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Abstract  Öz 

In recent years, computer vision technologies have played a critical role 
in precision agriculture, leveraging robotics and artificial intelligence 
to automate tasks in crop production. While image-based applications 
hold promise, model interpretability remains a significant challenge. 
Explainable artificial intelligence aims to address this by providing 
plant scientists with interpretable, reliable information, improving the 
understanding of plant diseases. This study focuses on integrating 
explainability metrics into model evaluation, with a detailed analysis of 
explainability methods applied to plant disease classification models. 
Using Class Activation Mapping based visualization methods with 
architectures such as EfficientNet, MobileNet, ResNet, and ShuffleNet, 
trained on a public plant disease dataset, the study assessed both 
classification success and model explainability. Localization results 
were derived from an energy-based perspective, assessing how well 
saliency maps aligned with bounding boxes of diseased areas. The 
findings reveal that feature dimensions and positions in the images 
significantly influence classification outcomes, highlighting the 
importance of precise annotations during data labeling. This study 
uncovers potential biases in disease detection and emphasizes the need 
for explainability metrics in evaluating deep learning models, paving 
the way for more accurate and efficient plant disease detection 
techniques. 

 Son yıllarda bilgisayarla görme teknolojileri, hassas tarımda kritik bir 
rol oynamış, robotik ve yapay zekayı kullanarak mahsul üretiminde 
görevleri otomatikleştirmiştir. Görüntü tabanlı uygulamalar umut 
vadetse de, modelin yorumlanabilirliği önemli bir zorluk olmaya devam 
etmektedir. Açıklanabilir yapay zeka, bitki bilimcilerine yorumlanabilir 
ve güvenilir bilgiler sunarak bitki hastalıklarının anlaşılmasını 
geliştirmeyi hedeflemektedir. Bu çalışma, açıklanabilirlik metriklerinin 
model değerlendirmesine entegrasyonuna odaklanmakta ve bitki 
hastalığı sınıflandırma modellerine uygulanan açıklanabilirlik 
yöntemlerinin detaylı bir analizini sunmaktadır. EfficientNet, 
MobileNet, ResNet ve ShuffleNet gibi mimarilerle, açık bir bitki hastalığı 
veri seti üzerinde eğitilmiş Sınıf Aktivasyon Haritalama tabanlı 
görselleştirme yöntemleri kullanılarak hem sınıflandırma başarısı hem 
de modelin açıklanabilirliği değerlendirilmiştir. Lokalizasyon sonuçları, 
dikkat haritalarının hastalıklı bölgeleri etiketleyen sınırlayıcı kutularla 
ne kadar uyumlu olduğunu enerji tabanlı bir perspektiften 
değerlendirerek elde edilmiştir. Bulgular, görüntülerden çıkarılan 
özelliklerin boyutları ve konumlarının sınıflandırma sonuçlarını önemli 
ölçüde etkilediğini göstermektedir ve veri etiketleme aşamasında doğru 
anotasyonların önemini vurgulamaktadır. Bu çalışma, hastalık 
tespitindeki olası yanlılıkları ortaya çıkarmakta ve derin öğrenme 
modellerinin değerlendirilmesinde açıklanabilirlik metriklerinin 
gerekliliğini vurgulayarak, bitki hastalıklarının daha doğru ve verimli 
bir şekilde tespit edilmesi için derin öğrenme tekniklerinin optimize 
edilmesine zemin hazırlamaktadır. 

Keywords: precision agriculture, computer vision, deep learning, 
plant disease classification, explainability 
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1 Introduction 

In the era of Agriculture 4.0, precision agriculture stands out as 
a pivotal paradigm, holding the potential to bring about a 
profound transformation in agricultural methodologies. This 
revolutionary approach is centered around the adoption of 
advanced monitoring and intervention technologies. The 
primary objective is not only to support production efficiency 
but also to address environmental concerns by minimizing 
negative impacts associated with traditional farming practices 
[1]. By leveraging cutting-edge tools, precision agriculture aims 
to usher in a sustainable and technologically advanced era for 
the agricultural sector. 

Utilizing digital images to analyze and understand the 
environment, computer vision technologies offer precise, 
location-specific insights into crops and their surrounding 
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ecosystems. These technologies utilize a variety of sensing 
modalities to capture detailed information about plant health, 
growth patterns, and environmental conditions. RGB imaging 
enables visual inspection of crops, identifying visible symptoms 
of stress, disease, or nutrient deficiencies. Near-infrared, 
multispectral, and hyperspectral imaging go beyond the visible 
spectrum to detect subtle physiological and biochemical 
changes, offering early warnings of plant health issues.  

Deep learning (DL) empowers computer vision with advanced 
pattern recognition capabilities. The notable advantage of DL 
lies in its ability to automatically extract features from raw data 
and form higher-level features through the composition of 
lower-level ones. The highly hierarchical structure and 
expansive learning capacity of DL models excel in classification 
and prediction tasks, demonstrating flexibility in addressing 
complex data analysis challenges. Applied to precision 
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agriculture, DL enables data-driven, automated, and informed 
decision-making processes. DL finds diverse applications in 
agriculture, significantly extending its impact across various 
domains. In plant disease detection, DL facilitates automated 
and precise identification of diseases, enabling timely 
intervention and effective disease management [2]. For pest 
detection, DL is employed to accurately identify pests affecting 
crops, thus improving pest control strategies. DL aids in weed 
identification, allowing farmers to implement targeted weed 
control measures and enhance crop yields. Furthermore, DL 
models are utilized for leaf classification based on specific 
characteristics, assisting in the identification and classification 
of plant species [3]. Plant phenology recognition through DL 
enables precise timing of agricultural activities aligned with 
plant growth stages, optimizing resource management. DL also 
supports the segmentation of roots and soil, offering 
comprehensive analysis of below-ground structures and their 
impact on plant health. In crop yield estimation, DL analyses 
multiple factors to provide accurate yield forecasts, assisting 
farmers in planning and resource allocation. Additionally, DL 
facilitates the automated counting of fruits, providing valuable 
data for harvest planning and yield estimation [32]. In the realm 
of autonomous farming machinery, DL enhances obstacle 
detection, ensuring efficient and safe operations. Land cover 
classification through DL contributes to the monitoring and 
assessment of agricultural ecosystems and land use patterns 
[33]. DL is also applied to monitor animal welfare in 
agricultural settings, ensuring the well-being of livestock. For 
water management, DL enables precise allocation based on 
crop requirements, thus conserving water and improving 
irrigation practices. Finally, DL assists in soil management by 
analyzing soil composition and optimizing fertilization 
strategies, thereby enhancing soil health and crop productivity. 

