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Abstract  Öz 

The frequency and complexity of DDoS attacks have significantly 
increased with the growth of the internet, posing severe threats to 
network security. Traditional machine learning and deep learning-
based detection systems often face limitations due to their reliance on 
centralized data collection, leading to privacy concerns, high 
computational costs, and challenges in adapting to heterogeneous data 
distributions. This study proposes DDoS_FL, a federated learning-based 
model designed to detect DDoS attacks without requiring data sharing 
between devices. The model has demonstrated effectiveness under both 
Independent and Identically Distributed (IDD) and Non-Independent 
and Identically Distributed (Non-IDD) data distributions while 
preserving data privacy and maintaining high detection accuracy. The 
proposed model is trained and evaluated using the CIC-DDoS2019 
dataset, which includes various types of DDoS attacks. Experimental 
results show that federated learning significantly reduces training time 
compared to traditional centralized approaches while achieving 
detection accuracy ranging from 82% to 97%. Furthermore, the 
scalability of the model is analyzed based on the number of 
participating clients, highlighting the advantages of its distributed 
nature. Comparative analyses confirm that the proposed approach is 
competitive in both privacy preservation and detection performance. 
This study demonstrates that federated learning provides an effective 
solution for detecting DDoS attacks and has significant potential in 
enhancing network security. 

 DDoS saldırılarının sıklığı ve karmaşıklığı, internetin büyümesiyle 
birlikte önemli ölçüde artmış ve ağ güvenliği için ciddi tehditler 
oluşturmuştur. Geleneksel makine öğrenimi ve derin öğrenme tabanlı 
tespit sistemleri, genellikle merkezi veri toplama gereksinimi nedeniyle 
gizlilik ihlalleri, hesaplama maliyetleri ve heterojen veri dağılımına 
uyum sağlama konularında sınırlamalarla karşılaşmaktadır. Bu 
çalışma, cihazlar arasında veri paylaşımı gerektirmeden DDoS 
saldırılarını tespit etmek için federe öğrenme tabanlı bir model olan 
DDoS_FL’yi önermektedir. Model, hem Independent and Identically 
Distributed (IDD) hem de Non-Independent and Identically Distributed 
(Non-IDD) veri dağılımlarında etkinliğini kanıtlamış olup, istemciler 
arasında veri gizliliğini korurken yüksek tespit doğruluğu 
sağlamaktadır. Önerilen model, CIC-DDoS2019 veri kümesi kullanılarak 
eğitilmiş ve farklı DDoS saldırı türlerine karşı test edilmiştir. Deneysel 
sonuçlar, geleneksel merkezi yaklaşımlara kıyasla federe öğrenmenin 
eğitim süresini önemli ölçüde azalttığını ve %82 ila %97 arasında 
değişen tespit doğruluğu elde ettiğini göstermektedir. Ayrıca, istemci 
sayısına bağlı olarak modelin ölçeklenebilirliği analiz edilmiş ve dağıtık 
yapısının avantajları ortaya konmuştur. Karşılaştırmalı analizler, 
önerilen yöntemin hem gizlilik koruması hem de tespit başarımı 
açısından rekabetçi olduğunu göstermektedir. Bu çalışma, federe 
öğrenmenin DDoS saldırılarının tespiti için etkili bir yaklaşım 
sunduğunu ve ağ güvenliğinde önemli bir çözüm olabileceğini ortaya 
koymaktadır. 

Keywords: DDoS attack, Federated learning, Data privacy, Deep 
neural network, Deep learning, Information security 

 Anahtar kelimeler: DDoS saldırısı, Federe öğrenme, Veri gizliliği, 
Derin sinir ağı, Derin öğrenme, Bilgi güvenliği 

1 Introduction 

The use of the internet has significantly increased in recent 
years due to the rapid advancements in information 
technologies, including a growing number of users, higher 
bandwidth capacities, and improvements in networking 
technologies. As a result, there is a possibility that cyberattacks 
may target the internet [1]. One of the greatest threats to 
internet services is Distributed Denial of Service (DDoS). An 
attack type which avoids users from accessing target machine 
is called a denial-of-service attack, such as a server, by 
overwhelming it with requests. A DDoS attack occurs when a 
DoS operation is carried out on multiple machines [2]. The first 
DDoS attack was executed in 1999. It is one of the most 
prevalent and sophisticated online threats. DDoS attacks can be 
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carried out through multiple protocols and at various stages, 
making them difficult to detect [3]. 

Automatic attack detection is achieved through the use of 
machine learning (ML) and deep learning (DL) [4]. Detecting 
and blocking traditional DDoS attacks typically involve 
monitoring network traffic and identifying abnormal traffic 
patterns. However, these methods have some limitations. 
Traditional intrusion detection systems running on a central 
server raise concerns about data privacy. It can also lead to 
scalability issues, as large amounts of traffic must be processed 
at a central point. In addition, the model developed for attack 
detection to produce accurate results depends on the adequacy 
of the data. Therefore, a lack of data leads to poor model 
performance in DDoS detection methods. 

The handling of big data make it necessary to ensure data 
security. To protect data privacy, the General Data Protection 

mailto:acil@marun.edu.tr,%20ozlemyakar@marun.edu.tr,%20b.mahamoud@marun.edu.tr


 

2 
 

Regulation (GDPR), served by the European Union and effective 
as of May 23, 2018, and the Personal Data Protection Law 
(KVKK), implemented in Turkey, are legislative measures 
aimed at addressing people's privacy concerns. These 
measures taken to ensure data privacy are insufficient in 
practical applications, as they only address the legal aspects of 
the issue. Therefore, new technological solutions must be 
developed.  

McMahan and friends suggested a federated learning (FL) 
architecture to protect data privacy from a technological 
perspective [5]. The design specifies that each client transmits 
model parameters to the central server after training the model 
on locally generated data. Each client receives an updated 
model after the server aggregates the models obtained from all 
clients. Since model training occurs locally and only the model 
is transmitted to the server instead of the data, data privacy is 
ensured. Furthermore, as more data becomes available, the 
performance of the trained model improves proportionally. 
Network anomaly detection is another application of FL 
technology, which is increasingly being adopted each day [7]. 

The increasing frequency and complexity of DDoS attacks have 
posed serious security threats to data confidentiality and 
effective detection methods. Traditional centralized systems 
introduce privacy risks during data collection and processing, 
while also facing limitations such as scalability. This study 
proposes a DDoS attack detection model, called DDoS_FL, 
developed on the FL architecture, as a solution to these 
challenges. The model offers an up-to-date and effective 
solution by combining locally trained models from each client 
on the server, while preserving data confidentiality. The aim of 
our work is to present a scalable method for detecting DDoS 
attacks and to develop a more secure solution by addressing 
critical issues such as data confidentiality and model 
performance. The performance of this model is assesed using 
the CIC-DDoS2019 dataset [3] and experimental results are 
presented.  

1.1 Background 

DDoS attacks are among the cyber threats that have existed 
since the early days of the internet, but have become more 
complex and damaging with recent technological 
advancements. These attacks aim to disable targeted systems 
by overwhelming their resources. DDoS attacks pose a 
significant risk to online services, leading to financial losses, 
disruption of business continuity, and decreased user 
confidence [6, 40]. 

While traditional DDoS detection systems rely on a centralized 
data analysis structure, this approach presents several 
challenges, particularly for large and distributed datasets. Legal 
restrictions on data privacy and access to data limit the 
effectiveness of centralized systems. In this context, FL offers a 
privacy-preserving method of model training by keeping data 
local and only sharing model updates. Federated learning 
stands out as an innovative approach in DDoS attack detection, 
better accuracy and scalability of detection models while 
ensuring data privacy. 

