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Abstract  Öz 

In this paper, performances of multivariate clustering methods in 
specifying flow pattern variations reconstructed by a macroscopic flow 
model are sought. In order to remove the noise in and the wide scatter 
of traffic data, raw flow measures are filtered prior to modeling 
process. Traffic flow is simulated by the cell transmission model 
adopting a two phase fundamental diagram. Flow dynamics specific to 
the selected freeway test stretch are used to determine prevailing 
traffic conditions. The classification of flow states over the 
fundamental diagram are sought utilizing the methods of partitional 
cluster analyses by considering the stretch density. The fundamental 
diagram of speed-density is plotted to specify the current 
corresponding flow state. Non-hierarchical or partitional clustering 
analysis returned promising results on state classification which in 
turn helps to capture sudden changes on test stretch flow states. The 
procedure followed by multivariate clustering methods is 
systematically dynamic that enables the partitions over the 
fundamental diagram match approximately with the flow patterns 
derived by the static partitioning method. The measure of 
determination coefficient calculated by using the K-means method is 
comparatively evaluated to statistically derive this conclusion. 

 Bu çalışmada; makroskobik bir trafik akım modeliyle oluşturulmuş 
akım koşulu farklılaşmalarını belirlemek amacıyla çok değişkenli 
kümeleme yöntemlerinin başarımları araştırılmıştır. Trafik verisindeki 
gürültüyü gidermek ve geniş saçılımı kabul edilebilir düzeye getirmek 
amacıyla, ham trafik değişkenleri modelleme öncesi filtrelenmiştir. 
Trafik akımı, iki fazlı bir temel eğriyi baz alarak hesap yapan hücre 
geçişi modeliyle benzetilmiştir. Seçilen otoyol kesimindeki akım 
dinamikleri, varolan akım koşullarını belirlemek amacıyla 
irdelenmiştir. Temel eğri üzerinde akım koşullarının sınıflanması, 
kesim yoğunluk değişkeni gözetilerek kümeleme yöntemleriyle 
aranmıştır. Hiyerarşik olmayan kümeleme yaklaşımları, örnek otoyol 
kesimi üzerindeki ani koşul değişimlerini tespit etmeye yarayan 
başarılı sınıflama sonuçları vermiştir. Çok değişkenli kümeleme 
yöntemlerince izlenen prosedür, sistematik olarak dinamiktir ve temel 
eğri üzerinde statik bölütleme yöntemiyle elde edilen kümelere 
oldukça yaklaşık kümeler oluşturabilmektedir. K-ortalamalar 
yöntemiyle elde edilen sonuçlar üzerinden hesaplanmış belirlenim 
katsayıları, elde edilen sonuçları istatistik yönden karşılaştırmalı 
olarak değerlendirmek amacıyla kullanılmıştır. 

Keywords: Traffic engineering, Traffic flow state.  Anahtar kelimeler: Trafik mühendisliği, Trafik akım koşulu. 

   

1 Introduction 

In this paper, performances of multivariate clustering methods 
in specifying flow pattern variations reconstructed by a 
macroscopic flow model are sought. Pattern, or alternatively 
state, specification is generally described as estimating the 
traffic flow variables along a road stretch with an adequate 
spatial resolution at each time instant based on a limited 
amount of available measurements from detectors, where the 
pattern variables are the flows, space-mean speeds and 
densities [1]. Flow as a single variable is insufficient to exactly 
specify any pattern since a certain value of flow may 
correspond to two distinct density and speed values in two 
completely different flow conditions, i.e., congested and un-
congested, which motivated us to obtain the pattern variable, 
density, specific to condition transitions of flow over a freeway 
stretch. The pattern variable reconstructed by a macroscopic 
flow model is further used to classify the fundamental diagram 
of speed vs. density. 