Among the above, plant diseases, which lead to reduced harvest 
yields, constitute a serious threat that not only affects the 
livelihoods of individual farmers but also has broader 
implications for the economic stability of nations.  Plant 
diseases are physiological disorders that negatively impact 
growth, development, and overall health, resulting from the 
interaction between the host, causal agent, and environment 
[4]. The broad categorization normally seen among plant 
diseases falls into two classes: namely biotic and abiotic 
diseases. Biotic diseases come from living organisms, such as 
fungi, bacteria, and viruses, while abiotic diseases are caused by 
non-living agents: environmental conditions, chemicals, and 
mechanical injury. Biotic diseases are far more aggressive and 
contagious than abiotic diseases, which are not usually that 
threatening but preventable.  

In the accurate and timely detection of diseases and estimation 
of severity, DL architectures offer promising solutions that 
minimize economic losses, enhance food safety, and promote 
environmentally friendly farming [5]. Despite the enhanced 
speed and accuracy offered by DL-based methods, they often 
operate as black-boxes. This means their internal decision-
making processes are not easily understood by humans, 
creating uncertainties about how decisions are made and the 
principles guiding these models. Explainable Artificial 
Intelligence (XAI) addresses this challenge by focusing on 
developing methods and techniques to make the decision-
making process of DL models more transparent and 
interpretable [6]. Integrating XAI with DL models for plant 
disease detection offers following four benefits. 

 Explain to Discover: Questioning for explanations serves as 
a valuable method to acquire inherent information and 
understand the underlying task in plant disease detection. 
XAI is a potent tool for verifying and gaining new insights 
into the complexities of plant diseases, leading to a more 
reliable solution. 

 Explain to Justify: The increasing debates over biased or 
unfair outcomes in plant disease detection highlight the 
need for explanations to ensure trustworthy decisions. XAI 
is essential for providing motives or rationalizations for 
specific decisions, especially in cases of unexpected 
outcomes. 

 Explain to Control: Explanation is not just for justifying 
outcomes but also for preventing errors in the plant disease 
detection process. Understanding more about the behavior 
of the system provides superior visibility over 
vulnerabilities and faults. 

 Explain to Improve: Continuous improvement of DL models 
used in plant disease detection is a key motivation for 
explaining algorithms. Models that can be explained and 
understood are more easily improved. 

The integration of XAI techniques in plant disease detection has 
gained significant attention, with researchers exploring various 
visualization methods to enhance model interpretability. 
Among these, Class Activation Mapping (CAM)-based 
approaches have emerged as powerful tools for uncovering the 
decision-making processes of CNNs. For instance, Toda and 
Okura conducted an initial comprehensive analysis to 
understand the learning process of CNNs during the diagnosis 
of plant diseases, employing various neuron-wise and layer-
wise visualization methods [19]. Their findings showed that 
Grad-CAM is one of the most effective and cost-efficient 
methods for generating attention maps. 

Building on this finding, in this study, a range of CAM-based 
visualization methods were implemented using EfficientNet, 
MobileNet, ResNet, and ShuffleNet architectures, all trained 
with a publicly available plant disease image dataset. The 
evaluation of the results focused on two key aspects: 
classification success and explainability. Classification success 
was measured using standard metrics such as accuracy, 
precision, recall, and f1-score to ensure the robustness of the 
models in correctly identifying plant diseases. Explainability 
was assessed by analyzing the clarity and interpretability of the 
generated heatmaps, determining how well the highlighted 
regions corresponded to the actual diseased areas of the plants 
as labeled in the dataset. To derive localization evaluation 
results, explainability maps were analyzed and the bounding 
boxes in the validation set were considered from an energy-
based perspective. Instead of focusing only on the peak value, 
the amount of energy from the saliency map that fell within the 
bounding box of the target object was assessed. This approach 
provided deeper insights into how the models make decisions 
and helped uncover any potential biases present in the 
detection of plant diseases. By thoroughly examining and 
discussing these biases, this study contributes to a more 
comprehensive understanding of the challenges and limitations 
in plant disease detection using deep learning models. This, in 
turn, can facilitate the optimization of deep learning techniques 
for enhanced accuracy and efficiency in plant disease detection. 
Moreover, it underscores the necessity of incorporating 
explainability metrics when evaluating the success of deep 
learning models in future studies. 
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Table 1. Summary of the literature on explainability for the detection of plant diseases. 

 

Reference Year Dataset 
Deep Learning 

Architecture 

Best Result (%) 
Explainability 

Approach 
Explainability 

Purpose accuracy f1-
Score 

[7] 2018 Self-collected 
soybean images 

DCNN 94.13 * Top-K high-
resolution feature 
maps 

identify and quantify 
foliar stresses 

[8] 2019 Self-collected 
charcoal rot stem 
images 

3D DCNN 95.73 87 Saliency map provide physiological 
insight into model 
predictions 

[9] 2019 PlantVillage VGG16 * * Teacher/Student provide an 
interpretable 
architecture 

[10] 2021 PlantVillage VGG16, VGG19, 
ResNet50, 
Inception, 
MobileNet, 
MobileNetV2, 
EfficientNet 

92.49 98.42 Grad-CAM, LIME eliminate false 
positives 

[11] 2022 Self-collected 
thermal plant 
images, Paddy crop 

CNN 98.55 80.25 CAM improve classification 
performance 

[12] 2022 Plant Village, AI 
Challenger 2018 

VGG, GoogLeNet, 
ResNet 

99.89 * SmoothGrad, 
LIME, GradCAM 

clarify the focus of the 
model in feature 
extraction 

[13] 2022 PlantVillage Xception+Unet * 99.1 ResTS create top-quality 
visualizations to 
identify specific spots 

[14] 2023 Self-collected omics 
data and 
hyperspectral 
images 

CNN 95.5 95.4 saliency maps, 
activation 
maximization 

visualize the internal 
representations of the 
model 

[15] 2023 Apple, Embrapa, 
Maize, PlantVillage, 
Rice 

VGG+ViT 98.86 98.85 Grad-CAM, LIME interpret prediction 
results 

[16] 2023 Cassava  VOLO, 
EfficientNetV2S, 
RESNEXT50 

90.5 * SHAP generate user-level 
explainability 

[17] 2023 Sunflower CNN, VGG19, 
InceptionV3, 
Xception, ResNet 
v2, MobileNet, 
DenseNet201, 
MobileNetV2, 
VGG16  

93 93 LIME understand 
misclassifications 

[18] 2023 Self-collected maize 
images 

DenseNet, 
EfficientNet, 
MobileNetV3, 
ShuffleNetV2 

* 96.049 LayerCAM, 
ScoreCAM, 
AblationCAM, 
XGradCAM 

improve model 
interpretability 

*: Not applied  

 

2 Literature review 

Recent research in the literature emphasizes the integration of 
XAI with DL models for plant disease detection, providing 
various benefits. 