Through an assessment of the viability and efficacy of FL-based 
DDoS intrusion detection systems, this work aims to address 
the existing gaps in this field. By evaluating robustness against 
various DDoS attack scenarios, including both Independent 
and Identically Distributed (IID) [38, 39] and Non-
Independent and Identically Distributed (Non-IID) [38, 39] 
data distributions, the proposed methodology seeks to enhance 

attack detection rates while reducing false alarm rates. The 
model’s ability to perform effectively in both data distribution 
scenarios is crucial for ensuring scalability and robustness in 
real-world, heterogeneous environments. 

1.2 Contributions 

This work introduces an innovative approach and 
improvements by using an FL-based DL architecture to detect 
DDoS attacks. Our main contributions are as follows:  

 In this work, we present an FL architecture that 
enables model training without requiring data 
aggregation at a central location, while ensuring data 
privacy. With this method, multiple clients can 
individually train models on local data before 
combining the model parameters on a central server. 

 The FL method significantly reduces model training 
time by 82% to 97% compared to traditional 
methods. This improvement results in substantial 
time and resource savings, especially in applications 
involving large and distributed datasets. Additionally, 
the method proves its effectiveness in both Non-IDD 
data distributions, providing scalability and 
adaptability in real-world scenarios. 

 The developed model is suitable for real-world 
applications in areas such as network security and 
IoT. Furthermore, its ability to work effectively under 
Non-IDD data distributions makes it highly applicable 
to scenarios where data is not evenly distributed 
among clients. 

 A multi-class model is proposed for classifying 
different types of DDoS attacks. 

 Our model performs well on large and updated 
dataset such as CIC-DDoS2019, demonstrating its 
ability to adapt to various data structures, attack 
types, and real-time data distributions, IDD or Non-
IDD. This highlights the robustness and 
generalisability of the model in different 
environments. 

The structure of the article is organized as follows: In the 
second section, studies on DDoS attack detection and FL are 
discussed comprehensively. The third section explains the FL-
based DDoS attack detection model and the methods used in 
this context in detail. The fourth section presents the results, 
where the performance of the developed application is 
evaluated. In the fifth section, the analysis and discussion of the 
findings are provided under the title "Results and Discussion." 
Finally, in the sixth section, the findings are evaluated, and 
suggestions for future studies are offered. This section aims to 
contribute to the direction of current research and inspire 
readers with new research areas.  

2 Related work 

FL is a ML technique that provides major benefits in terms of 
data access and privacy since it trains locally on devices rather 
than requiring data collection in a central location. It lowers the 
possibility of privacy violations while sensitive data stays on 
devices and enables the creation of general models using data 
gathered from various devices. Education, wearable 
technology, finance, healthcare, blockchain and the internet of 
things are just a few of the industries that use FL technology [8], 
which offers solutions to issues like data access and privacy [9].  
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This article discusses the use of FL for DDoS attack detection. In 
this section, past studies on federated learning, federated 
learning with attacks and DDoS attacks in the context of 
federated learning between 2019-2024 are summarised. In 
Figure 1, the distribution of the studies in the related databases 
in the fields of FL, attacks on FL and DDoS attacks in the context 
of federated learning is shown graphically. 

2.1 Past Studies about Federated learning 

Zue et al. developed a model that recognizes Chinese text in 
2019. The aim of the study is to demonstrate the application 
potential of the FL approach through data consisting of textual 
images that need to be preserved. To achieve this, comparative 
experiments are conducted on the PySyft [10] and TensorFlow 
Federated (TFF) [11] frameworks. While previous similar 
studies used alphanumeric libraries or single-character images, 
the proposed model performed text recognition on a larger 
collection of images. The experimental results show an 
accuracy rate of 49.20% with TFF. Additionally, in the 
experiments carried out on the non-distributed dataset, an 
accuracy rate of 54.33% was achieved with TFF [12]. 

 

Figure 1. Graphical representation of the number of studies 
reviewed in the literature. 

 

Jabłecki et al. are performed cloud-based medical image 
analysis using FL techniques. Two Deep Neural Network (DNN) 
models, ResNet50 and EfficientNetB0, are used with 
TensorFlow Federated, PySyft and Flower frameworks to 
facilitate the analysis. Comparative analyses are performed 
between two DNN models and three FL frameworks. 
Experimental results show that EfficientNetB0 outperforms 
ResNet50 in terms of accuracy, regardless of the parameter 
settings. Moreover, the accuracy of EfficientNetB0 are 
improved with an increasing number of local epochs, while 
ResNet50 are reached its highest accuracy with four local 
epochs. In addition, on a single client proposed models in the 
test set showed superior accuracy. All findings emphasize that 
FL is a valuable approach that not only provides a reasonable 
level of computational security, but also allows efficient models 
[13]. 

Yazdinejad et al. are proposed a model for the authentication of 
drones using Radio Frequency (RF) features and the FL method. 
The model, designed with the DNN method, is used together 
with the Stochastic Gradient Descent (SGD) optimization to 
enable the authentication process in drones. In the study, study 
was developed in the PySyft environment by using a dataset 

containing RF data of 1500 Phantom and 1500 Mavric type 
drones. The outcomes demonstrated that the suggested 
approach has higher performance compared to classical ML 
methods, with an accuracy rate of 90.7% [14]. 

Dasari et al. are developed a method using FL architecture to 
prevent unnecessary energy consumption in smart buildings. 
In the study, a DNN model is applied to the American Society of 
Heating, Refrigerating and Air-Conditioning Engineers 
(ASHRAE) [41] dataset. The proposed method requires less 
data compared to similar studies conducted with ML 
algorithms. The ASHRAE dataset created for energy estimation 
consists of three-year data from more than 1000 buildings, 
including building (1449, 6), meter (20216100,4) and weather 
(139773, 9) data. The DNN model consists of a fully connected 
Feed Forward Neural Network (FFNN) with the Rectified 
Linear Unit (ReLU) activation function. The applications are 
implemented using the PySyft and PyTorch libraries in the 
Python programming language. In the experimental phase, 10, 
25, 50, and 100 building data are used to make a comparison 
between the Centralized Learning (CL) and FL methods. 
Accuracy is selected as the evaluation metric. According to the 
experimental results, it can be said that the results obtained 
with FL show better performance [15]. 

Borger et al. are developed an application within the scope of 
FL architecture for the prediction of violent events in patients 
in a psychiatric ward in a simulated environment. The dataset 
[42] is used within the scope of the application is the violent 
event dataset created to assess the risk of violence among 
patients in the psychiatric ward of UMC Utrecht. Since the 
dataset consists of hospital data, FL architecture is adopted 
using Natural Language Processing (NLP) (Doc2Vec) methods 
to train the model with more data without compromising 
patient privacy. Four models are trained and compared for the 
application: two of them local, one of FL and one data-
centralized model. The applications are implemented using the 
PySyft library in Python. F1-score is selected as the 
performance metric. When the models are tested on the 
combined test data the FL model obtained an F1-score value of 
0.388 and the data-centric model obtained an F1-score value of 
0.397. The results show that models trained with FL 
outperform data-centralized learning and have similar 
performance to data-centric models [16]. 

2.1 Attacks and federated learning  

It is challenging to build a robust DL model and guarantee data 
security in intelligent intrusion detection techniques that are 
trained on a single client or central server. An independent and 
identically distributed (IID) approach based on the FL-assisted 
Long Short-Term Memory (FL-LSTM) architecture was 
developed by Zhao et al. as a solution to this issue. 
Convolutional Neural Network (CNN) and Long Short-Term 
Memory (LSTM) algorithms are first compared, followed by 
local LSTM approaches, centralized learning-LSTM (CL-LSTM), 
and centralized learning-CNN (CL-CNN). The study measures 
the success rates of the suggested approach. The dataset 
utilized in the experiments consists of 10,000 command blocks 
(each block containing 50 commands) that involve specific 
attacks such as massive reads, file deletions, directory traversal 
attacks and batch uninstalls. To estimate the model's 
performance, comparisons are made based on F1-score values, 
accuracy, recall, and precision. The evaluation's findings 
indicate that the suggested FL-LSTM approach outperforms the 
others (acc (99.21%), pre (99.19%), rec (99.23%), and F1-
score (99.21%)) [17]. 

