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Abstract  Öz 

Micro Electro-Mechanical System (MEMS) Based Inertial Measurement 
Units (IMU) are widely used for attitude estimation in unmanned aerial 
vehicle (UAV) systems owing to their small, light weight and cost 
effectiveness. On the other hand, it has some disadvantages that 
influence performance, such as noisy output, low sensitivity, poor 
accuracy, and bias stability. Also, MEMS-based IMU sensors 
(accelerometers and magnetometers and gyroscopes) cannot provide 
adequate navigation solutions as a standalone system. Different sensor 
fusion techniques have been proposed in the literature to obtain reliable 
attitude estimation. However, most of these fail in situations such as 
nonlinear measurement models, nonlinear process dynamics, and long-
range navigation. This article presents a new fuzzy rule-based 
complementary filter (CF) that combines magnetic field, angular 
velocity and acceleration measurements from low-cost MEMS-based 
IMU sensors to achieve a more robust attitude estimation in a UAV 
under dynamic motion. The proposed approach adjusts the cut-off 
frequency of the CF to the optimum value according to the variable 
dynamic motion of the system. Thus, the problem of constant cut-off 
frequency is eliminated and a more robust attitude estimation is 
achieved even with the varying movements of the system. Both real 
experiments and numerical simulations confirm the validity of the 
presented method. 

 Mikro Elektro-Mekanik Sistem (MEMS) Tabanlı Atalet Ölçüm Birimleri 
(IMU), küçük, hafif ve maliyet etkinliği nedeniyle insansız hava aracı 
(İHA) sistemlerinde tutum tahmini için yaygın olarak kullanılmaktadır. 
Öte yandan, gürültülü çıkış, düşük hassasiyet, zayıf doğruluk ve önyargı 
kararlılığı gibi performansı etkileyen bazı dezavantajları vardır. Ayrıca, 
MEMS tabanlı IMU sensörleri (ivmeölçerler ve manyetometreler ve 
jiroskoplar) bağımsız bir sistem olarak yeterli navigasyon çözümleri 
sağlayamaz. Güvenilir tutum tahmini elde etmek için literatürde farklı 
sensör füzyon teknikleri önerilmiştir. Ancak bunların çoğu, doğrusal 
olmayan ölçüm modelleri, doğrusal olmayan süreç dinamikleri ve uzun 
menzilli gezinme gibi durumlarda başarısız olur. Bu çalışma, dinamik 
hareket altındaki bir İHA'da daha gürbüz bir tutum tahmini başarmak 
için düşük maliyetli MEMS tabanlı IMU sensörlerinden alınan manyetik 
alan, açısal hız ve ivme ölçümlerini birleştiren yeni bir bulanık kural 
tabanlı tamamlayıcı filtre sunmaktadır. Önerilen yaklaşım, sistemin 
değişken dinamik hareketine göre tamamlayıcı filtrenin kesme 
frekansını optimum değere ayarlar. Böylece sabit kesme frekansı 
sorunu ortadan kaldırılır ve sistemin değişen hareketlerinde bile daha 
sağlam bir tutum tahmini elde edilir. Hem gerçek deneyler hem de 
sayısal simülasyonlar, sunulan yöntemin geçerliliğini doğrulamaktadır. 

Keywords: Attitude estimation, Inertial measurement unit, Fuzzy 
Logic, Complementary filter, Real time experiments. 

 Anahtar kelimeler: Tutum tahmini Atalet ölçüm birimi, Bulanık 
Mantık,, Tamamlayıcı filtre, Gerçek zamanlı deneyler. 

1 Introduction 

The use and development of unmanned aerial vehicles (UAVs) 
has become a popular topic in areas such as military field 
surveillance and control, monitoring and recovery of natural 
disasters, monitoring and mapping of agricultural areas [1-2]. 
For this reason, researchers and scholars focused on the 
development of UAVs, which are increasingly used in different 
fields. Within the scope of military applications, UAVs are used 
in various fields such as electro-optical information gathering, 
ammunition supply, radar deception and jamming. The fact that 
UAVs offer a lower cost solution than manned aircraft makes 
them more preferable in military applications. 