Ghosal et al. constructed an explainable deep learning 
framework for identifying, classifying, and quantifying plant 
stress [7]. Nagasubramanian et al. deployed a novel 3D deep 
convolutional neural network to leverage the spatial and 
spectral dimensions of 3D hyperspectral images for 
classification, and then utilized saliency maps to visualize the 
most sensitive pixel locations [8]. Brahimi et al. introduced a 
new trainable visualization technique for classifying plant 

diseases, utilizing a Convolutional Neural Network (CNN) 
structure with two deep classifiers, namely the Teacher and the 
Student, where the combined representation of both serves as 
a proxy for visualizing the most important image regions [9]. 
This technique demonstrated superior performance compared 
to existing visualization methods, as evaluated by the area over 
perturbation curve. Arvind et al. developed a pipeline to 
interpret and validate predicted outputs using explainability 
techniques after classifying plant diseases with transfer 
learning on both original and augmented data [10]. Batchuluun 
et al. utilized a convolutional neural network coupled with a 
residual network and incorporated a class activation map to 
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Figure 1. The flowchart of this study. 

 

enhance the performance of plant and crop disease 
classification using thermal images [11]. Wei et al. examined 
the interpretability of different classification models using the 
fruit disease leaves dataset through three experiments: the first 
focused on classifying fruit and pest species, the second 
addressed fruit disease classification, and the third examined 
fruit type classification [12]. Shah et al. enhanced [9] and 
created an architecture called ResTS (Residual 
Teacher/Student), featuring two classifiers and a decoder, 
which serves as both a visualization and classification tool [13]. 
Shoaib et al. introduced a novel explainable gradient-based 
approach, EG-CNN, which integrates gene expression data with 
image data to attain a comprehensive comprehension of plant 
diseases [14]. Thakur et al. developed a hybrid model that 
combines the strengths of a vision transformer with the feature 
extraction capability of convolutional neural networks for 
lightweight disease classification and then evaluated the 
explainability of its predictions [15]. Chhetri et al. proposed a 
generic approach that combines semantic technology and deep 
learning to enhance prediction accuracy and generate user- 
friendly explanations [16]. Ghosh et al. developed a hybrid 
model combining transfer learning and a simple CNN for 
detecting sunflower diseases, using explainability techniques to 
analyze misclassifications by generating perturbations in 
model behavior [17]. Yang et al. introduced a framework for 
classifying and localizing maize leaf spot diseases using weakly 
supervised learning, combining lightweight convolutional 
neural networks with interpretable algorithms to achieve high 
classification accuracy and fast detection speeds, while also 
localizing disease spots [18]. 

These studies collectively enhance the understanding of how 
models classify diseases, uncover potential biases, and validate 
predictions, ultimately leading to more accurate and reliable 

plant disease detection systems. Among these approaches, 
CAM-based methods have been widely adopted due to their 
demonstrated superiority in many studies. Building on this, the 
present study implements a range of CAM-based visualization 
techniques to evaluate localization performance—specifically, 
assessing how well the highlighted regions align with the actual 
diseased areas of the plants as annotated in the dataset.  

3 Materials and methods 

This study aims to evaluate the decision-making processes of 
the models by comprehensively applying various explainability 
methods to deep learning models used in the classification of 
plant diseases. Fig. 1 encapsulates this entire process, 
illustrating the flow from the raw dataset through training, 
model selection, application of explainability methods, and 
finally, the evaluation of the results. This comprehensive 
approach aims to enhance the understanding of model 
decision-making in the context of plant disease classification, 
ultimately contributing to the development of more 
transparent and interpretable deep learning models. 

3.1 Dataset 

High-quality datasets with accurately labelled images are 
critical for training models to recognize and classify plant 
diseases effectively. The diversity of the dataset, encompassing 
various disease types, environmental conditions, and different 
plant species, enhances the model's ability to generalize across 
different scenarios, thereby improving its robustness and 
applicability in real-world settings. Public datasets play a 
crucial role in meeting the needs of deep learning models for 
detecting plant diseases. They provide a valuable resource for  
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Figure 2. Representative images from the FieldPlant 

 

researchers and practitioners, enabling the development and 
benchmarking of models without the necessity for costly and 
time-consuming data collection processes. 

To generate an explainability score, a ground truth is needed, 
so a dataset labelled with bounding boxes was used. The 
FieldPlant [20] dataset was used in this study due to its 
inclusion of plant disease images sourced directly from fields, 
accompanied by manual annotations added to individual leaves 
within each image, overseen by plant pathologists. Field Plant 
originally includes 8629 individually annotated leaves 
spanning 27 disease classes. The impact of class imbalance on 
model training was reduced by filtering out classes with very 
few representations in the existing dataset. Accordingly, classes 
with fewer than 50 examples were excluded from the study. 
Thirteen different classes with 50 or more samples were 
utilized: cassava brown leaf spot, cassava healthy, cassava 
mosaic, cassava root rot, corn brown spots, corn healthy, corn 
streak, corn stripe, corn yellowing, corn leaf blight, tomato 
brown spots, tomato blight leaf, and tomato leaf yellow virus. 
Fig. 2 presents randomly selected example images for these 
classes. For each class, three images are shown that depict 
various health issues and disease symptoms. 

The data for the classification process was divided into training 
and validation sets using a random stratified split to ensure 
class balance. Specifically, 80% of the data was allocated for 
training, while the remaining 20% was reserved for validation.  

The training dataset includes class labels, which are essential 
for teaching the model to recognize different classes. In 
contrast, the validation dataset contains both class labels and 
bounding boxes. This distinction is crucial as it allows for a 
comprehensive evaluation of the model's performance. While 
the class labels enable assessment of classification accuracy, the 
inclusion of bounding boxes facilitates evaluation of the 
model's localization capabilities. This dual evaluation approach 
ensures that the model is not only accurate in identifying 
classes but also proficient in accurately locating the objects 
within those classes. 

3.2 Deep learning models 

CNN is a deep learning architecture designed specifically for 
processing structured grid data such as images. Their 
hierarchical structure of convolutional and pooling layers 
allows them to learn spatial hierarchies in data, making them 
powerful for a variety of tasks in computer vision. The 
development of various CNN architectures has enabled more 
efficient, deeper, and accurate models suitable for diverse 

applications, from mobile devices to large-scale image 
classification tasks [21]. 