38%

34%

28%

Federated Learning

Federated Learning
- Attacks

Federated Learning
- DDoS Attacks
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Singh et al. are aimed to use Artificial Neural Network (ANN) 
based Autoencoder model and FL approach to find anomaly 
events in the data flow. These anomalies can be false or 
malicious entries in the transaction pool. PyTorch models and 
the PySyft library were used in the experimental phase. Two 
unsupervised anomaly detection datasets were obtained from 
the Harvard Dataverse. The experimental results highlighted 
that the federated model outperformed 97% of the full model 
with the F1-score and could classify all anomalies as positive. 
Therefore, it has been argued that this method is a better option 
for in-network anomaly detection [18]. 

Tang et al. suggested a network intrusion detection approach 
based on FL. Experiments were conducted out on the 
CICIDS2017 dataset. The dataset was trained using the Gated 
Recurrent Unit (GRU) DL algorithm. The experiment was 
implemented in Python and the PyTorch 1.3.0 DL framework. 
Experimental findings were evaluated using performance 
measures The performances of the CL and FL methods were 
compared in the simulation environment. According to the 
experimental studies, it was shown that the FL method  

 

Table 1. State of the art works. 

 
Year [Ref.] 

 
Application 

FL 
Architecture 

Method Dataset(s) Key_findings 

2025 [53] 
Fotse et al. 

DDoS attack 
detection in 

SDN 
FedLAD 

FedAVG, 
Astraes, 

Ranking Client 

CICDoS2017, 
CICDDoS2019, 

InSDN 

Deep learning models achieve 98% 
accuracy, but they require longer 
training times and higher resource 
allocation as network scales expand. 

2024 [58] 
Lee et al. 

DBSCAN 
clustering 

based DDoS 
attack 

detection 

FedDB 
FedAvg, 

Fedme, CL, FL 
CICDDOS2019 

The K-means method, with an accuracy 
of 95% for α=0.9 and 97% for α=0.2, 
tends to include outliers in clusters when 
dealing with unevenly distributed data. 

2023 [24] 
Ali et al. 

LR-DDoS 
attack 

detection 
WFL LM, BR,  SCG CAIDA 

The WFL model, utilizing Bayesian 
Regularization, Scaled Conjugate 
Gradient, and Levenberg-Marquardt 
algorithms, achieved 98.85% accuracy in 
detecting Low-Rate DDoS attacks on the 
CAIDA dataset. It stands out as a widely 
adopted approach for intrusion detection 
systems. 

2022 [57] 
Zainudin et al. 

FL-based 
DDoS 

classification 
for security of 

SDN-based 
IIoT networks 

FedDDoS 

FedDDoS, 

CNN, Multi-

MLP, Existing 

CNN-MLP, 

FedAvg 

 

CICDDoS2019 

The FL-based CNN-MLP model 

proposed by Zainudin et al. achieved 

98.37% accuracy in DDoS 

classification with a computation time 

of 3.917 ms on the CIC-DDoS2019 

dataset. Comparisons with various 

models highlight its effectiveness in 

securing SDN-based IIoT networks. 

2022 [21] 

Siracusa & 

D.Corin 

 

DDoS attack 

detection 

 
 

FLAD 

 

FedAvg, FLAD, 

FLDDoS 

 

 

CIC-DDoS2019 

The proposed model attains an F1-score 

between 0.90 and 0.97, yet it lacks a test 

set to assess its performance against 

various attack types. Additionally, the 

FEDAVG method struggles with 

imbalanced and Non-IID data. 

 

 

2021 [22] 

Zhang et al. 

 
 

FL-based 
DDoS attack 

detection 

 
 

FLDDoS 

RNN, MLP, 
CNN, K-

Means-based 
hierarchical 
aggregation 
algorithm, 

data 
resampling 
algorithm, 

FedAvg 

 
 

CICDDoS, 
NLSKDD, 

CICIDS 

The FLDDoS model by Zhang et al. 
achieved 93.26% accuracy on the CICIDS 
dataset and 99.13% accuracy on the 
NLSKDD dataset, improving detection 
performance by 4% compared to 
traditional methods. Using autoencoder-
based RNN, MLP, and CNN models, along 
with K-Means-based hierarchical 
aggregation and SMOTEENN resampling, 
the model effectively handles imbalanced 
data in DDoS attack detection. 
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2021 [23] 
Li et al. 

 
 

DDoS in 
industrial IoT 

 
 

FLEAM 

 
 

IMA, GRU, FL 

 
 

UNSW NB15 

With 98% accuracy, the model faces 
challenges due to the diversity of DDoS 
attacks, the complexity of Industrial IoT 
environments, and the inherent 
limitations of federated learning. 

 
 
 
 

Our Proposed 
Model 

Buyuktanir et 
al. 

 
 
 
 

FL based DDoS 
attack 

approach 

 
 
 
 

DDoS_FL 

 
 
 
 

FL, DL, CIC-DDoS2019 

This paper addresses the limitations of 
traditional ML and DL methods by 
introducing the DDoS_FL model, which 
enables DDoS detection without data 
sharing by providing both high accuracy 
(82-97%) and data privacy. The model 
achieves an F1-score between 0.89 and 
0.99, significantly reduces the training 
time and effectively detects various types 
of DDoS attacks as verified on the CIC-
DDoS2019 dataset. 

achieved nearly the same accuracy as the centralized learning 
method, with an accuracy value of 97.2%. The proposed 
method demonstrates the applicability of the model in network 
intrusion detection while also ensuring data privacy in network 
traffic [19]. 

A privacy-preserving FL (PPFL) solution for Android malware 
detection was developed by Hsu et al. The suggested PPFL 
approach allows mobile devices to work together to train a 
classifier without disclosing private data, including 
authorization settings, application programming interface 
(API) calls, and the local model that every mobile client has 
learned. Secure multi-party computation techniques and 
Support Vector Machine (SVM) are used in the study to build 
the PPFL system. The performance of CL and FL architectures 
in various applications is compared. The experiments 
examined how specific attributes were used across different 
datasets and mobile devices. It can be concluded that the PPFL 
system created using FL achieved a 93% success rate and 
demonstrated strong malware data privacy. This study is the 
first privacy-conscious Android malware detection system built 
on the FL framework [20]. 

FELIDS, a FL-based intrusion detection system, is proposed by 
Friha et al. to ensure the security of agricultural IoT (Agri-IoT) 
networks. The proposed system utilizes three DL techniques: 
CNN, RNN, and DNN-based neural networks. Furthermore, 
models based on CL and FL are compared. Three different 
current traffic datasets are used for the FELIDS system: CSE-
CIC-IDS2018 [55], MQTTset [56], and InSDN. Upon examining 
the experimental results, the FELIDS system applied to all three 
datasets performed better than the results from DL methods, 
but in most cases, it performed similarly to the CL model. For 
the FELIDS system, the corresponding accuracy rates are 
98.63%, 99.71%, and 99.05%. Consequently, it can be 
concluded that, compared to alternative techniques, the 
proposed FELIDS system has the best accuracy in identifying 
attacks [54]. 

2.2 DoS/DDoS attacks and federated learning  

The research indicates that DDoS attack detection is another 
application of FL methods. These methods are employed to 
trace the attack's origin and identify irregularities in network 
data. 

