53 99.28 99.95 98.62 
SVMSMOTE 99.06 99.49 99.31 100 98.62 

Under Sampling RandomUnderSampler 99.06 99.48 99.31 100 98.62 
 NearMiss 93.65 95.92 95.12 99.89 90.82 
 OneSidedSelection 98.99 99.54 99.26 99.9 98.62 
 NeighbourhoodCleaningRule 99.06 99.35 99.31 100 98.62 
 EditedNearestNeighbours 99.06 99.35 99.31 100 98.62 
 InstanceHardnessThreshold 99.06 99.33 99.31 100 98.62 
 AllKNN 99.06 99.35 99.31 100 98.62 
 TomekLinks 98.99 99.53 99.26 99.9 98.62 

Among the oversampling methods, SMOTE, ADASYN, and 
BorderlineSMOTE all yielded identical ACC results compared to 
the non-resampled condition, although variations were 
observed in other performance metrics. Besides, the highest 
ACC (99.06%) was scored by SVMSMOTE with AUC value of 
99.49%. For undersampling techniques, 
RandomUnderSampler, NeighbourhoodCleaningRule, 
EditedNearestNeighbours, InstanceHardnessThreshold, 
AllKNN all gave higher ACC (99.06%) than the non-resampling 
condition, with AUC values ranging from 99.33% to 99.48%. 
While OneSidedSelection and TomekLinks resulted in slightly 
lower ACC at 98.99%, their AUC remained strong at 99.54% and 
99.53%, respectively. The lowest performance was observed 
with NearMiss, which recorded an ACC of 93.65% and an AUC 
of 95.92%. OneSidedSelection and TomekLinks demonstrated 
marginally lower ACC at 98.99%; however, their AUC values 

remained robust at 99.54% and 99.53%, respectively. The 
lowest performance was observed with NearMiss, which 
resulted in an ACC of 93.65% and an AUC of 95.92%. 

Based on all findings, the SVMSMOTE oversampling technique 
achieved the highest performance in the DT classifier with 
99.06% accuracy, 99.50 AUC, an F1 score of 99.31%, 100% 
precision, and 98.62% recall, indicating a balanced and robust 
classification. Similarly, SVMSMOTE demonstrated strong 
performance in the RF classifier, achieving 99.06% ACC, 99.51 
AUC, 99.31% F1-score, 100% precision, and 98.62% recall. 
These metrics indicate that SVMSMOTE was an effective 
method not only in terms of ACC and AUC but also in providing 
balanced and robust classification performance overall. In the 
AdaBoost classifier, the highest ACC (99.06%) and AUC (99.52) 
values were achieved using the RandomUnderSampler 
undersampling technique. This superior performance was 
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further supported by additional key metrics, including an F1 
score of 99.31%, 100% precision, and 98.62% recall, 
underscoring the model’s strong predictive accuracy and high 
true positive detection rate. RandomUnderSampler thus 
emerged as a robust method for achieving balanced and 
effective classification. In the KNN classifier, BorderlineSMOTE 
and SVMSMOTE provided the best performance in terms of ACC 
and AUC. Both SVMSMOTE and BorderlineSMOTE 
demonstrated a solid and balanced classification performance, 
evidenced by an F1 score of 99.28%, 100% precision, and 
98.57% recall. These results highlighted the model’s high 
accuracy, near-error-free prediction capability, and substantial 
true positive detection rate. Lastly, in the ETC classifier, the 
SVMSMOTE technique delivered the highest performance, with 
an accuracy of 99.06% and an AUC of 99.49%. Metrics such as 
an F1 score of 99.31%, 100% precision, and 98.62% recall 
indicate that the model not only excels in ACC but also achieves 
a balanced classification with high sensitivity and precision. 
These findings demonstrate that SVMSMOTE efficiently 
reduces false positives while accurately identifying true 
positives, indicating a robust overall classification 
performance. In addition, the highest performance was 
observed in the AdaBoost classifier when the 
RandomUnderSampler technique was applied, achieving an 
accuracy of 99.06% and an AUC of 99.52. Notably, this approach 
led to a 7.07% improvement in accuracy and a 5.03% increase 
in AUC compared to the non-resampled scenario. Together, 
these enhancements underscore the substantial positive 
impact of the RandomUnderSampler technique on model 
performance. Figure 6 presents a comparison of the best-
performing resampling techniques for different classifiers 
across five performance metrics: Accuracy, AUC, Precision, 
Sensitivity, and F1 Score. The resampling method yielding the 
best result is indicated in parentheses beneath each classifier. 
The figure clearly demonstrates that SVMSMOTE delivers 
superior performance for most classifiers, whereas 
BorderlineSMOTE achieves the best result for K-Nearest 
Neighbors. 