There are several types of CNN architecture, each designed to 
address specific challenges or improve performance. To classify 
plant diseases, four deep learning models utilizing CNN 
architecture were employed: EfficientNet, MobileNet, ResNet, 
and ShuffleNet. EfficientNet [25] is designed to achieve 
superior performance by utilizing a compound scaling method, 
which carefully balances network depth, width, and resolution, 
thus improving accuracy while maintaining efficiency in terms 
of model size and computational cost. MobileNet [26] uses 
depthwise separable convolutions, a technique that splits the 
standard convolution operation into two lighter operations, 
drastically reducing computational complexity while still 
allowing the model to capture intricate features. ResNet [27] 
introduced the concept of residual learning, where shortcut 
connections are added between layers, allowing gradients to 
flow more easily during backpropagation. This helps address 
the vanishing gradient problem and facilitates the training of 
very deep neural networks. ShuffleNet [28] employs pointwise 
group convolution and channel shuffle operations to reduce 
computation cost while maintaining accuracy.  

All models were trained on the training set using the 
MMPreTrain [22] framework. The hyperparameter 
configurations used for the models are as provided in Table 2. 
This paper does not aim to demonstrate superior classification 
success but rather to provide a localization evaluation of CAM-
based explainability techniques. Consequently, extensive 
hyperparameter optimization was not conducted for the deep 
learning architectures. They were executed with default model 
training settings, except those specified in the table. 

3.3 Explainability 

Explainability refers to the ability to interpret and understand 
the decision-making processes of deep learning models. 
Various types of explainability methods exist, including those 
that assign importance scores to input features indicating their 
contributions to the model's output, approximate the model 
locally with a simpler surrogate model, or generate rules that 
describe the model's behavior. CAM is a technique used in deep 
learning, particularly in CNNs, to identify and visualize the 
regions of an input image that are most relevant for predicting 
a specific class. CAM helps to understand which parts of the 
image contribute most to the model's decision, thereby 
providing interpretability to otherwise black-box models.  
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Table 2. The hyperparameter configurations. 

Model Backbone Optimizer Learning 
Rate 

Augmentation Batch 
Size 

Epoch 
Number 

EfficientNet EfficientNet B0 AdamW 

0.001 
ShiftScaleRotate 
RandomBrightnessContrast 
RandomFlip 

16 50 
MobileNet MobileNetV2 AdamW 
ResNet ResNet 101 SGD 
ShuffleNet ShuffleNetV1 AdamW 

 

In this study, nine distinct CAM-based methods were employed: 
GradCAM, GradCAM++, HiResCAM, GradCAMElementWise, 
XGradCAM, LayerCAM, EigenCAM, EigenGradCAM, and 
RandomCAM. Grad-CAM operates by computing the gradients 
of the predicted class with respect to the feature maps of the 
final convolutional layer [23]. The gradients are averaged to 
obtain weights for each feature map channel, which are used to 
create a weighted sum of the feature maps. After applying a 
ReLU to retain positive contributions, the resulting heatmap 
highlights the image regions most influential in the model's 
decision. 

To formalize this process mathematically, let us consider how 
Grad-CAM computes its visual explanations. Given an input 
image, the CNN generates feature maps  𝐴𝑘 from a 
convolutional layer. These feature maps are used to compute 
the score 𝑦𝑐  for the target class 𝑐. Firstly, the gradients of the 
score  𝑦𝑐  with respect to the feature maps 𝐴𝑘 are computed. 
These gradients indicate the importance of each feature map 
for the target class. Eq. (1) represents the gradient of the score 
for class 𝑐 with respect to the (𝑖, 𝑗)-th element of the 𝑘 -th 
feature map. The gradients are then globally averaged over the 
spatial dimensions to obtain the importance weights 𝛼𝑘

𝑐  for 
each feature map 𝑘. 𝑍 is the number of pixels in the feature map. 
The importance weights 𝛼𝑘

𝑐  are then used to perform a 
weighted sum of the forward activation maps 𝐴𝑘. The ReLU 
function is applied to the result to ensure that only the positive 
influences on the class score are considered. This produces the 
final GradCAM heatmap 𝐿𝐺𝑟𝑎𝑑𝐶𝐴𝑀

𝑐 , which highlights the regions 
in the input image that are most relevant for predicting class 𝑐.  

𝜕 𝑦𝑐 

𝜕 𝐴𝑖𝑗
𝑘  

 (1) 

𝛼𝑘
𝑐 =  

1

𝑍
 ∑ ∑

𝜕 𝑦𝑐  

𝜕 𝐴𝑖𝑗
𝑘  

𝑗𝑖

 (2) 

𝐿𝐺𝑟𝑎𝑑𝐶𝐴𝑀
𝑐 = 𝑅𝑒𝐿𝑈 (∑ 𝛼𝑘

𝑐

𝑘

𝐴𝑘) (3) 

GradCAM++ is an enhanced version of GradCAM that seeks to 
overcome key limitations of the original method, particularly in 
accurately localizing features and dealing with multiple 
instances of the same class within an image [29]. HiResCAM 
takes a different approach by performing an element-wise 
multiplication of activations and gradients. 
GradCAMElementWise also conducts element-wise 
multiplication of activations with gradients, followed by a ReLU 
operation before summation. XGradCAM scales the gradients 
using normalized activations, effectively weighting the 
gradients by the relative importance of activation patterns. 
ScoreCAM departs from gradient-based methods by adopting a 
perturbation-based strategy. It generates importance maps by 
masking the input image with scaled activation maps and 
measuring the drop in the output score for the target class [30]. 

EigenCAM extracts the first principal component of the 2D 
activations, revealing overall feature importance regardless of 
class discrimination [31]. EigenGradCAM builds upon the 
principles of EigenCAM but reintroduces class-specific 
gradients to infuse the resulting activation maps with 
discriminative information. RandomCAM generates CAMs with 
random uniform values within a specified range for spatial 
activations, providing a baseline for comparison. 

When generating explainability maps, the latest convolution 
block of each model was utilized. This choice is crucial, as the 
final convolutional layers often capture the most abstract and 
representative features relevant to classification tasks. 
According to MMPreTrain model summary, for EfficientNet 
Layer 6, for MobileNet the final convolution block (conv2), for 
ResNet Layer 4, and for ShuffleNet the average of convolution 
and batch normalization layers belonging to Layer 2.3 were 
employed. 

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 =
∑ 𝐿(𝑖.𝑗)∈𝑏𝑏𝑜𝑥

𝑐

∑ 𝐿(𝑖.𝑗)∈𝑏𝑏𝑜𝑥
𝑐 + ∑ 𝐿(𝑖.𝑗)∉𝑏𝑏𝑜𝑥

𝑐  (4) 

Bounding boxes serve as crucial components in training object 
detection algorithms, particularly those designed to ascertain 
the precise locations of objects within images. In this study, 
bounding boxes were used as a key element in the evaluation of 
explainability. Explainability maps were used to derive 
localization evaluation results based on bounding boxes in the 
validation set from an energy-based perspective. Instead of 
solely focusing on the maximum point, the amount of energy 
from the saliency map that overlaps with the bounding box of 
the target object [24] was considered shown in Eq. (4). 