In the study prepared by Siracusa and Doriguzzi-Corin in 2022, 
the FLAD (Federated Learning Adaptive to DDoS Attack 
Detection) system is presented for the detecting of DDoS 

attacks using distributed ML techniques. This new method 
detects DDoS attacks in the network by creating a training 
model without collecting data from multiple devices in a central 
location using the FL technique. FLAD is applied to the 
CICDDoS2019 [43] DDoS attack dataset created by the 
Canadian Cyber Security Institute. It consists of several days of 
network activity, benign network traffic, and 13 different DDoS 
attack types. In the FLAD system developed within the scope of 
the study, an F1-Score value between 0.90 and 0.97 (average 
0.9667) is achieved. This work aims to advance the field of 
network security, particularly by using distributed ML 
techniques [21]. 

Zhang et al. conducted the FL-based FLDDoS model for DDoS 
attack detection. This model is based on the combination of 
various features (e.g., number of TCP SYN packets, UDP traffic 
sent to the target, etc.) for DDoS attack detection, and the 
learning algorithm detects attacks using these features. 
Autoencoder-based RNN, MLP, and CNN models are used to 
automatically extract features in the proposed model and 
improve its performance. The datasets used in the experiments 
are CICDDoS [44], NLSKDD [45], and CICIDS [46]. Since the data 
distribution in the datasets used for attack detection is 
unbalanced, a K-Means-based hierarchical aggregation 
algorithm and the SMOTEENN [47] data resampling algorithm 
were used as a solution to this problem. In addition, the 
proposed FLDDoS model is compared with the Federated 
Averaging (FedAvg) [48] algorithm. The experimental findings 
show that the suggested model gets accuracy rates for the 
CICIDS and NLSKDD datasets were 93.26% and 99.13%, 
respectively., and demonstrates good detection performance in 
attack detection. The results show that the proposed FLDDoS 
model increases the accuracy by 4% compared to traditional 
methods [22]. 

Li et al. proposed a new architecture called FLEAM against 
DDoS attacks by combining FL architecture and fog/edge 
computing in IIoT devices. In this architecture, Iterative Model 
Averaging (IMA)-based GRU models are developed to overcome 
various attacks emerging in IIoT. The IMA-GRU model performs 
accurate detections on distributed data. The UNSW NB15 
dataset [49] is used for the applications. Compared to classical 
solutions, the proposed FLEAM architecture has about 72% 
lower DDoS attack mitigation time, while achieving about 47% 
higher DDoS attack mitigation accuracy. Finally, the evaluation 
of the IMA-GRU model shows that the accuracy in DDoS attack 
detection based on the UNSW NB15 dataset is about 98% on FL, 
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which is almost the same as the accuracy achieved with 
centralized training [23]. 

The Weighted Federation Learning (WFL) model is suggested 
by Ali et al. for the identification of Low Rate-DDoS (LR-DDoS) 
attacks. To ensure the success of the proposed model, three 
distinct ANN training procedures were employed which 
Bayesian Regularization (BR), Scaled Conjugate Gradient (SCG) 
and Levenberg-Marquardt (LM) algorithms. The tests were 
conducted using the CAIDA dataset [50]. The applications used 
MATLAB 22 software. With a classification accuracy of 98.85%, 
the WFL model is the most used model approach for intrusion 
detection systems, according to the test results [24]. 

Fotse et al. proposed a FL scheme named FedLAD for the 
detection of DDoS attacks in large-scale Software-Defined 
Networks (SDN). The accuracy assessment for DDoS attack 
detection in the FedLAD approach is performed with three 
different aggregation techniques: FedAVG, Astraes, and 
Ranking Client techniques. These techniques are used to 
combine the new models participating in the FL process. The 
FedLAD scheme is evaluated on the CICDoS2017 [51], 
CICDDoS2019, and InSDN [52] datasets. Oracle VirtualBox 
Manager 6.0 is used to simulate the experiment. The 
experimental results show that the proposed FedLAD method 
has an accuracy of approximately 98% (FedAVG: 92.62%, 
Astraes: 97.54%, Ranking Client: 97.64%) across all three 
techniques compared to related studies. This work presents a 
new technique for DDoS attack detection in SDN using the FL 
approach [53]. 

Zainudin et al. proposed a unified model addressing FL-based 
DDoS classification to ensure the security of SDN-based IIoT 
networks. In the study, comparisons are made using FL-based 
Chi-square FS and FL-based feature selection (FS) techniques, 
along with the Pearson correlation coefficient (PCC). In 
addition, the FedAvg algorithm is used to calculate the training 
parameters collected from SDN. An FL-based CNN-MLP model 
is also proposed for DDoS classification. Applications for DDoS 
attack detection are carried out on the CICDDoS2019 dataset. 
Comparisons are made with CNN, Multi-MLP, Existing CNN-
MLP, and the proposed FedDDoS models for FL-based DDoS 
classification. Analyzing the results reveals that a calculation 
time of 3.917 ms yields an accuracy of 98.37% [57]. 

Lee et al. proposed a personalized FL-based DDoS attack 
detection model using the DBSCAN clustering (FedDB) method. 
LSTM models are combined with the FL framework FedMe 
framework [59] for model training; DBSCAN clustering is used 
for model clustering and modification. In this model, DBSCAN 
clustering improves the overall detection accuracy by 
addressing data distribution imbalances and also enhances the 
proposed method. The CICDDOS2019 dataset is used for the 
evaluation of the proposed approach. When alpha = 0.2 in the 
dataset, certain DDoS attack types are not included in the data 
of each client. On the other hand, when alpha = 0.9, they are 
included as DDoS attack types in the data of each client. 
According to the experimental results, when the performance 
evaluation of the proposed FedDB model using FedAvg, FedMe, 
CL, and FL methods is examined, when alpha = 0.9, the FedDB 
method showed accuracy values of 0.95, and when alpha = 0.2, 
the FedDB method showed accuracy values of 0.97. As a result, 
the proposed FedDB approach protects data privacy by 
increasing model accuracy as a solution to data distribution 
imbalances in DDoS attack detection [58]. 

Table 1 presents a comparison of the functionality provided by 
literature solutions and current studies. This study aims to 

overcome the limitations of traditional ML and DL techniques, 
such as privacy risks and insufficient training performance due 
to the necessity of centralized data collection. The DDoS_FL 
model was developed as a FL-based architecture, enabling the 
detection of DDoS attacks without requiring data sharing 
between devices. Its most important difference compared to 
the existing literature is that it provides high accuracy (82 to 97 
percent) along with the data privacy preservation feature and 
significantly reduces training times. Experiments conducted 
with the CIC-DDoS2019 dataset show that the model can 
successfully detect various types of DDoS attacks. This study 
aims to introduce the FL approach to the literature as a 
promising solution for effective DDoS attack detection while 
preserving data privacy.  

The use of FL techniques against DDoS attacks helps make the 
learning models used to detect the attack more up-to-date and 
accurate. In addition, FL also helps protect distributed data and 
provides better scalability, as it does not require a central 
server. According to literature research, FL techniques are seen 
as a promising method for developing defense mechanisms 
against DDoS attacks. However, more research needs to be 
conducted, and further testing of how the techniques work in 
real-world scenarios is required. 

3 Proposed approach 

This section contains the detailed methods of the model 
developed for detecting DDoS attacks using the FL method .FL 
is a distributed learning approach that provides training on 
local devices instead of a central server to protect data privacy. 
The goal of this work is to create a more safe and scalable 
approach for identifying DDoS attacks using FL.  

3.1 Dataset and data preprocessing 

Before the model training, preprocessing steps were performed 
on the raw dataset. In order to implement the DL model, the 
ready dataset is first loaded into the system. 

Within the scope of the study, the DDoS Evaluation Dataset 
(CIC-DDoS2019), an up-to-date and well-designed dataset 
shared by the Canadian Institute for Cybersecurity, was used to 
detect DDoS attacks and classify attack types [3]. 

