

Pamukkale Univ Muh Bilim Derg, XX(X), XX-XX, 20XX

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi

 Pamukkale University Journal of Engineering Sciences

1

A novel verification tool suite for industrial robotic systems evaluation
results

Endüstriyel robotik sistemler için bir doğrulama aracının değerlendirme
sonuçları

Alim Kerem Erdoğmuş1I, Uğur Yayan2

1Inorobotics, Eskişehir, Türkiye.
kerem.erdogmus@inorobotics.com.tr

2Department of Software Engineering, Faculty of Engineering and Architecture, Eskisehir Osmangazi University, Eskişehir, Türkiye.
ugur.yayan@ogu.edu.tr

Received/Geliş Tarihi: 21.02.2024
Accepted/Kabul Tarihi: 10.07.2025

Revision/Düzeltme Tarihi: 03.07.2025 doi: 10.5505/pajes.2025.37200
Research Article/Araştırma Makalesi

Abstract Öz

This study introduces a new tool suite for robotic system safety and
reliability in manufacturing. Developed for a vehicle chassis inspection
project, it includes a simulation-based verification tool and a camera
fault injection tool. Evaluated across three scenarios with robust
testing, the tools demonstrated significant improvements in system
efficiency and robustness. Unique for being open-source and ROS-
compatible, they fill a gap in robotic system verification and validation.
Results showed a 95.39% robustness in fault detection, a 27% efficiency
increase in planning, and an 80% resistance to camera faults. This
advancement marks a significant leap in reducing testing costs and time
for industrial robotics.

 Bu çalışmada, üretimde robotik sistem güvenliği ve güvenilirliği için
yeni bir araç paketi tanıtılmaktadır. Bir araç şasisi denetim projesi için
geliştirilen bu araç, simülasyon tabanlı bir doğrulama aracı ve bir
kamera hata enjeksiyon aracı içermektedir. Sağlam testlerle üç
senaryoda değerlendirilen araçlar, sistem verimliliği ve sağlamlığında
önemli gelişmeler olduğunu göstermiştir. Açık kaynaklı ve ROS uyumlu
olmasıyla benzersiz olan bu araçlar, robotik sistem doğrulama ve
onaylama alanındaki bir boşluğu doldurmaktadır. Sonuçlar, hata
tespitinde %95,39 sağlamlık, planlamada %27 verimlilik artışı ve
kamera hatalarına karşı %80 direnç göstermektedir. Bu ilerleme,
endüstriyel robotik için test maliyetlerini ve süresini azaltmada önemli
bir sıçramaya işaret etmektedir.

Keywords: verification tool, robotics, industrial quality control,
safety trajectory optimization, manipulation of sensor data, fault
injection

 Anahtar kelimeler: Doğrulama aracı, robotik, endüstriyel kalite
kontrol, güvenli yörünge optimizasyonu, sensör verilerinin
manipülasyonu, hata enjeksiyonu

1 Introduction

With the 4th industrial revolution and technological
enhancements, robotic systems have become important parts
of industrial processes. IoT technologies brought cyber-
physical systems and autonomous operations. In today’s cyber-
physical systems, complexity of the robotic systems become
complex. The complexity of the cyber-physical systems is
continuing to increase especially with multi-level integration of
subsystems with different domains. Today, with increasing
complexity in cyber-physical systems, Verification & Validation
(V&V) of the of systems has never been important ever before.
verification is known as a process to verify correctness of the
systems with respect to its requirements. Testing can be
defined as a technique with an aim of showing intended and
actual behaviors of a system are satisfying the requirements or
not [1],[2],[3],[4],[5].

Robotic inspection systems are known as sending robots to
hazardous distant or dangerous environments and robotic
inspection systems have gained importance with the aim of
reducing human risk. Today, robot inspection systems are
being used into situations for hazards listed: chemical and
radiation, explosion and fire, wind and water, pressure and heat
lack of atmosphere and Inspecting structures for leaks, faults,
corrosion, or for general wear etc. According to workplace,
these robots may have different system properties and options

ICorresponding author/Yazışılan Yazar

in construction and programming. Variety of inspection
sensors, variety of communication mechanisms can be
configured. With creation of new robotic inspection systems, it
is expected them to carry out more complex tasks in future. The
demand on robots to do more complex tasks is increasing
complexity of the robotic systems. Thus, software quality
becomes crucial. In this case verification and validation of robot
inspection systems will be more critical in following years [6].

2 Literature Review

In robotic systems, there are many different techniques for
testing and verification. Physical testing is an important
practice. However, for many of the environments, there are two
main issues that makes test scenarios impossible replicate.
Firstly, changes on robot itself like energy, battery degradation,
equipment wear etc. makes test cases unique. Also,
environmental changes like temperature, air, radiation etc.
cause distinctive test cases. In these cases, test cases often
carried out multiple times before deployment [6]. Physical tests
usually require high costs for test execution and have higher
safety risks for many other test methods. For example,
imitation of faults in physical systems can cause hazards. Also,
in some cases where targeted environment can’t be created,
physical tests may not provide good results as example of space
rovers. These space rovers’ working environment can only be
physically modelled for similar physical conditions. The

mailto:ugur.yayan@ogu.edu.tr

2

physical models may not provide same testing conditions or
injection of faults may not create same affect for test scenarios
and also physical test suite creates additional cost and time for
developers.

In verification and validation (V&V) of the cyber-physical
systems for example, industrial inspection robots, V&V
activities can be done with various methods. These V&V
methods are differentiating each other with general method
implementation and different V&V concerns. There are
methods applied for verifying multiple concepts. For example,
formal and model-based methods can be applied to verify and
validate safety, security and privacy concerns. Besides,
penetration testing method [7] is tailored for cybersecurity. In
a recent study contributed by this paper authors [8], have
proposed classification of V&V methods in scope of safety,
cybersecurity, and privacy of automated systems. In
classification of these methods, systems having different levels
of autonomy and different purposes can be Validated with
given general method types. General V&V methods are
considered as;

1) Fault/Attack Injection

2) Simulation,

3) Testing,

4) Runtime Verification,

5) Formal Analysis,

6) Semi-formal Analysis,

7) Informal Analysis.

Injection methods are done by introducing phenomenon to a
system and analyzing system’s response. Simulation based
methods observe system behavior on modelled systems. Next,
testing method considers system execution under certain
conditions. Similarly, runtime verification methods evaluate
system during operation. Formal analysis methods execute
V&V methods with mathematical basis. In contrast, informal
analysis V&V methods are executed without having any
mathematical basis [8]. In robotics, there are different levels of
autonomy and V&V activities are done according to these levels.

In supervised or semi-autonomous systems, direct and remote
control of robots can be inaccurate and fault-prone [7].
Verification and validation of these systems are traditionally
done with stability analytics, safety avoidance proofs with
control theory algorithms [8]. Formal methods are can also be
applicable. However, these methods can become intractable in
case lacking of significant abstractions or approximations of
environment [9],[10]. In some studies, beyond the model-based
methods, Hardware-in-the-loop (HIL) and real-worlds tests are
being done [11]. However, these tests can be costly.