Many problems arise in the development of a small, 
inexpensive, and lightweight UAV system [3-4]. Robust and 
effective state estimation in the attitude and direction reference 
system (AHRS) is the primary requirement for micro-UAVs to 
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locate and track on the map [5]. Therefore, one of the most 
important challenges of developing a micro-UAV is to design a 
robust, efficient and accurate navigation system. For the control 
and navigation of micro-UAVs, the vehicle's attitude angles 
must be known. Although these angles can be measured with 
an inertial navigation system (INS), classical MEMS 
technologies offer more suitable solutions in micro-UAVs. 
Recently, MEMS-based IMUs consisting of (3-axis) 
accelerometer (AM), gyroscope (GS) and magnetometer (MM) 
sensors have widely used for attitude estimation of many 
different systems [6-9]. The most important reason for 
choosing these sensors is that they are light, cheap and have 
low power consumption. However, MEMS-based IMU sensors 
are noisier and less sensitive than mechanical and optical 
sensors. Therefore, they cannot provide an efficient 
measurement when estimating the attitude of the system. This 
situation attracted the attention of researchers and led to 
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various studies on the development of a robust and simple 
AHRS algorithm [10-14]. 

The MEMS gyroscope sensor computes the angular ratio of the 
system, the MEMS accelerometer sensor measures the 
gravitational acceleration, and the MEMS magnetometer sensor 
estimates the Earth system's magnetic field direction [15]. 
Systems with inertial sensors are usually used to estimate the 
attitude of the system by integrating measurements obtained 
from the gyroscope sensor [16]. Since the noise error in the 
measurements is also integrated over time, a noise error called 
drift error occurs. Therefore, attitude estimation using only 
gyroscope sensors degrades over time. MM and AM sensors can 
be used to compensate for the drift error of the gyroscope 
sensor. Since the attitude estimation calculated using these 
sensors is not calculated through integration, it does not 
deviate over time when there is no motion acceleration in the 
system. However, these sensors are sensitive to the motion 
acceleration in the dynamic state of the system. In addition, 
measurements taken with MM sensors are affected by the noise 
of electronic or ferromagnetic equipment in the environment 
[3]. Although the attitude of the system calculated by MM and 
AM sensors is stable in the long time, the attitude estimation 
made with these sensors contains high frequency noise error in 
dynamic state. 

Considering that it is difficult to obtain an efficient and robust 
result in attitude estimation using a single sensor, many 
sensors fusion algorithms related to the approach of fusing 
different sensors for more accurate attitude estimation have 
been suggested. Complementary filters using frequency 
filtering features in linear systems [17-19] and extended 
Kalman filters (EKFs) are known as the most widely used 
algorithms [20-22]. Even though attitude estimation can be 
made with higher accuracy with the Kalman filter algorithm, its 
high computational complexity and inability to solve nonlinear 
problems make it difficult to implement [23]. On the other 
hand, the complementary filter algorithm has low 
computational complexity and can solve nonlinear problems, 
making it easy to implement of the algorithm [24]. Therefore, 
the complementary filter (CF) approach is preferred in 
embedded systems that do not involve computational 
complexity and require low energy consumption [25]. The CF is 
known as a sensor fusion algorithm that integrates 
measurements taken from the MM and AM sensors with the 
angular velocity measurement from the GS sensor and reduces 
the gyroscope drift error [26]. Using this algorithm, the roll and 
pitch angles of a system are computed by fusing the GS and AM 
measurements, and the yaw angles are computed by fusing the 
GS and MM measurements [27]. 

The constant-gain CF algorithm is suitable for navigation 
systems in micro-UAVs with limited sensor resources. 
However, the micro-UAV attitude estimation accuracy is low 
with this algorithm during dynamic motion. There are some 
recent contributions, though limited, that focus on adapting 
filters to improve the accuracy of micro-UAV attitude 
estimation under various dynamic conditions. For example, 
Duong et al. [28] proposed gradient descent based 
complementary filter with fuzzy tuning for attitude estimation 
with MEMS IMU. The AM and GS measurements were evaluated 
with Mamdani FIS in the study.  Poddar et al. [29] introduced 
the adaptive nonlinear complementary filter with PSO support 
for attitude estimation. Measurements from AM, MM and GS 
sensors were used in the study. Zhang et al. [30] proposed the 
Second Estimator of the Optimal Quadrature Complement filter 

model. MARG sensors named MTi-3 were used in the study. 
Hwang et al. [31] presented the adaptive nonlinear 
complementary filter model. Measurements from MEMS's 
inertial sensor and external optical sensor were combined to 
describe the Helmet attitude Tracking System.  Zheng et al. 
[32] presented a nonlinear complementary filter model. In the 
study, attitude estimation was made using AM, GS, and MM 
sensors as well as camera images as an extra external sensor. 
Zhu et al. [33] designed a novel Mahony Complementary 
Filtering Based on Allan Variance algorithm. Measurements 
from AM, MM and GS sensors were used in the algorithm. Bao 
et al. [34] developed an adaptive complementary filter based on 
Deep Q-learning Network. In the study, attitude estimation was 
made using AM, GS, and MM sensors as well as polarization 
sensors. 