4 Results 

The performance of the deep learning models and the 
effectiveness of the explainability methods are assessed using 
both benchmark classification results and localization 
evaluations. Firstly, the classification performance of each 
model is examined to ensure a fair basis for comparison. To 
compare the classification results, precision, recall and f1-score 
of each model were used. Given that the plant disease detection 
problem under consideration is a multi-class classification, the 
macro f1-score, computed by averaging the f1-scores of all 
classes, was employed for evaluation. 

 

Table 3. Classification results. 

Model precision recall 
macro 
f1-score 

EfficientNet 90.90 88.36 89.17 
Mobilenet 82.48 77.21 78.55 
ResNet 89.29 91.32 90.15 
ShuffleNet 88.68 88.67 88.20 
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Figure 3. (a) training loss and (b) validation f1-scores of models. 

 

As shown in Table 3, ResNet exhibited the highest recall and f1-
score among the models, indicating its superior ability to 
correctly classify positive samples and maintain a balance 
between precision and recall. EfficientNet also performed well, 
particularly in terms of precision, suggesting its effectiveness in 
minimizing false positives. While ShuffleNet produced results 
close to those of previous models, Mobilenet lagged slightly 
behind in all metrics. 

The training loss and validation f1-scores for the deep learning 
models over fifty epochs are provided to observe the learning 
progression of the models and their ability to generalize to new 
data. In Fig. 3(a), the training loss for all models demonstrates 
a general downward trend, indicating effective learning. 
However, variations in stability and convergence rates are 
observed. ResNet exhibits the smoothest decline in loss, with 
consistent learning over time and a low final loss value. 
EfficientNet shows a slightly more fluctuating loss curve 
compared to ResNet, indicating some instability in the training 
process. ShuffleNet struggles with maintaining consistent 
learning and optimization. In Fig. 3(b) presents the validation 
f1-scores, highlighting the generalization capabilities of the 
models. ResNet consistently outperforms the other models. 
EfficientNet also performs well, with a steady increase in f1-
score, closely trailing ResNet. ShuffleNet maintains competitive 
performance, slightly below EfficientNet. MobileNet has not 
produced satisfactory results, as evidenced by its high training 
loss and low validation F1-scores, both of which indicate 
suboptimal model performance and poor convergence. Despite 
its weaker performance, MobileNet was deliberately included 
in the analysis to provide a comparative baseline and to 
examine how explainability methods behave when applied to a 
relatively underperforming model.  

The localization-based explainability proportions of the models 
for each class are given in Tables 4-7. The mean of the nine 
different explainability localization evaluations produced by 
each deep learning architecture for each disease class is given 
in italics in the tables for the highest value. The highest mean 
localization proportion produced by any deep learning 
architecture for each disease class is given in bold in the tables. 

EfficientNet demonstrates the highest mean localization 
proportion for cassava brown leaf spot at 0.78, while tomato 

brown spots exhibit the lowest proportion at 0.48. For 
MobileNet, the class with the highest average localization 
proportion is corn stripe with 0.86, whereas the lowest 
proportion is observed for tomato brown spots with 0.50. 
ResNet shows the highest average localization proportion of 
0.85 for corn stripe, while tomato brown spots have the lowest 
proportion at 0.52. ShuffleNet achieves the highest average 
localization proportion of 0.75 for cassava brown leaf spot, 
while corn yellowing exhibits the lowest proportion of 0.42. 
ResNet has the highest average localization proportions across 
all explainability techniques for all classes except corn stripe, 
with MobileNet leading in this specific class. This indicates that 
ResNet consistently outperforms other models in terms of the 
quality of explanations generated by various CAM-based 
techniques. EfficientNet also tends to produce consistent and 
high localization accuracy across most disease classes. Finally, 
ShuffleNet exhibits the lowest localization performance overall, 
facing particular challenges in certain disease classes. This 
suggests that it may require further optimization to improve. 

Additionally, when explainability and classification 
performance are evaluated together, it becomes evident that 
high classification scores do not always correspond to high 
explainability. For instance, although EfficientNet 
demonstrates strong classification capabilities, its localization 
proportions are relatively low. Conversely, MobileNet, which 
exhibits the lowest classification performance among the 
models, does not produce the lowest localization proportions. 

The localization proportions produced by each explainability 
technique vary depending on the model and class. EigenCAM 
and EigenGradCAM consistently yield high values, with the 
highest localization proportion achieved by MobileNet on the 
corn stripe class, reaching 94% using EigenCAM. On the other 
hand, XGradCAM and RandomCAM produce lower values. The 
lowest localization proportion was observed with EfficientNet 
on the tomato brown spots class, achieving only 26% with 
XGradCAM. This variation suggests that some techniques are 
more effective at accurately highlighting relevant regions 
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Table 4. EfficientNet explainaiblity localization evaluation. 
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cassava brown leaf spot 0.81 0.79 0.82 0.79 0.64 0.81 0.79 0.86 0.71 0.78 

cassava healthy 0.69 0.59 0.69 0.65 0.61 0.66 0.64 0.68 0.58 0.64 

cassava mosaic 0.73 0.66 0.75 0.69 0.54 0.71 0.68 0.75 0.59 0.68 

cassava root rot 0.65 0.49 0.64 0.63 0.45 0.66 0.62 0.74 0.51 0.60 

corn brown spots 0.56 0.57 0.60 0.56 0.45 0.58 0.54 0.63 0.48 0.55 

corn healthy 0.69 0.69 0.61 0.68 0.70 0.68 0.72 0.65 0.71 0.68 

corn streak 0.74 0.72 0.76 0.68 0.58 0.69 0.65 0.74 0.57 0.68 

corn stripe 0.74 0.76 0.76 0.72 0.69 0.73 0.71 0.79 0.70 0.73 

corn yellowing 0.57 0.60 0.66 0.53 0.33 0.55 0.46 0.63 0.42 0.53 

corn leaf blight 0.68 0.63 0.71 0.63 0.53 0.65 0.60 0.72 0.56 0.64 

tomato brown spots 0.51 0.47 0.56 0.50 0.26 0.53 0.44 0.65 0.36 0.48 

tomato blight leaf 0.58 0.48 0.59 0.55 0.42 0.57 0.52 0.59 0.45 0.53 

tomato leaf yellow virus 0.66 0.61 0.79 0.62 0.44 0.66 0.56 0.90 0.43 0.63 

 