Today, detailed computer simulations which is also called as
“digital twin” in some cases, are created for virtual prototypes
of examined systems [12]. These simulations generally have
detailed physic models of the system and its environment. The
term of simulation-based testing is based on these simulations
and it is useful for examination of critical and/or autonomous
systems testing. The benefit of simulation-based testing
compared to traditional V&V techniques is cost and safety [13].
Using simulators for V&V processes can eliminate hazardous
situations and only leave edge cases for physical tests. Also,
simulation models and environments can provide exact same
conditions for different test cases. In example application for
Simulation-based testing is flight simulation software

(FLIGHTLAB, X-Plane etc.) [14] include physical models and
control systems in virtual 3D environment. This way,
development and testing can be done relatively cheap and
quick. However, it is important to understand the gap between
simulation and reality [6].

For the autonomous systems where software makes key
decisions, safety is in a critical state and V&V of these systems
is done by several techniques. In recent studies, Formal
methods are used in autonomous vehicle testing with AI-based
tools with simulations [15],[16]. In another study, it is indicated
that traditional methods or Monte-Carlo approaches are
usually not viable for hazard identification of robotic system. In
given study, CoppeliaSim is used for evaluating safety-
validation scenarios with simulation-based testing [17].
Furthermore, the study made by Son et al. [18] presented
simulation-based testing and validation framework for
Autonomous driving systems. In paper, Vehicle dynamics are
created in Anesim and Co-simulated with Prescan to simulate
environment and sensors and creating trajectory safety testing
for autonomous driving systems. Similar study in this topic,
Chance et al. [4] presented agent-based test generation
technique, novel to model-based test generation for simulation-
based testing. However, in presented study, simulation and
environment are lacking for real life V&V scenarios. Following,
a study proposed simulation-based testing for Ship
Autonomous navigation system (ANS) and situational
awareness. Comprehensive mathematical models of the ship
and its equipment, including all sensors and actuators are
represented in digital-twin [19].

In the field of software engineering, the assessment of software
reliability and system safety is of utmost importance. Among
the various methods employed for this purpose, fault injection
has gained significant attention. Practitioners in the software
development, research, and engineering domains utilize fault
injection methods to test the system’s robustness against
injected faults. These methods involve inducing faults in
software-based systems and devising new techniques that can
be applied to both hardware and software. A notable fault
injection method involves the injection of faults into hardware
components, such as chip pins, internal circuits, and registers.
Such faults cannot be rectified through software modifications.
In contrast, injecting faults into software can cause a direct
alteration in the overall state of the software. Consequently,
hardware methods are suitable for evaluating low-level fault
detection and masking mechanisms, while software methods
are appropriate for testing higher-level mechanisms [20].

Several studies have explored various software and interfaces
that facilitate fault injection. Notable examples in the literature
include GemFI [21] by Parasyris et al., GOOFI [22] by Aidemark
et al., SASSIFI [23] by Hari et al., and MODIFI [24] by
Svenningsson et al. These studies have developed fault injection
tools that enable testing for fault tolerance and system
weaknesses in diverse software, simulation, or hardware
systems.

Robotic inspection systems are intricate machines that need
sophisticated tool sets to check each component. This work
uses a novel suite of verification tools for industrial inspection
robots to go through this kind of verification. The Simulation-
based Robot Verification Tool (SRVT) [25],[26] and the Camera
Fault Injection Tool (CamFITool) [27] are the two instruments
that make up this tool suite. The proposed tool suite is
demonstrated on the verification of the “Safety Trajectory
Optimization”, “Manipulation of Sensor Data” and “Anomaly

3

Detection at Component and System Level” evaluation
scenarios from the VALU3S ECSEL H2020 project. In the
VALU3S project, OTOKAR describes the use case scenario
“Autonomous Robot Inspection Cell for Vehicle Chassis Quality
Control” with difficulties in the robotic inspection system that
have been found. In order to validate the safety trajectory for
robotic systems, SRVT is utilized to identify the fastest and
safest trajectory planning technique. CamFITool is a tool for
injecting faults into camera sensor data to test the stability of
camera-based perception systems and detect anomalies at
images. One of the uniqueness of this V&V Tool suite is open-
source and Robot Operating System (ROS) compatible are [28].
Such tools are not common in the ROS environment. In this
study, a verification tool suite is applied to a specified use case
scenario, and evaluation outcomes are provided in relation to
evaluation scenarios. The suggested verification tool suite
successfully ensures the required key performance indicators
(KPIs) for each evaluation scenario. In the following section, use
case scenario ’Autonomous Robot Inspection Cell for Vehicle
Chassis Quality Control’ which is used in this study and
evaluation scenarios are explained. In Chapter 4, proposed
verification tool suite (SRVT and CamFITool) is explained in
detail. In Chapter 5, contains tool qualification reviews of the
SRVT and CamFITool tools. In Chapter 6, Industrial Robotic
body-in-white Inspection Cell Verification tool suite evaluation
scenario results are given. Conclusion and future works are in
Chapter 7.

3 Use Case Overview

The targeted use case involves using new visual inspection
techniques to improve automotive body-in-white inspection.
The goal is to provide a more fault-tolerant production system
and improve quality control. A cartesian robot and camera
sensor system will automatically check the existence of 2500-
3000 body parts using digital twin software and CAD data. The
system will use a programmable logic controller to position the
cartesian robot, and sensors will capture 2D images to compare
with synthetic 2D images stored in a server. Quality reports and
system status data will be stored for the quality control team to
review and give final confirmation [25].

Figure 1. Robotic inspection cell for quality control

Given use case is defined as Use Case 11 in the VALU3S project
is aiming to provide a better fault-tolerant production line to
achieve better quality control for bus body- in-white [26]. The
components of the robotic inspection system are given in
Figure 1. Quality control has been carried out by means of the
camera system positioned on the cartesian robot located on
both sides of the vehicle body (i.e bus). The data obtained from
the CAD data of the large-bodied vehicle is compared with the
actual data obtained from the camera system by means of the
synthetic data obtained from the developed data, and the item
presence-absence check and critical measurement controls
acquired from sensor and actuator as shown in Figure 2.

Figure 2. OTOKAR Camera Quality Control System interface.

Robotic inspection system (ROKOS) camera-based quality
control system is a software that analyzes the deficiencies of the
parts of the bus body-in-white inspected by ROKOS. The
software, which sends the body-in-white pictures taken by
ROKOS, gives information about how many parts are missing in
the body-in-white. Software interface could be seen at Figure 3.

Figure 3. The components of body-in-white inspection system
for world-selling OTOKAR buses.

To ensure existence of vehicle parts and quality, verification
tool suite is applicable to the robot inspection cell for quality
control. Use case application will cover an automated fault
injection application, specifically for controlling the entire
industrial automated line.

The existing Quality check processes still very long and
ineffective without advanced safety concepts. Additionally,
Quality check in existing manufacturing environment is not
very responsive and adaptive to online sensing. It works in
Stop&Go mode to provide the safety.

Despite the advantages of the robotic inspection system
(ROKOS) system, there are also some disadvantages. The
ROKOS system works with a task-based working model, where
robot arms move to the points where it will record photos and
the commands for taking pictures are defined as a task.
However, not all joints of the robot arms work simultaneously
in the currently used system. This creates a restriction on the
robot arm movement trajectory. Due to this restriction, various
reset points have been added to the task lists so that the robot
arms can move without collision. Robot arms can go to these
reset points between some tasks. This leads to a longer term of
operation. Thus, in use case, evaluation scenarios were
determined for the correction and improvement of these
situations and these scenarios were started to be implemented
with SRVT and CamFITool.