As can be seen from the literature review, some studies used 
AM, GS and MM sensors for attitude estimation, while some 
studies used AM and MM or AM and GS sensors. In some studies, 
attitude estimation was made with an algorithm developed for 
the nonlinear complementary filter.  

However, none of the proposed attitude estimation techniques 
offer an adaptive system for linear complementary filter 
combining magnetic field, angular velocity, and acceleration 
measurements from low-cost MEMS-based IMU sensors. This 
work presents an adaptive new fuzzy logic based 
complementary filter that allows fusion of accelerometer, 
gyroscope, and magnetometer measurements from MEMS-
based IMU sensors to achieve more robust attitude estimation 
under dynamic motion. The CF is preferred owing to some of its 
features, such as having less computational complexity, using a 
high-pass filter to minimize measurement noise, and taking 
into account possible drift errors. The proposed adaptive CF 
presented here has also been validated with real-time data 
obtained from a calibrated test environment capable of 
providing roll, pitch and yaw motions in the TUBITAK MAM 
Test Center laboratory.  

2 Attitude estimation  

In this section, attitude estimation methods computed using 
accelerometer, gyroscope and magnetometer sensors are 
discussed in detail. The sensor used for each method has certain 
advantages according to its structure. To control the position of 
the system on the map, the proper coordinate frame must be 
selected. In the study, the North-East-Down frame system is 
used as the reference and body frames for the attitude 
estimation of the system. 

The navigation frame consists of orthogonal axes, where x-axis 
is in the direction of roll motion, y-axis aligns of the pitch 
motion, and z-axis is line with the yaw motion of the system. 

The transformation from a body frame to navigation frame can 
be defined by using three using method which are Euler angle 
method, quaternion method, and direction cosine matrix 
method. In this paper, Euler angle method is used to show the 
attitude of the system moving in the reference frame. 

2.1 Attitude estimation from gyroscope 

Using a triaxial gyroscope at time t in the sensor frame, the 
measured angular rate for each of the axes can be represented 
as: [35]: 

𝜔𝑡
𝑚 = 𝜔𝑡 + 𝑏𝜔,𝑡 + 𝑒𝜔,𝑡  (1) 
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where, 𝑒𝑤,𝑡  is considered zero-mean Gaussian noise, 𝑏𝜔,𝑡  is the 
time varying offset term by low frequency error fluctuations, 𝑤𝑡 
is the actual angular rate, and 𝜔𝑡

𝑚 is the measured angular 
velocity signal.  

The pitch, yaw and roll rate obtain from the GS sensor 
measurement with respect to the body frame are defined as q, 
r and p, respectively, and are related to the derivative of Euler 
angles. The correlation between the gyroscope measurement 
and the derivative of the roll, pitch and yaw Euler angles can be 
defined as follows [36]: 

[
𝑝
𝑞
𝑟
] = [

∅
0
0

̇

] + 𝑅𝑥 [
0
𝜃
0

̇ ] + 𝑅𝑥𝑅𝑦 [
0
0
𝜑̇
] (2) 

which yields, 

[
∅̇

𝜃
𝜑̇

̇ ] =  [
1 sin ∅ tan 𝜃 cos∅ tan 𝜃
0 cos ∅ − sin ∅
0 sin∅ sec 𝜃 cos ∅ sec 𝜃

] [
𝑝
𝑞
𝑟
] (3) 

where, 𝑅𝑦  and 𝑅𝑥  denotes rotation matrices for y and x axis 

respectively. In addition, r, q and p denote the angular velocity 

of the z, y and x axis, respectively. 𝜑̇ , 𝜃̇ and ∅̇ are Euler angles, 
which denote system yaw, pitch, and roll angle, respectively. 
These angles are acquired by integrating the aforementioned 
equations, which generally include gyroscope sensor errors 
such as measurement errors in the low frequency. 

