Pamukkale Univ Muh Bilim Derg, XX(X), XX-XX, 20XX

Pamukkale Universitesi Miihendislik Bilimleri Dergisi

Improvement of machine learning-based diabetes diagnosis via resampling
techniques

Makine 6grenmesi tabanli diyabet teshisinin yeniden 6rnekleme teknikleri
ile iyilestirilmesi

Irem Senyer Yapict!, Rukiye Arslan?, Mustafa Alptekin Engin3

1Department of Computer Engineering, Zonguldak Biilent Ecevit University, Zonguldak, Tiirkiye.
senyerirem@beun.edu.tr
2Department of Electrical and Electronics Engineering, Zonguldak Biilent Ecevit University, Zonguldak, Tiirkiye
rukiye.uzun@beun.edu.tr
3Department of Electrical and Electronics Engineering, Bayburt University, Bayburt, Tiirkiye
maengin@bayburt.edu.tr

Received/Gelis Tarihi: 26.11.2024
Accepted/Kabul Tarihi: 20.08.2025

Revision/Diizeltme Tarihi: 06.08.2025

doi: 10.5505/pajes.2025.52882
Research Article/Arastirma Makalesi

Abstract

The objective of this study is to enhance the accuracy of diabetes
diagnosis through the utilisation of machine learning techniques and
resampling methods. The imbalanced nature of diabetes datasets
presents a significant challenge for traditional classification
algorithms, which often struggle to accurately predict results. In order
to enhance the efficacy of the model, a comparative analysis was
conducted to assess the performance of a range of over-sampling and
under-sampling techniques, including SMOTE, ADASYN, Borderline
SMOTE, SVM SMOTE, Random Under Sampler, Near Miss, One Sided
Selection, Neighbourhood Cleaning Rule, Edited Nearest Neighbours,
Instance Hardness Threshold, AIIKNN and Tomek Links. The
aforementioned techniques were then applied to the Decision Tree,
Random Forest, K-Nearest Neighbours, AdaBoost, Extra Tree Classifier,
and machine learning classifiers, and their performance was evaluated
using the accuracy, recall, precision, F-Score, and AUC-ROC
performance metrics. The SVMSMOTE resampling technique was
identified as the most successful method, achieving 99.06% accuracy
when used in combination with the decision tree classifier. The findings
demonstrate that the incorporation of resampling techniques markedly
enhances diagnostic proficiency and yields more dependable forecasts.
This research makes a significant contribution to the field of medical
informatics, providing a robust framework for diabetes diagnosis and
offering valuable insights into the application of machine learning in
healthcare.
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Oz

Bu ¢alismanin amaci, makine égrenimi teknikleri ve yeniden 6rnekleme
yéntemlerini kullanarak diyabet teshisinin dogrulugunu artirmaktir.
Diyabet veri setlerinin dengesiz yapisi, sonuglart dogru bir sekilde
tahmin etmekte zorlanan geleneksel siniflandirma algoritmalari igin
onemli bir zorluk teskil etmektedir. Modelin etkinligini artirmak
amaciyla, SMOTE, ADASYN, Borderline SMOTE, SVM SMOTE, Random
Under Sampler, Near Miss, One Sided Selection, Neighbourhood
Cleaning Rule, Edited Nearest Neighbours, Instance Hardness
Threshold, AIIKNN ve Tomek Links dahil olmak iizere bir dizi asiri
ornekleme ve diisiik Ornekleme tekniklerinin  performansini
degerlendirmek icin karsilastirmali bir analiz yapilmistir. Yukarida
bahsedilen teknikler daha sonra Karar Adaci, Rastgele Orman, K-En
Yakin Komgular, AdaBoost, Ekstra Aga¢ Smniflandirict ve makine
6grenimi simiflandiricilarina uygulanmis ve performanslari dogruluk,
geri cagirma, Kesinlik, F-Skoru ve AUC-ROC performans olgiitleri
kullanilarak degerlendirilmistir. SVMSMOTE yeniden érnekleme
teknigi, karar agact siniflandiricisi ile birlikte kullanildiginda %99,06
dogruluk elde ederek en basarili yontem olarak belirlenmistir. Bulgular,
yeniden drnekleme tekniklerinin dahil edilmesinin teghis yeterliligini
onemli él¢giide artirdigint ve daha giivenilir tahminler sagladigini
gostermektedir. Bu arastirma, diyabet teshisi i¢in saglam bir cerceve
saglayarak ve makine 6greniminin saglik hizmetlerinde uygulanmasina
iliskin degerli bilgiler sunarak tibbi bilisim alanina énemli bir katkida
bulunmaktadir.

Anahtar kelimeler: Diyabet teshisi, Yeniden 6rnekleme teknikleri,
Dengesiz veri kiimesi, Makine 6grenmesi

1 Introduction

Diabetes is a metabolic disorder resulting from insufficient
production of insulin or the body's inability to effectively utilize
the hormone. This chronic condition causes a sustained
elevation in blood glucose levels. It affects millions of people
worldwide and, if not properly managed, significantly increases
the risk of serious complications. The management of diabetes
primarily involves lifestyle modifications, regular monitoring of
blood glucose levels, balanced nutrition, and consistent
physical activity. Additionally, modern medical interventions,
including insulin therapies and oral antidiabetic medications,
assist patients in effectively controlling their blood glucose
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levels. Globally, 537 million adults aged 20-79 are living with
diabetes, indicating that one in ten adults is affected by this
condition. It is projected that the number of individuals living
with diabetes will increase to 643 million by 2030 and further
escalate to 783 million by 2045, reflecting a significant upward
trend in global prevalence. Over 75% of individuals with
diabetes reside in low- and middle-income countries,
highlighting the significant burden of the disease in these
regions. In 2021, diabetes accounted for 6.7 million deaths
globally, which corresponds to a mortality rate of one
individual every five seconds. These statistics underscore the
substantial global health burden posed by diabetes and the
critical need for effective management and prevention
strategies to mitigate its impact [1, 2]. In recent years, the use