The evaluation scenarios and criterias, which are the
requirements of the robotic system to be determined and
developed in this direction, are in Table 1 and Table 2.

4

Table 1. VALU3S Evaluation Scenarios.

Code Eval. Scenario Name Description

ES1 Manipulation of Sensor Data Manipulation of sensor data stream at camera and safety sensors.
ES2 Safety Trajectory Optimization Creating robot trajectory points automatically covering the safety of

the robot and its apparatus as well as static objects in the workspace.
ES3 Anomaly Detection at Component and

System Level
Observing machine learning and/or pre-training data in the process of

reviewing and predicting normal detections in data checks

Table 2. VALU3S Evaluation Criterias.

Code Eval. Criteria Name Description Measured Artifacts

EC1 Number of malicious
attacks and faults

detected

The evaluation criterion measures the effec- tiveness of detecting
malicious attacks and faults in the System Under Test (SUT),

defined by a risk assessment specific to the system’s context and
application.

Number of
detected faults

EC2 Simulation-level
system robustness

This criterion evaluates the robustness of the system by
assessing the quality of the tested software for poor architectural

and coding practices that could result in operational risks or
costs, taking into account non-software components as well.

System
Robustness

EC3 Effort for test creation This criterion deals with the estimation of
effort for deriving and/or maintaining test suites, e.g., for fault

injection and runtime verification campaigns (manual design vs.
model- based generation)

Time (lower the

better)

EC4 Effort needed for test This evaluation criterion measures the effort
required to perform a test on a system, including dataset

generation, execution of the test cases, and result validation. It is
used to compare the effort spent on manual versus automated

work.

Total person-
hours cost

4 Proposed Verification Tool Suite

The targeted use case involves using new visual inspection
techniques to improve automotive body-in-white inspection.
The goal is to provide a more fault-tolerant production system
and improve quality control.

4.1 Simulation-based Robot Verification (SRVT)

SRVT can be thought of as a tool that allows a robotic system to
be transferred to the simulation environment and applied to
verification tests [25]. The base of the system is the coordinated
use of some critical software for the ROS ecosystem (see Figure
4). In SRVT, Gazebo Simulator is used for Simulation, MoveIt
[29] is used for trajectory planning, ROS SMACH packages are
used for finite state machine monitoring, and a dynamic
verification system was created in a single ROS package [30].
Besides, there are two other nodes which are Image and Task
Server.

Figure 4. SRVT Architecture

The SRVT approach involves remodeling the ROKOS robot arms
and bus body- in-white within the Gazebo simulation

environment (refer to Figure 5). The Gazebo simulator is a
widely used simulation engine in the domain of robotic
simulation, owing to its realistic physics engine and seamless
integration with the ROS system. The ROKOS robotic system,
with its actual physical measurements and values, was
transferred to Gazebo and employed in the simulation [31].

Figure 5. ROKOS modeled on the Gazebo simulation
environment.

MoveIt is used for controlling the robot arms in the simulation.
MoveIt inculdes open-source trajectory planning algorithms in
the library [32],[33]. In Figure 6, Moveit interface with bus
body-in-white could be seen. In the [26] study, it has been
studied to improve the safe trajectory planning performed by
SRVT Moveit and the completion times of ROKOS on this route,
and to determine the ideal planning algorithm.

5

Figure 6. Bus body-in-white added to the planning
environment and use of the Moveit planner.

SRVT SMACH node serves as finite state machine for controlling
SRVT behaviors. This node connects with each of other nodes
and sends commands to them. In addition, the SRVT SMACH
node records the executed task information and the time it was
performed and the motion planning data. Looking closer at
Figure 7, the states that the SRVT SMACH node includes are:
Left Move, Left Camera, Left Take Photo, General Selection and
Left Get Tasks.

Figure 7. SMACH interface of left ROKOS arm.

SRVT Image Server is formed by the operation of the ROS node,
which enables the SRVT to take camera images from the
simulation environment. SRVT Task Server node reads the
tasks of the left and right ROKOS robot arms from the task files.

These tasks can also be filtered according to the Task ID value
if desired. If the value of ROKOS is None, all tasks are sent to the
client. The ROKOS SMACH node makes a request to the Task
Server node if a task is not available. In response, Task Server
receives the coordinate and orientation information that the
robot arm needs to apply, as well as the image information it
will take. This information includes Task ID, vehicle number
and tag information.

While performing tasks, every transaction made by the robots
is recorded. These records, which contain information such as
robots’ time to perform tasks, applied motion values, and task
codes, provide users with the opportunity to examine and solve
the problem in case of a potential problem.

4.2 Camera Fault Injection Tool (CamFITool)

The Camera Fault Injection Tool (CamFITool) is an open-source
tool that leverages cutting-edge vision-based fault injection
techniques to inject faults into RGB and TOF cameras. The tool
is specifically designed for performing verification and
validation activities on robotic systems [27]. CamFITool is
implemented using Python and features a Qt5 interface.
Moreover, the tool is compatible with ROS Noetic, as depicted
in Figure 8.

Figure 8. CamFITool Offline FI screen.

With Realtime fault injection, CamFITool can perform fault
injection to any cur- rently running ROS camera stream. This
injection can be made into RGB camera broadcasts with six
different fault types (TOF camera support will be added in the
next updates). During the injection, the relevant broadcast can
be viewed on the screen to be opened by pressing the “Robot
Cam” button in CamFITool (Figure 9).

Figure 9. CamFITool Realtime FI screen.

Another feature of CamFITool is anomaly detection. This
feature is related with Evaluation Scenario 3. In Figure 10,
CamFITool Anomaly Detection screen could be seen.

CamFITool uses CNN algorithm for Anomaly detection in the
images taken from ROKOS or SRVT system. An interface plugin
has been developed for CamFITool (Fault Anomaly Detector
Plugin - FIAD) that allows detecting anomalies in images and
detecting faults in faulty images. This interface enables the use
of models trained with CNN algorithms. The Binary
Classification model, which determines whether the picture is
faulty or not, and the Multiclass Classification models are
trained to determine which faults the pictures have. The binary
one of these models has been trained with libraries with
different fault rates of 6 fault types (Dilation, Erosion, Gaussian,
Gradient, Poisson, Saltpepper), 100 different images from each
other, and 66 images determined as test images. It consists of a
total of 1200 images (600 normal, 600 faulty) training set and
397 images (199 normal, 198 faulty) images test set. The
multiclass model is based on 6 different fault types. 500
trainings different from each other, with different fault rates for
each fault type, were trained with 100 test pictures (a total of
3000 trainings, 600 test pictures) [27].

6

Figure 10. CamFITool Anomaly Detection screen.

5 V&V Tool Suite Qualification Assessment

A procedure called tool qualification enables us to show that a
tool may be utilized to realize a software application with a
predetermined safety target.

5.1 Qualification Approach

1. Tool Impact: If a tool can introduce bugs into the code or is
inefficient at dis- covering errors, it is assumed that it will have
an effect on the final product. Tool Impact 2 refers to this
situation. If the tool has no effect on the output of the software,
it comes under TI 1.