The CIC-DDoS2019 dataset consists of a total of 79 attributes 
(columns) and 431,371 (rows) observations. Two datasets 
were derived from the raw dataset to be used in Binary 
Classification (BC) and Multiclass Classification (MC). The BC 
dataset was used for DDoS attack detection, and the MC dataset 
was used for DDoS type classification. 

First, 12 features that were deemed unnecessary due to their 
lack of contribution to model training were removed from both 
datasets. The deleted attribute names are: "FIN Flag 
Count","Bwd PSH Flags", "ECE Flag Count", "Fwd URG Flags", 
"Bwd URG Flags",  "PSH Flag Count", "Bwd Avg Packets/Bulk", 
"Fwd Avg Bytes/Bulk", "Fwd Avg Packets/Bulk", "Fwd Avg Bulk 
Rate", "Bwd Avg Bytes/Bulk" and "Bwd Avg Bulk Rate". As a 
result, a total of 67 features remained in the raw dataset. 

The "Label" and "Class" attributes in the raw dataset serve as 
identifiers for the BC and MC datasets, respectively. The "Class" 
attribute contains values of 0 and 1, while the "Label" attribute 
contains 17 different DDoS types and the "Benign" value. 
Subsequently, the BC dataset was created first, followed by the 
MC dataset. 

Since the BC dataset was created to detect attacks on network 
traffic, the "Class" attribute was used as the target variable in 
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the models trained with this dataset. In the dataset, "Benign" is 
labeled as "0", and other attacks are labeled as "1". Table 2 
shows the distribution of the "Class" attribute in the BC dataset. 

Table 2. Class names and numbers in the BC dataset. 

Class Count 
Bening / "0" 97831 

Attacks / "1" 333540 

 

Table 2 shows that the different "Class" values are unbalanced 
in the dataset. The "Label" attribute in the raw dataset contains 
information about "Benign" and "DDoS types". If the "Label" 
value is 0, the "Class" value is definitely 0. For other values that 
the "Label" takes, the "Class" value is definitely 1. In this case, 
the other attributes in the dataset have no significance or effect. 
A prediction model built on this data could make a decision 
about the "Class" simply by looking at the "Label" attribute. To 
avoid this issue, the "Label" attribute was also removed from 
the BC dataset. 

Thus, the models created with the BC dataset (Models 1, 2, 3, 4, 
5) were trained using the remaining 66 features, with 65 
features as independent variables and 1 feature as the target 
variable. 

Since the MC dataset was created to classify DDoS attack types, 
the "Label" attribute was used as the target variable in the 
models produced with this dataset. The "Label" attribute was 
converted into a column containing numeric values from 0 to 
17 using Label Encoding. "Benign", which represents normal 
traffic in the dataset, is labeled with a value of "0". The dataset 
contains 17 different attack types, which are labeled from "1" 
to "17". The "Class" attribute was not removed from the MC 
dataset. The value of the "Class" attribute is 0 when the "Label" 
value is also 0. In this context, the "Class" attribute provides 
important information for predicting one of the multiple 
classes. 

In other words, when the "Class" attribute takes the value 0, a 
corresponding class of the "Label" is determined. However, 
when the "Class" attribute takes the value 1, the value of the 
"Label" cannot be determined by looking at the "Class" attribute 
alone. Therefore, the "Class" attribute is not removed from the 
MC dataset, as it carries partial information. 

 

Thus, the models created with the MC dataset (Models 6, 7, 8, 9, 
10) were trained using the remaining 67 features, with 66 
features as independent variables and 1 feature as the target 
variable.  

Figure 2 shows the names of the attack types in the MC dataset 
and the number of occurrences of each in the dataset. As seen 
in Figure 2, the attack types are unbalanced in the dataset. 

In both datasets, Z-Score Normalization (Standardization) [25] 
process was applied, which transforms the values in the 
columns of the attributes other than the target variables into a 
standard distribution using the mean and standard deviation. 
Thus, different scales and distributions in the dataset were 
eliminated and it was aimed to improve the model 
performance. After all these preprocessing steps were 
completed, the datasets were made ready for the training of the 
model. 

3.2 Federated learning 

FL, which has recently gained popularity in the field of ML, is 
used in scenarios where data does not need to be collected in a 
central location due to privacy and security concerns [26]. After 
training models on their local datasets, data owners (clients) 
distribute the modified parameters of the learned models with 
a central server. In this method, data owners can contribute to 
the final model generated on the server without sharing their 
data. FL is suitable for and used in many application areas that 
require security and confidentiality, such as financial data, 
customer data, and patient data [27]. Figure 3 illustrates the 
working architecture of both the classical learning method and 
the FL method for systems with clients and servers. In Figure 3, 
the model training steps for both methods are numbered. 

In the conventional technique, clients send their data to the 
server in the first phase, the server uses the incoming data to 
train the model in the second phase, and the trained model is 
then distributed to each client in the third phase. For the FL 
method; The first step is model training with the data on the 
clients, the second step sending the models to the server, the 
third step is the merging of the models on the server, and the 
fourth step is the distribution of the current model to the 
clients. Proposed models were trained and their performances 
were compared by using the DDoS dataset, classical method, 
and FL method. 

 

 

Figure 2. Distribution of attack types in the Label attribute of the MC dataset. 
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Figure 3. The working architecture of classical learning method 
and FL method. 

3.3 DDoS_FL  

Within the scope of the study, a DDoS attack detection model 
named DDoS_FL based on FL architecture was designed. Since 
the FL architecture is implemented in systems with clients and 
server, the success of DDoS_FL models according to different 
client numbers is measured by comparing them with the model 
developed using the classical learning method. All models are 
developed with DNN models.  

Virtual clients/devices were created in the simulation used to 
set up the DDoS_FL architecture. To observe the operation with 
different client numbers, the operations were repeated for 
client numbers assumed to be 5, 10, 50, and 100. In model 
training, the BC and MC datasets, obtained by editing the CIC-
DDoS2019 dataset, were used. Firstly, the aim was to distribute 
the data evenly across the clients, each of which was evaluated 
individually, assuming the numbers to be 5, 10, 50, and 100, 
respectively. To achieve this, 371 samples were removed from 
the entire dataset, reducing the total number of data points 
from 431,371 to 431,000. The 371 extracted samples were set 
aside as test data. Then, 10% of the 431,000 data points were 
reserved as test data. Thus, a total of 10% + 371 data points 
were used for testing. The data allocated for training were 
equally distributed among 5, 10, 50, and 100 users. In the 
simulation environment, firstly, since observations will be 
made using the IID data distribution, the data are equally 
distributed. For the Non-IID data distribution, a total of 10% 
plus 371 data points were used for testing purposes. The 
training data was divided into three repeated distributions with 
different proportions between 5, 10, 50 and 100 clients and the 

results obtained under these different distributions were 
analysed.  

Data distribution to virtual clients is done using TensorFlow 
[28]. The records in the training data are assumed to be 
generated on different clients to ensure an IID data distribution 
and are randomly partitioned based on the number of clients. 
For instance, if the number of clients is five, the training data is 
randomly divided into five equal parts. To achieve a Non-IID 
data distribution, 80% of the classes in the data are randomly 
distributed within the same class, while 20% are assigned to 
different classes. In other scenarios, 65% of the classes are kept 
within the same class, and 35% are distributed across different 
classes, in another case, 50% are the same while the other 50% 
are assigned to different classes. Additionally, the data owned 
by users in each round is mixed. In each round, nearly different 
data is assigned to each user. Thus, a simulation environment is 
created in which devices regenerate data and reproduce 
models with that data, aiming to closely resemble real-world 
conditions. 