of advanced technologies such as machine learning (ML) and
data analytics in diabetes management has positively
influenced the progression of the disease. The literature
increasingly focuses on ML-based approaches for diabetes
diagnosis, with numerous studies investigating various
algorithms and models to enhance the accuracy and efficiency
of early diagnosis and risk prediction [3]. These studies
highlight the significant capabilities of ML techniques, including
support vector machines (SVM), neural networks (NNs), and
ensemble learning (EL), in processing complex datasets and
uncovering patterns that may remain undetected using
conventional methods. This approach has been instrumental in
enhancing diagnostic accuracy and advancing diabetes
management strategies. In their 2020 study, Pradhan et al.
critically evaluate common data mining techniques for early
diabetes prediction, such as Naive Bayes (NB), Decision Tree
(DT), and SVM, highlighting their limitations. They propose an
artificial neural network (ANN) model for diabetes detection
and classification, which also effectively reduces complications.
Validation with the 'PIMA Indian Diabetes' dataset yielded a
high accuracy (ACC) of 85.09%, demonstrating strong
performance [4]. Maniruzzaman et al. (2020) developed a ML-
based system for predicting diabetes. The study employed
logistic regression (LR) to identify risk factors including age,
education level, body mass index (BMI), blood pressure, and
cholesterol levels. To predict diabetes, four classifiers (NB, DT,
AdaBoost, and Random Forest (RF)) were utilized and
evaluated across three partition protocols. The findings
indicated that the combination of LR and RF provided the best
performance, achieving an ACC of 94.25% [5]. Daghistani and
Alshammari (2020) evaluated the performance of LR and
Random Optimization (RO) algorithms in diabetes diagnosis
using a dataset obtained from a healthcare institution in Saudi
Arabia. Their analysis determined that RO achieved the highest
classification ACC at 88% [6]. Shuja et al. (2020) compared the
performance of five different ML algorithms in diabetes
diagnosis using an imbalanced diabetes dataset obtained from
a laboratory in Kashmir. They applied the Synthetic Minority
Over-Sampling Technique (SMOTE) to address the dataset
imbalance. The analysis revealed that the highest performance
was achieved using DT in conjunction with SMOTE [7]. In the
study conducted by Butt et al. (2021), a ML-based system is
introduced for the early detection and classification of diabetes.
The research also presents an Internet of Things (IoT) based
system for monitoring blood glucose levels in individuals. The
classification task employs RF, multilayer perceptron (MLP),
and LR, with the MLP model achieving the highest ACC at
86.08%. Furthermore, in predictive analysis, the long short-
term memory (LSTM) model demonstrated notable
effectiveness, achieving an ACC of 87.26% [8]. In the study by
Chaves and Marques (2021), various data mining techniques
were comparatively analyzed for the early diagnosis of
diabetes. The research utilized a publicly available dataset
consisting of 520 instances, each with 17 attributes. The
methods evaluated included NB, NNs, AdaBoost, k-Nearest
Neighbors (KNN), RF and SVM. The findings of the study
indicated that NNs achieved the highest performance in
predicting diabetes, with the proposed model yielding an area
under the curve (AUC) of 98.3%, demonstrating notable
effectiveness [9]. Kumari et al. (2021) employ an ensemble of
ML algorithms to predict diabetes with high ACC. Experiments
were conducted using PIMA dataset, incorporating a soft voting
classifier (SVC) that combines RF, LR and NB. The proposed
methodology was compared against contemporary methods
such as AdaBoost, SVM, Bagging, Gradient Boosting (GB),

Extreme Gradient Boosting (XGBoost), and Categorical
Boosting (CatBoost). The results demonstrate ACC, precision,
recall, and F1-score values of 79.04%, 73.48%, 71.45%, and
80.6%, respectively, on the PIMA dataset [10]. In the study by
Khanam et al. (2021), data mining, ML algorithms, and NN
methods were utilized to predict diabetes using PIMA dataset.
Seven ML algorithms were applied to the dataset for diabetes
prediction. LR and SVM demonstrated effective performance.
Additionally, a NN model with two hidden layers achieved an
ACC of 88.6% [11]. Mesquita et al. (2021) examined the
performance of ten different ML algorithms combined with six
different over-sampling techniques for diabetes diagnosis
using the PIMA dataset. Simulation studies revealed that the
best result, with an ACC of 83.12%, was achieved using the
AdaBoost algorithm in conjunction with SVM-SMOTE [12].
Ozliier Baser et al. (2021) analyzed the performance of six
different ML algorithms for detecting diabetic conditions using
K-fold cross-validation and SMOTE. The analysis revealed that
RF achieved the highest performance with an ACC of 84.78%
[13]. Harman (2021) investigated the performance of SVM and
NB algorithms on an imbalanced diabetes dataset using SMOTE.
The analysis revealed that the highest Cclassification
performance, at 90%, was achieved by SVM [14]. In the study
by Saxena et al. (2022), various classifiers and feature selection
methods were compared to enhance the accuracy of diabetes
prediction. The classifiers evaluated included MLP, DT, KNN
and RF. Using the PIMA dataset, the accuracies achieved were
77.60% for MLP, 76.07% for DT, 78.58% for KNN, and 79.8%
for RF [15]. In the study by Mushtaq et al. (2022), various
classifiers (LR, SVM, KNN, GB, NB and RF) were employed to
evaluate prediction performance. After applying SMOTE, RF
achieved the highest ACC at 80.7%. Additionally, three high-
performing models were assessed using a voting algorithm,
resulting in the model attaining an ACC of 82.0% on the default
dataset and 81.7% on the balanced dataset [16]. Ozkan et al.
(2022) compared the performance of eight different ML
algorithms using two different approaches to detect
individuals' diabetic status. The study evaluated the
performance of models that utilized statistically and clinically
significant features for diabetes diagnosis using 10-fold cross-
validation. The analysis revealed that, within both approaches,
RF demonstrated superior classification performance
compared to other algorithms [17]. Sevli (2022) analyzed the
performance of six different ML algorithms on an imbalanced
diabetes dataset wusing fourteen different resampling
techniques. The study found that resampling techniques
positively impacted classification performance, with the
highest ACC of 96.296% achieved when applying the
InstanceHardnessThreshold undersampling technique to RF
[18]. In the study by Ozogur and Orman (2023), successful
methods for addressing issues related to missing values in
imbalanced data classification were compared using the PIMA
dataset. The results show that the combination of the
SMOTEENN algorithm and multiple imputation methods using
chained equations achieved an F-score of 91%, outperforming
other methods by approximately 9% [19]. Ali et al. (2023)
introduced an optimized random forest algorithm (RFWBP) for
early diabetes detection, utilizing RF algorithms and feature
engineering. After applying data preprocessing and mining
techniques, RFWBP achieved accuracies of 95.83% with 5-fold
cross-validation and 90.68% without it. The results
demonstrate that RFWBP surpasses traditional ML methods
[20]. Febrian et al. (2023) conducted a comparative study of
KNN and NB algorithms for diabetes prediction. Utilizing
supervised ML techniques, the analysis on the PIMA dataset