2. Tool Error Detection: The tool’s use-case scenarios help
decide whether it has enough safeguards to both detect and
stop malfunctioning and inaccurate output. The degree of
confidence in mistake detection is determined by the tool’s
capacity.

3. Tool Confidence Level: Tool Confidence Level extraction is
simple to complete once Tool Impact and Tool Error Detection
levels have been established. The inferences drawn lead to the
following tool confidence levels:

(a) TCL 1 has the lowest level of confidence. This tool’s
negligible influence on the final product’s quality. As a result,
tool qualification is not required.

(b) TCLs 2 and 3 have medium and high degrees of confidence,
respectively. A qualification needs to be offered in order to
demonstrate how trustworthy a tool is.

Based on the ISO 26262 standards of SRVT and CamFITool, the
components that make up the tool suite we have developed, the

measurement of software quality and the compatibility of
standards with these software tools are also provided.

The ISO 26262 standard is a standard that covers the
development process of soft- ware used in critical security
applications. ISO 26262 also covers tools used for the
development and testing of tools, and also stipulates their
qualification. The qualifi- cation requirement is determined by
whether the tools can cause a defect in the end product and the
detectability of that defect [34].

ISO 26262 defines three different levels of trust for tools:

 TCL1 (low impact)

 TCL2 (moderate)

 TCL3 (high impact)

Tool qualification is not required for TCL1, while qualification
is required for TCL2 and TCL3. Tool qualification is done by
following two steps that determine the qualification’s
requirement. In the first step, it is determined whether the tools
can cause a defect in the final product. In the second step, when
the vehicle generates a fault, its detectability is evaluated. ISO
26262 recommends four different methods for tool
qualification. These:

(a) Confidence increased by previous use,

(b) Development process evaluation,

(c) Verifying the software tool,

(d) Development in accordance with the security standard.

5.2 Modules and Tool Qualifications

The tool qualifications of the SRVT modules are listed in Table
11 (in the Appendix A). According to the reports generated
during the SRVT development process, the levels of faults
obtained with the safety gain were primarily focused in groups
A, B, and C. The inferences drawn from the continuation of the
development process and parallel testing of safety issues
concentrated the fault levels of the development process under
A and B. The error levels were primarily under C and D due to
the safety implications of the issues discovered during the
validation of the software tool. The safety levels achieved
through improvements according to ISO 26262 standards were
generally concentrated under D, indicating that the safety levels
of the developments in accordance with ISO 26262 standards
are high.

The tool qualifications of the CamFITool modules are listed in
Table 12 (in the Appendix A). During the development of
CamFITool, the levels of errors obtained with the security gain
were thoroughly analyzed and reported in groups A, B, and C.
The development process and concurrent testing of security
issues led to the conclusion that the fault levels were mainly
concentrated under A and B. However, the error levels were
mainly under C and D due to the security implications of the
issues identified during the software tool’s validation. The
security levels achieved through improvements according to
ISO 26262 standards were generally concentrated under D,
indicating that the security levels of the developments in
accordance with these standards are high.

6 Industrial Robotic body-in-white Inspection
Cell Application Verification Results

To demonstrate applicability and effectiveness of the V&V tool
suite, proposed tool suite is applied to Industrial robotic
inspection cell use case. In scope of application, previously

7

explained evaluation scenarios are studied in this chapter. In
this manner, manipulation of sensor data and anomaly
detection at component and system level are realized through
CamFITool and trajectory safety optimization scenario is
realized with SRVT. In this chapter, description and execution
of test cases are explained for each use case scenario. Results
obtained from these three evaluation scenarios are shown in
detail. With test results, effect and improvements done by V&V
tool suite are explained in this section.

6.1 Manipulation of Sensor Data

The fault injection software on Robotic Camera systems is
turned into a fault injection interface called CamFITool. This
interface runs and injects faults to a database of images on
robot video recording cameras during the mission, and various
test scenarios were performed with these images. Evaluation
Scenario I has been evaluated with these tests and the
expansion of the fault injection system. Test Cases (TC) is
defined for VALU3S project Evaluation Scenario – 1 in Table 3.

Table 3. VALU3S Evaluation Scenario – I Test Cases.

Test Case Test Case Desc. Expected Results

TC 1 Fault Injection
to Robotic
System

Robot system will handle
faults and continue
operating in normal mode

TC 2 Fault Injection
to Robotic
System

Robot system will detect
fault and report situation.

TC 3 Fault Injection
to Robotic
System

The camera quality control
system will detect the fault
and report the situation.

TC 4 Fault Injection
to Robotic
Camera System

The camera quality control
system will detect which
faults have been injected
according to varying fault
types and rates.

The developed fault injection software has been developed to
prevent the cameras from injecting faults into the cameras of
the ROKOS robot arms while the system is running, and to
prevent the cameras from performing the inspection by saving
the faulty images. The purpose of this software is to create a
product under the VALU3S project to create a V&V system in
robotics [35].

Virtual environment faults are artificial image faults that
manifest exclusively in simulation environments and can be
detected only through software, such as OpenCV Python
libraries [36]. Examples of virtual environment faults include
Dilation/Erosion, Open/Close, Gradient, and InjectionPayload
faults. Unlike real environment/hardware faults, virtual
environment faults cannot be detected with non-software
methods.

Conversely, real environment faults (also known as hardware
faults) are image faults that may arise not only due to software
issues but also due to problems with the camera hardware in
real-world environments. Examples of real environment faults
include Motion-blur, Partialloss, Gaussian, Poisson, and
Salt&Pepper faults. For instance, in electronic circuits, a

Poisson noise may emerge from the random fluctuations of
electric current in a Direct Current, caused by the discrete flow
of charges (electrons), potentially resulting in related
corruptions in camera hardware.

Fault injection was applied to 293 normal images whose are
taken from ROKOS cameras, with nine different fault types,
different rates and amounts. Afterwards, image libraries
consisting of fault-injected images were given as input to the
camera quality control software, and comparisons were made
with the results obtained by examining the normal image
library of the software.

As can be seen in Table 4, nine different camera faults
supported by two different camera types were injected into a
normal image library taken by ROKOS cameras. Although the
pictures taken from the ROKOS camera are TOF camera type,
the effect of fault types applied to RGB cameras on the software
has also been examined. Three different application tests were
determined for each fault with 5%, 20% and 40% fault rates.
These fault rates are varied to apply to 10% and 30% of the
image library. Adding 20% fault injection test to the entire
image library, seven fault plans from each fault method were
tested. With this calculation, a total of 49 different fault
injection plans were tested in the study.

In Table 5, Multiple Fault Injection Test configurations are
shown. In this configuration, tests were carried out using the
specified rates for both fault types and fault injection at the rate
of the image applied fault.

In Table 6, the outputs of the normal image database obtained
from the ROKOS system in the quality control detection
software are given.

The faulty image libraries obtained because of fault injections
applied using CamFITool were passed through the quality
control system software one by one. The results obtained from
each fault method are analyzed in the following subsections.

