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Abstract  Öz 

This study introduces a new tool suite for robotic system safety and 
reliability in manufacturing. Developed for a vehicle chassis inspection 
project, it includes a simulation-based verification tool and a camera 
fault injection tool. Evaluated across three scenarios with robust 
testing, the tools demonstrated significant improvements in system 
efficiency and robustness. Unique for being open-source and ROS-
compatible, they fill a gap in robotic system verification and validation. 
Results showed a 95.39% robustness in fault detection, a 27% efficiency 
increase in planning, and an 80% resistance to camera faults. This 
advancement marks a significant leap in reducing testing costs and time 
for industrial robotics. 

 Bu çalışmada, üretimde robotik sistem güvenliği ve güvenilirliği için 
yeni bir araç paketi tanıtılmaktadır. Bir araç şasisi denetim projesi için 
geliştirilen bu araç, simülasyon tabanlı bir doğrulama aracı ve bir 
kamera hata enjeksiyon aracı içermektedir. Sağlam testlerle üç 
senaryoda değerlendirilen araçlar, sistem verimliliği ve sağlamlığında 
önemli gelişmeler olduğunu göstermiştir. Açık kaynaklı ve ROS uyumlu 
olmasıyla benzersiz olan bu araçlar, robotik sistem doğrulama ve 
onaylama alanındaki bir boşluğu doldurmaktadır. Sonuçlar, hata 
tespitinde %95,39 sağlamlık, planlamada %27 verimlilik artışı ve 
kamera hatalarına karşı %80 direnç göstermektedir. Bu ilerleme, 
endüstriyel robotik için test maliyetlerini ve süresini azaltmada önemli 
bir sıçramaya işaret etmektedir. 

Keywords: verification tool, robotics, industrial quality control, 
safety trajectory optimization, manipulation of sensor data, fault 
injection 

 Anahtar kelimeler: Doğrulama aracı, robotik, endüstriyel kalite 
kontrol, güvenli yörünge optimizasyonu, sensör verilerinin 
manipülasyonu, hata enjeksiyonu 

1 Introduction 

With the 4th industrial revolution and technological 
enhancements, robotic systems have become important parts 
of industrial processes. IoT technologies brought cyber-
physical systems and autonomous operations. In today’s cyber-
physical systems, complexity of the robotic systems become 
complex. The complexity of the cyber-physical systems is 
continuing to increase especially with multi-level integration of 
subsystems with different domains. Today, with increasing 
complexity in cyber-physical systems, Verification & Validation 
(V&V) of the of systems has never been important ever before. 
verification is known as a process to verify correctness of the 
systems with respect to its requirements. Testing can be 
defined as a technique with an aim of showing intended and 
actual behaviors of a system are satisfying the requirements or 
not [1],[2],[3],[4],[5]. 

Robotic inspection systems are known as sending robots to 
hazardous distant or dangerous environments and robotic 
inspection systems have gained importance with the aim of 
reducing human risk. Today, robot inspection systems are 
being used into situations for hazards listed: chemical and 
radiation, explosion and fire, wind and water, pressure and heat 
lack of atmosphere and Inspecting structures for leaks, faults, 
corrosion, or for general wear etc. According to workplace, 
these robots may have different system properties and options 
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in construction and programming. Variety of inspection 
sensors, variety of communication mechanisms can be 
configured. With creation of new robotic inspection systems, it 
is expected them to carry out more complex tasks in future. The 
demand on robots to do more complex tasks is increasing 
complexity of the robotic systems. Thus, software quality 
becomes crucial. In this case verification and validation of robot 
inspection systems will be more critical in following years [6]. 

2 Literature Review 

In robotic systems, there are many different techniques for 
testing and verification. Physical testing is an important 
practice. However, for many of the environments, there are two 
main issues that makes test scenarios impossible replicate. 
Firstly, changes on robot itself like energy, battery degradation, 
equipment wear etc. makes test cases unique. Also, 
environmental changes like temperature, air, radiation etc. 
cause distinctive test cases. In these cases, test cases often 
carried out multiple times before deployment [6]. Physical tests 
usually require high costs for test execution and have higher 
safety risks for many other test methods. For example, 
imitation of faults in physical systems can cause hazards. Also, 
in some cases where targeted environment can’t be created, 
physical tests may not provide good results as example of space 
rovers. These space rovers’ working environment can only be 
physically modelled for similar physical conditions. The 
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physical models may not provide same testing conditions or 
injection of faults may not create same affect for test scenarios 
and also physical test suite creates additional cost and time for 
developers. 

In verification and validation (V&V) of the cyber-physical 
systems for example, industrial inspection robots, V&V 
activities can be done with various methods. These V&V 
methods are differentiating each other with general method 
implementation and different V&V concerns. There are 
methods applied for verifying multiple concepts. For example, 
formal and model-based methods can be applied to verify and 
validate safety, security and privacy concerns. Besides, 
penetration testing method [7] is tailored for cybersecurity. In 
a recent study contributed by this paper authors [8], have 
proposed classification of V&V methods in scope of safety, 
cybersecurity, and privacy of automated systems. In 
classification of these methods, systems having different levels 
of autonomy and different purposes can be Validated with 
given general method types. General V&V methods are 
considered as;  

1) Fault/Attack Injection  

2) Simulation,  

3) Testing,  

4) Runtime Verification,  

5) Formal Analysis,  

6) Semi-formal Analysis,  

7) Informal Analysis.  

Injection methods are done by introducing phenomenon to a 
system and analyzing system’s response. Simulation based 
methods observe system behavior on modelled systems. Next, 
testing method considers system execution under certain 
conditions. Similarly, runtime verification methods evaluate 
system during operation. Formal analysis methods execute 
V&V methods with mathematical basis. In contrast, informal 
analysis V&V methods are executed without having any 
mathematical basis [8]. In robotics, there are different levels of 
autonomy and V&V activities are done according to these levels. 

In supervised or semi-autonomous systems, direct and remote 
control of robots can be inaccurate and fault-prone [7]. 
Verification and validation of these systems are traditionally 
done with stability analytics, safety avoidance proofs with 
control theory algorithms [8]. Formal methods are can also be 
applicable. However, these methods can become intractable in 
case lacking of significant abstractions or approximations of 
environment [9],[10]. In some studies, beyond the model-based 
methods, Hardware-in-the-loop (HIL) and real-worlds tests are 
being done [11]. However, these tests can be costly. 