2.2 Attitude estimation from accelerometer 

Accelerometer measurement from MEMS-based IMU sensor 
can be represented as [37]:  

𝑎𝑚 = 𝑅𝑏
𝑛(𝑞)𝑇(𝑎𝑡 − 𝑔) + 𝑎𝑏𝑡 + 𝑎𝑛

= 𝑣̇𝑏 + 𝜔 𝑥 𝑣𝑏 − 𝑅𝑏
𝑛(𝑞)𝑔 + 𝑎𝑏𝑡 + 𝑎𝑛 

(4) 

where, 𝑎𝑛 is assumed to be the zero mean white noise, 𝑎𝑏𝑡 is the 
offset error caused by high frequency error, g and 𝑣𝑏the 
gravitational acceleration and the linear acceleration in the 
navigation frame, respectively. 𝑎𝑚 is the measured 
accelerometer signal. 

Under stationary or low motion conditions (𝑣̇𝑏 ,𝜔 ≈ 0) the 
acceleration measured from (4) can be estimated as [38]: 

𝑎𝑚 = [

𝑎𝑚𝑥

𝑎𝑚𝑦

𝑎𝑚𝑧

]  ≈  −𝑅𝑏
𝑛(𝑞)𝑔 =  [

|𝑔| sin 𝜃

−|𝑔| sin𝜑 cos 𝜃

−|𝑔| cos 𝜑 cos𝜃
] (5) 

The accelerometer sensor can be used as a pitch sensor in a 
steady state system, and roll (∅) and pitch (𝜃) angles can be 
obtained using the gravity vector affecting the system. The 
following equations are used to calculate pitch and roll angles 
[39]:  

[
∅
𝜃
] =  

[
 
 
 
 
 𝑎𝑡𝑎𝑛2 (

𝑎𝑚𝑦

𝑎𝑚𝑧
)

𝑎𝑡𝑎𝑛2

(

 
𝑎𝑚𝑥

√𝑎𝑚𝑦
2 + 𝑎𝑚𝑧

2

)

 

]
 
 
 
 
 

 (6) 

where, 𝑎𝑚𝑧 , 𝑎𝑚𝑦  and 𝑎𝑚𝑥  represent the linear acceleration 

caused by the gravitational force in the z, y and x axis, 
respectively.  

Given that the system is in steady state, the linear acceleration 
terms gradually approach zero. The attitude estimation 
calculated using equation (6) gives more accurate results in 
stationary or low-level dynamic movements of the system. If 
the system is in a circular motion for a long the accelerometer 
sensor measures both the gravitational acceleration acting on 
the system and the centrifugal forces acting on the system due 
to the earth's rotation. Therefore, the attitude estimation of the 
system computed using only the accelerometer sensor is of low 
accuracy. The attitude of the system, calculated using 
accelerometer and gyroscope sensor measurements, gives 
more accurate results at low level system movements. 
However, the accelerometer sensor causes measurement 
errors in high dynamic movements of the system due to high 
frequency noises [40]. 

2.3 Attitude estimation from magnetometer 

The yaw angle of the system is estimated by magnetometer 
measurements. The measurement of the 3-axis magnetometer 
sensor can be expressed as follows [41]: 

 

𝑚𝑚 = 𝑅𝑏
𝑛(𝑞)𝑇  ∙  𝐻 + 𝑚𝑛 

𝑚𝑚 = 𝑅𝑏
𝑛(𝑞)𝑇 ∙  [

𝐻 cos(𝜑𝑖𝑛𝑐) cos(𝜑𝑑𝑒𝑐)

𝐻 cos(𝜑𝑖𝑛𝑐) sin(𝜑𝑑𝑒𝑐)

𝐻 sin(𝜑𝑖𝑛𝑐)
] + 𝑚𝑛 

(7) 

where, 𝜑𝑖𝑛𝑐  is the inclination angle of the Earth’s magnetic field, 
𝜑𝑑𝑒𝑐  is the declination angle, 𝐻 is the magnitude of the magnetic 
induction, 𝐻 is the magnetic field vector of Earth, 𝑚𝑛 stands for 
the white Gaussian noise, and 𝑚𝑚 denotes is the measured 
magnetic field [41]. 𝐻, 𝜑𝑖𝑛𝑐 , and 𝜑𝑑𝑒𝑐  parameters vary with 
geodetic location and time [39].  