It was observed that the quality control system gave “more
visible pieces” output as the fault rate increased in the image
libraries injected with Salt&Pepper, Gaussian and Poisson
faults. The increase in fault rate in image libraries injected with
Open fault affected the output very little (effect 0.3%). Likewise,
the number of faulty pictures did not change this situation
much. The increase in fault rate in image libraries injected with
the Close, Dilation and Motionblur faults affected the output at
a very low rate. Likewise, the number of faulty pictures did not
change this situation much. It has been observed that the
quality control system outputs more” invisible pieces” as the
fault rate increases in image libraries injected with Erosion and
Gradient faults. By using CamFITool, faults were injected into
the 293 body-in-white image library obtained from ROKOS
robot cameras, and the tests and results of the OTOKAR camera
quality control system software’s responses to these images
were compiled. With 49 different fault injection tests with 9
different fault types, different fault rates and wrong image
amounts, which fault injection affected the system and how it
was investigated. As a result of these tests, the effects of defect
types on the “number of visible pieces” are shown in Table 7.

8

Table 4. Fault Methods and Fault Rates Implemented with CamFITool (Single Fault Injection Tests).

Cam Type Fault Method Test Code App. Fault Rate
(%)

Fault Img. Rate
(%)

Fault Img.
Amount

TOF Salt&Pepper SP 5-20-40 10-30-100 29-88-293

TOF Gaussian G 5-20-40 10-30-100 29-88-293

TOF Poisson P 5-20-40 10-30-100 29-88-293

RGB Open O 5-20-40 10-30-100 29-88-293

RGB Close C 5-20-40 10-30-100 29-88-293

RGB Dilation D 5-20-40 10-30-100 29-88-293

RGB Erosion E 5-20-40 10-30-100 29-88-293

RGB Gradient GR 5-20-40 10-30-100 29-88-293

RGB Motionblur MB 5-20-40 10-30-100 29-88-293

Table 5. Fault Methods and Fault Rates Implemented with CamFITool (Multiple Fault Injection Tests).

Cam Type Fault Method Test Code App. Fault Rate
(%)

Fault Img. Rate
(%)

Fault Img. Amount

TOF Salt&Pepper + Gaussian SPG 5-20-40 10-30-100 29-53-146

TOF Gaussian + Poisson GP 5-20-40 10-30-100 29-53-146

TOF Poisson + Salt&Pepper PSP 5-20-40 10-30-100 29-53-146

Table 6. Quality Control System Software Output of ROKOS Normal Image Database.

Database Name Visibility
Rate (%)

Visible
Pieces

Invisibility
Rate (%)

Invisible
Pieces

Incomplete
Part Rate (%)

Incomplete
Part Pieces

Total

Normal Image Data 76,31 2381 10,99 343 8,72 272 2996

Table 7. Effects of Defect Types on the Number of Visible Parts
on the Basis of Applied Tests.

Fault Type Effect Average Change
Rate

Salt&Pepper Increased 4.38%

Gaussian Increased 4.75%

Poisson Increased 4.71%

Open Ineffected -0.30%

Close Ineffected -0.01%

Dilation Low Effected 1.49%

Erosion Decreased -3.16%

Gradient Decreased -4.24%

Motionblur Ineffected -0.01%

In the fault injection tests, the image fault injections are
performed with Salt&Pepper, Gaussian and Poisson faults,
which are defined as TOF camera faults, manipulated the
inspection software by an average of 4.61%. This manipulation
led to the conclusion that ROKOS detects more parts in the bus
chassis analysis, thus reducing the number of missing parts and
deceiving the system. Considering that the analysis software re-
examines the relevant chassis when it finds more than a certain
number of missing parts, the probability of continuing the
production of a bus chassis with missing parts increases as a
result of a fault in the camera. While Open, Close and
Motionblur faults in the tests did not affect the analysis
software, the Dilation fault, which is called one of the RGB faults,
caused the number of missing parts to be high (1.49%), albeit
at a low rate. Erosion and Gradient faults, on the other hand,
caused the number of missing pieces to be higher at an average
rate of 3.7%.

6.2 Safety Trajectory Optimization

The SRVT platform is utilized to verify and validate the Safety
Trajectory Optimization evaluation scenario. To this end, ROS
MoveIt tool’s OMPL (Open Motion Planning Library) and EST
(Expansive Space Tree) trajectory planning algorithms were

9

employed, and their performance evaluations were
determined. To test the effectiveness of these algorithms in a
simulated environment, comprehensive tests were conducted
on a use-case scenario, and the results were analyzed. Three
different scenarios, namely Quick test, Full Test with Reset, and
Reset-Free Full Test were evaluated, and the validation
activities were improved in terms of time and cost for the
ROKOS system transferred to SRVT [25]. Test cases for the
Evaluation Scenario – 2 of the VALU3S project are defined in
Table 8.

Table 8. VALU3S Evaluation Scenario – II Test Cases.

Test
Case

Test Case
Description

Expected Results

TC_5 Robot
Trajectory
Planning

The joint values of the robot tracking
the trajectories keeps within the
robot’s joint limits.

TC_6 Robot
Trajectory
Planning

The velocities and accelerations of
joints of the robot tracking the
trajectories keeps within the robot’s
joint limits.

TC_7 Robot
Trajectory
Planning

The jerks of joints of the robot
tracking the trajectories keeps
within the robot’s limits.

TC_8 Robot
Trajectory
Planning

The robot does not collide itself and
automotive body.

TC_9 Robot
Movement
According
to the
Trajectory
Plan

The robotic system should avoid
from obstacles within the limits of
safety.

TC_10 Robot
Movement
According
to the
Trajectory
Plan

The robot obeys safety-rated
stop/speed and separation
monitoring requirements of the
standard ISO15066:2016 and
ISO10218- 2:2011.

TC_11 Robot
Trajectory
Test

Existance control of minimum 95%
parts of

vehicle in less than 25 minutes and
in each trajectory point minimum
15% of each part must be visible.

TC_12 Task Safety
in Faulty
Situation

Mutating operations with faulty
situations. System do not cause any
unsafe movement or behaviour.

TC_13 Task Safety
in Faulty
Situation

Manipulating data transfer nodes.
System do not cause any unsafe
movement or behaviour.

In SRVT, RRT, RRT*, RRTConnect, PRM, PRM*, EST (Expansive
Space Trees) and BiEST (Bidirectional Expansive Space Trees)
algorithms were used [26]. The results of these algorithms in
three tests were compared, and the effects of changing test
conditions on the task completion time were examined. Before
the application of the test methods determined for the

trajectory planning algorithms, the time to find the planning
and plan implementation solutions of these algorithms were
also tested Planning Setup (SimpleSetup) and Solution Finding
(SolutionFound) values. The mean and standard deviation
values of these time values of the algorithms are shown in Table
9. These calculations are taken from the current ROKOS system.

Table 9. SimpleSetup and SolutionFound Average and Standart
Deviation Times Table.