Today, detailed computer simulations which is also called as 
“digital twin” in some cases, are created for virtual prototypes 
of examined systems [12]. These simulations generally have 
detailed physic models of the system and its environment. The 
term of simulation-based testing is based on these simulations 
and it is useful for examination of critical and/or autonomous 
systems testing. The benefit of simulation-based testing 
compared to traditional V&V techniques is cost and safety [13]. 
Using simulators for V&V processes can eliminate hazardous 
situations and only leave edge cases for physical tests. Also, 
simulation models and environments can provide exact same 
conditions for different test cases. In example application for 
Simulation-based testing is flight simulation software 

(FLIGHTLAB, X-Plane etc.) [14] include physical models and 
control systems in virtual 3D environment. This way, 
development and testing can be done relatively cheap and 
quick. However, it is important to understand the gap between 
simulation and reality [6]. 

For the autonomous systems where software makes key 
decisions, safety is in a critical state and V&V of these systems 
is done by several techniques. In recent studies, Formal 
methods are used in autonomous vehicle testing with AI-based 
tools with simulations [15],[16]. In another study, it is indicated 
that traditional methods or Monte-Carlo approaches are 
usually not viable for hazard identification of robotic system. In 
given study, CoppeliaSim is used for evaluating safety-
validation scenarios with simulation-based testing [17]. 
Furthermore, the study made by Son et al. [18] presented 
simulation-based testing and validation framework for 
Autonomous driving systems. In paper, Vehicle dynamics are 
created in Anesim and Co-simulated with Prescan to simulate 
environment and sensors and creating trajectory safety testing 
for autonomous driving systems. Similar study in this topic, 
Chance et al. [4] presented agent-based test generation 
technique, novel to model-based test generation for simulation-
based testing. However, in presented study, simulation and 
environment are lacking for real life V&V scenarios. Following, 
a study proposed simulation-based testing for Ship 
Autonomous navigation system (ANS) and situational 
awareness. Comprehensive mathematical models of the ship 
and its equipment, including all sensors and actuators are 
represented in digital-twin [19]. 

In the field of software engineering, the assessment of software 
reliability and system safety is of utmost importance. Among 
the various methods employed for this purpose, fault injection 
has gained significant attention. Practitioners in the software 
development, research, and engineering domains utilize fault 
injection methods to test the system’s robustness against 
injected faults. These methods involve inducing faults in 
software-based systems and devising new techniques that can 
be applied to both hardware and software. A notable fault 
injection method involves the injection of faults into hardware 
components, such as chip pins, internal circuits, and registers. 
Such faults cannot be rectified through software modifications. 
In contrast, injecting faults into software can cause a direct 
alteration in the overall state of the software. Consequently, 
hardware methods are suitable for evaluating low-level fault 
detection and masking mechanisms, while software methods 
are appropriate for testing higher-level mechanisms [20]. 

Several studies have explored various software and interfaces 
that facilitate fault injection. Notable examples in the literature 
include GemFI [21] by Parasyris et al., GOOFI [22] by Aidemark 
et al., SASSIFI [23] by Hari et al., and MODIFI [24] by 
Svenningsson et al. These studies have developed fault injection 
tools that enable testing for fault tolerance and system 
weaknesses in diverse software, simulation, or hardware 
systems. 

Robotic inspection systems are intricate machines that need 
sophisticated tool sets to check each component. This work 
uses a novel suite of verification tools for industrial inspection 
robots to go through this kind of verification. The Simulation- 
based Robot Verification Tool (SRVT) [25],[26] and the Camera 
Fault Injection Tool (CamFITool) [27] are the two instruments 
that make up this tool suite. The proposed tool suite is 
demonstrated on the verification of the “Safety Trajectory 
Optimization”, “Manipulation of Sensor Data” and “Anomaly 
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Detection at Component and System Level” evaluation 
scenarios from the VALU3S ECSEL H2020 project. In the 
VALU3S project, OTOKAR describes the use case scenario 
“Autonomous Robot Inspection Cell for Vehicle Chassis Quality 
Control” with difficulties in the robotic inspection system that 
have been found. In order to validate the safety trajectory for 
robotic systems, SRVT is utilized to identify the fastest and 
safest trajectory planning technique. CamFITool is a tool for 
injecting faults into camera sensor data to test the stability of 
camera-based perception systems and detect anomalies at 
images. One of the uniqueness of this V&V Tool suite is open-
source and Robot Operating System (ROS) compatible are [28]. 
Such tools are not common in the ROS environment. In this 
study, a verification tool suite is applied to a specified use case 
scenario, and evaluation outcomes are provided in relation to 
evaluation scenarios. The suggested verification tool suite 
successfully ensures the required key performance indicators 
(KPIs) for each evaluation scenario. In the following section, use 
case scenario ’Autonomous Robot Inspection Cell for Vehicle 
Chassis Quality Control’ which is used in this study and 
evaluation scenarios are explained. In Chapter 4, proposed 
verification tool suite (SRVT and CamFITool) is explained in 
detail. In Chapter 5, contains tool qualification reviews of the 
SRVT and CamFITool tools. In Chapter 6, Industrial Robotic 
body-in-white Inspection Cell Verification tool suite evaluation 
scenario results are given. Conclusion and future works are in 
Chapter 7. 

3 Use Case Overview 

The targeted use case involves using new visual inspection 
techniques to improve automotive body-in-white inspection. 
The goal is to provide a more fault-tolerant production system 
and improve quality control. A cartesian robot and camera 
sensor system will automatically check the existence of 2500-
3000 body parts using digital twin software and CAD data. The 
system will use a programmable logic controller to position the 
cartesian robot, and sensors will capture 2D images to compare 
with synthetic 2D images stored in a server. Quality reports and 
system status data will be stored for the quality control team to 
review and give final confirmation [25]. 

 

Figure 1. Robotic inspection cell for quality control 

Given use case is defined as Use Case 11 in the VALU3S project 
is aiming to provide a better fault-tolerant production line to 
achieve better quality control for bus body- in-white [26]. The 
components of the robotic inspection system are given in 
Figure 1. Quality control has been carried out by means of the 
camera system positioned on the cartesian robot located on 
both sides of the vehicle body (i.e bus). The data obtained from 
the CAD data of the large-bodied vehicle is compared with the 
actual data obtained from the camera system by means of the 
synthetic data obtained from the developed data, and the item 
presence-absence check and critical measurement controls 
acquired from sensor and actuator as shown in Figure 2. 

 

Figure 2. OTOKAR Camera Quality Control System interface. 

Robotic inspection system (ROKOS) camera-based quality 
control system is a software that analyzes the deficiencies of the 
parts of the bus body-in-white inspected by ROKOS. The 
software, which sends the body-in-white pictures taken by 
ROKOS, gives information about how many parts are missing in 
the body-in-white. Software interface could be seen at Figure 3. 