 

Figure 6. Performance metrics of classifiers using their top 
resampling technique. 

4 Discussion 

This study highlights the valuable role that resampling 
techniques play in enhancing the performance of ML-based 
decision support system for diabetes diagnosis, especially 
when dealing with imbalanced datasets. The challenge of class 
imbalance, commonly observed in medical datasets, often 
results in classifiers being biased toward the majority class, 
thereby reducing their ability to accurately predict outcomes 
for the minority class. By systematically applying various 
resampling methods, both oversampling and undersampling, 
the study demonstrates how these techniques can effectively 

balance the dataset and improve the overall predictive 
performance of machine learning algorithms.  

Classifiers like DT, RF, KNN, AdaBoost and ETC showed 
significant improvements in their performance metrics when 
resampling was employed. Oversampling methods, particularly 
SMOTE and its variants (e.g., SVMSMOTE, ADASYN), were 
especially effective in boosting classification ACC, precision, 
recall, and AUC scores. SVMSMOTE stood out for its consistent 
enhancement of classifier performance, underscoring the 
importance of generating synthetic samples from the minority 
class to help the model learn more effectively from imbalanced 
data.  

On the other hand, undersampling techniques such as 
RandomUnderSampler, NeighbourhoodCleaningRule, and 
EditedNearestNeighbours also delivered promising results, 
with RandomUnderSampler consistently improving classifier 
ACC and AUC. However, the effectiveness of undersampling 
techniques can be mixed, as seen with NearMiss, which caused 
a noticeable drop in performance for classifiers like KNN. This 
suggests that while undersampling can help address imbalance, 
its application must be carefully balanced to avoid discarding 
too much useful data from the majority class. Additionally, the 
use of feature selection through MI and data scaling via 
Standard Scaler proved essential in optimizing model 
performance. By ensuring that only the most relevant features 
were included in the classification models, and that these 
features were normalized, the study-maintained consistency 
across different classifiers, enabling more reliable predictions 
[43].  

To further contextualize these findings, a comparative analysis 
with previous studies that employed resampling techniques for 
imbalanced medical datasets is provided in Table 8. This 
comparison aims to highlight both the similarities and 
differences in the impact of these methods across various ML 
classifiers. The results of this study reveal a marked 
improvement compared to the previous literature summarised 
in Table 8. Many studies in the literature have been conducted 
on the PIMA dataset, which usually has a small sample size and 
limited variable diversity, and mostly only SMOTE or its 
derivatives were used as resampling methods. However, in this 
study, the Diabetes 130-US Hospitals dataset, which has a larger 
and more representative patient profile, was preferred, thus 
enabling the classifiers to be tested under more realistic 
conditions. Moreover, while previous studies commonly used a 
single classifier and a limited number of sampling methods, 
here twelve different resampling techniques were 
systematically tested with five powerful machine learning 
algorithms. In particular, the high accuracy and AUC values 
achieved with SVMSMOTE and RandomUnderSampler 
techniques clearly demonstrated the impact of resampling 
strategies on classification performance. Thanks to this 
comprehensive approach, a more balanced, reliable and 
generalisable diabetes diagnosis model is presented compared 
to similar studies in the literature. Furthermore, the results are 
close and comparable to previous studies on the Diabetes 130-
US Hospitals database used in this study. 