revealed that NB outperformed KNN. Specifically, NB achieved
an average ACC of 76.07%, precision of 73.37%, and recall of
71.37%, whereas KNN achieved an average ACC of 73.33%,
precision of 70.25%, and recall of 69.37% [21]. In the study by
Khaleel et al. (2023), a model for predicting diabetes onset is
proposed. Evaluated using PIMA dataset, the model
demonstrated precision rates of 94%, 79%, and 69% for LR, NB,
and KNN, respectively [22]. In the study by Modak et al. (2024),
various ML techniques and EL methods were employed to
predict diabetes. The techniques included LR, SVM, NB and RF,
alongside ensemble methods such as XGBoost, LightGBM,
CatBoost, AdaBoost, and Bagging. The study found that
CatBoost achieved the highest performance with an ACC of
95.4% and an approximate AUC-ROC score of 99%, while
XGBoost achieved an ACC of 94.3% and an approximate AUC-
ROC score of 98% [23]. In the study by NG et al. (2024), the En-
RfRsK model is proposed for predicting diabetes risk. This
ensemble approach combines RF, Radial SVM, and KNN. Testing
with PIMA dataset demonstrated that the En-RfRsK model
achieved an ACC of 88.89%, outperforming existing methods
[24].

The PIMA dataset is a frequently referenced resource in
existing literature pertaining to the prediction of diabetes.
However, this study employs a publicly accessible dataset
comprising health records from 130 hospitals across the United
States, encompassing a substantial patient cohort (Diabetes
130-US Hospitals). The expanded and more diverse patient
profile offered by this dataset enhances the robustness of our
findings. However, as is the case with a significant proportion
of datasets employed in the medical field, this dataset exhibits
an imbalance in the number of samples drawn from different
groups, which may impact the reliability of the results. In the
literature, a variety of resampling techniques are employed
with the objective of reducing the impact of data set imbalances
on classification performance. Gaso et al. (2024) predicted
early hospitalisations of diabetic patients by examining missing
and imbalanced data problems in the preprocessing process
with the SMOTE method using the Diabetes 130-US Hospitals
database. Among the compared methods, the multilayer deep
learning architecture (MDLA) showed the most successful
performance with 98% accuracy and 99% recall value when
used with SMOTE [25]. In a similar study, Zarghani (2024)
compared classical machine learning models with the deep
learning-based LSTM model. The LSTM model demonstrated an
accuracy of 97.65%, exhibiting sensitivity to time series data.
The SHAP analysis emphasised the effect of variables such as
the number of laboratory procedures and discharge status on
classification performance [26]. Kanu and Khanal (2023) aimed
to develop machine learning models to predict hospital
readmissions of diabetic patients by analysing the same dataset
with big data analytics methods. Using big data tools Hadoop
and PySpark, data preprocessing processes were applied to
select 23 important features that directly affect patient
readmission from an initial set of 50 features. Logistic
Regression, Decision Trees and Random Forest algorithms
were analysed comparatively; Random Forest algorithm
showed superior performance compared to other algorithms
with 100% accuracy in training and testing phases [27].
However, within the context of diabetes research, there is a
notable absence of comprehensive comparative analyses
examining the impact of different techniques on performance
outcomes and the extent of this impact. This study examines a
range of resampling techniques with the objective of
minimising the impact of dataset imbalances on classification

performance. The results of these analyses demonstrate the
efficacy of classifiers in predicting diabetes risk. Furthermore,
this study aims to present more effective methodologies for
predicting diabetes by conducting analyses based on more
recent and comprehensive datasets, while simultaneously
providing a more profound understanding of the impact of
resampling and feature selection on classifier performance.

2 Material and methods

The initial phase of the study entailed the implementation of
editing operations within the database. Subsequently, a feature
selection process was conducted, and all features proceeded
through a normalisation stage. Following the execution of
diverse resampling operations, the efficacy of various
classifiers was evaluated, and the most optimal model was
identified. The sequence of stages involved in the process is
illustrated in Figure 1.
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Figure 1. Process stages.

2.1 Dataset preprocessing

In this study, a publicly available dataset from the UCI Machine
Learning Repository was utilized. This dataset comprises 10
years (1999-2008) of clinical care data from 130 hospitals
across US, provided by the Cerner Corporation (Kansas City,
MO) [28]. Initially, the dataset included 55 features. However,
variables such as 'patient ID,' '‘admission ID," 'payment code,'
and 'admission location' were excluded as they were deemed
irrelevant for diabetes classification. Additionally, the 'medical
specialty’ variable was removed due to a large amount of
missing data, and variables with highly imbalanced categories
(e.g., repaglinide, nateglinide) were excluded as they
contributed no significant information for classification. Expert
consultations suggested that body weight could be associated
with diabetes [29]. Consequently, the analysed dataset was
limited to observations where body weight was recorded,
yielding a total of 3,197 patients.

The data preprocessing involved removing duplicate entries
based on patient IDs, retaining only the most recent entry for
each patient. When multiple class labels were associated with
the same patient ID, entries reflecting a diabetes diagnosis were
prioritized, and non-relevant entries were excluded. Following
this procedure, the dataset was reduced to 24 variables (23
independent variables and one class label) with a total of 2,866
observations. As depicted in Figure 2, the class distribution
reveals that 1,961 observations correspond to diabetic
individuals (labeled as 1), while 905 represent non-diabetic
individuals (labeled as 0).
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Figure 2. Distribution of diabetic and non-diabetic individuals
in the dataset.

Following data preprocessing, the influence of each feature on
diabetes classification was assessed through an analysis of
dependencies and information gain. Mutual information (MI)
was utilized to quantify the relationships between the
independent variables and the class label. This method is a
commonly employed approach in the field of medical data
analysis [30]. Additionally, data scaling was applied using the
Standard Scaler to normalize all features, which is essential for
improving the consistency and performance of classification
algorithms.