 

Figure 3. The components of body-in-white inspection system 
for world-selling OTOKAR buses. 

To ensure existence of vehicle parts and quality, verification 
tool suite is applicable to the robot inspection cell for quality 
control. Use case application will cover an automated fault 
injection application, specifically for controlling the entire 
industrial automated line. 

The existing Quality check processes still very long and 
ineffective without advanced safety concepts. Additionally, 
Quality check in existing manufacturing environment is not 
very responsive and adaptive to online sensing. It works in 
Stop&Go mode to provide the safety. 

Despite the advantages of the robotic inspection system 
(ROKOS) system, there are also some disadvantages. The 
ROKOS system works with a task-based working model, where 
robot arms move to the points where it will record photos and 
the commands for taking pictures are defined as a task. 
However, not all joints of the robot arms work simultaneously 
in the currently used system. This creates a restriction on the 
robot arm movement trajectory. Due to this restriction, various 
reset points have been added to the task lists so that the robot 
arms can move without collision. Robot arms can go to these 
reset points between some tasks. This leads to a longer term of 
operation. Thus, in use case, evaluation scenarios were 
determined for the correction and improvement of these 
situations and these scenarios were started to be implemented 
with SRVT and CamFITool.  

The evaluation scenarios and criterias, which are the 
requirements of the robotic system to be determined and 
developed in this direction, are in Table 1 and Table 2. 
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Table 1. VALU3S Evaluation Scenarios. 

Code Eval. Scenario Name Description 

ES1 Manipulation of Sensor Data Manipulation of sensor data stream at camera and safety sensors. 
ES2 Safety Trajectory Optimization Creating robot trajectory points automatically covering the safety of 

the robot and its apparatus as well as static objects in the workspace. 
ES3 Anomaly Detection at Component and 

System Level 
Observing machine learning and/or pre-training data in the process of 

reviewing and predicting normal detections in data checks 
 

Table 2. VALU3S Evaluation Criterias. 

Code Eval. Criteria Name Description Measured Artifacts 

EC1 Number of malicious 
attacks and faults 

detected 

The evaluation criterion measures the effec- tiveness of detecting 
malicious attacks and faults in the System Under Test (SUT), 

defined by a risk assessment specific to the system’s context and 
application. 

Number of 
detected faults 

EC2 Simulation-level 
system robustness 

This criterion evaluates the robustness of the system by 
assessing the quality of the tested software for poor architectural 

and coding practices that could result in operational risks or 
costs, taking into account non-software components as well. 

System 
Robustness 

EC3 Effort for test creation   This criterion deals with the estimation of 
effort for deriving and/or maintaining test suites, e.g., for fault 

injection and runtime verification campaigns (manual design vs. 
model- based generation) 

 
Time (lower the 

better) 

EC4 Effort needed for test   This evaluation criterion measures the effort 
required to perform a test on a system, including dataset 

generation, execution of the test cases, and result validation. It is 
used to compare the effort spent on manual versus automated 

work. 

Total person- 
hours cost 

 

4 Proposed Verification Tool Suite  

The targeted use case involves using new visual inspection 
techniques to improve automotive body-in-white inspection. 
The goal is to provide a more fault-tolerant production system 
and improve quality control. 

4.1 Simulation-based Robot Verification (SRVT) 

SRVT can be thought of as a tool that allows a robotic system to 
be transferred to the simulation environment and applied to 
verification tests [25]. The base of the system is the coordinated 
use of some critical software for the ROS ecosystem (see Figure 
4). In SRVT, Gazebo Simulator is used for Simulation, MoveIt 
[29] is used for trajectory planning, ROS SMACH packages are 
used for finite state machine monitoring, and a dynamic 
verification system was created in a single ROS package [30]. 
Besides, there are two other nodes which are Image and Task 
Server. 

 

Figure 4. SRVT Architecture 

The SRVT approach involves remodeling the ROKOS robot arms 
and bus body- in-white within the Gazebo simulation 

environment (refer to Figure 5). The Gazebo simulator is a 
widely used simulation engine in the domain of robotic 
simulation, owing to its realistic physics engine and seamless 
integration with the ROS system. The ROKOS robotic system, 
with its actual physical measurements and values, was 
transferred to Gazebo and employed in the simulation [31]. 

 

Figure 5. ROKOS modeled on the Gazebo simulation 
environment. 

MoveIt is used for controlling the robot arms in the simulation. 
MoveIt inculdes open-source trajectory planning algorithms in 
the library [32],[33]. In Figure 6, Moveit interface with bus 
body-in-white could be seen. In the [26] study, it has been 
studied to improve the safe trajectory planning performed by 
SRVT Moveit and the completion times of ROKOS on this route, 
and to determine the ideal planning algorithm. 
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Figure 6. Bus body-in-white added to the planning 
environment and use of the Moveit planner. 

SRVT SMACH node serves as finite state machine for controlling 
SRVT behaviors. This node connects with each of other nodes 
and sends commands to them. In addition, the SRVT SMACH 
node records the executed task information and the time it was 
performed and the motion planning data. Looking closer at 
Figure 7, the states that the SRVT SMACH node includes are: 
Left Move, Left Camera, Left Take Photo, General Selection and 
Left Get Tasks. 

 

Figure 7. SMACH interface of left ROKOS arm. 

SRVT Image Server is formed by the operation of the ROS node, 
which enables the SRVT to take camera images from the 
simulation environment. SRVT Task Server node reads the 
tasks of the left and right ROKOS robot arms from the task files. 

These tasks can also be filtered according to the Task ID value 
if desired. If the value of ROKOS is None, all tasks are sent to the 
client. The ROKOS SMACH node makes a request to the Task 
Server node if a task is not available. In response, Task Server 
receives the coordinate and orientation information that the 
robot arm needs to apply, as well as the image information it 
will take. This information includes Task ID, vehicle number 
and tag information. 

While performing tasks, every transaction made by the robots 
is recorded. These records, which contain information such as 
robots’ time to perform tasks, applied motion values, and task 
codes, provide users with the opportunity to examine and solve 
the problem in case of a potential problem. 

4.2 Camera Fault Injection Tool (CamFITool) 

The Camera Fault Injection Tool (CamFITool) is an open-source 
tool that leverages cutting-edge vision-based fault injection 
techniques to inject faults into RGB and TOF cameras. The tool 
is specifically designed for performing verification and 
validation activities on robotic systems [27]. CamFITool is 
implemented using Python and features a Qt5 interface. 
Moreover, the tool is compatible with ROS Noetic, as depicted 
in Figure 8. 