Table 5. MobileNet explainaiblity localization evaluation. 
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cassava brown leaf spot 0.84 0.78 0.82 0.82 0.77 0.84 0.91 0.80 0.74 0.81 

cassava healthy 0.74 0.72 0.73 0.72 0.67 0.73 0.74 0.71 0.61 0.71 

cassava mosaic 0.71 0.69 0.69 0.71 0.68 0.72 0.79 0.68 0.63 0.70 

cassava root rot 0.56 0.51 0.51 0.53 0.60 0.54 0.63 0.45 0.42 0.53 

corn brown spots 0.70 0.64 0.64 0.62 0.59 0.64 0.72 0.64 0.56 0.64 

corn healthy 0.76 0.72 0.81 0.75 0.73 0.79 0.71 0.73 0.64 0.74 

corn streak 0.71 0.77 0.77 0.73 0.71 0.75 0.80 0.80 0.63 0.74 

corn stripe 0.92 0.87 0.87 0.84 0.80 0.87 0.94 0.91 0.74 0.86 

corn yellowing 0.53 0.53 0.49 0.49 0.49 0.51 0.63 0.51 0.46 0.52 

corn leaf blight 0.72 0.67 0.68 0.65 0.64 0.67 0.75 0.66 0.58 0.67 

tomato brown spots 0.46 0.42 0.49 0.51 0.43 0.50 0.56 0.69 0.40 0.50 

tomato blight leaf 0.56 0.51 0.51 0.56 0.51 0.55 0.67 0.66 0.51 0.56 

tomato leaf yellow virus 0.52 0.47 0.45 0.54 0.50 0.51 0.79 0.70 0.43 0.54 

 

Table 6. ResNet explainaiblity localization evaluation. 
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cassava brown leaf spot 0.86 0.85 0.85 0.84 0.80 0.85 0.89 0.89 0.74 0.84 

cassava healthy 0.74 0.74 0.74 0.73 0.69 0.73 0.72 0.78 0.65 0.72 

cassava mosaic 0.78 0.77 0.76 0.75 0.68 0.75 0.81 0.84 0.62 0.75 

cassava root rot 0.64 0.63 0.64 0.63 0.59 0.63 0.68 0.75 0.56 0.64 

corn brown spots 0.65 0.64 0.64 0.63 0.61 0.64 0.69 0.71 0.54 0.64 

corn healthy 0.85 0.85 0.85 0.81 0.76 0.83 0.83 0.89 0.68 0.82 

corn streak 0.77 0.77 0.77 0.75 0.73 0.75 0.82 0.82 0.66 0.76 

corn stripe 0.87 0.86 0.86 0.84 0.81 0.85 0.91 0.92 0.74 0.85 

corn yellowing 0.55 0.55 0.55 0.53 0.50 0.54 0.60 0.65 0.44 0.55 

corn leaf blight 0.72 0.72 0.71 0.69 0.64 0.70 0.78 0.79 0.59 0.70 

tomato brown spots 0.51 0.51 0.51 0.49 0.43 0.50 0.65 0.65 0.39 0.52 

tomato blight leaf 0.64 0.64 0.64 0.62 0.56 0.63 0.78 0.77 0.48 0.64 

tomato leaf yellow virus 0.68 0.67 0.69 0.66 0.53 0.67 0.86 0.86 0.53 0.68 

 

Table 7. ShuffleNet explainaiblity localization evaluation. 
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cassava brown leaf spot 0.66 0.76 0.72 0.76 0.76 0.74 0.81 0.78 0.73 0.75 

cassava healthy 0.56 0.67 0.63 0.63 0.61 0.59 0.75 0.68 0.64 0.64 

cassava mosaic 0.57 0.62 0.64 0.65 0.65 0.65 0.71 0.72 0.63 0.65 

cassava root rot 0.46 0.55 0.51 0.52 0.49 0.51 0.49 0.49 0.42 0.49 

corn brown spots 0.49 0.50 0.52 0.54 0.52 0.57 0.44 0.55 0.49 0.51 

corn healthy 0.61 0.57 0.57 0.61 0.60 0.56 0.67 0.74 0.66 0.62 

corn streak 0.62 0.70 0.65 0.65 0.58 0.73 0.53 0.70 0.61 0.64 

corn stripe 0.67 0.71 0.65 0.69 0.70 0.70 0.72 0.72 0.70 0.70 

corn yellowing 0.34 0.32 0.37 0.45 0.41 0.41 0.50 0.57 0.44 0.42 

corn leaf blight 0.54 0.54 0.56 0.59 0.56 0.60 0.54 0.57 0.57 0.56 

tomato brown spots 0.35 0.43 0.44 0.56 0.41 0.63 0.48 0.76 0.38 0.49 

tomato blight leaf 0.42 0.48 0.52 0.53 0.42 0.58 0.39 0.55 0.40 0.48 

tomato leaf yellow virus 0.42 0.57 0.70 0.66 0.50 0.76 0.40 0.75 0.42 0.57 
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Figure 4. Explainability maps for the classes where the models show the highest localization evaluation proportion. 
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Figure 5. Explainability maps for the classes where the models showed the lowest success localization evaluation proportion. 
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within images, regardless of the model or class. These results 
demonstrate the potential of these techniques as valuable tools 
for enhancing the interpretability of deep learning models in 
various classification tasks. 

Explainability maps of randomly selected images from classes 
with the highest and lowest localization evaluation proportions 
for each model are shown in Fig. 4 and Fig. 5. These figures 
highlight the regions of interest identified by each model during 
predictions. The following outcomes emerged from evaluating 
these images based on their localization proportions. 

 Deep learning models capture the colors and textures of 
lesions associated with particular diseases during 
classification, mirroring human decision-making processes. 

 The larger area of the bounding box results in features 
extracted for classification originating from a broader 
visual area (Fig. 4(a), Fig. 4(b), Fig. 4(d)). Consequently, this 
leads to a high proportion for the respective class. For 
example, when most of the image comprises plants 
belonging to the specific anomaly, it contributes to the 
higher proportion. 

 As seen in Fig. 4(c), the high proportion is also related to the 
robustness of the model. Extracting features from the 
correct area in classification ensures a high proportion. 
When the model accurately focuses on the diseased parts of 
the plant, it demonstrates its reliability and robustness in 
disease detection, which is crucial for practical applications 
in agriculture. 

 When features are extracted from inappropriate regions in 
classification, possibly due to bias, it results in a lower 
proportion (Fig. 5(b)). For instance, the model may focus on 
the background or other plants rather than the anomaly 
present in the target plant. This misdirection results in 
inaccurate classifications and diminished model 
performance. 

 Models may generate poor explainability proportion due to 
the presence of characteristic features of the relevant class 
scattered across multiple areas in the image (indicated by 
multiple bounding boxes, Fig. 5(a)). In such instances, while 
features extracted from a smaller area might be adequate 
for classification, the abundance of ground truth areas could 
lead to a decrease in the proportion. For instance, if 
anomalies are present in three different leaves of a plant, 
the model might classify them using only the features 
extracted from a single leaf. This highlights the challenge of 
ensuring that all relevant features are considered for 
accurate classification. 