On the other hand, time measurements were taken in each 
round. After the rounds were completed, the total time spent by 
the model was calculated, allowing for comparison with other 
models and non-federated models. 

3.4 Model architectures, systems used and libraries 

Experiments are processed on Windows 10 OS, an Intel Core i7-
12650H CPU 2.30 GHz processor, 16GB RAM, 512GB SSD, and 
an NVIDIA GeForce RTX 3060 Laptop GPU. Jupyter Notebook 
was chosen as the development environment, and Python 3.10 
was used as the programming language. For the DL model, an 
experimental environment was set up using the libraries 
TensorFlow [28], Keras [29], Pandas [30], and Scikit-learn [31]. 

For BC and MC, two models were developed primarily using the 
classical approach, without the FL approach. These are Model 1 
and Model 6. Then, the versions of these models created with 
the FL approach (Models 2, 3, 4, 5, and Models 7, 8, 9, 10) were 
compared with Model 1 and Model 6. Two separate DL 
architectures were designed for binary and multiple 
classifications. The DL architecture used for BC is called Binary 
Architecture Deep Neural Network (BA-DNN), and the DL 
architecture used for MC is called Multi Architecture Deep 
Neural Network (MA-DNN). 

There are 65 neurons in the input layer of the BA-DNN 
architecture. Each of these neurons corresponds to an attribute 
in the dataset that the model will take as input. The ReLU 
activation function is used in the input layer. It converts values 
below zero to zero, while leaving values above zero unchanged 
[32]. This function is generally preferred in DL models because 
it speeds up the training process and requires less computation. 
BA-DNN has two hidden layers, each containing 35 neurons and 
the ReLU is used. Additionally, the dropout technique was 
applied to each hidden layer to prevent overfitting [33]. 
Dropout sets the activations of randomly selected neurons in 
the specified percentage (0.3 in this example) to zero. Finally, 
there is a single neuron forming the output of the model. Here, 
the sigmoid activation function is used [34]. The sigmoid 
function converts the model's output to a value between 0 and 
1. This function is generally used in binary classification tasks 
because it guarantees that the model’s output can be 
understood as a probability value. Figure 4 shows the BA-DNN 
architecture. 
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Figure 4. BA-DNN architecture. 

MA-DNN shows similarities to BA-DNN architecture in many 
ways. There are 66 neurons in the input layer. The neurons in 
the input layer correspond to each seperate variable in the 
dataset to be used for MC. The ReLU is used in the input layer 
as an activation function.  

As in BA-DNN, there are two hidden layers, each containing 30 
neurons. Again, after each hidden layer, the dropout technique 
was applied to prevent overfitting. The dropout rate is set to 0.1 
in this architecture. Finally, there are 18 neurons that form the 
output of the model. The softmax activation function is used 
here [34]. It converts each input item into a range of 0 to 1. It is 
generally used in multiclass classification problems to convert 
the outputs in the last layer into class probabilities. was utilized 
as an optimizer for both datasets to minimize the model's loss 
function and speed up the training process by updating the 
parameters [35]. Figure 5 shows the MA-DNN architecture. 

 

Figure 5. MA-DNN architecture. 

4 Experimental results 

This section discusses the experimental setup for the model 
created using the FL method for DDoS attack detection and 
classification, the evaluation criteria for the outcomes, and the 
experimental results of testing the developed DNN model on 
the dataset in question according to IID and Non-IID data 
distribution. 

Accuracy, precision, recall and F1-score measures are carried 
out in this study to get the performance of model. These 
metrics, commonly used in the literature, give a complete 
evaluation of the model's classification performance [26, 36, 
37]. Particularly in an FL design where the data distribution 
may be uneven, each of these measures emphasizes distinct 
aspects of the model and is crucial for ensuring its reliability. 
Sensitivity shows how well the model detects all positive cases, 
accuracy indicates overall success, precision measures how 
well the model controls false positives, and F1-Score shows 
how well precision and sensitivity are balanced in positive 
predictions.  

The model developed with classical learning and the models 
developed with FL were compared. Table 3 shows the designed 
model information and comparison results. When the results in 
Table 3 are examined, in identifying the existence of DDoS in 
the network, for BC, it was observed that the performance of 
the model trained with the traditional method (Model 1) and 
the models trained with the FL method (Models 2 and 3) had 
the same accuracy. When the metrics of Models 4 and 5, where 
the number of users is higher, are examined, it can be concluded 
that the FL method slightly reduces the model performance 
compared to the classical method. However, since this decrease 
is 1/1000, it is a reduction that can be ignored, considering the 
advantages of FL. For MC, the performance of the classical 
model (Model 6) and the other FL-based models (Models 7, 8, 
9, and 10) were very close to each other, although there was a 
slight decrease. It is not unusual for federated models to be 
somewhat less efficient than classical learning models in 
general.  

When the DDoS types in the dataset used for MC are examined, 
it is observed that there are 17 different types, which are 
unevenly distributed in the dataset. This imbalance led to a 
decrease in the performance of the MC models. Among of this 
some DDoS types have very few data points in the dataset. For 
example, while there are 121,368 data points belonging to the 
DDoS type named DrDoS_NTP, there are only 51 data points for 
the DDoS type named WebDDoS. It is likely that the trained DL 
model cannot effectively learn the characteristics of DDoS types 
with a small number of data points, leading to incorrect 
predictions. 

According to Table 3, the confusion matrix for the optimal FL 
models Model 2 for BC and Model 7 for MC are presented. The 
confusion matrix for Model 2 and Model 7 are seen in Figure 6 
and Figure 7 seperately. These visualizations offer a detailed 
overview of the classification performance for each respective 
model. 

 
Figure 6. The Model 2 confusion matrix. 

 

Figure 7.  The Model 7 confusion matrix. 

 

Table 3. Evaluation of the models trained on the CIC-DDoS2019 dataset. (IID)
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BC: Binary Classification, MC: MultiClass Classification, Fed: Federated Approach, 

BA-DNN: Binary Architecture Deep Neural Network, MA-DNN: Multi Architecture Deep Neural Network. 

 

When the model training times in both datasets are evaluated, 
it is seen that all FL-based models are shorter than the training 
times in the models developed with the classical method. Figure 
8. Shows the variation of the training times according to the 
number of users of the FL-based models for the BC and MC 
datasets. 

 

Figure 8. The variation of the training times according to the 
number of users of the FL-based models for the BC and MC 

datasets. (IID) 

In this study, three different comparable scenarios are 
constructed in order to systematically analyse the impact of 
Non-IID data distribution on federated learning. Theoretically, 
many different Non-IID scenarios can be designed. However, 
testing all possibilities would not only exceed the study time, 
but also make it difficult to compare the results. Therefore, for 
the purpose of interpreting the Non-IID effect, three scenarios 
with a gradual change in the class distribution were determined 
for a balanced and comparable structure. 

In the first scenario, 80% of each client's data was randomly 
distributed from a single class and the remaining 20% from 
other classes. In the second scenario, this was reduced to 65%, 
so that clients were exposed to more class diversity. In the last 
scenario, the classes were distributed completely evenly (50% 
from a dominant class and 50% mixed from other classes), 
creating a more balanced structure in the training process of 

the clients. This configuration allows a direct comparison of the 
impact of different data distributions on federated learning to 
understand the progressive impact of the Non-IID level. Using 
the same model architectures for each scenario, we retrained 
with clients with different data distributions and analysed the 
results in detail. This approach contributes to the step-by-step 
evaluation of the impact of different Non-IID structures on 
model performance and to understand how different situations 
affect the federated learning process. 