 

Figure 8. CamFITool Offline FI screen. 

With Realtime fault injection, CamFITool can perform fault 
injection to any cur- rently running ROS camera stream. This 
injection can be made into RGB camera broadcasts with six 
different fault types (TOF camera support will be added in the 
next updates). During the injection, the relevant broadcast can 
be viewed on the screen to be opened by pressing the “Robot 
Cam” button in CamFITool (Figure 9). 

 

Figure 9. CamFITool Realtime FI screen. 

Another feature of CamFITool is anomaly detection. This 
feature is related with Evaluation Scenario 3. In Figure 10, 
CamFITool Anomaly Detection screen could be seen. 

CamFITool uses CNN algorithm for Anomaly detection in the 
images taken from ROKOS or SRVT system. An interface plugin 
has been developed for CamFITool (Fault Anomaly Detector 
Plugin - FIAD) that allows detecting anomalies in images and 
detecting faults in faulty images. This interface enables the use 
of models trained with CNN algorithms. The Binary 
Classification model, which determines whether the picture is 
faulty or not, and the Multiclass Classification models are 
trained to determine which faults the pictures have. The binary 
one of these models has been trained with libraries with 
different fault rates of 6 fault types (Dilation, Erosion, Gaussian, 
Gradient, Poisson, Saltpepper), 100 different images from each 
other, and 66 images determined as test images. It consists of a 
total of 1200 images (600 normal, 600 faulty) training set and 
397 images (199 normal, 198 faulty) images test set. The 
multiclass model is based on 6 different fault types. 500 
trainings different from each other, with different fault rates for 
each fault type, were trained with 100 test pictures (a total of 
3000 trainings, 600 test pictures) [27]. 
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Figure 10. CamFITool Anomaly Detection screen. 

5 V&V Tool Suite Qualification Assessment  

A procedure called tool qualification enables us to show that a 
tool may be utilized to realize a software application with a 
predetermined safety target. 

5.1 Qualification Approach  

1. Tool Impact: If a tool can introduce bugs into the code or is 
inefficient at dis- covering errors, it is assumed that it will have 
an effect on the final product. Tool Impact 2 refers to this 
situation. If the tool has no effect on the output of the software, 
it comes under TI 1. 

2. Tool Error Detection: The tool’s use-case scenarios help 
decide whether it has enough safeguards to both detect and 
stop malfunctioning and inaccurate output. The degree of 
confidence in mistake detection is determined by the tool’s 
capacity. 

3. Tool Confidence Level: Tool Confidence Level extraction is 
simple to complete once Tool Impact and Tool Error Detection 
levels have been established. The inferences drawn lead to the 
following tool confidence levels: 

(a) TCL 1 has the lowest level of confidence. This tool’s 
negligible influence on the final product’s quality. As a result, 
tool qualification is not required. 

(b) TCLs 2 and 3 have medium and high degrees of confidence, 
respectively. A qualification needs to be offered in order to 
demonstrate how trustworthy a tool is. 

Based on the ISO 26262 standards of SRVT and CamFITool, the 
components that make up the tool suite we have developed, the 

measurement of software quality and the compatibility of 
standards with these software tools are also provided. 

The ISO 26262 standard is a standard that covers the 
development process of soft- ware used in critical security 
applications. ISO 26262 also covers tools used for the 
development and testing of tools, and also stipulates their 
qualification. The qualifi- cation requirement is determined by 
whether the tools can cause a defect in the end product and the 
detectability of that defect [34]. 

ISO 26262 defines three different levels of trust for tools: 

 TCL1 (low impact) 

 TCL2 (moderate) 

 TCL3 (high impact) 

Tool qualification is not required for TCL1, while qualification 
is required for TCL2 and TCL3. Tool qualification is done by 
following two steps that determine the qualification’s 
requirement. In the first step, it is determined whether the tools 
can cause a defect in the final product. In the second step, when 
the vehicle generates a fault, its detectability is evaluated. ISO 
26262 recommends four different methods for tool 
qualification. These: 

(a) Confidence increased by previous use, 

(b) Development process evaluation, 

(c) Verifying the software tool, 

(d) Development in accordance with the security standard. 

5.2 Modules and Tool Qualifications  

The tool qualifications of the SRVT modules are listed in Table 
11 (in the Appendix A). According to the reports generated 
during the SRVT development process, the levels of faults 
obtained with the safety gain were primarily focused in groups 
A, B, and C. The inferences drawn from the continuation of the 
development process and parallel testing of safety issues 
concentrated the fault levels of the development process under 
A and B. The error levels were primarily under C and D due to 
the safety implications of the issues discovered during the 
validation of the software tool. The safety levels achieved 
through improvements according to ISO 26262 standards were 
generally concentrated under D, indicating that the safety levels 
of the developments in accordance with ISO 26262 standards 
are high. 

The tool qualifications of the CamFITool modules are listed in 
Table 12 (in the Appendix A). During the development of 
CamFITool, the levels of errors obtained with the security gain 
were thoroughly analyzed and reported in groups A, B, and C. 
The development process and concurrent testing of security 
issues led to the conclusion that the fault levels were mainly 
concentrated under A and B. However, the error levels were 
mainly under C and D due to the security implications of the 
issues identified during the software tool’s validation. The 
security levels achieved through improvements according to 
ISO 26262 standards were generally concentrated under D, 
indicating that the security levels of the developments in 
accordance with these standards are high. 

6 Industrial Robotic body-in-white Inspection 
Cell Application Verification Results  

To demonstrate applicability and effectiveness of the V&V tool 
suite, proposed tool suite is applied to Industrial robotic 
inspection cell use case. In scope of application, previously 
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explained evaluation scenarios are studied in this chapter. In 
this manner, manipulation of sensor data and anomaly 
detection at component and system level are realized through 
CamFITool and trajectory safety optimization scenario is 
realized with SRVT. In this chapter, description and execution 
of test cases are explained for each use case scenario. Results 
obtained from these three evaluation scenarios are shown in 
detail. With test results, effect and improvements done by V&V 
tool suite are explained in this section. 

6.1 Manipulation of Sensor Data  

The fault injection software on Robotic Camera systems is 
turned into a fault injection interface called CamFITool. This 
interface runs and injects faults to a database of images on 
robot video recording cameras during the mission, and various 
test scenarios were performed with these images. Evaluation 
Scenario I has been evaluated with these tests and the 
expansion of the fault injection system. Test Cases (TC) is 
defined for VALU3S project Evaluation Scenario – 1 in Table 3. 