The yaw angle of the moving system can be found after the 
angles ∅ and 𝜃, which are calculated when estimating the 
attitude. The mathematical expression used to calculate the 
yaw angle can be represented as follows [35]: 

𝜑 =  tan−1 (
𝑚𝑥 sin ∅ − 𝑚𝑦 cos ∅

𝑚𝑥 cos 𝜃 + 𝑚𝑦 sin 𝜃 + 𝑚𝑧 sin 𝜃 cos ∅
) (8) 

where, 𝑚𝑧 , 𝑚𝑦 , and 𝑚𝑥  define the magnetic field evaluated 

along z, y and x axis, respectively.  

The relationship between IMU sensors (accelerometer, 
gyroscope, and magnetometer) and attitude estimation is 
discussed in detail above. In the next section, the working 
principle of the CF algorithm will be introduced using these 
sensors. 

3 Complementary filter 

The CF is a commonly used sensor fusion algorithm in reliable 
attitude estimate due to its low computational complexity. 
Gyroscope measurements have high accuracy at stationary or 
low dynamic motion, but low performance due to drift error. 
Although accelerometers and magnetometer measurements 
have low accuracy in high frequency motion of the system, 
measurement errors in the sensor do not integrate over time. 
This means the sensor measurements are more accurate when 
the system is stationary condition or moving with low 
dynamics [42].  

Given the advantages of sensors having complementary 
frequency responses, it would be appropriate to use a CF 
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algorithm to fuse the measurements from sensors. Thus, the 
accuracy of the system's attitude estimation can be increased. 
The idea of the algorithm is to first apply a low pass filter for 
measurements from the accelerometer sensor and secondly a 
high pass filter for measurements from the gyroscope sensor. 
Then it fuses measurements to calculate the pitch and roll 
angle. In addition, the measurements of the magnetometer and 
gyroscope sensors are likewise fused to calculate the yaw angle.  

Figure 1 demonstrates the basic structure of the 
complementary filtering algorithm. The x1 and x2 are input 
signals containing high frequency and low frequency noises, 
respectively. These signals are filtered through low and high 
pass filtering and free from these noise errors. Considering that 
𝐺(𝑠) be a low-pass filter, then 𝐺̅(𝑠) = 1 − 𝐺(𝑠) becomes a high-
pass filter transfer function. Here 𝑠 =  𝜎 + 𝑗𝜔 represents the 
complex variable in frequency domain. Using the Laplace 
transform method, the output of the complementary filter can 
be stated as [43]:  

𝑥 =  𝑥1 ∗ 𝐺(𝑠) + 𝑥2 ∗  𝐺̅(𝑠) (9) 

In attitude estimation, x={∅,θ,φ} is used to denote the system's 

roll, pitch, and yaw angle, respectively. 𝑥𝑔̇ = {∅̇, 𝜃̇, 𝜑̇} shows the 

attitude estimated by gyroscope measurement, while 𝑥𝑎 =
{∅𝑎, 𝜃𝑎 , 𝜑𝑎} shows the attitude estimated by accelerometer or 
magnetometer measurement. A classical complementary filter 
algorithm can be stated as [44]. 

𝑥 = 𝑎 (∫𝑥𝑔̇ 𝑑𝑡) + (1 − 𝛼)𝑥𝑎 (10) 

The gain parameter 𝛼, which determines the weighting factor 
of the attitude angle estimated by the gyroscope measurement, 
is between [0, 1]. 

 

Figure 1. Basic structure of traditional constant-gain 
complementary filter 

4 Adaptive complementary filter strategy 

The CF is mainly designed to combine accelerometer, 
gyroscope and magnetometer measurements using their 
beneficial behavior at different frequencies. Therefore, a high-
pass filter is applied for low-frequency noise to accelerometer 
and magnetometer sensor measurements. A low-pass filter is 
used for high-frequency noise to the gyroscope measurement. 
The output of the filters is fused to estimate the angle of the 
system. During the stationary and low dynamic movement of 
the system, the cut-off frequency of the CF can be easily 
obtained, and so the system's attitude can estimate accurately. 
In contrast, the complementary filter structures that have a 
constant cut-off frequency cannot be accurately estimated the 

system attitude in case of strong acceleration or rotation due to 
accumulated measurement errors. 

Fuzzy logic unit is used to make decisions about the states of 
unstable or imprecise systems. In contrast the conventional 
machine language logic theory, fuzzy logic unit uses 
membership degrees ranging from 0 to 1. Also, in fuzzy logic 
unit, non-numerical expressions such as low, medium, and  high 
are used to expression of rules and situations. 

