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ABSTRACT 
 
 

In this study sigmoid-shaped curves are fitted for steady-state activation and inactivation data of ionic currents 
which are defined in literature to be present in Purkinje cell somata. Marquardt-Levenberg nonlinear least-square 
parameter estimation algorithm is used for curve fitting. Then a somatic compartmental model of Purkinje cell is 
constructed, and somatic membrane potentials are calculated for several different current injection cases. It’s 
shown that means and standard deviations of differences between somatic membrane potentials which are 
calculated with fitted curves and original equations separately are so small.  
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PURKINJE HÜCRESİ SOMASINDA BULUNAN İYONİK AKIMLARIN SÜREKLİ-
HAL (iN)AKTİVASYONU İÇİN UYDURULAN EĞRİLERİN SOMA MEMBRAN 

GERİLİMİ ÜZERİNDE PERFORMANS ANALİZİ 
 
 

ÖZET 
 
 

Bu çalışmada Purkinje hücre somasında bulunan iyonik akımların sürekli-hal aktivasyon ve inaktivasyon datası 
için sigmoid-şekilli eğriler uydurulmaktadır. Eğri uydurmada Marquardt-Levenberg nonlineer enküçük-kareler 
parametre kestirim algoritması kullanılmaktadır. Daha sonra Purkinje hücresinin soma bölmesi modeli 
oluşturulmakta, ve birkaç farklı akım enjeksiyonu durumu için soma membran potansiyeli hesaplanmaktadır. 
Uydurulan eğriler ve orijinal denklemlerle ayrı ayrı hesaplanan soma membran potansiyelleri arasındaki farkın 
ortalama ve standart sapmalarının oldukça küçük olduğu gösterilmiştir. 
 
Anahtar Kelimeler : Purkinje hücresi, Soma, Membran, Aktivasyon, Inaktivasyon 
 
 

1. INTRODUCTION 
 
Purkinje cell is one output neurone of cerebellar 
cortex (Nam and Hockberger, 1997). Dendritic tree 
of rat cerebellar Purkinje cell receives around 
175.000 excitatory inputs from granule cells and 
1500 GABAA inputs from local neurons (Napper 
and Harvey, 1988). Such a large amount of inputs 

indicate that somatic spike activity of Purkinje cell is 
so complex. 
 
It’s reported in literature a number of modeling 
studies for Purkinje cells. Llinas and Nicholson 
(1976), Shelton (1985), and Rapp et al. (1992) 
constructed the model using just passive electrical 
properties of the cell. These models didn’t include 
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voltage-dependent conductances reported recently to 
be present in Purkinje cells. The most 
comprehensive and detailed model of Purkinje cell 
was constructed by De Schutter and Bower (1994). 
The model consisted of 1600 compartments and 
included ten different-type voltage- and 
concentration-dependent ionic currents. In a recent 
study, it’s shown that class-E Ca2+ channels and D-
type K+ channels are present and functioning in the 
Purkinje cell dendrites, and used in the constructed 
model in addition ten ionic channels               
(Tsugumichi et al.,  2001). 
 
In this study, investigation consists of two step. In 
the first step, sigmoid-shaped curves are fitted for 
steady-state activation and inactivation data of ionic 
currents present in Purkinje cell somata. In the 
second step, a compartmental model of Purkinje cell 
somata is constructed, and somatic membrane 
potentials are calculated for several different current 
injection cases. Then means and standard deviations 
of differences between somatic membrane potentials 
obtained using fitted curves and original values 
separately are calculated.  

 
 

2. MATHEMATICAL MODEL OF AN 
IONIC CURRENT 

 
Ionic currents present in Purkinje cell obey 
Hodgkin-Huxley mathematical formalism. In that 
formalism an ionic current channel is assumed to 
have gates which are in one of two states, i.e. open 
or closed state (Aidley and Stanfield, 1996). 
Conductance of an ionic channel is defined with 
Hodgkin-Huxley (Hodgkin and Huxley, 1952) as 
follows : 
 

t)(v,t)h(v,mgt)(v,G qp
XX =            (1) 

 
where m and h show voltage-dependent probability 
of being open state for activation and inactivation 
gates respectively, Xg  is maximal conductance of 
ionic channel, p is the number of activation gates  
and q is the number of inactivation gates. 
 
Transitions between open and closed states are 
modelled with first order differential equations as 
follows: 
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where )(vα  and )v(β  are voltage-dependent rate 
functions which determine speed of transitions from 
one state to the other within the ion gates, and given 
by 
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where a, b, c, d, f  are constants. 
 