The experimental results in Table 4 clearly demonstrate the 
effects of the Non-IID data distribution on federated learning. 
In the binary classification (BC) task, the effect of Non-IID is 
quite low. One of the most important reasons for this is that the 
BC problem is a somewhat simpler task. Since the model only 
needs to discriminate ‘is there an attack or not?’, even users 
with a predominance of a single class do not affect the overall 
model much. Therefore, even in the Non-IID system for BC, the 
accuracy and other metrics are quite close to the IID system.  

On the other hand, in the multiple classification (MC) task, the 
effect of Non-IID was much more pronounced. While the 
accuracy was 0.920 for 5 users in the IID system, it decreased 
to 0.802 in the Non-IID system. This is mainly due to the fact 
that some of the clients focus heavily on a single class. When the 
centralised model combines these imbalanced learnings during 
the training of federated learning, some classes are learned 
extremely well, while others are hardly learned at all. As a 
result, for small numbers of users, the Non-IID effect further 
destabilised the overall balance of the model. The decrease in 
F1-score supports this. The decrease in F1-score indicates that 
the false positive rate and false negative rate of the model 
increased in some classes. 

However, as the number of users increased, the generalisation 
ability of the central model increased and the accuracy 
increased. For example, the Non-IID model with 100 users 
experienced an accuracy decrease of only 0.02 compared to the 
model with 100 users in the IID system (IID: 0.912, Non-IID: 
0.892). This is due to the fact that with 100 users, the 
centralised model is able to get information from a wider  

Table 4. Evaluation of Non-IID models trained on the CIC-DDoS2019 dataset with 80% of the classes in the data being the 

same and 20% randomly distributed as other classes. 

No Model Architecture Users Epochs/Rounds 
Elapsed 

Time(s) 
Accuracy Precision Recall 

F1-

score 

1 Non-Fed + BC 

BA-DNN 

1 10 84.35 0.997 0.999 0.997 0.998 

2 Fed + BC 5 5 9.44 0.997 0.999 0.997 0.998 

3 Fed + BC 10 6 6.78 0.997 0.999 0.996 0.998 

4 Fed + BC 50 5 2.73 0.996 0.998 0.996 0.997 

5 Fed + BC 100 6 2.84 0.996 0.998 0.996 0.997 

6 Non-Fed + MC 

MA-DNN 

1 10 82.03 0.932 0.954 0.932 0.916 

7 Fed + MC 5 7 14.63 0.920 0.944 0.920 0.901 

8 Fed + MC 10 7 7.53 0.919 0.942 0.919 0.902 

9 Fed + MC 50 7 5.12 0.912 0.921 0.912 0.891 

10 Fed + MC 100 12 8.06 0.912 0.909 0.912 0.891 
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perspective of different clients and thus generalise. The effect 
of clients focusing too much on a single class during the 
federation process is balanced with the data from more clients, 
allowing the model to learn more comprehensively [60]. 

It is clearly seen that Non-IID increases the training time for 
small numbers of users. Especially for 5 and 10 users, while the 
training time was 14.63 and 7.53 seconds in the IID system, it 
increased to 24.13 and 10.98 seconds in Non-IID. The reason 
for this is that the model makes more errors in weight updates 
during the federation process and requires more rounds due to 
the high differences between local models. However, the 
training times for 50 and 100 users were almost the same as 
IID. This is due to the fact that updating the centralised model 
becomes more stable as the number of clients increases. When 
there are many clients, the impact of the data of different users 
becomes more balanced and the negative impact of Non-IID is 
reduced [61]. 

When the accuracy values of Models 7, 8, 9 and 10 are analysed, 
it is observed that the accuracy increases as the number of 
users increases. In Model 7 (5 users) the accuracy was 0.802, in 
Model 8 (10 users) 0.849, in Model 9 (50 users) 0.885 and in 
Model 10 (100 users) 0.892. In other words, the accuracy of the 
model gradually increased as the number of users increased. 
The main reason for this increase is that as the number of users 
increases, the negative effects of the Non-IID distribution are 
eliminated. In the first scenario, 80% of each user's data is 
randomly selected from a single class and 20% is randomly 
selected from other classes. With a small number of users, the 
centralised model performed unbalanced learning due to some 
clients over-focusing on certain classes. Especially in Model 7 
(5 users), since there were very few clients, the class imbalance 
of each client severely affected the overall performance of the 
model. This resulted in the model generally learning some 
classes very well but ignoring others, and the accuracy dropped 
significantly. As the number of users increased, the centralised 
model combined data from more clients and was better able to 
balance between different classes. 

Another reason is that the FedAvg algorithm can perform a 
more balanced update as the number of users increases [62]. 
When the number of users is low, the weights of some clients 
may influence the central model more and cause certain classes 
to become dominant. However, when the number of users 
increases, each client's model has a smaller impact and the 
central model is updated with a broader data perspective. This   

 

 
allows the model to minimize the Non-IID effect and develop a 
more balanced decision mechanisim. 

When the results in Table 5 are compared with the results of 
the IID system in Table 3 and Table 4 (the first Non-IID 
scenario), the effects of the Non-IID distribution on the 
accuracy, training time and generalisation capacity of the model 
become clearer. Unlike the first Non-IID scenario, the data 
distribution used in Table 5 is organised in such a way that 65% 
is a single class and 35% is mixed from other classes. This 
change slightly reduces the Non-IID effect and improves the 
accuracy performance of the model. 

In binary classification models, similar to the IID system, it is 
seen that Non-IID does not have a great effect. Accuracy values 
remained at the level of 0.996 in all models and did not change 
significantly. Since the Non-IID effect creates more problems in 
multi-class learning, the accuracy in the BC system remained 
almost the same as the IID system. However, the point to be 
considered here is the change in Elapsed Time. Especially in 
models with 5 and 10 users, the training time decreased 
significantly. For example, while the training time was 12.31 
seconds for 10 users in Table 4, it decreased to 3.43 seconds in 
Table 5. This decrease can be explained by the more balanced 
Non-IID distribution. 

In the multi-classification task, it is seen that the Non-IID effect 
decreases compared to Table 4. Especially the accuracy values 
have increased compared to Table 4. While the accuracy value 
of Model 7 (5 users) was 0.802 in Table 4, it increased to 0.836 
in Table 5. While the accuracy value of Model 8 (10 users) was 
0.849, it was 0.857 in Table 5. The reason for this is that the 
class imbalance is less than the first Non-IID scenario. In the 
first scenario, since 80% of the users' data came from a single 
class, the model had difficulty in learning some classes. 
However, in the second scenario, since the dominant class ratio 
was reduced to 65%, the model was more exposed to other 
classes and its generalisation capacity increased. It enabled the 
model to achieve high accuracy in multi-class. 

The third Non-IID scenario gave the best results compared to 
the other two scenarios. The users' data was mixed with 50% 
dominant class and 50% other classes. This distribution 
provides a more balanced structure than the first two Non-IID 
scenarios and is almost identical to the IID system, especially in 
terms of the binary classification task. . This is because binary 
classification involves only two classes and the data is split  

No Model Architecture Users Epochs/Rounds 
Elapsed 

Time(s) 
Accuracy Precision Recall 

F1-

score 

1 Non-Fed + BC 

BA-DNN 

1 10 84.35 0.997 0.999 0.997 0.998 

2 Fed + BC 5 3 5.8 0.996 0.999 0.996 0.998 

3 Fed + BC 10 11 12.31 0.997 0.999 0.996 0.998 

4 Fed + BC 50 6 3.55 0.996 0.999 0.996 0.997 

5 Fed + BC 100 4 2.12 0.995 0.998 0.996 0.997 

6 Non-Fed + MC 

MA-DNN 

1 10 82.03 0.932 0.954 0.932 0.916 

7 Fed + MC 5 28 24.13 0.802 0.935 0.802 0.773 

8 Fed + MC 10 16 10.98 0.849 0.898 0.849 0.844 

9 Fed + MC 50 8 3.72 0.885 0.865 0.885 0.865 

10 Fed + MC 100 14 5.9 0.892 0.880 0.892 0.870 
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Table 5. Evaluation of Non-IID models trained on the CIC-DDoS2019 dataset with 65% of the classes in the data being the same and 
35% randomly distributed as other classes. 