The fuzzy logic unit can be explained in three successive steps: 

a) Fuzzification - Fuzzification is the process of identifying 
certain features in numerical or crips values and converting 
them to fuzzy values.  

b) Fuzzy logic rule base - The process is to execute rules to 
compute fuzzy output functions. In order to best express the 
behavior of the system, fuzzy inputs are interpreted with a set 
of rules. 

c) Defuzzification - The process is used to defuzzify fuzzy output 
functions to get numerical values as output. Inputs are 
converted into crips values that can be read and used by the 
system according to the established rules. [45] 

In the scope of this study, an adaptive complementary filter 
developed with fuzzy logic unit is proposed to make more 
accurate and robust attitude estimation of the constant-gain 
complementary filter against rapid acceleration and 
maneuvering movements of the vehicle. The fuzzy logic unit is 
designed to define the dynamics of the vehicle and adjust the 
cut-off frequency of the filter under changing vehicle motion. 
Figure 2 shows the fuzzy logic based adaptive gain 
complementary filter algorithm structure. 

The most common types of fuzzy rules found in the literature 
are Mamdani and Sugeno type models [46 - 47]. The method of 
producing output from fuzzy inputs is the main difference 
between them. The Sugeno type FIS uses a weighted average to 
compute the net output, while Mamdani uses the 
defuzzification technique of the fuzzy logic unit output with the 
output membership functions of the FIS. On the other hand, the 
Sugeno method has less computational complexity than the 
Mandami type FIS. The Sugeno type FIS was chosen because it 
gives a computationally efficient output, which is a fixed or 
linear (weighted) mathematical expression. 

Sugeno based fuzzy logic unit is used to adaptively adjust the 
cut-off frequency of the high and low pass filter according to the 
measurements taken from the inertial sensors under variable 
vehicle dynamics. The input variables of the fuzzy logic unit 
system for distinguishing vehicle dynamics need to be defined 
firstly. The inputs of the fuzzy logic unit are the values of certain 
forces and angular velocities measured by the gyroscope, 
accelerometer and magnetometer sensors. The inputs of the 
fuzzy system which are defined as; 

 

• 𝐷1 = ‖𝑦̇𝑎(𝑡)‖ = √𝑦̇𝑎𝑥(𝑡)2 + 𝑦̇𝑎𝑦(𝑡)2 + 𝑦̇𝑎𝑧(𝑡)2  

• 𝐷2 = ‖𝑦̇𝑚(𝑡)‖ = √𝑦̇𝑚𝑥(𝑡)2 + 𝑦̇𝑚𝑦(𝑡)2 + 𝑦̇𝑚𝑧(𝑡)2 

• 𝐷3 = |𝑦𝑔(𝑡)| 

• 𝐷4 = |𝑦̇𝑔(𝑡)| 

where 𝑦̇𝑎(𝑡) defines rate of change in accelerometer 
measurements, 𝑦̇𝑚(𝑡) denotes the rate of change in 
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magnetometer measurements, 𝑦𝑔(𝑡) describes gyroscope 

measurements and 𝑦̇𝑔(𝑡) presents rate of change in gyroscope 

measurements. The mentioned measurements are related to 
the directional axis of the sensor. 

Accelerometer and gyroscope measurements are used for 
stationary and dynamic situations since magnetometer 
measurement is not required for pitch and roll angle 
estimation. Likewise, magnetometer and gyroscope 
measurement are used for yaw angle estimation.  

 

Figure 2. Basic Structure of the Proposed Adaptive Gain 
Complementary Filter 

The proposed fuzzy logic unit scheme for distinguishing the 
stationary or dynamic state and determining the cut-off 
frequency is given in Table 1. Here, stationary, dynamic, and 
rotation are abbreviated as S, D, and R, respectively. 

Table 1 Rule Basis of Fuzzy Logic 

Conditions 𝐷1 𝐷2 𝐷3 𝐷4 𝜇(𝑡) 

S or no R low N/A low low 1 

D motion N/A N/A high N/A 0 

D motion high N/A N/A N/A 0 

D motion N/A N/A N/A high 0 

No magnetic 
disturbance 

low low N/A low 1 

Moving disturbance high high N/A high 0 

In the proposed rules for determining the cut-off frequency in 
Tables 1, the last column gives the output expression according 
to the inputs of the generated fuzzy logic unit, where 𝜇 is valued 
in the range of [0,1]. 