)(vm∞  and )(vh∞  are steady-state activation(i.e. 
steady-state open gate fraction for activation) and 
inactivation (i.e. staedy-state open gate fraction for 
inactivation) respectively; )(vmτ  and )(vhτ  are 
voltage-dependent activation and inactivation time 
constants which are the times taken to reach a 
steady-state values respectively; and may be written 
as 
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3. SOMATIC IONIC CHANNELS 
 
It’s reported that fast sodium channel (NaF), 
persistent sodium channel (NaP), T-type calcium 
channel (CaT), A-type potassium channel (KA), 
persistent potassium channel (KM), anomalous 
rectifier channel (Kh), and delayed rectifier channel 
(Kdr) are present in the somata of Purkinje cell 
(Hirano and Hagiwara, 1989; Gahwiler and Llano, 
1989; Kaneda et al., 1990; Reagan, 1991; De 
Schutter and Bower, 1994; Tsugumichi et al., 2001). 
Kinetics of ionic currents used in this study is based 
on the model of the cerebellar Purkinje cell by De 
Schutter and Bower (1994). Constants of rate 
functions are given in Table 1.  

 
 

4. CURVE FITTING 
 
Steady-state activation and inactivation curves of the 
ionic currents have sigmoid-shaped, and are either 
rising from zero to one or falling from one to zero. 
Therefore sigmoid-shaped curves are fitted for 
steady-state activation and inactivation data obtained 
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using Eqn(4-5) based on the parameters given by De 
Schutter and Bower (1994). Marquardt-Levenberg 
nonlinear least-square parameter estimation 
algorithm is used for curve fitting. Fitted curves 
have a general form as follows: 
 

)/sv(v ae1
1a
−−∞

+
=                             (7) 

 
where va is half-activation or half-inactivation 
voltage, and s is slope parameter of curve. The slope 
of the curve at va is proportional to 1/s. If s is 
negative then curve falls from one to zero, and 

positive then curve rises from zero to one. The 
magnitude of s determines the steepness of the 
curve. If  absolute value of s is small then there is a 
steep transition region, while if  it is large then curve 
rises or falls slowly (Willms et al., 1999).  
   
4. 1. Curve Fitting Results 
 
In this section, curve fitting results are given. 
Estimated parameter values for steady-state 
activation and inactivation curves are given in    
Table 2. 

 
Table 1. Constants of the Rate Functions 

Ionic Channel Factor Rate Function a b c d F 
NaF m(=3) α   35000 0 0  0.005 -0.01 
  β     7000 0 0  0.065  0.02 
 h(=1) α       225 0 1       0.08  0.01 
  β             7500 0 0 -0.003  -0.018 
NaP m(=3) α 200000 0 1 -0.018  -0.016 
  β  25000 0 1  0.058   0.008 
CaT m(=1) α    2600 0 1  0.021 -0.008 
  β      180 0 1 0.04  0.004 
 h(=1) α            2.5 0 1 0.04  0.008 
  β     190 0 1 0.05    -0.01 
KA m(=4) α   1400 0 1   0.027    -0.012 
  β     490 0 1 0.03 0.004 
 h(=1) α         17.5 0 1 0.05 0.008 
  β 1300 0 1   0.013    -0.01 
Kdr m(=2) 
 h(=1) 
Kh m(=1) 
KM m(=1) 

 
 

Equations by De Schutter and Bower  (1994) 

 
Table 2. Estimated Parameter Values For Steady-State Activation and Inactivation Curves 

Ion channel Factor va (mV) s (mV) 
NaF m -35.73 ± 3.7e-18 6.67 ± 3.22e-18 
NaF h              -77.33 ± 1.098e-3           -9.251 ± 9.51e-3 
NaP m              -44.89 ± 7.48e-4             6.254 ± 6.5e-4 
CaT m              -45.23 ± 9.38e-4             5.499 ± 8.17e-4 
CaT h              -93.09 ± 2.44e-4            -10.22 ± 2.01e-4 
Kh m                   -82 ± 3.41e-18                   -7 ± 2.94e-18 
Kdr m              -11.61 ± 9.74e-4             11.78 ± 8.14e-4 
Kdr h                   -25 ± 0.00                   -4 ± 0.00 
KM m                   -35 ± 0.00                  10 ± 0.00 
KA m              -39.71 ± 3.09e-3             9.479 ± 2.66e-3 
KA h              -59.56 ± 1.19e-3            -7.619 ± 1.009e-3 

 
 