 

50%-50% on each client, so that the federated learning works 
exactly as in the IID system. 

 This experiment proves that the impact of Non-IID is highly 
dependent on the structure of the data distribution. If the data 
is distributed completely unbalanced, as in the first scenario, 
the model performance is severely degraded. However, when a 
more balanced distribution is provided, it becomes much easier 
for the central model to compensate for the Non-IID effect. 

As a result, this third Non-IID scenario yielded exactly the same 
results as the IID system, especially in the BC task, and very 
close accuracy values to the IID system in the MC task. This 
shows that Non-IID does not always have a negative effect and 
that the model can continue to learn stably when the data 
distribution is well adjusted. Especially as the number of users 
increased, the generalisation capacity of the central model 
increased and the negative effects of Non-IID were further 
reduced. 

This study shows that the creation of a balanced data structure 
across classes is critical to reduce the impact of Non-IID data 
distribution and that client diversity in the federated learning 
process can improve model accuracy. 

5 Results and Discussion 
In this study, we developed a DDoS attack detection based on 
FL architecture. Our findings indicate that the FL strategy 
maintains high accuracy levels comparable to traditional 
methods, while drastically reducing training time by 82% to 
97%, depending on the number of clients involved. This 
reduction is crucial for real-time applications that demand high 
speed and efficiency. 
 
The primary advantage of the DDoS_FL model is its ability to 
train directly on client devices, eliminating the need to 
centralize sensitive data. In addition to enhancing data privacy, 
this approach aligns with contemporary legal requirements 
focused on data protection, such as GDPR and KVKK. By 
utilizing local computations instead of centralized data 
aggregation, we minimize vulnerability to data breaches. 
 
The model’s resilience to various DDoS attack scenarios was 
thoroughly validated using the CIC-DDoS2019 dataset. Our FL 
model demonstrated a slight reduction in training times as the 
number of clients increased, highlighting the scalability of our  

 
 
method. Scalability is essential in environments with a large 
number of IoT devices or network edges, as seen in modern 
network topologies. 
 
Compared to previous studies, DDoS_FL not only improves 
operational efficiency but also offers a practical foundation for 
deployment in a wide range of settings, from small-scale 
networks to large distributed systems. The reduction in 
training time without compromising accuracy illustrates the 
practical applicability of FL in real-world scenarios. 
 
Additionally, our evaluation under both IID and Non-IID data 
distributions demonstrates the adaptability of the proposed 
model to different real-world data conditions. While IID data 
distribution provides more balanced learning across clients, 
Non-IID scenarios introduce variations in local datasets, 
reflecting realistic network environments. Our model 
maintains high detection accuracy under both conditions, 
proving its robustness against data heterogeneity. These 
results further emphasize the effectiveness of our FL-based 
approach in securing distributed systems against DDoS attacks, 
regardless of data distribution characteristics. 
 
Our results emphasize FL's efficiency in increasing the  security 
features of DDoS detection systems while addressing privacy 
concerns. The balance between performance and privacy 
presents a new paradigm in cybersecurity, particularly in DDoS 
protection. Further research and development in this field will 
help refine these models to better address the evolving cyber 

threat landscape. 

6 Conclusion and Future Works 

The aim of this study is to propose a FL-based DL architecture 
that detects anomalous traffic and classifies network traffic. 
DNN offers a significant advantage in the analysis of network 
traffic by combining extraction and classification capabilities 
thanks to its multi-layered structure. In order to train DNN 
models within the scope of the study, the current dataset 
named CIC-DDoS2019 was preferred. This dataset has been 
prepared in two different types, BC and MC, for DDoS attack 
detection and classification. The BC dataset was developed in 
order to identify network traffic attacks. "Bening" is labeled "0" 
and others are labeled "1". The MC dataset was proposed for the  

 

No Model Architecture Users Epochs/Rounds 
Elapsed 

Time(s) 
Accuracy Precision Recall 

F1-

score 

1 Non-Fed + BC 

BA-DNN 

1 10 84.35 0.997 0.999 0.997 0.998 

2 Fed + BC 5 3 4.73 0.996 0.999 0.996 0.998 

3 Fed + BC 10 3 3.43 0.996 0.999 0.996 0.998 

4 Fed + BC 50 5 3.07 0.996 0.999 0.996 0.998 

5 Fed + BC 100 7 3.69 0.996 0.999 0.996 0.997 

6 Non-Fed + MC 

MA-DNN 

1 10 82.03 0.932 0.954 0.932 0.916 

7 Fed + MC 5 18 23.39 0.836 0.936 0.836 0.839 

8 Fed + MC 10 16 13.15 0.857 0.935 0.857 0.851 

9 Fed + MC 50 14 6.61 0.888 0.888 0.888 0.875 

10 Fed + MC 100 12 5.16 0.902 0.908 0.902 0.881 
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Table 6. Evaluation of Non-IID models trained on the CIC-DDoS2019 dataset with 50% of the classes in the data being the same and 
50% randomly distributed as other classes.

 

classification of attacks. Seventeen different attack types are 
labeled as 1-17, with normal traffic as “Bening” 0. 

Models were trained using classical and FL methods and their 
performances were compared. FL-based models were created 
with different user numbers and different epoch numbers. 
Comparisons were made for both prepared datasets. 
Additionally, additional experiments were performed for IID 
and Non-IID data distributions. 

This study compares traditional learning methods with 
federated learning (FL) techniques on various datasets and 
examines the impact of Non-IID data distribution on FL. 
Experiments compared the accuracy of traditional learning and 
FL methods on BC and MC datasets, revealing that FL achieved 
significantly shorter training times but similar accuracy to 
traditional learning. The effect of Non-IID data distribution was 
more pronounced on the MC dataset, while it was less impactful 
on the BC dataset.  

The accuracy of FL models increased with the number of users, 
and the impact of Non-IID data was more significant with fewer 
users. Balanced data distributions improved FL model accuracy 
and reduced training times. Specifically, with 100 users, the FL 
model's accuracy stabilized, and the effect of Non-IID data 
decreased substantially. The results suggest that more 
balanced class distributions can improve model performance 
and mitigate the effects of Non-IID data. 

By using the FL method, the need to transfer all the data from 
the clients to the server has been eliminated. Thus, the internet 
traffic between the edges and the server was significantly 
reduced and data privacy was ensured. The developed models 
are both based on FL, which is the latest technology and gives 
almost precise results in a shorter time compared to the 
classical method, IDS and SDN. It shows that it can be used as a 
reliable tool in cyber security areas such as IDS and SDN-based 
systems, and it is thought that using these models in systems 
where network traffic is managed will contribute to the early 
detection and prevention of DDoS attacks. 

This study addresses the fundamental challenges of data 
privacy and centralized data collection. A federated learning 
(FL)-based approach is proposed to detect DDoS attacks.  

 

 

 

 

However, there are several areas planned for future work to 
further enhance the applicability and robustness of the 
proposed model. In real-world scenarios, data distribution 
among clients is continuously changing. Therefore, integrating 
online learning techniques [63, 64] to dynamically update the 
model and adopting adaptive federated learning approaches 
(e.g., personalized FL or meta-learning-based FL) can enhance 
the model's adaptability to different network environments. 
Additionally, due to the evolving nature of DDoS attacks, new 
attack types may emerge over time. To ensure rapid adaptation 
to these novel threats, federated transfer learning techniques 
[65] can be leveraged, enabling previously trained models to 
adjust to new attack patterns efficiently. 
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