Table 3. VALU3S Evaluation Scenario – I Test Cases. 

Test Case Test Case Desc. Expected Results 

TC 1 Fault Injection 
to Robotic 
System 

Robot system will handle 
faults and continue 
operating in normal mode 

TC 2 Fault Injection 
to Robotic 
System 

Robot system will detect 
fault and report situation. 

TC 3 Fault Injection 
to Robotic 
System 

The camera quality control 
system will detect the fault 
and report the situation. 

TC 4 Fault Injection 
to Robotic 
Camera System 

The camera quality control 
system will detect which 
faults have been injected 
according to varying fault 
types and rates. 

The developed fault injection software has been developed to 
prevent the cameras from injecting faults into the cameras of 
the ROKOS robot arms while the system is running, and to 
prevent the cameras from performing the inspection by saving 
the faulty images. The purpose of this software is to create a 
product under the VALU3S project to create a V&V system in 
robotics [35]. 

Virtual environment faults are artificial image faults that 
manifest exclusively in simulation environments and can be 
detected only through software, such as OpenCV Python 
libraries [36]. Examples of virtual environment faults include 
Dilation/Erosion, Open/Close, Gradient, and InjectionPayload 
faults. Unlike real environment/hardware faults, virtual 
environment faults cannot be detected with non-software 
methods. 

 

 

Conversely, real environment faults (also known as hardware 
faults) are image faults that may arise not only due to software 
issues but also due to problems with the camera hardware in 
real-world environments. Examples of real environment faults 
include Motion-blur, Partialloss, Gaussian, Poisson, and 
Salt&Pepper faults. For instance, in electronic circuits, a 

Poisson noise may emerge from the random fluctuations of 
electric current in a Direct Current, caused by the discrete flow 
of charges (electrons), potentially resulting in related 
corruptions in camera hardware. 

Fault injection was applied to 293 normal images whose are 
taken from ROKOS cameras, with nine different fault types, 
different rates and amounts. Afterwards, image libraries 
consisting of fault-injected images were given as input to the 
camera quality control software, and comparisons were made 
with the results obtained by examining the normal image 
library of the software. 

As can be seen in Table 4, nine different camera faults 
supported by two different camera types were injected into a 
normal image library taken by ROKOS cameras. Although the 
pictures taken from the ROKOS camera are TOF camera type, 
the effect of fault types applied to RGB cameras on the software 
has also been examined. Three different application tests were 
determined for each fault with 5%, 20% and 40% fault rates. 
These fault rates are varied to apply to 10% and 30% of the 
image library. Adding 20% fault injection test to the entire 
image library, seven fault plans from each fault method were 
tested. With this calculation, a total of 49 different fault 
injection plans were tested in the study. 

In Table 5, Multiple Fault Injection Test configurations are 
shown. In this configuration, tests were carried out using the 
specified rates for both fault types and fault injection at the rate 
of the image applied fault. 

In Table 6, the outputs of the normal image database obtained 
from the ROKOS system in the quality control detection 
software are given. 

The faulty image libraries obtained because of fault injections 
applied using CamFITool were passed through the quality 
control system software one by one. The results obtained from 
each fault method are analyzed in the following subsections. 

It was observed that the quality control system gave “more 
visible pieces” output as the fault rate increased in the image 
libraries injected with Salt&Pepper, Gaussian and Poisson 
faults. The increase in fault rate in image libraries injected with 
Open fault affected the output very little (effect 0.3%). Likewise, 
the number of faulty pictures did not change this situation 
much. The increase in fault rate in image libraries injected with 
the Close, Dilation and Motionblur faults affected the output at 
a very low rate. Likewise, the number of faulty pictures did not 
change this situation much. It has been observed that the 
quality control system outputs more” invisible pieces” as the 
fault rate increases in image libraries injected with Erosion and 
Gradient faults. By using CamFITool, faults were injected into 
the 293 body-in-white image library obtained from ROKOS 
robot cameras, and the tests and results of the OTOKAR camera 
quality control system software’s responses to these images 
were compiled. With 49 different fault injection tests with 9 
different fault types, different fault rates and wrong image 
amounts, which fault injection affected the system and how it 
was investigated. As a result of these tests, the effects of defect 
types on the “number of visible pieces” are shown in Table 7. 
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Table 4. Fault Methods and Fault Rates Implemented with CamFITool (Single Fault Injection Tests). 

Cam Type Fault Method Test Code App. Fault Rate 
(%) 

Fault Img. Rate 
(%) 

Fault Img. 
Amount 

TOF Salt&Pepper SP 5-20-40 10-30-100 29-88-293 

TOF Gaussian G 5-20-40 10-30-100 29-88-293 

TOF Poisson P 5-20-40 10-30-100 29-88-293 

RGB Open O 5-20-40 10-30-100 29-88-293 

RGB Close C 5-20-40 10-30-100 29-88-293 

RGB Dilation D 5-20-40 10-30-100 29-88-293 

RGB Erosion E 5-20-40 10-30-100 29-88-293 

RGB Gradient GR 5-20-40 10-30-100 29-88-293 

RGB Motionblur MB 5-20-40 10-30-100 29-88-293 
 

Table 5. Fault Methods and Fault Rates Implemented with CamFITool (Multiple Fault Injection Tests). 

Cam Type Fault Method Test Code App. Fault Rate 
(%) 

Fault Img. Rate 
(%) 

Fault Img. Amount 

TOF Salt&Pepper + Gaussian SPG 5-20-40 10-30-100 29-53-146 

TOF Gaussian + Poisson GP 5-20-40 10-30-100 29-53-146 

TOF Poisson + Salt&Pepper PSP 5-20-40 10-30-100 29-53-146 
 

Table 6. Quality Control System Software Output of ROKOS Normal Image Database. 

Database Name Visibility 
Rate (%) 

Visible 
Pieces 

Invisibility 
Rate (%) 

Invisible 
Pieces 

Incomplete 
Part Rate (%) 

Incomplete 
Part Pieces 

Total 

Normal Image Data 76,31 2381 10,99 343 8,72 272 2996 
 

 

Table 7. Effects of Defect Types on the Number of Visible Parts 
on the Basis of Applied Tests. 