5. COMPARTMENTAL MODEL OF 
PURKINJE CELL SOMATO 

 
Purkinje cell somata model is constructed using 
compartmental modeling approach. Compartmental 
modeling in which a neuron is divided into small 
parts called as a compartment is derived from linear 
cable theory (De Schutter, 1989). Equivalent 
electrical circuit for the constructed compartment is 

shown in Figure 1. Maximal conductances and 
reversal potentials of ionic channels are given in 
Table 3. Soma compartment is modeled spherically, 
and radius of sphere is taken 29.8 µm. Specific 
membrane capacitance, CM is taken as 0.0164 F/m2, 
specific membrane resistance, RM as 1 Ωm2, resting 
potential as –68 mV, and reversal potential of leak 
current as –80 mV.  
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Figure 1. Equivalent electrical circuit for the constructed compartment 
 
 
Table 3. Ionic Channel Parameters 

Ionic channels Maximal Conductance (S/m2) Reversal Potential (mV) 
NaF 75000 45 
NaP 10 45 
CaT 5 135 
Kh 3 -30 
Kdr 6000 -85 
KM 0.4 -85 
KA 150 -85 

 
 
In Figure 1, current equation is obtained as, 
 

injection
m

m II
dt

dVC =+                                         (8) 

 
where Cm, Vm, Iion, Iinject  represent membrane 
capacitance, membrane potential, sum of ionic 
currents, and injected current respectively. Sum of 
the ionic currents is given by 
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So the change in membrane potential is expressed as 
follows : 
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6. INTEGRATION METHOD 
 
It’s necessary to compute m and h values at each 
time step before calculating of membrane potential. 
Eq. (2) and Eq. (3) have a general form as, 
 

ByA
dt
dy

−=           (11) 

 
where A = α , B = α + β. We use Exponential Euler 
method to obtain the values of m and h for each time 
step. Solution of Eq. (11) for time increment ∆t is 
given as follows (Bower and Beeman, 1998): 
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Substituting A = α , B = α + β into Eq. (12) gives 
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where ∞y  represents steady-state activation or 
inactivation value at present step voltage; y (t) 
represents activation or inactivation value calculated 
at the last step according to Eq. (13). τ represents 
time consant of activation or inactivation at present 
step voltage.  
 
After calculating of m and h values, it’s easy to 
calculate an ionic current with Eq. (1) and Eq. (9). 
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Next step at the integration is to calculate the 
membrane potential according to Eq. (10). The 
expression on the right side of Eq. (10) was 
calculated, so have a constant value. Therefore the 
integration of membrane potential is done with 
Forward Euler method (Bower and Beeman, 1998): 
 

m
mm C

I∆t(t)V∆t)(tV +=+         (14) 

 
 

7. SIMULATION RESULTS 
 
Initial control simulations were run with different 
time increments to determine which time increment 
produced numerically accurate results. Then fixed 
time increment of  10 µs was selected. Different 

magnitude currents are injected into the soma, and 
somatic membrane potentials are calculated. 
Calculations are carried out at two separate steps. In 
the first step, voltage-dependent rate functions,              
α and β, are calculated, and then steady-state values 
of activation and inactivation values are estimated 
using Eq. (5). Finally this calculated values are used 
in Eq. (13) to obtain values of m and h at each 
simulation step. In the second step, steady-state 
values of activation and inactivation are directly 
calculated from the fitted curves given in Eq. (7) and 
Table 2, and the calculated values are used in Eq. 
(13). Means and standard deviations of differences 
between somatic membrane potentials which are 
calculated using original equations and the fitted 
curves separately are shown in Table 3. 

 
 
Table 3. Means and Standard  Deviations of  Differences  Between  Somatic  Membrane  Potentials 

Injected  Current (nA) −
X  Xσ  

0.5 -1.941479e-5 0.031403 
                                 1  6.734906e-5 0.029361 

1.5 -2.654986e-3 0.029552 
                                 2 -3.414407e-3 0.033403 
                                 3 -2.683327e-3 0.031046 

 
 

8. CONCLUSIONS 
 
In this paper, sigmoid-shaped curves are fitted for 
steady-state activation and inactivation data of ionic 
channels present in Purkinje cell somata, and 
somatic membrane potentials are calculated for both 
original equations and fitted curves separately. 
Simulation results show that means and standard 
deviations of differences between somatic 
membrane potentials calculated with both original 
equations and fitted curves separately are so small. 
The results indicate validity of fitted curves. 
Therefore the fitted curves can be used directly in 
the model instead of calculating them from rate 
functions. This will also reduce simulation time 
considerably in models include a large number of 
compartments. 
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