The proposed flow pattern classification procedure is adopted 
simplifying the approach in [2]. The overall procedure 
involves two sub-processes succeeding the pre-process of 
noisy traffic data. The flow modeling incorporates a discrete 
approximation to a simple continuum model of macroscopic 

approach that adopts a two-phase fundamental diagram under 
stationary and spatially homogeneous equilibrium conditions. 
Following the process of flow modeling, flow patterns over the 
fundamental diagram are segmented by considering the 
dynamics of actual traffic simulation. Since the ultimate aim of 
the present study is to classify the flow patterns and capture 
the transitions among these patterns in a dynamic fashion, the 
time-dependent densities of freeway test stretch are matched 
on the fundamental diagram that is partitioned using the 
clustering methods. In order to comparatively evaluate the 
performance of multivariate classification approach, an 
example by re-simulating the overall process with transferring 
the level of service measures [3] is provided. 

Traffic flow pattern specification is a fundamental task for 
freeway traffic surveillance and control and has attracted 
considerable attention in the past three decades. Although a 
great number of studies dealing solely with traffic flow 
performance modeling do exist, many of them ignore a solid 
motivation for the solution of real-life problems. Therefore it 
is essential to note that there is a need to differentiate this so-
called short-term traffic flow forecasting studies from the ones 
that traffic pattern is sought explicitly considering a traffic 
flow model besides an estimator. 
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Studies on flow state estimation, or equivalently pattern 
specification, show that both a flow modeling and an 
estimation component are to be processed in an integrate 
manner. In these studies, the flow state equation has been 
sought under different approaches. Some successful trials 
incorporating various approaches include; constructing linear 
state equation through flow measure based weighting scheme 
with interpolation [4]; utilizing linear measurement equations 
to employ flow measures under Eulerian framework [5]; 
employing filtering methods integrated to high-order traffic 
flow models [1],[6] using piecewise linear equations of bi-
regime cell based traffic flow model [7]; and establishing 
linear measure equations to process moving observer data 
under Lagrangian framework [8]. 

A modified version of the macroscopic cell transmission model 
[9] to the estimation of density at unmonitored locations along 
a freeway segment is introduced in [7]. The model in [7] is 
simplified in [5] by reducing modes of flow states to two, 
which are free and congested. A comprehensive extended 
Kalman filter approach for the estimation and prediction of 
freeway flow states those are represented by the sectional 
density is resented in [1] and [6]. Based on a second-order 
traffic flow model, linearization around the current state is 
required to determine the transferring flows between sections 
[1],[6]. A variant of the cell transmission model based on a 
second-order flow model and adopted an alternative particle-
filtering framework to avoid linearization operations is 
developed in [10]. 

In a number of relevant studies, modified versions of the wave 
model originated from the pioneering formulation of Lighthill 
and Whitham [11] and Richards [12] are used to model the 
traffic flow. An interpolation method by employing a kernel 
function to set up the state equation for forward and 
backward waves and integrated these two equations into a 
linear state equation through a speed measurement-based 
weighting scheme is proposed in [4]. In order to reduce the 
discrepancy between the Lagrangian measurements and the 
estimated states, a correction term to the Lighthill-Whitham-
Richards (LWR) partial differential equation [11],[12] is 
incorporated in [8]. 

Considering the works summarized above, a dynamic 
modeling approach composed of estimation and classification 
modules is recently introduced in [2] in which neural network 
methods are used as approximators to map lane-specific 
sectional density from vehicle count and speed measures 
obtained simultaneously at multiple sensors, and the 
simultaneous functioning of the neural approximators in the 
estimation module with the traffic flow model that simulates 
actual traffic dynamics is utilized. The approach considering 
lane-specific measures in [2] is further modified by making 
use of section-specific measures in [13] in which a multi-mode 
discrete cell transmission model as the flow model adopts a 
two-phase fundamental diagram as in [2] but makes use of the 
multi-modes of flow conditions and transitions within them 
with the explicit considerations of wave-fronts that exit 
throughout the decomposed freeway stretch. The approach in 
both studies [2],[13] seeks the dynamic segmentation of the 
fundamental diagram in each time interval by considering the 
dynamics of traffic simulation. Simulated flow patterns are 
input to be dynamically classified in order to capture the 
transitions among patterns. The present study introduces the 
use of multivariate methods in flow state classification process 
as an alternative to the segmentation method in [2] and [13].  