2.2 Feature importance assessment

Mutual Information (MI) is a statistical measure that quantifies
the amount of information obtained about one variable through
another. Mathematically, MI between two variables X (feature)
and Y (class label) is defined as in Equation (1).

_ pxy (%, )
MI(X,Y) = Zx: ; pxr (%, y)log(—px(x)py(y)) (1)

where pyy (x, ¥) represents the joint probability distribution of
X and Y, py(x) and py(y)denote the marginal probability
distributions of X and Y, respectively. This metric identifies
which features contribute the most to the predictive power of
the model. Higher MI values indicate a stronger relationship
between a feature and the class label, making those features
more relevant for classification purposes. In this study, MI was
calculated to quantify how much each independent variable
contributed to distinguishing between diabetic and non-
diabetic individuals. The MI scores for all variables were
computed and ranked to determine their significance in the
model. As shown in Figure 3, features such as 'change’, 'insulin’,
and 'metformin' exhibit the highest mutual information scores,
indicating their significant contribution to the prediction of the
target variable.
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Figure 3. Feature importance ranking based on mutual
information.

Once the feature importance had been determined using MI,
data scaling was achieved using the Standard Scaler for the
normalisation process. This is a necessary step to ensure that
all features are on the same scale and thus improve the
consistency and performance of the classification algorithms.
The Standard Scaler method standardizes features by removing
the mean and scaling them to unit variance. This ensures that
each feature has a mean of 0 and a standard deviation of 1.
Where x is the original feature value, y is the feature mean and
o is the standard deviation, Mathematically, the transformation
is given as in Equation (2).

X —p
g

7z =

(2)

2.3 Resampling techniques

Resampling techniques are strategies developed to address
class imbalance in datasets. When class imbalance is present,
classification models often disproportionately focus on the
majority class. To mitigate this issue and create a more
balanced dataset, resampling techniques are employed. These
techniques ensure that the model can effectively learn from
both classes by either increasing the number of samples from
the minority class or reducing the number of samples from the
majority class. There are two main approaches to resampling:
undersampling and oversampling. Undersampling seeks to
achieve class balance by decreasing the number of samples
from the majority class, whereas oversampling utilizes various
techniques to increase the number of samples from the
minority class [31, 32].

Figure 4 is the block diagram visually explaining
undersampling and oversampling side by side. The diagram
effectively highlights the before and after states of both
techniques, demonstrating how the majority and minority
classes are adjusted. In this study, the dataset used exhibits a
distribution where 37.97% of the individuals are diabetic, while
62.03% are healthy, which could potentially lead the model to
overfit on the healthy cases. To address this imbalance and
assess its impact on model performance, twelve different
resampling techniques were employed in addition to the
default classification approach. The oversampling and
undersampling methods implemented in this study were
outlined in Table 1.
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Figure 4. Block diagram of oversampling (a) and
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Table 1. The resampling techniques employed in the study.
Undersampling Techniques  Oversampling Techniques

RandomUnderSampler SMOTE
NearMiss ADASYN
OneSidedSelection BorderlineSMOTE

NeighbourCleaningRule SVMSMOTE
EditedNearestNeighbours
InstanceHardnessThreshold
AIIKNN

TomekLinks

2.4 Classifier algorithms

In this study, the ten most highly scoring features were input to
the classifiers as a result of feature selection. The selected
features were num_medications, AlCresult, metformin,
glimepiride, glipizide, glyburide, pioglitazone, rosiglitazone,
insulin and change values. Validation methods are essential to
prevent overfitting in machine learning classification models.
Therefore, the k-fold cross-validation method, which is widely
adopted in the literature, is also used in this study. In this
method, the dataset is randomly divided into k parts. Each part
is used once as the test set, while the remaining parts are used
for training in each iteration [33]. The overall performance of
the model is calculated as the average of the results in all
iterations. Figure 5 illustrates a schematic representation of the
5-fold cross-validation procedure applied in this study.
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Figure 5. 5-fold cross validation procedure.
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In this study, to achieve more stable and reliable results, the
cross-validation process was repeated 10 times due to the
randomness of the initial data partitioning, and the final
performance metrics were calculated as the average of all
repetitions. Furthermore, the classification model was
constructed using a variety of algorithms, including Decision
Tree, Random Forest, K-Nearest Neighbors, AdaBoost, and
Extra Trees. The selection of these algorithms was made on the
basis of their proven effectiveness in the handling of
classification tasks involving complex, high-dimensional, and
imbalanced medical datasets [34].

2.4.1 Decision tree (DT)

DT are a widely utilized ML algorithm, known for their ability
to address classification and regression problems by iteratively
splitting data into branches based on defined rules. The
intuitive structure of DT makes them particularly valuable for
interpretability, even in complex models. However, they are
prone to overfitting, especially when dealing with intricate
datasets, making it necessary to employ techniques like
pruning to enhance the model’s generalization performance
[35].

2.4.2 Random forest (RF)

RF is an EL method that combines multiple decision trees to
create a cohesive predictive model. In this technique, each DT
is trained on a randomly selected subset of features from the
dataset, fostering diversity among the trees. The final
classification outcome is determined by aggregating the
predictions of all individual trees, typically through a majority
voting scheme. This ensemble strategy significantly reduces the
risk of overfitting. Moreover, RF exhibits strong performance
on high-dimensional datasets and provides valuable insights by
generating feature importance rankings, which are crucial for
uncovering underlying data patterns [36].

2.4.3 K-nearest neighbors (KNN)

KNN algorithm assigns a class to an unknown instance by
considering the labels of its nearest neighbors, operating on the
assumption that data points with similar feature values are
likely to belong to the same class or yield comparable outcomes.
The algorithm relies on spatial proximity within the feature
space, typically employing distance metrics such as Euclidean
distance to make predictions or classifications. A critical
parameter, K, denotes the number of neighbors considered and
significantly impacts the algorithm's performance. Although
KNN is recognized for its simplicity and effectiveness, it is also
prone to high computational costs, particularly when dealing
with large datasets or high-dimensional spaces [37, 38].