Plan Alg. Simple
Setup
Avg. (sec)

Simple
Setup St.
Dev (sec)

Solution
Found
Avg. (sec)

Solution
Found St.
Dev.
(sec)

RRT-Left 0.0279 0.0309 0.829 0.788

RRT-
Right

0.0700 0.0837 0.6766 0.8448

RRT*-
Left

0.0278 0.0308 0.8298 0.7885

RRT*-
Right

0.0952 0.098 3.3718 1.5641

RRTCon.-
Left

0.0058 0.0075 0.3990 0.2824

RRTCon-
Right

0.0084 0.0088 0.5043 0.6409

EST-Left 0.0250 0.0247 0.8178 0.7611

EST-
Right

0.0804 0.1019 0.9056 1.3322

BiEST-
Left

0.0088 0.0076 0.5275 0.6486

BiEST-
Right

0.0413 0.0566 0.5314 0.5798

PRM-Left 0.0317 0.0405 1.0742 1.0307

PRM-
Right

0.1008 0.1049 0.9218 0.7563

PRM*-
Left

0.0375 0.0425 4.2290 0.5992

PRM*-
Right

0.1157 0.1215 4.0598 1.2331

The SimpleSetup times in the table above give the times when
the algorithms perform the planning. SolutionFound times are
the time they have these plans applied to the robot arms. These
times were calculated by analyzing the times obtained from all
the motion plans made by the robot arms during a task. The
time graphs obtained with these times are as given in Figure 11
and Figure 12.

10

Figure 11. SimpleSetup times graph for each robot arm of trajectory planning algorithms

Figure 12. SolutionSetup times graph for each robot arm of trajectory planning algorithms

The Reset Full Test is the standard task list that ROKOS applies
in the real-world environment. Improvements have been made
in the SRVT environment on this task list, and since SRVT
MoveIt is capable of dynamic trajectory planning, reset points
have been removed and a Reset-Free Full Test has been created
[11]. This test can be considered as the new and improved task
list of the ROKOS system to be integrated into the SRVT
environment. Therefore, the determination of the algorithm to
be applied to the ROKOS system in the real environment from
the test data obtained should be the algorithms with the best
planning and implementation time obtained from the Reset-

Free Full Test results. In line with the improvements made in
this context, the outputs of the best algorithm that can be used
for ROKOS can be seen in the graphics in Table 10 and Figures
13 and 14.

Table 10. SimpleSetup and SolutionFound Times with
Improvements Table.

11

Plan Alg. T1 T2 T3 Avg. t Imp.
Rate

RRT-Left 0.0279 0.0309 0.829 0.788 13.29%

RRT-
Right

0.0700 0.0837 0.6766 0.8448 21.7%

RRT*-
Left

0.0278 0.0308 0.8298 0.7885 22.67%

RRT*-
Right

0.0952 0.098 3.3718 1.5641 26.12%

RRTCon.-
Left

0.0058 0.0075 0.3990 0.2824 4.63%

RRTCon-
Right

0.0084 0.0088 0.5043 0.6409 24.87%

EST-Left 0.0250 0.0247 0.8178 0.7611 0.02%

EST-
Right

0.0804 0.1019 0.9056 1.3322 18.13%

BiEST-
Left

0.0088 0.0076 0.5275 0.6486 20.21%

BiEST-
Right

0.0413 0.0566 0.5314 0.5798 24.08%

PRM-Left 0.0317 0.0405 1.0742 1.0307 12.54%

PRM-
Right

0.1008 0.1049 0.9218 0.7563 27.9%

PRM*-
Left

0.0375 0.0425 4.2290 0.5992 24.13%

PRM*-
Right

0.1157 0.1215 4.0598 1.2331 25.9%

Figure 13. Full Test Results applied to current task list
(without Reset) (Best and worst times of algorithms based on

robot arms)

Figure 14. Full Test Results applied to current task list
(without Reset) (Average times of algorithms based on robot

arms)

The graph in Figure 13 shows the best and worst task
completion times for each robot arm of each algorithm as a
result of the Reset-Free Full Test. In the graph in Figure 14, the
average task completion times for each robot arm of each
algorithm in the full test result are given. According to the data
in the given tables and graphs, BiEST and RRT algorithms
showed a successful performance in the current task list,
considering the key performance indicators. It was observed
that the percentage of task completion increased by 27.9%
when the points that might be unnecessary for the planner
were removed from the task lists. It has also been observed that
task completion times can be reduced to less than 20 minutes.
Based on this, it has been concluded that the dynamic planning
system applied to the ROKOS system works more effectively at
less location points.

In this research, more than 900 hours of testing were conducted
on seven motion planning algorithms of the OMPL planner to
identify the optimal planning algorithm. The BiEST algorithm
was found to be the most efficient algorithm for the task. Task
completion times using the BiEST algorithm were observed to
reduce the task completion time of the ROKOS system by less
than 25 minutes. In the study, it was determined that the
average times obtained for the right ROKOS robot arm were
approximately 19 minutes, and 20 minutes for the left ROKOS
robot arm. By eliminating reset points from the ROKOS task list
and using the optimal planning algorithm, an average task
completion time gain of 20% was achieved for the ROKOS
system.

This increase in efficiency resulted in significant time savings in
the bus production line, leading to increased productivity.

6.3 Anomaly Detection at Component and System Level

CamFITool Anomaly Detection feature is used for Evaluation
Scenario – 3 which is anomaly detection at component level.
Test cases defined for VALU3S project Evaluation Scenario – 3
in Table 11.

This evaluation is conducted in two layers with CamFITool

Anomaly Detection Feature. First, image is classified as normal
or faulty and then faulty image is classified according to fault
types. This classification gives information about possible
failure at component (cable, HDD, camera etc.) in the ROKOS
system. One of CNN model is given at Figure 15.

12

Table 11. VALU3S Evaluation Scenario – III Test Cases

Test
Case

Test Case
Description

Expected Results

TC_14 Fault
injection to
robot
camera
system

The camera quality control system
will detect which faults have been
injected according to varying fault
types.

TC_15 Fault
injection to
robot
camera
system

The detailed evaluation of the
results that occur when the tested
files are mutated, ensures that the
user has information about the
reliability of the tested file.

Figure 15. CamFITool Anomaly Detection CNN Model-1
Summary

After that, 48-image prediction test was performed on the
designed Binary classification model. As a result of testing with
this image test library, which consists of faulty and normal
images, the trained model achieved a correct prediction rate of
87.5% (42 correct out of 48).

When the trained multi-class classification model was put to
the prediction test with a test library of 40 images, an accurate
prediction rate of 80.0% was achieved (32 correct predictions
out of 40). An example prediction test can be seen in Figure 16.

In Figure 17, two steps anomaly detection of Poisson faulty
image example result on CamFITool FIAD plugin interface.

The created anomaly detection add-on makes it feasible to
avoid collecting photos that can interfere with the robot control
system’s part detection, as shown in Figure 3. To make sure that
the part counting is done correctly, the images provided to the
part control system are first run via the anomaly detection
plugin. Only the images without anomalies are then sent to the
system. As seen in Table 7, improper part counts brought on by
inaccurate photos are therefore avoided.

Figure 16. CamFITool Anomaly Detection Multiclass
Classification model prediction test example

Figure 17. CamFITool Anomaly Detection Plugin usage
example.

13

7 Conclusions

In conclusion, this study has presented a novel verification tool
suite for industrial robotic systems. The proposed tool suite,
which includes Simulation-based Robot Verification Tool
(SRVT) and Camera Fault Injection Tool (CamFITool), was
specifically designed to address the challenges of testing and
validating robotic systems in a manufacturing context. The tool
suite was tested and evaluated within the framework of the
VALU3S ECSEL H2020 project, “Autonomous Robot Inspection
Cell for Vehicle Chassis Quality Control” proposed by OTOKAR.