 The explainability proportion is adversely impacted when 
essential features required for classification are localized 
within a small area (indicated by multiple small bounding 
boxes, Fig. 5(d)). In such scenarios, the model encounters 
difficulties in decision-making, as it grapples with 
identifying the relevant regions, thus compromising its 
robustness. For instance, this occurs when an anomaly in a 
plant is confined to a tiny portion of a leaf. The struggle of 
model to focus on such small, yet critical areas, results in 
lower proportions. 

 Finally, as observed in the example shown in Fig. 5(c), even 
if the necessary features for the classifier are extracted from 
the correct area, the proportion may still be low if the 
ground truth area is a subset of this larger area. For 
example, extracting features from the entire leaf for an 

anomaly located in a smaller area of the leaf. This issue 
underscores the importance of precise localization in 
feature extraction to ensure high explainability proportions 
and accurate disease detection. 

Overall, the size of the bounding box significantly influences the 
explainability proportion—larger bounding boxes typically 
yield higher proportions because they encompass more 
relevant visual features, especially when the majority of the 
image depicts the anomaly. High localization proportions also 
indicate model robustness, as seen when the model focuses 
accurately on the diseased areas, reinforcing its reliability in 
real-world agricultural scenarios. Conversely, when the model 
extracts features from irrelevant regions—due to bias or 
misdirection—the proportion drops, leading to 
misclassifications. In some cases, scattered anomaly features 
across the image lower explainability even if the classification 
is correct, because the model may only use a subset of the 
relevant information. Similarly, when anomalies are confined to 
very small regions, the model struggles to correctly identify and 
extract features, negatively impacting both the proportion and 
robustness. Lastly, even when correct areas are targeted, if the 
model uses a larger-than-necessary region, explainability 
suffers, emphasizing the need for precise localization. 

Although the explanations offer valuable insights, it is 
important to note that their reliability is inherently tied to the 
performance of the underlying model. If the model's accuracy is 
compromised, the explanations may become misleading or 
inconsistent. Consequently, the effectiveness of model 
explanations depends on the model's overall performance, and 
caution should be exercised when interpreting explanations 
generated by suboptimal models. 

5 Conclusions 

By leveraging vast amounts of data, DL models can accurately 
identify and classify a wide range of plant diseases, often 
surpassing traditional methods in speed and accuracy. 
However, evaluating the effectiveness of these models reveals 
that relying solely on classification performance is insufficient. 
This limitation arises from the varied data used for model 
training, which is collected from different devices like 
smartphones and cameras under inconsistent environmental 
conditions. The lack of standardization in real-world scenarios 
leads to disparities in lighting, zoom levels, resolutions, and 
other factors, introducing biases into the dataset. Consequently, 
models trained on such biased datasets inherently reflect these 
biases, ultimately limiting their ability to generalize well to 
unseen data. 

In this paper, the evaluation was expanded beyond 
conventional classification metrics. In addition to assessing the 
models based on their classification performance, CAM-based 
explainability scores were also employed. This process involves 
comparing the explainability maps against the ground truth 
provided by the bounding boxes in the validation dataset to 
assess how accurately the models can localize the areas of 
interest related to plant diseases. By analyzing the localization 
proportions, it becomes possible to not only assess the accuracy 
and reliability of the models' predictions but also to uncover 
flaws or limitations within the dataset itself. This dual 
evaluation process provides a comprehensive understanding of 
the model performance and highlights areas where the dataset 
may need improvement. Potential improvements may 
encompass enriching data collection methodologies through 
the inclusion of more diverse samples, ensuring uniformity in 
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imaging and labeling conditions for consistency, and 
implementing cutting-edge preprocessing techniques to 
further elevate dataset quality. 

This paper highlights the critical importance of incorporating 
explainability metrics into the evaluation framework for deep 
learning models. Doing so offers transparent insight into the 
decision-making mechanisms of the model, thereby enhancing 
trust and understanding among stakeholders regarding the 
results. This transparency enables farmers and agronomists to 
make informed adjustments based on their knowledge and 
local conditions. Moreover, decisions based on model 
predictions can have far-reaching consequences. From 
optimizing crop yields to minimizing pesticide usage and 
conserving water resources, the impact of these decisions 
extends beyond individual farms to broader environmental and 
socio-economic landscapes. Therefore, ensuring the 
transparency and interpretability of deep learning models 
becomes imperative for fostering responsible and sustainable 
agricultural practices. 

The proposed approach not only streamlines the identification 
of potential biases and errors in the detection process but also 
fosters a deeper investigation into how these issues affect 
model performance. 

6 Ethics committee approval and conflict of 
interest statement 

“There is no need for permission from the ethics committee for 

the article prepared.” 

“There is no conflict of interest with any person or institution 

in the article prepared.” 

7 Author contribution statements 

Author 1 contributed to the idea formation, design, literature 
review, result evaluation, and content writing of the article. 

8 References 

[1] da Silveira F, Lerme, FH, Amaral FG. “An overview of 
agriculture 4.0 development: Systematic review of 
descriptions, technologies, barriers, advantages, and 
disadvantages”. Computers and Electronics in Agriculture, 
189, 106405, 2021.  

[2] Albahar M. “A Survey on Deep Learning and Its Impact on 
Agriculture: Challenges and Opportunities”. Agriculture, 
13(3), 540, 2023.  

[3] Saranya T, Deisy C, Sridevi S, Anbananthen KSM. “A 
comparative study of deep learning and Internet of Things 
for precision agriculture”. Engineering Applications of 
Artificial Intelligence, 122, 106034, 2023. 

[4] Ahmad A, Saraswat D, El Gamal A. “A survey on using deep 
learning techniques for plant disease diagnosis and 
recommendations for development of appropriate tools”. 
Smart Agricultural Technology, 3, 100083, 2023. 

[5] Abade A, Ferreira PA, de Barros Vidal F. “Plant diseases 
recognition on images using convolutional neural 
networks: A systematic review”. Computers and 
Electronics in Agriculture, 185, 106125, 2021. 

[6] Ding W, Abdel-Basset M, Hawash H, Ali AM. “Explainability 
of artificial intelligence methods, applications and 
challenges: A comprehensive survey”. Information 
Sciences. 615, 238-292, 2022. 

[7] Ghosal S, Blystone D, Singh AK, Ganapathysubramanian B, 
Singh A, Sarkar S. “An explainable deep machine vision 

framework for plant stress phenotyping”. Proceedings of 
the National Academy of Sciences, 115(18), 4613-4618, 
2018. 