2.4.4 AdaBoost

The primary goal of AdaBoost is to improve the model’s
generalization by modifying sample distribution, assigning
greater weights to misclassified instances. Initially, all samples
are weighted equally, and the classifier with the lowest error is
selected. Misclassified instances are then assigned higher
weights in subsequent iterations, allowing the algorithm to
focus on correcting previous errors. This iterative process
continues until the stopping criteria are met, forming a stronger
classifier. In recent years, AdaBoost and its derivatives have
attracted much attention due to their ability to handle complex
and diverse datasets [39, 40].

2.4.5 Extra tree classifier

Extra Trees Classifier (ETC) is an advanced EL method designed
to enhance predictive accuracy by constructing a large
ensemble of decision trees and aggregating their outputs.
Unlike traditional DT algorithms, ETC introduces a greater
degree of randomness during the tree-building process.
Specifically, it selects split points at each node from a randomly
chosen subset of features rather than optimizing the split based
on the entire feature set. This heightened randomness
effectively reduces model variance and improves
generalization performance on unseen data, making ETC a
robust choice for various machine learning tasks [41].

2.5 Performance Metrics

The efficacy of a classifier is commonly assessed through
metrics derived from the confusion matrix, which offers a
comprehensive understanding of the model's capability to
differentiate between various classes. In this study, the
accurate classification of a diabetic was categorized as a True
Positive (TP), whereas a misclassification as non-diabetic was
categorized as a False Negative (FN). Conversely, the correct
identification of a non-diabetic was classified as a True
Negative (TN), and the misclassification of a non-diabetic as
diabetic was labeled as a False Positive (FP). These
categorizations served as the basis for calculating key
performance metrics, which were detailed in Table 2.
Furthermore, the calculation of accuracy is provided in
Equation (3), while sensitivity is calculated in Equation (4).
Precision is calculated in Equation (5), F-score in Equation (6)
and AUC in Equation (7). AUC was utilized to provide a more
comprehensive evaluation of the model's performance. AUC
metric offers a broader perspective by illustrating the balance
between sensitivity and specificity across varying classification
thresholds, thereby facilitating a more nuanced assessment of
the classifier's effectiveness under different conditions [42].

Table 2. Performance metrics.

Metric Definition
Name
Accuracy Accuracy represents the proportion of correctly
(ACQ) predicted instances by the model.
Sensitivity Sensitivity measures the proportion of true
(Recall) positives within all positive instances, indicating

how well the model identifies true positives.
Precision represents the proportion of true
positives out of the total predicted positives,
showing how many of the model’s positive
predictions are actually correct.

The F-Score represents the harmonic mean of
precision and recall (sensitivity).
AUC-ROC denotes the area under the Receiver
Operating Characteristic (ROC) curve, which plots

Precision

F1-Score

AUC-ROC

the true positive rate (TPR) against the false
positive rate (FPR) as a function.

ace - TP+ TN )
" TP+TN +FP+FN
TP
PP 4
Sensitivity TPTFN (4)
TP
S L 5
Precision TPLFP 5

2 X precision X sensitivit
F1 — Score = P — Y ©)
precision + sensitivity

AUC — ROC = fTPR d(FPR) 7

3 Results

In this study, a dataset related to diabetes from UCI was used to
evaluate the performance of classifiers such as DT, RF, XGBoost,
KNN, GB, and ETC. In order to address the adverse effects of
data imbalance, a range of resampling techniques was
individually applied to each classifier, followed by
comprehensive performance evaluations. In order to improve
the performance of the classifiers, the most relevant features in
the dataset were selected using MI-based feature selection
method. Additionally, the features were normalized using the
Standard Scaler method. The performance of each classifier,
with and without the application of resampling techniques
based the extracted features, was evaluated based on
performance metrics. All classification procedures were
conducted using 5-fold cross-validation, and the average values
of the results were reported. The effects of resampling
techniques on the classifiers are presented in Table 3 to Table
7, respectively.

An examination of the results in Table 3 reveals that DT
performed notably without resampling, achieving an ACC of
98.99% and an AUC of 99.40%. Among the oversampling
techniques, SVMSMOTE demonstrated the  highest
performance, with an ACC of 99.06% and an AUC of 99.50%,
reflecting a marked improvement in both metrics. SMOTE and
ADASYN also resulted in accuracies of 99.02%, accompanied by
AUC values of 99.45% and 99.41%, respectively, indicating a
modest improvement over the non-resampled condition. In
contrast, BorderlineSMOTE did not contribute to any
performance improvement, as both ACC (98.99%) and AUC
(99.40%) remained identical to the non-resampled condition.
For undersampling techniques, the RandomUnderSampler
yielded the best results, achieving the highest ACC of 99.06%
and an AUC of 99.47%, as compared to the non-resamlping
condition. NeighbourhoodCleaningRule,
EditedNearestNeighbours, AIIKNN and
InstanceHardnessThreshold achieved the same ACC (99.06%);
however, their AUC values were comparatively lower, at
99.31%. Although TomekLinks exhibited a slight reduction in
ACC (99.02%), its AUC value of 99.45% represented a little
improvement. However, NearMiss yielded the lowest
performance, with an ACC of 93.65% and an AUC of 95.79%.

As seen in Table 4, RF achieved 98.99% ACC and an AUC of
99.49% without resampling. Among the oversampling
techniques, SYMSMOTE showed the highest performance, with
99.06% accuracy and 99.51% AUC. Both SMOTE and ADASYN
achieved similar ACC (99.02%), with minor differences in AUC



values (99.50% and 99.48%, respectively). BorderlineSMOTE,
with 98.99% ACC and 99.48% AUC, closely mirrored the results
obtained without resampling. For undersampling techniques,
RandomUnderSampler, AIIKNN EditedNearestNeighbours and
NeighbourhoodCleaningRule all surpassed the no-resampling
condition, each reaching 99.06% ACC, where their AUC values
ranged from 99.30% to 99.48%. TomekLinks, despite a slight
drop in ACC (99.02%), maintained an AUC of 99.49%.
OneSidedSelection and InstanceHardnessThreshold showed
marginally lower ACCs (98.92%) with AUC values of 99.50%
and 99.34%, respectively. NearMiss exhibited the lowest
performance, with 93.65% ACC and a 95.84% AUC, making it
the least effective resampling method.