Using the output of the system, the constant-gain 
complementary filter structure is made adaptive-gain. How to 
cut the frequency setting between the system output 𝜔ℎ𝑖𝑔ℎ  and 

𝜔𝑙𝑜𝑤  is computed by applying the weighting factor (𝜇) as 
described in (11), 

𝜔𝑐 =  𝜇𝜔ℎ𝑖𝑔ℎ + (1 − 𝜇)𝜔𝑙𝑜𝑤  (11) 

If 𝜇 =1 then 𝜔𝑐 =𝜔ℎ𝑖𝑔ℎ . This indicates that the measurements 

from the accelerometer sensor are more robust for the system's 
attitude estimation.  

System entries in a fuzzy logic unit table are represented as high 
and low. The membership function (12) is a function that can 
be expressed logically by converting qualitative system inputs 
such as high and low to the value (μ) between [0, 1]. It can also 

be distinguished according to parameters. Figure 3 shows the 
membership function used for fuzzy logic unit inputs. 

Examining the rule table, it is clear that the system is 
considered to be in a stationary or low dynamic motion when 
all the inputs are in the qualitatively small condition. Therefore, 
it is valid to assume μ=1 for this case. 

𝜇(𝑡) =  ∏ (1 − 𝜇𝑖(𝑡))
4

𝑖=1
 (12) 

 

 

Figure 3. The fuzzy logic unit membership function 

5 Experiments and Simulation Results 

In this section, firstly the simulation result of the developed 
algorithm was demonstrated. The developed algorithm was 
compared with the constant-gain complementary filter and 
reference motion. Then, in order to prove the simulation 
results, the attitude data of the system were collected from a 
real-time experimental environment. The data were applied to 
the constant-gain complementary filter and the developed 
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algorithm. The performance evaluation of the developed 
algorithm was made by comparing it with the constant-gain CF.  

MATLAB simulation environment was used for performance 
validation and evaluation of proposed algorithm. An IMU 
sensor model was created that can adjust both sensor 
distortions (i.e. bias and scale factors) and sensor stochastic 
properties. The simulator was used in order to improve 
algorithms before used real time experimental apparat. The 
algorithm performance results obtained in the simulation was 
expressed below. 

An experimental apparatus (in TUBITAK MAM Research 
Center) shown in Figure 4 was used to validate the performance 
of the complementary filter and the proposed algorithm with 
real sensor data. In the test environment shown in Figure 5, roll, 
yaw, and pitch movements were applied to the MPU9250 9-
DOF IMU sensor that connected to the Arduino microcontroller. 

 

Figure 4. Real time experimental test assembly 

A data acquisition system was set up to process of the 
measurements from the sensors. The microcontroller was 
collected raw data from the accelerometer, magnetometer, and 
gyroscope sensors. The sensor data was saved in a file directory 
on the microcontroller. Then the data file was imported into 
MATLAB for validation and evaluation of algorithms.  

Fuzzy logic input values were determined to model the motion 
of the system. The fuzzy logic inputs produced the output value 
according to the specified rules. The algorithm cut-off 
frequency was adjusted by passing the fuzzy logic output values 
through the weight function. In order to determine the range of 
the cut-off frequency, stationary and dynamic motion was 
applied to the system. Then, Fast Fourier Transform (FFT) was 
applied to the measurements taken from the accelerometer and 
gyroscope sensors in both motion states. In this study, the 
sampling frequency was taken as 100 Hz for FFT process. The 
upper and lower cut-off frequencies were determined as 𝜔ℎ𝑖𝑔ℎ  

= 4.83 Hz and 𝜔𝑙𝑜𝑤  = 0.3418 Hz, respectively. The cut-off 
frequency was changed between these limits with respect to 
the inputs of the fuzzy logic unit. The constant-gain 
complementary filter, 𝜔𝐶  = 2.2441 Hz, which is the middle of 
the lower and upper cut-off frequency values, was chosen. In 
order to compare the performances of the algorithms, the root 
mean square error (RMSE) value of the Euler angles (rolling, 
pitch and yaw) was computed. 

Figure 5 (a) shows the attitude estimation simulation results 
represented by Euler pitch angles. In this figure, the green line 
shows the reference motion, the blue line denotes the result of 
the constant-gain complementary filter algorithm, and the red 
line indicates the result of the algorithm proposed with the 
fuzzy logic-based approach. According to the first simulation 

results, while the RMSE value of the proposed algorithm was 
calculated 0.4263, the RMSE value of the constant-gain 
complementary filter algorithm was calculated 0.8252. 