[8] Nagasubramanian K, Jones S, Singh AK, Sarkar S, Singh A, 
Ganapathysubramanian B. “Plant disease identification 
using explainable 3D deep learning on hyperspectral 
images”. Plant Methods, 15, 1-10, 2019. 

[9] Brahimi M, Mahmoudi S, Boukhalfa K, Moussaoui A. “Deep 
interpretable architecture for plant diseases 
classification”. 2019 IEEE Signal Processing: Algorithms, 
Architectures, Arrangements, and Applications, 111-116, 
Poznan, Poland, 18-20 September 2019. 

[10] Arvind C, Totla A, Jain T, Sinha N, Jyothi R, Aditya K, Farhan 
M, Sumukh G, Ak G. “Deep Learning Based Plant Disease 
Classification with Explainable AI and Mitigation 
Recommendation”. 2021 IEEE Symposium Series on 
Computational Intelligence, 1-8, Orlando, USA, 05-07 
December 2021. 

[11] Batchuluun G, Nam SH, Park KR. “Deep learning-based 
plant classification and crop disease classification by 
thermal camera”. Journal of King Saud University-
Computer and Information Sciences, 34(10), 10474-10486, 
2022. 

[12] Wei K, Chen B, Zhang J, Fan S, Wu K, Liu G, Chen D. 
“Explainable deep learning study for leaf disease 
classification”. Agronomy, 12(5), 1035, 2022.  

[13] Shah D, Trivedi V, Sheth V, Shah A, Chauhan U. “ResTS: 
Residual deep interpretable architecture for plant disease 
detection”. Information Processing in Agriculture, 9(2), 
212-223, 2022.  

[14] Shoaib M, Shah B, Sayed N, Ali F, Ullah R, Hussain I. “Deep 
learning for plant bioinformatics: an explainable gradient-
based approach for disease detection”. Frontiers in Plant 
Science, 14, 2023.  

[15] Thakur P S, Chaturvedi S, Khanna P, Sheorey T, Ojha A. 
“Vision transformer meets convolutional neural network 
for plant disease classification”. Ecological Informatics, 77, 
102245, 2023.  

[16] Chhetri TR, Hohenegger A, Fensel A, Kasali MA, Adekunle 
AA. “Towards improving prediction accuracy and user-
level explainability using deep learning and knowledge 
graphs: A study on cassava disease”. Expert Systems with 
Applications, 233, 120955, 2023.  

[17] Ghosh P, Mondal AK, Chatterjee S, Masud M, Meshref H, 
Bairagi AK. “Recognition of sunflower diseases using 
hybrid deep learning and its explainability with AI”. 
Mathematics, 11(10), 2241, 2023.  

[18] Yang S, Xing Z, Wang H, Gao X, Dong X, Yao Y, Zhang R, 
Zhang X, Li S, Zhao Y, Liu Z. “Classification and localization 
of maize leaf spot disease based on weakly supervised 
learning”. Frontiers in Plant Science, 14, 1128399, 2023. 

[19] Toda Y, Okura F. “How convolutional neural networks 
diagnose plant disease”. Plant Phenomics, 9237136, 2019. 

[20] Moupojou E, Tagne A, Retraint F, Tadonkemwa A, Wilfried 
D, Tapamo H, Nkenlifack M. “FieldPlant: A dataset of field 
plant images for plant disease detection and classification 
with deep learning”. IEEE Access, 11, 35398-35410, 2023.  

[21] Karahan T, Nabiyev V. “Plant identification with 
convolutional neural networks and transfer learning”. 
Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 
27(5), 638-645, 2021 

[22] OpenMMLab. “MMPreTrain”. https://github.com/open-
mmlab/mmpretrain (08.10.2024). 

[23] Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, 
Batra D. “Grad-CAM: visual explanations from deep 

https://github.com/open-mmlab/mmpretrain
https://github.com/open-mmlab/mmpretrain


 

14 
 

networks via gradient-based localization”. International 
Journal of Computer Vision, 128, 336-359, 2020. 

[24] Wang H, Wang Z, Du M, Yang F, Zhang Z, Ding S, Mardziel, 
P, Hu X. “Score-CAM: Score-Weighted Visual Explanations 
for Convolutional Neural Networks”. 2020 IEEE/CVF 
Conference on Computer Vision and Pattern Recognition 
Workshops, 24-25, Seattle, USA, 14-19 June 2020. 

[25] Tan M., Quoc L. “Efficientnet: Rethinking model scaling for 
convolutional neural networks”. 2019 International 
conference on machine learning, 1-11, Long Beach, 
California, 9-15 June 2019. 

[26] Sandler M, Howard A, Zhu M, Zhmoginov A, Chen C. 
“MobileNetV2: Inverted Residuals and Linear 
Bottlenecks,” 2018 IEEE/CVF Conference on Computer 
Vision and Pattern Recognition, 4510-4520, Salt Lake City, 
USA, 18-23 June 2018. 

[27] He K, Zhang X, Ren S, Sun J. "Deep Residual Learning for 
Image Recognition," 2016 IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR), 770-778, Las 
Vegas, USA, 27-30 June 2016. 

[28] Zhang X, Zhou X, Lin M, J. Sun, "ShuffleNet: An Extremely 
Efficient Convolutional Neural Network for Mobile 
Devices," 2018 IEEE/CVF Conference on Computer Vision 

and Pattern Recognition, 6848-6856, Salt Lake City, USA, 
18-23 June 2018. 

[29] Chattopadhay A, Sarkar A, Howlader P,  Balasubramanian 
VN. “Grad-cam++: Generalized gradient-based visual 
explanations for deep convolutional networks”. 2018 IEEE 
winter conference on applications of computer vision 
(WACV), 839-847, Lake Tahoe, USA 12-15 March 2018. 

[30] Wang H, Wang Z, Du M, Yang F, Zhang Z, Ding S, Hu X. 
“Score-CAM: Score-weighted visual explanations for 
convolutional neural networks.” 2020 IEEE/CVF 
Conference on Computer Vision and Pattern Recognition 
Workshops (CVPRW), 111-119, 14-19 June 2020. 

[31] Muhammad MB, Yeasin M. "Eigen-cam: Class activation 
map using principal components." 2020 IEEE 
International Joint Conference on Neural Networks (IJCNN), 
1-7, Glasgow, UK, 19-24 July 2020. 

[32] Farjon G, Liu H, Yael E. "Deep-learning-based counting 
methods, datasets, and applications in agriculture: A 
review." Precision Agriculture ,24, 1683-1711, 2023. 

[33] Chakraborty SK, Chandel NS, Jat D, Tiwari MK, Rajwade 
YA, Subeesh, A. "Deep learning approaches and 
interventions for futuristic engineering in 
agriculture." Neural Computing and Applications, 34, 
20539-20573, 2022.

 

 