The toolkit was evaluated by performing tests in three main
evaluation scenarios (ES1, ES2, ES3), four evaluation criteria
and fifteen test cases. ES1 focused on manipulation of camera
sensors and testing the system’s robustness against various
types of faults using CamFITool. According to the EC1 (Number
of malicious attacks and faults detected) criteria determined in
this context, the results showed that the system’s robustness
value was 95.39%. ES2 focused on safety trajectory planning
and testing of robot arms using SRVT, resulting in 27.9% time
savings in line with EC3 (Effort for test creation) and EC4
(Effort needed for test) criteria. In addition, robust
functionality of the system was tested in accordance with EC2
(Simulation-level system robustness) criteria. Finally, ES3
focused on anomaly detection using the toolkit and achieved a
fault detection rate of 80% (Table A3).

The results of our study demonstrate the effectiveness of the
proposed tool suite in providing accurate and reliable
validation results. The tool suite addresses the crucial aspects
of testing and validating robotic systems, such as trajectory
planning, sensor manipulation and anomaly detection.
Additionally, it has the major advantage of being open-source
and compatible with the Robot Operating System (ROS),
making it easily accessible and adaptable to other use cases.
This tool suite is one of the first of its kind in the ROS ecosystem
and represents a significant step forward in the field of robotic
system verification and validation. It allows for the
performance of tests on a simulated robotic control system in a
faster and more cost-effective way, while also ensuring the
safety and reliability of the final product.

The open-source application related to this study can be
accessed at https://github.com/Akerdogmus/camfitool and
detailed tests can be performed. The application here makes it
possible for users to test all the test cases included in the article.

8 Author contribution

Author 1: conceptualization, validation, review, and final
editing/proofreading and writing original draft.

Author 2: validation, review, supervision and final
editing/proofreading.

9 Declarations

Ethics committee permission is not required for the prepared
article.

There is no conflict of interest with any person/institution in
the prepared article.

10 References

[1] Aiello F, Garro A, Lemmens Y, Dutre S. “Simulation-based
verification of system requirements: An integrated
solution”. IEEE 14th International Conference on
Networking, Sensing and Control. 726–731, IEEE, 2017.

[2] Bauer T, Agirre J, Furcho D, Herzner W, Hruska B, Karaca
M, Pereira D, Proenca J, Schlick R, Sicher R, Smrcka A,
Yayan U, Sangchoolie B. Cross-domain modelling of
verification and validation workflows in the large scale
european research project valu3s. International
Conference on Embedded Computer Systems. 368–382,
Springer, 2022.

[3] Kanak A, Ergun S, Ozkan M, Cokunlu G, Yayan U, Karaca M,
Arslan AT. Verification and validation of an automated
robot inspection cell for automotive body-in-white: a use
case for the valu3s ecsel project. Open Research Europe.
1(115), 115, 2021.

[4] Chance G, Ghobrial A, Lemaignan S, Pipe T, Eder K. “An
agency-directed approach to test generation for
simulation-based autonomous vehicle verification”. 2020
IEEE International Conference On Artificial Intelligence
Testing (AITest). 2020

[5] Utting M, Pretschner A, Legeard B. A taxonomy of model-
based testing approaches. Software testing, verification
and reliability. 22(5), 297–312, 2012.

[6] Huck TP, Ledermann C, Kroger T. “Simulation-based
testing for early safety- validation of robot systems”. In:
2020 IEEE Symposium on Product Compliance Engineering.
1–6, Portland, 2020.

[7] Yang Y, McLaughlin K, Littler T, Sezer S, Im EG, Yao Z,
Pranggono B, Wang H. Man-in-the-middle attack test-bed
investigating cyber-security vulnerabilities in smart grid
scada systems, 2012.

[8] Vara JL, Bauer T, Fischer B, Karaca M, Madeira H,
Matschnig M, Mazzini S, Nandi GS, Patrone F, Pereira D. “A
proposal for the classification of methods for verification
and validation of safety, cybersecurity, and privacy of
automated systems”. In: QUATIC. 325–340, 2021.

[9] Hobbs A, Lyall B. “Human factors guidelines for remotely
piloted aircraft system (rpas) remote pilot stations (rps).
Technical report”. 2016.

[10] Simrock S. “Control theory”, 2008.
[11] Fisher M. “An Introduction to Practical Formal Methods

Using Temporal Logic”. John Wiley & Sons. 2011.
[12] Xiao A, Bryden KM. “Virtual engineering: A vision of the

next-generation product realization using virtual reality
technologies”. In: International Design Engineering
Technical Conferences and Computers and Information in
Engineering Conference. 46970, 461–469, 2004.

[13] Robert C, Guiochet J, Waeselynck H. “Testing a non-
deterministic robot in simulation-how many repeated
runs?”. In: 2020 Fourth IEEE International Conference on
Robotic Computing (IRC). 263–270, 2020.

[14] Cavalcanti A, Sampaio A, Miyazawa A, Ribeiro P, Filho MC,
Didier A, Li W, Timmis J. Verified simulation for robotics.
Science of Computer Programming. 174, 1–37, 2019.

[15] Garoche PL. “Formal Verification of Control System
Software”. Princeton University Press. vol 67, 2019.

[16] Webster M, Western D, Araiza-Illan D, Dixon C, Eder K,
Fisher M, Pipe AG. A corroborative approach to
verification and validation of human–robot teams. The
International Journal of Robotics Research. 39(1), 73–99,
2020.

[17] Bogaerts B, Sels S, Vanlanduit S, Penne R. Connecting the
coppeliasim robotics simulator to virtual reality.
SoftwareX. 11, 100426, 2020.

[18] Son TD, Bhave A, Auweraer HV. “Simulation-based testing
framework for autonomous driving development”. In:
2019 IEEE International Conference on Mechatronics
(ICM). vol. 1, 576–583, 2019.

14

[19] Pedersen TA, Glomsrud JA, Ruud EL, Simonsen A, Sandrib
J, Eriksen BOH. Towards simulation-based verification of
autonomous navigation systems. Safety Science. 129,
104799, 2020.

[20] Hsueh MC, Tsai TK, Iyer RK. Fault injection techniques and
tools. Computer. 30(4), 75–82, 1997.

[21] Parasyris K, Tziantzoulis G, Antonopoulos CD, Bellas N.
“Gemfi: A fault injection tool for studying the behavior of
applications on unreliable substrates”. In: 2014 44th
Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. 622–629, 2014.

[22] Aidemark J, Vinter J, Folkesson P, Karlsson J. “Goofi:
Generic object- oriented fault injection tool”. In: 2001
International Conference on Dependable Systems and
Networks. 83–88, 2001.

[23] Hari SKS, Tsai T, Stephenson M, Keckler WS, Emer J.
“Sassifi: An architecture-level fault injection tool for gpu
application resilience evaluation”. In: 2017 IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS). 249–258, 2017.

[24] Svenningsson R, Vinter J, Eriksson H, Torngren M. “Modifi:
a model implemented fault injection tool”. In:
International Conference on Computer Safety, Reliability,
and Security. 210–222, Springer, 2010.

[25] Erdogmus AK, Yayan U. “Development of simulation-
based testing for automated robot cell for quality
inspection of automotive body-in-white system”. In: TOK
2021 - Otomatik Kontrol Ulusal Kongresi. 2021.