As observed in Table 5, Adaboost classifier without any
resampling scored 98.99% ACC and 99.47% AUC. Among the
oversampling techniques, SVMSMOTE gave the highest
performance with 99.06% ACC and 99.44% AUC. Both SMOTE
and BorderlineSMOTE gave the same ACC (98.99%) results as
in the non-resampled case, while SMOTE performed slightly
better in terms of AUC (99.48%). In contrast, ADASYN produced
a slightly lower AUC (99.43%), while improving accuracy
(99.02%). Among undersampling techniques,
RandomUnderSampler exhibited the best performance with
99.06% ACC and 99.52% AUC. NeighbourhoodCleaningRule,

EditedNearestNeighbours, InstanceHardnessThreshold, and
AlIKNN all had the same ACC result, but with slightly lower AUC
metric  (99.31%). TomekLinks and OneSidedSelection
maintained the same ACC and AUC as the non-resampled case,
though other metrics varied. NearMiss, on the other hand,
exhibited the lowest performance, with an ACC of 93.65% and
an AUC of 96.08%.

Table 6 reveals that KNN classifier without resampling
performed 98.99% ACC and 99.34% AUC. Among the
oversampling techniques, SMOTE maintained the same ACC,
though it resulted in a slight reduction in the AUC metric. In
contrast, BorderlineSMOTE and SVMSMOTE provided the best
results, achieving 99.02% ACC and 99.35% AUC. ADASYN,
however, demonstrated a slightly lower ACC of 98.92%, while
maintaining the same AUC of 99.35%. On the other hand, all
undersampling techniques resulted in comparatively lower
ACC than the case without resampling. The highest and lowest
performance were obtained for OneSidedSelection and
NearMiss. Based on the AUC metric, all methods, except
NearMiss and TomekLinks, also exhibited lower performance.
The lowest AUC value was obtained with NearMiss, while the
highest AUC value was achieved with TomekLinks. Finally, as
demonstrated in Table 7, the ETC classifier without resampling
achieved an ACC of 99.02% and an AUC of 99.53%.

Table 2. Impact of various resampling techniques on DT classifier performance metrics.

Sampling Category Resampling Technique Mean ACC  Mean AUC Mean Precision Mean Recall Mean F1 Score
No Resampling - 98.99 99.40 99.90 98.62 99.26
SMOTE 99.02 99.45 99.95 98.62 99.28
Over Sampling ADASYN 99.02 99.41 99.95 98.62 99.28
BorderlineSMOTE 98.99 99.40 99.90 98.62 99.26
SVMSMOTE 99.06 99.50 100 98.62 99.31
Under Sampling RandomUnderSampler 99.06 99.47 100 98.62 99.31
NearMiss 93.65 95.79 99.89 90.82 95.12
OneSidedSelection 98.99 99.40 99.90 98.62 99.26
NeighbourhoodCleaningRule 99.06 99.31 100 98.62 99.31
EditedNearestNeighbours 99.06 99.31 100 98.62 99.31
InstanceHardnessThreshold 99.06 99.31 100 98.62 99.31
AlIKNN 99.06 99.31 100 98.62 99.31
TomekLinks 99.02 99.45 99.95 98.62 99.28

Table 4. Impact of various resampling techniques on RF classifier performance metrics.

Sampling Category Resampling Technique Mean ACC  Mean AUC Mean Precision Mean Recall Mean F1 Score
No Resampling - 98.99 99.49 99.26 99.90 98.62
SMOTE 99.02 99.50 99.28 99.95 98.62
Over Sampling ADASYN 99.02 99.48 99.28 99.95 98.62
BorderlineSMOTE 98.99 99.48 99.26 99.90 98.62
SVMSMOTE 99.06 99.51 99.31 100 98.62
Under Sampling RandomUnderSampler 99.06 99.48 99.31 100 98.62
NearMiss 93.65 95.84 95.12 99.89 90.82
OneSidedSelection 98.92 99.50 99.20 99.90 98.52
NeighbourhoodCleaningRule 99.06 99.30 99.31 100 98.62
EditedNearestNeighbours 99.06 99.32 99.31 100 98.62
InstanceHardnessThreshold 98.92 99.34 99.20 100 98.42
AlIKNN 99.06 99.32 99.31 100 98.62
TomekLinks 99.02 99.49 99.28 99.95 98.62




Table 5. Impact of various resampling techniques on Adaboost classifier performance metrics.

Sampling Category Resampling Technique Mean ACC Mean AUC  Mean Precision Mean Recall Mean F1 Score
No Resampling - 98.99 99.47 99.26 99.90 98.62
SMOTE 98.99 99.48 99.26 99.90 98.62
Over Sampling ADASYN 99.02 99.43 99.28 99.95 98.62
BorderlineSMOTE 98.99 99.47 99.26 99.90 98.62
SVMSMOTE 99.06 99.44 99.31 100 98.62
Under Sampling RandomUnderSampler 99.06 99.52 99.31 100 98.62
NearMiss 93.65 96.08 95.12 99.89 90.82
OneSidedSelection 98.99 99.47 99.26 99.90 98.62
NeighbourhoodCleaningRule 99.06 99.31 99.31 100 98.62
EditedNearestNeighbours 99.06 99.31 99.31 100 98.62
InstanceHardnessThreshold 99.06 99.31 99.31 100 98.62
AlIKNN 99.06 99.31 99.31 100 98.62
TomekLinks 98.99 99.47 99.26 99.90 98.62

Table 6. Impact of various resampling techniques on KNN classifier performance metrics.

Sampling Category Resampling Technique Mean ACC  Mean AUC Mean Precision Mean Recall Mean F1 Score
No Resampling - 98.99 99.34 99.25 100 98.52
SMOTE 98.99 99.35 99.25 100 98.52
Over Sampling ADASYN 98.92 99.35 99.20 100 98.42
BorderlineSMOTE 99.02 99.35 99.28 100 98.57
SVMSMOTE 99.02 99.35 99.28 100 98.57
Under Sampling RandomUnderSampler 98.74 99.28 99.07 100 98.16
NearMiss 93.72 95.39 95.18 100 90.82
OneSidedSelection 98.95 99.28 99.23 100 98.47
NeighbourhoodCleaningRule 98.92 99.29 99.20 99.95 98.47
EditedNearestNeighbours 98.92 99.29 99.20 99.95 98.47
InstanceHardnessThreshold 97.91 99.21 98.44 99.95 96.99
AlIKNN 98.92 99.29 99.20 99.95 98.47
TomekLinks 98.95 99.34 99.23 100 98.47

Table 7. Impact of various resampling techniques on ETC classifier performance metrics.