Figure 5 (b) and (c) demonstrate the simulation result of Euler 
roll and yaw angles, respectively. According to the simulation 
results of the Euler roll angle, while the RMSE value of the 
proposed algorithm was calculated 0.9861, the RMSE value of 
the constant-gain complementary filter algorithm was 
calculated 1.5334. Finally, while the RMSE value of the 
proposed algorithm of the Euler yaw angle was calculated 
2.0371, the RMSE value of the constant-gain complementary 
filter algorithm is 4.2743.  

The error values of roll, pitch and yaw angles in terms of RMSE 
for CCF and FTCF are listed in Table 2. 

Table 2 Root Mean Square Error (RMSE) for CCF and FTCF 

Algorithm RMSE pitch 
(deg) 

RMSE roll  
(deg) 

RMSE yaw  
(deg) 

 CCF 0.8252 1.5334 4.2743 

 FTCF 0.4263 0.9861 2.0371 

 

(a) 

 

(b) 

 

(c) 
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Figure 5. The simulation results of Euler (a) roll, (b) pitch, and 
(c) yaw motions 

As can be seen from the results, the algorithms show close 
performance in the stationary motion situations of the system 
in the simulation environment. But, attitude errors occurred in 
the constant-gain complementary filter algorithm when the 
system was in dynamic motion. The reason why the accuracy of 
the constant-gain complementary filter is relatively low is 
because the gain is constant. Therefore, in the proposed 
method, the filter gain is designed to be adjustable over time to 
improve the accuracy of the attitude estimation. 

 

(a) 

 

(b) 

 

(c) 

Figure 6. Experimetal result of (a) roll (b) pitch (c) yaw 
movements with test setup 

system is under low dynamic motion, the cut-off frequency 
have high value within the specified frequency limits. This 
means that the measurements get from the accelerometer 
sensors have more reliable when estimating the system's 
attitude. Conversely, during high dynamic motion of the system, 
the cut-off frequency of the algorithm takes values close to the 
cut-off frequency expressed as low. The simulation results 
show that the proposed algorithm gives better results than the 
constant gain complementary filter, especially in dynamic 
movements of the system. Because, the proposed algorithm 
adjusts the cut-off frequency according to the system motion 
using fuzzy logic. 

Studies were carried out in the test apparatus to prove the 
results of the simulation environment. The test setup 

containing the IMU was rotated around the X, Y, Z axis. Then 
measurement data were collected using the microcontroller. 
The test setup initially performed a roll motion ranging from   -
60 to 0 degrees, starting from the zero roll and tilt position. 
Figure 6 (a) shows the result of the roll motion test. 

Figure 6(b) shows the -30 to 0 degree motion result of the test 
setup for pitch motion. Figure 6(c) shows the result of the test 
setup moving in the z-axis at an angle of deviation ranging from 
-15 to 0 degrees. 

Considering all the test outputs, it appears that the proposed 
filter has a position angle error of less than 1 degree compared 
to the reference motion. This indicates that the proposed fuzzy-
based adaptive complementary filter is more stable than the 
constant-gain complementary filter in especially dynamic 
situations. 

6 Conclusions 

The attitude estimation problem of the UAV, which takes into 
account some weaknesses such as noisy output, poor accuracy, 
low sensitivity and bias stability affecting MEMS based inertial 
sensor measurements under dynamic motion, is solved by 
adapting the complementary filter using a fuzzy logic unit 

In order to validate the proposed algorithm and evaluate its 
performance, the MATLAB simulation environment, which can 
simulate IMU measurements in random motion, was used. An 
IMU sensor model was created in the simulator that can adjust 
both sensor distortions (i.e. bias and scale factors) and sensor 
stochastic properties. This simulator has been used to validate 
and improve algorithms before working with real data. The 
performance of the fuzzy-based adaptive complementary filter 
algorithm, whose verification and development has been 
completed, is tested on a real test system with the roll, yaw and 
pitch motion data received from the MPU9250 9-DOF IMU 
sensor connected to the Arduino microcontroller. The 
simulation and real experimental results shows that the 
proposed fuzzy-based algorithm significant advantages 
compared to the traditional complementary filter. The new 
approach has been shown to provide a reliable attitude 
estimation using low-cost MEMS inertial sensors for many 
applications. 
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