Fault Type Effect Average Change 
Rate 

Salt&Pepper Increased 4.38% 

Gaussian Increased 4.75% 

Poisson Increased 4.71% 

Open Ineffected -0.30% 

Close Ineffected -0.01% 

Dilation Low Effected 1.49% 

Erosion Decreased -3.16% 

Gradient Decreased -4.24% 

Motionblur Ineffected -0.01% 

 

In the fault injection tests, the image fault injections are 
performed with Salt&Pepper, Gaussian and Poisson faults, 
which are defined as TOF camera faults, manipulated the 
inspection software by an average of 4.61%. This manipulation 
led to the conclusion that ROKOS detects more parts in the bus 
chassis analysis, thus reducing the number of missing parts and 
deceiving the system. Considering that the analysis software re-
examines the relevant chassis when it finds more than a certain 
number of missing parts, the probability of continuing the 
production of a bus chassis with missing parts increases as a 
result of a fault in the camera. While Open, Close and 
Motionblur faults in the tests did not affect the analysis 
software, the Dilation fault, which is called one of the RGB faults, 
caused the number of missing parts to be high (1.49%), albeit 
at a low rate. Erosion and Gradient faults, on the other hand, 
caused the number of missing pieces to be higher at an average 
rate of 3.7%. 

6.2 Safety Trajectory Optimization  

The SRVT platform is utilized to verify and validate the Safety 
Trajectory Optimization evaluation scenario. To this end, ROS 
MoveIt tool’s OMPL (Open Motion Planning Library) and EST 
(Expansive Space Tree) trajectory planning algorithms were 
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employed, and their performance evaluations were 
determined. To test the effectiveness of these algorithms in a 
simulated environment, comprehensive tests were conducted 
on a use-case scenario, and the results were analyzed. Three 
different scenarios, namely Quick test, Full Test with Reset, and 
Reset-Free Full Test were evaluated, and the validation 
activities were improved in terms of time and cost for the 
ROKOS system transferred to SRVT [25]. Test cases for the 
Evaluation Scenario – 2 of the VALU3S project are defined in 
Table 8. 

Table 8. VALU3S Evaluation Scenario – II Test Cases. 

Test 
Case 

Test Case 
Description 

Expected Results 

TC_5 Robot 
Trajectory 
Planning 

The joint values of the robot tracking 
the trajectories keeps within the 
robot’s joint limits.  

TC_6 Robot 
Trajectory 
Planning 

The velocities and accelerations of 
joints of the robot tracking the 
trajectories keeps within the robot’s 
joint limits. 

TC_7 Robot 
Trajectory 
Planning 

The jerks of joints of the robot 
tracking the trajectories keeps 
within the robot’s limits. 

TC_8 Robot 
Trajectory 
Planning 

The robot does not collide itself and 
automotive body. 

TC_9 Robot 
Movement 
According 
to the 
Trajectory 
Plan 

The robotic system should avoid 
from obstacles within the limits of 
safety. 

TC_10 Robot 
Movement 
According 
to the 
Trajectory 
Plan 

The robot obeys safety-rated 
stop/speed and separation 
monitoring requirements of the 
standard ISO15066:2016 and 
ISO10218- 2:2011. 

TC_11 Robot 
Trajectory 
Test 

Existance control of minimum 95% 
parts of 

vehicle in less than 25 minutes and 
in each trajectory point minimum 
15% of each part must be visible. 

TC_12 Task Safety 
in Faulty 
Situation 

Mutating operations with faulty 
situations. System do not cause any 
unsafe movement or behaviour. 

TC_13 Task Safety 
in Faulty 
Situation 

Manipulating data transfer nodes. 
System do not cause any unsafe 
movement or behaviour. 

In SRVT, RRT, RRT*, RRTConnect, PRM, PRM*, EST (Expansive 
Space Trees) and BiEST (Bidirectional Expansive Space Trees) 
algorithms were used [26]. The results of these algorithms in 
three tests were compared, and the effects of changing test 
conditions on the task completion time were examined. Before 
the application of the test methods determined for the 

trajectory planning algorithms, the time to find the planning 
and plan implementation solutions of these algorithms were 
also tested Planning Setup (SimpleSetup) and Solution Finding 
(SolutionFound) values. The mean and standard deviation 
values of these time values of the algorithms are shown in Table 
9. These calculations are taken from the current ROKOS system. 

Table 9. SimpleSetup and SolutionFound Average and Standart 
Deviation Times Table. 

Plan Alg. Simple 
Setup 
Avg. (sec) 

Simple 
Setup St. 
Dev (sec) 

Solution 
Found 
Avg. (sec) 

Solution 
Found St. 
Dev. 
(sec) 

RRT-Left 0.0279 0.0309 0.829 0.788 

RRT-
Right 

0.0700 0.0837 0.6766 0.8448 

RRT*-
Left 

0.0278 0.0308 0.8298 0.7885 

RRT*-
Right 

0.0952 0.098 3.3718 1.5641 

RRTCon.-
Left 

0.0058 0.0075 0.3990 0.2824 

RRTCon- 
Right 

0.0084 0.0088 0.5043 0.6409 

EST-Left 0.0250 0.0247 0.8178 0.7611 

EST-
Right 

0.0804 0.1019 0.9056 1.3322 

BiEST-
Left 

0.0088 0.0076 0.5275 0.6486 

BiEST-
Right 

0.0413 0.0566 0.5314 0.5798 

PRM-Left 0.0317 0.0405 1.0742 1.0307 

PRM-
Right 

0.1008 0.1049 0.9218 0.7563 

PRM*-
Left 

0.0375 0.0425 4.2290 0.5992 

PRM*-
Right 

0.1157 0.1215 4.0598 1.2331 

 

The SimpleSetup times in the table above give the times when 
the algorithms perform the planning. SolutionFound times are 
the time they have these plans applied to the robot arms. These 
times were calculated by analyzing the times obtained from all 
the motion plans made by the robot arms during a task. The 
time graphs obtained with these times are as given in Figure 11 
and Figure 12. 
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Figure 11. SimpleSetup times graph for each robot arm of trajectory planning algorithms 

 

 
Figure 12. SolutionSetup times graph for each robot arm of trajectory planning algorithms  

The Reset Full Test is the standard task list that ROKOS applies 
in the real-world environment. Improvements have been made 
in the SRVT environment on this task list, and since SRVT 
MoveIt is capable of dynamic trajectory planning, reset points 
have been removed and a Reset-Free Full Test has been created 
[11]. This test can be considered as the new and improved task 
list of the ROKOS system to be integrated into the SRVT 
environment. Therefore, the determination of the algorithm to 
be applied to the ROKOS system in the real environment from 
the test data obtained should be the algorithms with the best 
planning and implementation time obtained from the Reset-

Free Full Test results. In line with the improvements made in 
this context, the outputs of the best algorithm that can be used 
for ROKOS can be seen in the graphics in Table 10 and Figures 
13 and 14. 