Sampling Category Resampling Technique Mean ACC  Mean AUC Mean Precision Mean Recall Mean F1 Score
No Resampling - 99.02 99.53 99.28 99.95 98.62
SMOTE 99.02 99.54 99.28 99.95 98.62
Over Sampling ADASYN 99.02 99.48 99.28 99.95 98.62
BorderlineSMOTE 99.02 99.53 99.28 99.95 98.62
SVMSMOTE 99.06 99.49 99.31 100 98.62
Under Sampling RandomUnderSampler 99.06 99.48 99.31 100 98.62
NearMiss 93.65 95.92 95.12 99.89 90.82
OneSidedSelection 98.99 99.54 99.26 99.9 98.62
NeighbourhoodCleaningRule 99.06 99.35 99.31 100 98.62
EditedNearestNeighbours 99.06 99.35 99.31 100 98.62
InstanceHardnessThreshold 99.06 99.33 99.31 100 98.62
AlIKNN 99.06 99.35 99.31 100 98.62
TomekLinks 98.99 99.53 99.26 99.9 98.62

Among the oversampling methods, SMOTE, ADASYN, and
BorderlineSMOTE all yielded identical ACC results compared to
the non-resampled condition, although variations were
observed in other performance metrics. Besides, the highest
ACC (99.06%) was scored by SYMSMOTE with AUC value of
99.49%. For undersampling techniques,
RandomUnderSampler, NeighbourhoodCleaningRule,
EditedNearestNeighbours, InstanceHardnessThreshold,
AIIKNN all gave higher ACC (99.06%) than the non-resampling
condition, with AUC values ranging from 99.33% to 99.48%.
While OneSidedSelection and TomekLinks resulted in slightly
lower ACC at 98.99%, their AUC remained strong at 99.54% and
99.53%, respectively. The lowest performance was observed
with NearMiss, which recorded an ACC of 93.65% and an AUC
of 95.92%. OneSidedSelection and TomekLinks demonstrated
marginally lower ACC at 98.99%; however, their AUC values

remained robust at 99.54% and 99.53%, respectively. The
lowest performance was observed with NearMiss, which
resulted in an ACC of 93.65% and an AUC of 95.92%.

Based on all findings, the SVMSMOTE oversampling technique
achieved the highest performance in the DT classifier with
99.06% accuracy, 99.50 AUC, an F1 score of 99.31%, 100%
precision, and 98.62% recall, indicating a balanced and robust
classification. Similarly, SVMSMOTE demonstrated strong
performance in the RF classifier, achieving 99.06% ACC, 99.51
AUC, 99.31% F1-score, 100% precision, and 98.62% recall.
These metrics indicate that SVMSMOTE was an effective
method not only in terms of ACC and AUC but also in providing
balanced and robust classification performance overall. In the
AdaBoost classifier, the highest ACC (99.06%) and AUC (99.52)
values were achieved using the RandomUnderSampler
undersampling technique. This superior performance was



further supported by additional key metrics, including an F1
score of 99.31%, 100% precision, and 98.62% recall,
underscoring the model’s strong predictive accuracy and high
true positive detection rate. RandomUnderSampler thus
emerged as a robust method for achieving balanced and
effective classification. In the KNN classifier, BorderlineSMOTE
and SVMSMOTE provided the best performance in terms of ACC
and AUC. Both SVMSMOTE and BorderlineSMOTE
demonstrated a solid and balanced classification performance,
evidenced by an F1 score of 99.28%, 100% precision, and
98.57% recall. These results highlighted the model’s high
accuracy, near-error-free prediction capability, and substantial
true positive detection rate. Lastly, in the ETC classifier, the
SVMSMOTE technique delivered the highest performance, with
an accuracy of 99.06% and an AUC of 99.49%. Metrics such as
an F1 score of 99.31%, 100% precision, and 98.62% recall
indicate that the model not only excels in ACC but also achieves
a balanced classification with high sensitivity and precision.
These findings demonstrate that SVMSMOTE efficiently
reduces false positives while accurately identifying true
positives, indicating a robust overall classification
performance. In addition, the highest performance was
observed in the AdaBoost classifier ~when the
RandomUnderSampler technique was applied, achieving an
accuracy of 99.06% and an AUC of 99.52. Notably, this approach
led to a 7.07% improvement in accuracy and a 5.03% increase
in AUC compared to the non-resampled scenario. Together,
these enhancements underscore the substantial positive
impact of the RandomUnderSampler technique on model
performance. Figure 6 presents a comparison of the best-
performing resampling techniques for different classifiers
across five performance metrics: Accuracy, AUC, Precision,
Sensitivity, and F1 Score. The resampling method yielding the
best result is indicated in parentheses beneath each classifier.
The figure clearly demonstrates that SVMSMOTE delivers
superior performance for most classifiers, whereas
BorderlineSMOTE achieves the best result for K-Nearest
Neighbors.

Decision Tree Random Forest AdaBoost K-Nearest Neighbors E
{SVMEMOTE) (SVMSMO 1) (SYMSMOT £} (HorderlineSMOT £y (SVMSHIO TE)
Classifier (with Resampling Technigue)

Figure 6. Performance metrics of classifiers using their top
resampling technique.

4 Discussion

This study highlights the valuable role that resampling
techniques play in enhancing the performance of ML-based
decision support system for diabetes diagnosis, especially
when dealing with imbalanced datasets. The challenge of class
imbalance, commonly observed in medical datasets, often
results in classifiers being biased toward the majority class,
thereby reducing their ability to accurately predict outcomes
for the minority class. By systematically applying various
resampling methods, both oversampling and undersampling,
the study demonstrates how these techniques can effectively

balance the dataset and improve the overall predictive
performance of machine learning algorithms.

Classifiers like DT, RF, KNN, AdaBoost and ETC showed
significant improvements in their performance metrics when
resampling was employed. Oversampling methods, particularly
SMOTE and its variants (e.g, SVMSMOTE, ADASYN), were
especially effective in boosting classification ACC, precision,
recall, and AUC scores. SVMSMOTE stood out for its consistent
enhancement of classifier performance, underscoring the
importance of generating synthetic samples from the minority
class to help the model learn more effectively from imbalanced
data.