5 Conclusions  

This study emphasises the significant role of resampling 
techniques in optimising machine learning-based approaches 
for diabetes diagnosis, particularly in addressing the challenges 
associated with class imbalances that frequently impact model 
performance. The findings demonstrate that both 
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oversampling and undersampling techniques markedly 
enhance the predictive precision of classifiers, including 
Decision Tree, Random Forest, K-Nearest Neighbours, 
AdaBoost, and Extra Trees Classifier. Of these, SVMSMOTE and 
RandomUnderSampler were found to be the most effective, 
resulting in notable enhancements in key performance metrics 
such as accuracy, precision, recall, and AUC across a range of 
models. Furthermore, the incorporation of mutual information-
based feature selection and data scaling with the standard 
scaler further optimised classifier performance, thereby 
ensuring both reliability and robustness. This methodological 
framework not only advances the study's objective of refining 
the accuracy of diabetes diagnoses but also highlights the 

potential for targeted resampling to enhance model robustness. 
In comparison to previous research, the findings confirm that 
the combined application of resampling, feature selection and 
scaling can result in significant performance improvements, 
thereby facilitating more accurate and reliable decision-making 
in the context of diabetes risk assessment. Furthermore, the 
proposed methodologies demonstrate adaptability to broader 
datasets, encompassing diverse patient populations, thereby 
expanding the scope of machine learning applications in 
diabetes recognition. Future studies could expand on this work 
by exploring additional feature engineering techniques and 
fine-tuning resampling methods to further enhance predictive 
accuracy and clinical applicability. 

Table 8. Comparison of medical data classification studies. 

Authors (Years) Dataset (Size) 
ML 

Algorithm 
Resampling Status Accuracy 

Pradhan et al. (2020) [4] PIMA (768) ANN - 85.09% 

Maniruzzaman et al. (2020) [5] 
National Health and Nutrition 

Examination (6561) 
RF - 94.25% 

Daghistani and Alshammari 
(2020) [6] 

Ministry of National Guard Hospital 
Affairs databases (66325) 

RF  88.3% 

Shuja et al. (2020) [7] A diagnostic lab in Kashmir Valley 
(734) 

DT SMOTE 94.70% 

Butt et al. (2021) [8] PIMA (768) LSTM - 87.26% 

Chaves ve Marques (2021) [9] 
Sylhet Diabetes Hospital in Sylhet, 

Bangladesh (520) 
Neural 

Networks 
- 98.1% 

Kumari et al. (2021) [10] PIMA (768) 
Soft Voting 
Classifier 

- 79.08% 

Khanam et al. (2021) [11] PIMA (768) NN - 88.6% 
Mesquita et al. (2021) [12] PIMA (768) AdaBoost SVMSMOTE 83.12% 

Özlüer Başer et al. (2021) [13] 
Cerner Corporation, Kansas City, 

MO, US (70000) 
RF SMOTE 84.78% 

Harman (2021) [14] PIMA (768) SVM SMOTE 90% 
Saxena et al. (2022) [15] PIMA (768) RF - 79.8% 

Mushtaq et al. (2022) [16] PIMA (768) RF SMOTE 81.7% 

Özkan et al. (2022) [17] 
Endocrinology and Metabolic 

Diseases, Izmir Bozkaya Training 
and Research Hospital (232) 

RF - 84.48% 

Sevli (2022) [18] PIMA (768) RF InstanceHardnessThreshold 96.29% 
Özoğur and Orman (2023) [19] PIMA (768) SVM SMOTEENN 90% 

Ali et al. (2023) [20] PIMA (768) 
Optimized 

RF 
- 95.83% 

Febrian et al. (2023) [21] PIMA (768) NB - 76.07% 
Khaleel et al. (2024) [22] PIMA (768) LR - - 
Modak et al. (2024) [23] Diabetic2 Dataset (5000) CatBoost - 95.4% 

NG et al. (2024) [24] PIMA (768) 
En-RfRsK 

(RF, Radial 
SVM, KNN) 

- 88.89% 

Gaso et al. (2024) [25] Diabetes 130-US Hospitals MDLA SMOTE 98% 
Zarghani (2024) [26] Diabetes 130-US Hospitals LSTM - 97.65% 

Kanu and Khanal (2023) [27] Diabetes 130-US Hospitals 
RF, Hadoop, 

PySpark 
- 100% 

Proposed Model Diabetes 130-US Hospitals DT, MI SVMSMOTE 99.06% 
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