 

 

 

Table 10. SimpleSetup and SolutionFound Times with 
Improvements Table. 
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Plan Alg. T1 T2 T3 Avg. t Imp. 
Rate 

RRT-Left 0.0279 0.0309 0.829 0.788 13.29% 

RRT-
Right 

0.0700 0.0837 0.6766 0.8448 21.7% 

RRT*-
Left 

0.0278 0.0308 0.8298 0.7885 22.67% 

RRT*-
Right 

0.0952 0.098 3.3718 1.5641 26.12% 

RRTCon.-
Left 

0.0058 0.0075 0.3990 0.2824 4.63% 

RRTCon- 
Right 

0.0084 0.0088 0.5043 0.6409 24.87% 

EST-Left 0.0250 0.0247 0.8178 0.7611 0.02% 

EST-
Right 

0.0804 0.1019 0.9056 1.3322 18.13% 

BiEST-
Left 

0.0088 0.0076 0.5275 0.6486 20.21% 

BiEST-
Right 

0.0413 0.0566 0.5314 0.5798 24.08% 

PRM-Left 0.0317 0.0405 1.0742 1.0307 12.54% 

PRM-
Right 

0.1008 0.1049 0.9218 0.7563 27.9% 

PRM*-
Left 

0.0375 0.0425 4.2290 0.5992 24.13% 

PRM*-
Right 

0.1157 0.1215 4.0598 1.2331 25.9% 

 

 

Figure 13. Full Test Results applied to current task list 
(without Reset) (Best and worst times of algorithms based on 

robot arms) 

 

Figure 14. Full Test Results applied to current task list 
(without Reset) (Average times of algorithms based on robot 

arms) 

The graph in Figure 13 shows the best and worst task 
completion times for each robot arm of each algorithm as a 
result of the Reset-Free Full Test. In the graph in Figure 14, the 
average task completion times for each robot arm of each 
algorithm in the full test result are given. According to the data 
in the given tables and graphs, BiEST and RRT algorithms 
showed a successful performance in the current task list, 
considering the key performance indicators. It was observed 
that the percentage of task completion increased by 27.9% 
when the points that might be unnecessary for the planner 
were removed from the task lists. It has also been observed that 
task completion times can be reduced to less than 20 minutes. 
Based on this, it has been concluded that the dynamic planning 
system applied to the ROKOS system works more effectively at 
less location points. 

In this research, more than 900 hours of testing were conducted 
on seven motion planning algorithms of the OMPL planner to 
identify the optimal planning algorithm. The BiEST algorithm 
was found to be the most efficient algorithm for the task. Task 
completion times using the BiEST algorithm were observed to 
reduce the task completion time of the ROKOS system by less 
than 25 minutes. In the study, it was determined that the 
average times obtained for the right ROKOS robot arm were 
approximately 19 minutes, and 20 minutes for the left ROKOS 
robot arm. By eliminating reset points from the ROKOS task list 
and using the optimal planning algorithm, an average task 
completion time gain of 20% was achieved for the ROKOS 
system. 

This increase in efficiency resulted in significant time savings in 
the bus production line, leading to increased productivity. 

6.3 Anomaly Detection at Component and System Level  

CamFITool Anomaly Detection feature is used for Evaluation 
Scenario – 3 which is anomaly detection at component level. 
Test cases defined for VALU3S project Evaluation Scenario – 3 
in Table 11. 

This evaluation is conducted in two layers with CamFITool  

Anomaly Detection Feature. First, image is classified as normal 
or faulty and then faulty image is classified according to fault 
types. This classification gives information about possible 
failure at component (cable, HDD, camera etc.) in the ROKOS 
system. One of CNN model is given at Figure 15. 
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Table 11. VALU3S Evaluation Scenario – III Test Cases 

Test 
Case 

Test Case 
Description 

Expected Results 

TC_14 Fault 
injection to 
robot 
camera 
system 

The camera quality control system 
will detect which faults have been 
injected according to varying fault 
types. 

TC_15 Fault 
injection to 
robot 
camera 
system 

The detailed evaluation of the 
results that occur when the tested 
files are mutated, ensures that the 
user has information about the 
reliability of the tested file. 

 

Figure 15. CamFITool Anomaly Detection CNN Model-1 
Summary 

After that, 48-image prediction test was performed on the 
designed Binary classification model. As a result of testing with 
this image test library, which consists of faulty and normal 
images, the trained model achieved a correct prediction rate of 
87.5% (42 correct out of 48). 

When the trained multi-class classification model was put to 
the prediction test with a test library of 40 images, an accurate 
prediction rate of 80.0% was achieved (32 correct predictions 
out of 40). An example prediction test can be seen in Figure 16. 

In Figure 17, two steps anomaly detection of Poisson faulty 
image example result on CamFITool FIAD plugin interface. 

The created anomaly detection add-on makes it feasible to 
avoid collecting photos that can interfere with the robot control 
system’s part detection, as shown in Figure 3. To make sure that 
the part counting is done correctly, the images provided to the 
part control system are first run via the anomaly detection 
plugin. Only the images without anomalies are then sent to the 
system. As seen in Table 7, improper part counts brought on by 
inaccurate photos are therefore avoided. 

 

 

Figure 16. CamFITool Anomaly Detection Multiclass 
Classification model prediction test example 

 

Figure 17. CamFITool Anomaly Detection Plugin usage 
example. 
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7 Conclusions  

In conclusion, this study has presented a novel verification tool 
suite for industrial robotic systems. The proposed tool suite, 
which includes Simulation-based Robot Verification Tool 
(SRVT) and Camera Fault Injection Tool (CamFITool), was 
specifically designed to address the challenges of testing and 
validating robotic systems in a manufacturing context. The tool 
suite was tested and evaluated within the framework of the 
VALU3S ECSEL H2020 project, “Autonomous Robot Inspection 
Cell for Vehicle Chassis Quality Control” proposed by OTOKAR. 

The toolkit was evaluated by performing tests in three main 
evaluation scenarios (ES1, ES2, ES3), four evaluation criteria 
and fifteen test cases. ES1 focused on manipulation of camera 
sensors and testing the system’s robustness against various 
types of faults using CamFITool. According to the EC1 (Number 
of malicious attacks and faults detected) criteria determined in 
this context, the results showed that the system’s robustness 
value was 95.39%. ES2 focused on safety trajectory planning 
and testing of robot arms using SRVT, resulting in 27.9% time 
savings in line with EC3 (Effort for test creation) and EC4 
(Effort needed for test) criteria. In addition, robust 
functionality of the system was tested in accordance with EC2 
(Simulation-level system robustness) criteria. Finally, ES3 
focused on anomaly detection using the toolkit and achieved a 
fault detection rate of 80% (Table A3). 