On the other hand, undersampling techniques such as
RandomUnderSampler, NeighbourhoodCleaningRule, and
EditedNearestNeighbours also delivered promising results,
with RandomUnderSampler consistently improving classifier
ACC and AUC. However, the effectiveness of undersampling
techniques can be mixed, as seen with NearMiss, which caused
a noticeable drop in performance for classifiers like KNN. This
suggests that while undersampling can help address imbalance,
its application must be carefully balanced to avoid discarding
too much useful data from the majority class. Additionally, the
use of feature selection through MI and data scaling via
Standard Scaler proved essential in optimizing model
performance. By ensuring that only the most relevant features
were included in the classification models, and that these
features were normalized, the study-maintained consistency
across different classifiers, enabling more reliable predictions
[43].

To further contextualize these findings, a comparative analysis
with previous studies that employed resampling techniques for
imbalanced medical datasets is provided in Table 8. This
comparison aims to highlight both the similarities and
differences in the impact of these methods across various ML
classifiers. The results of this study reveal a marked
improvement compared to the previous literature summarised
in Table 8. Many studies in the literature have been conducted
on the PIMA dataset, which usually has a small sample size and
limited variable diversity, and mostly only SMOTE or its
derivatives were used as resampling methods. However, in this
study, the Diabetes 130-US Hospitals dataset, which has a larger
and more representative patient profile, was preferred, thus
enabling the classifiers to be tested under more realistic
conditions. Moreover, while previous studies commonly used a
single classifier and a limited number of sampling methods,
here twelve different resampling techniques were
systematically tested with five powerful machine learning
algorithms. In particular, the high accuracy and AUC values
achieved with SVMSMOTE and RandomUnderSampler
techniques clearly demonstrated the impact of resampling
strategies on classification performance. Thanks to this
comprehensive approach, a more balanced, reliable and
generalisable diabetes diagnosis model is presented compared
to similar studies in the literature. Furthermore, the results are
close and comparable to previous studies on the Diabetes 130-
US Hospitals database used in this study.

5 Conclusions

This study emphasises the significant role of resampling
techniques in optimising machine learning-based approaches
for diabetes diagnosis, particularly in addressing the challenges
associated with class imbalances that frequently impact model
performance. The findings demonstrate that both



oversampling and undersampling techniques markedly
enhance the predictive precision of classifiers, including
Decision Tree, Random Forest, K-Nearest Neighbours,
AdaBoost, and Extra Trees Classifier. Of these, SVMSMOTE and
RandomUnderSampler were found to be the most effective,
resulting in notable enhancements in key performance metrics
such as accuracy, precision, recall, and AUC across a range of
models. Furthermore, the incorporation of mutual information-
based feature selection and data scaling with the standard
scaler further optimised classifier performance, thereby
ensuring both reliability and robustness. This methodological
framework not only advances the study's objective of refining
the accuracy of diabetes diagnoses but also highlights the

potential for targeted resampling to enhance model robustness.
In comparison to previous research, the findings confirm that
the combined application of resampling, feature selection and
scaling can result in significant performance improvements,
thereby facilitating more accurate and reliable decision-making
in the context of diabetes risk assessment. Furthermore, the
proposed methodologies demonstrate adaptability to broader
datasets, encompassing diverse patient populations, thereby
expanding the scope of machine learning applications in
diabetes recognition. Future studies could expand on this work
by exploring additional feature engineering techniques and
fine-tuning resampling methods to further enhance predictive
accuracy and clinical applicability.

Table 8. Comparison of medical data classification studies.

. ML )
Authors (Years) Dataset (Size) Algorithm Resampling Status Accuracy
Pradhan et al. (2020) [4] PIMA (768) ANN - 85.09%
. National Health and Nutrition o
Maniruzzaman et al. (2020) [5] Examination (6561) RF - 94.25%
Daghistani and Alshammari Ministry of National Guard Hospital RF 88.3%
(2020) [6] Affairs databases (66325) i
Shuja et al. (2020) [7] A diagnostic 135‘3“4’;35“” Valley DT SMOTE 94.70%
Butt et al. (2021) [8] PIMA (768) LSTM - 87.26%
Sylhet Diabetes Hospital in Sylhet, Neural o
Chaves ve Marques (2021) [9] Bangladesh (520) Networks - 98.1%
. Soft Voting o
Kumari et al. (2021) [10] PIMA (768) Classifier - 79.08%
Khanam etal. (2021) [11] PIMA (768) NN - 88.6%
Mesquita et al. (2021) [12] PIMA (768) AdaBoost SVMSMOTE 83.12%
- Cerner Corporation, Kansas City, o
Ozliier Baser et al. (2021) [13] MO, US (70000) RF SMOTE 84.78%
Harman (2021) [14] PIMA (768) SVM SMOTE 90%
Saxena et al. (2022) [15] PIMA (768) RF - 79.8%
Mushtaq et al. (2022) [16] PIMA (768) RF SMOTE 81.7%
Endocrinology and Metabolic
Ozkan et al. (2022) [17] Diseases, Izmir Bozkaya Training RF - 84.48%
and Research Hospital (232)
Sevli (2022) [18] PIMA (768) RF InstanceHardnessThreshold  96.29%
Ozogur and Orman (2023) [19] PIMA (768) SVM SMOTEENN 90%
Ali et al. (2023) [20] PIMA (768) Opt‘gzed - 95.83%
Febrian et al. (2023) [21] PIMA (768) NB - 76.07%
Khaleel et al. (2024) [22] PIMA (768) LR - -
Modak et al. (2024) [23] Diabetic2 Dataset (5000) CatBoost - 95.4%
En-RfRsK
NG et al. (2024) [24] PIMA (768) (RF, Radial - 88.89%
SVM, KNN)
Gaso etal. (2024) [25] Diabetes 130-US Hospitals MDLA SMOTE 98%
Zarghani (2024) [26] Diabetes 130-US Hospitals LSTM - 97.65%
Kanu and Khanal (2023) [27] Diabetes 130-US Hospitals Rl;;yHS";‘)‘;‘;l‘ip' . 100%
Proposed Model Diabetes 130-US Hospitals DT, MI SVMSMOTE 99.06%
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