[26] Yayan U, Erdogmus AK. “Endüstriyel robot hareket
planlama algoritmaları performans karşılaştırması”.
Journal of Science, Technology and Engineering Research.
2(2), 31–45, 2022.

[27] Yayan U, Erdoğmuş AK. “Development of a fault injection
tool & dataset for verification of camera based perception
in robotic systems”. Eskişehir Osmangazi Üniversitesi
Mühendislik ve Mimarlık Fakültesi Dergisi. 30(3), 328–339,
2022.

[28] Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J,
Wheeler R, Ng AY. “Ros: an open-source robot operating
system”. In: ICRA Workshop on Open Source Software. vol.
3, 5, Kobe, Japan, 2009.

[29] Chitta S, Sucan I, Cousins S. “Moveit! [ros topics]”. IEEE
Robotics & Automation Magazine. 19(1), 18–19, 2012.

[30] ROS Wiki. “SMACH article”. http://wiki.ros.org/SMACH
(Erişim Tarihi: 23.02.2024).

[31] GAZEBO Website. “GAZEBO Description”.
http://GAZEBOsim.org/ (Erişim Tarihi: 23.02.2024).

[32] Kuffner JJ, LaValle SM. “Rrt-connect: An efficient approach
to single-query path planning”. In: Proceedings 2000 ICRA.
Millennium Conference. IEEE Inter- national Conference on
Robotics and Automation. Symposia Proceedings. vol. 2,
995–1001, 2000.

[33] Sucan IA, Moll M, Kavraki LE. The open motion planning
library. IEEE Robotics & Automation Magazine. 19(4), 72–
82, 2012.

[34] BTC Embedded. “When and how to qualify tools according
to ISO 26262”. https://www.btc-embedded.com/when-
and-how-to-qualify-tools-according-to-iso-26262/
(Erişim Tarihi: 23.02.2024).

[35] Osadcuks V, Pudzs M, Zujevs A, Pecka A, Ardavs A. “Clock-
based time synchronization for an event-based camera
dataset acquisition platform”. In: 2020 IEEE International
Conference on Robotics and Automation (ICRA). 4695–
4701, 2020.

[36] Özkan K, Seke E, Işık Ş. Derin öğrenmeye dayalı görünür
yakın kızılötesi kamera kullanılarak buğday
sınıflandırması. Pamukkale Üniversitesi Mühendislik
Bilimleri Dergisi, 27(5), 618-626, 2021.

Appendix A.

Evaluation Scenario Tables for V&V Tool Suite Modules

Tables containing some of the tool features mentioned in the
study are included in this section. The first of these tables, Table
A1, is a table showing Tool Qualifications of SRVT’s modules.
Table A2 shows the Tool Qualifications of CamFITool’s
modules. Finally, Table A3 is a table showing the evaluation
scenarios, criteria and test cases provided by the V&V Tool
Suite.

http://wiki.ros.org/SMACH
http://gazebosim.org/
https://www.btc-embedded.com/when-and-how-to-qualify-tools-according-to-iso-26262/
https://www.btc-embedded.com/when-and-how-to-qualify-tools-according-to-iso-26262/

15

Table A1. SRVT Modules Tool Qualifications.

Module
Name

Module Purpose Tool
Impact

TI Desc. Test
Error
Detec.

TD Desc. TCL TCL Desc.

SRVT
Gazebo

It is a robotic
simulation system.
It provides a test
environment.

TI2 Correct installation
of model packages,
accu- racy of URDF
files and accuracy
of launch files are
important.

TD2 System faults are

reported as ROS
errors with limited
details, leading to
variable solutions.

TCL2 Problems that may

arise in this mod-
ule have a moderate
impact on the
system’s security.

SRVT
Moveit

It is a motion
planning and
implementation
module.

TI2 Defining the config
files correctly and
editing the scene is
important.

TD3 System faults
typically arise from
improper scene
creation, but are
hard to detect as they
require
observational
identification.

TCL2 Problems that may

arise in this module
have a moderate
impact on the
system’s security.

SRVT
Smach

It is a system
control and
communication
module. Tasks such
as task planning,
application,
routing rotate
through this
module.

TI2 It is important to
plan the
communication
system correctly
and write the
Python code
cleanly.

TD2 System faults can
halt other modules’
operations due to
communication
issues; they’re easy
to detect but may
require checking all
modules for the root
cause.

TCL3 Problems that may
arise in this module
have a high impact
on the security of
the system.

SRVT
Task
Server

It is the module
that allows the task
list to be published
with a ROS node.

TI1 It is important that
the node publisher
code, task list and
launch file are
written in the cor-
rect format.

TD1 The fault is easily
detectable as an
error in Python code,
potentially leading
the robot to incorrect
positions.

TCL2 Problems that may
arise in this module
have a moderate
impact on the
system’s security.
However, the
probability of a
problem is low.

SRVT
Image
Server

It is the module
that allows the
image save
function to be
broadcast with a
ROS node.

TI1 It is important that
the node publisher
code, task list and
launch file are
written in the cor-
rect format.

TD1 The fault,
manifesting as an
error in Python code,
is easily detectable
and may result in the
robot capturing
inaccurate images.

TCL1 Problems that may

arise in this module
have a low impact
on the system’s
security.

Table A2. CamFITool Modules Tool Qualifications.

Module
Name

Module
Purpose

Tool
Impact

TI Desc. Test
Error
Detec.

TD Desc. TCL TCL Desc.

CamFITool
Offlin Fault
Injection

It is the module
that performs
fault injection
to prepared
image libraries.

TI2 It is important that
the library
locations are
entered correctly
and the Python

TD2 Faults that may occur
in the system may be
caused by file
location faults. It is
easy to detect as
there are try-except

TCL2 Problems that may

arise in this
module have a
moderate impact on
the system’s
security.

16

code is written
cleanly.

and fault detection
functions in the code.

CamFITool

Realtime
Fault

Injection

It is the module

that performs
fault injection
to the defined
ROS camera
nodes.

TI2 It is important that

the node names are

entered correctly
and that the ROS
codes are arranged
correctly.

TD3 Faults that may occur
in the system can
usually be caused by
entering the wrong
node name. It is easy
to detect as there are
try-except and fault
detection functions
in thecode.

TCL2 Problems that may

arise in this
module have a
moderate impact on
the system’s
security.

Anomaly

Detection

Module

It is a modüle
used to detect
whether an
image
uploaded by
the user is
incorrect/fault
y.

TI2 It is important to
define the models
(CNN- trained)
correctly.

TD3 Faults that may occur
in the system may
have occurred as a
result of incorrect
model definition. It is
easy to detect as
there are try-except
and fault detection
functions in the code.

TCL2 Problems that may

arise in this
module have a
moderate impact on
the system’s
security.

Table A3. Requirements Fulfilled by V&V Tool Suite

Evaluation Scenarios Related ECs Related TCs Outputs

ES1 EC1 TC-1, TC-2, TC-3, TC-4 System Robustness =
95,39%

ES2 EC2, EC3, EC4 TC-5, TC-6, TC-7, TC-8, TC-
9, TC-10, TC-11, TC-12,
TC-13

Effort Gain = 27,9%

ES3 EC1 TC-14, TC-15 Anomaly
Detection/Accurate
Prediction Rate = 80,0%