The results of our study demonstrate the effectiveness of the 
proposed tool suite in providing accurate and reliable 
validation results. The tool suite addresses the crucial aspects 
of testing and validating robotic systems, such as trajectory 
planning, sensor manipulation and anomaly detection. 
Additionally, it has the major advantage of being open-source 
and compatible with the Robot Operating System (ROS), 
making it easily accessible and adaptable to other use cases. 
This tool suite is one of the first of its kind in the ROS ecosystem 
and represents a significant step forward in the field of robotic 
system verification and validation. It allows for the 
performance of tests on a simulated robotic control system in a 
faster and more cost-effective way, while also ensuring the 
safety and reliability of the final product. 

The open-source application related to this study can be 
accessed at https://github.com/Akerdogmus/camfitool and 
detailed tests can be performed. The application here makes it 
possible for users to test all the test cases included in the article. 
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Appendix A. 

Evaluation Scenario Tables for V&V Tool Suite Modules  

Tables containing some of the tool features mentioned in the 
study are included in this section. The first of these tables, Table 
A1, is a table showing Tool Qualifications of SRVT’s modules. 
Table A2 shows the Tool Qualifications of CamFITool’s 
modules. Finally, Table A3 is a table showing the evaluation 
scenarios, criteria and test cases provided by the V&V Tool 
Suite. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://wiki.ros.org/SMACH
http://gazebosim.org/
https://www.btc-embedded.com/when-and-how-to-qualify-tools-according-to-iso-26262/
https://www.btc-embedded.com/when-and-how-to-qualify-tools-according-to-iso-26262/
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Table A1. SRVT Modules Tool Qualifications. 

Module 
Name 

Module Purpose Tool 
Impact 

TI Desc. Test 
Error 
Detec. 

TD Desc. TCL TCL Desc. 

SRVT 
Gazebo 

It is a robotic 
simulation system. 
It provides a test 
environment. 

TI2 Correct installation 
of model packages, 
accu- racy of URDF 
files and accuracy 
of launch files are 
important. 

TD2    System  faults  are 

reported as ROS 
errors with limited 
details, leading to 
variable solutions. 

TCL2 Problems that may 

arise in this mod- 
ule have a moderate 
impact on the 
system’s security. 

SRVT 
Moveit 

It is a motion 
planning and 
implementation 
module. 

TI2 Defining the config 
files correctly and 
editing the scene is 
important. 

TD3 System faults 
typically arise from 
improper scene 
creation, but are 
hard to detect as they 
require 
observational 
identification. 

TCL2 Problems that may 

arise in this module 
have a moderate 
impact on the 
system’s security. 

SRVT 
Smach 

It is a system 
control and 
communication 
module. Tasks such 
as task planning, 
application, 
routing rotate 
through this 
module. 

TI2 It is important to 
plan the 
communication 
system correctly 
and write the 
Python code 
cleanly. 

TD2 System faults can 
halt other modules’ 
operations due to 
communication 
issues; they’re easy 
to detect but may 
require checking all 
modules for the root 
cause. 

TCL3 Problems that may 
arise in this module 
have a high impact 
on the security of 
the system. 

SRVT 
Task 
Server 

It is the module 
that allows the task 
list to be published 
with a ROS node. 

TI1 It is important that 
the node publisher 
code, task list and 
launch file are 
written in the cor- 
rect format. 

TD1 The fault is easily 
detectable as an 
error in Python code, 
potentially leading 
the robot to incorrect 
positions. 

TCL2 Problems that may 
arise in this module 
have a moderate 
impact on the 
system’s security. 
However, the 
probability of a 
problem is low. 

SRVT 
Image 
Server 

It is the module 
that allows the 
image save 
function to be 
broadcast with a 
ROS node. 

TI1 It is important that 
the node publisher 
code, task list and 
launch file are 
written in the cor- 
rect format. 

TD1 The fault, 
manifesting as an 
error in Python code, 
is easily detectable 
and may result in the 
robot capturing 
inaccurate images. 

TCL1 Problems that may 

arise in this module 
have a low impact 
on the system’s 
security. 

 

  

Table A2. CamFITool Modules Tool Qualifications. 

Module 
Name 

Module 
Purpose 

Tool 
Impact 

TI Desc. Test 
Error 
Detec. 

TD Desc. TCL TCL Desc. 

CamFITool 
Offlin Fault 
Injection  

It is the module 
that performs 
fault injection 
to prepared 
image libraries. 

TI2 It is important that 
the library 
locations are 
entered correctly 
and the Python 

TD2    Faults that may occur 
in the system may be 
caused by file 
location faults. It is 
easy to detect as 
there are try-except 

TCL2 Problems that may 

arise in this 
module have a 
moderate impact on 
the system’s 
security.  
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code is written 
cleanly. 

and fault detection 
functions in the code. 

CamFITool 

Realtime 
Fault 

Injection 

It is the module 

that performs 
fault injection 
to the defined 
ROS camera 
nodes. 

TI2 It is important that 

the node names are 

entered correctly 
and that the ROS 
codes are arranged 
correctly. 

TD3 Faults that may occur 
in the system can 
usually be caused by 
entering the wrong 
node name. It is easy 
to detect as there are 
try-except and fault 
detection functions 
in thecode. 

TCL2 Problems that may 

arise in this 
module have a 
moderate impact on 
the system’s 
security.  

Anomaly 

Detection 

Module 

It is a modüle 
used to detect 
whether an 
image 
uploaded by 
the user is 
incorrect/fault
y. 

TI2 It is important to 
define the models 
(CNN- trained) 
correctly. 

TD3 Faults that may occur 
in the system may 
have occurred as a 
result of incorrect 
model definition. It is 
easy to detect as 
there are try-except 
and fault detection 
functions in the code. 

TCL2 Problems that may 

arise in this 
module have a 
moderate impact on 
the system’s 
security.  

 

  

Table A3. Requirements Fulfilled by V&V Tool Suite 

Evaluation Scenarios Related ECs Related TCs Outputs 

ES1 EC1 TC-1, TC-2, TC-3, TC-4 System Robustness = 
95,39% 

ES2 EC2, EC3, EC4 TC-5, TC-6, TC-7, TC-8, TC-
9, TC-10, TC-11, TC-12, 
TC-13 

Effort Gain = 27,9% 

ES3 EC1 TC-14, TC-15 Anomaly 
Detection/Accurate 
Prediction Rate = 80,0% 

 