2 Flow Pattern Specification Process 

The proposed process for flow pattern classification is 
composed of three sub-processes succeeding the pre-process 
of raw traffic data. The density derivation and the flow 
modeling sub-processes are simultaneous. The third sub-
process is the classification of mapped density as pattern 
variable with the corresponding flow-rate and average speed 
measures considering a dynamic segmentation on flow 
patterns over the fundamental diagram of speed-flow. The 
overall flow pattern specification process is shown in Figure 1. 

 

Figure 1: Overall flow pattern classification process. 

The macroscopic flow modeling sub-processes run with the 
input filtered traffic flow measures those are collected by 
sensors mounted on a freeway stretch. The macroscopic flow 
model reconstructs section dynamics to obtain the diagram of 
speed-flow so that it can be partitioned in whether a dynamic 
or static manner. The traffic flow model is used to simulate 
and describe the dynamic behavior of flow propagation on the 
freeway stretch from data set of filtered measures. The 
resultant measures of density variable with the corresponding 
flow-rates and average speeds are used in the clustering 
analyses by multivariate methods. Finally, the current flow 
pattern is specified by the match-up of current value of the 
pattern indicator with the appropriate speed-flow diagram 
segment. It is worthy to note that the number of flow patterns 
to be classified is decided considering the level of service 
concept that is defined in the Highway Capacity Manual 2010 
[3].  

2.1 Information on Study Area and Data Set 

In this study the remote traffic microwave sensor (RTMS) data 
is processed to derive the macroscopic features of traffic flow. 
To detect vehicles the RTMS uses microwave signals by 
transmitting frequency modulated continuous wave form in 
which the transmitted frequency constantly changes with 
respect to time in a fixed fan-shaped beam [14]. 
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Field data is obtained in January 2009 from three successive 
microwave sensor units located with the spacing of 250 m and 
750.50 m in side-fired position on a 4-lane freeway stretch. 
The test stretch is on the approach of a Bosphorus strait 
crossing, the Fatih Sultan Mehmet Bridge, on the European 
side of Istanbul. Lane-specific measurements on traffic 
variables, i.e., long vehicle counts, n1(t), non-long vehicle 
counts, n2(t), and speed, U(t), are obtained for the reference 
time period ‘t’. Measurements are aggregated in 2 minutes 
time interval. For each time interval, flow-rate is determined 
by the vehicle counts of 20 minutes, and the speed by the 
harmonic mean of the individual vehicles passing in this time 
period. Such a procedure is followed since the available 
measurements on speed are averages of spot speeds and the 
arithmetic mean of spot speeds leads to systematic 
overestimations in congested conditions. 

Although the technology on data collection systems has been 
experiencing tremendous progressions, the problem of 
measurement noise on empirical data still exists, as in our 
case. It is shown that if the spacing of two adjacent detectors is 
no longer than about 1 km, it is sufficient to apply a linear 
smoothing/interpolating filter [4]. It is also noted in [15] that 
the wide scattering is partly a side effect of the measurement 
process. Therefore, in order to reconstruct observed dynamics 
at any point in a space-time plane from sensors positioned at 
discrete locations, the thin plate spline (TPS) interpolation 
method [16] is applied to post-process raw data prior to 
macroscopic model computations. 

The TPS filtering helped to tolerate the unrealistic empirical 
measures and measurement noise which led to fluctuations by 
affecting the underlying patterns. 

Considering the first four order central moments on the 
distribution of filtered measurements it is seen that variation 
on actual speeds increase from lane no. 1 to other lanes as lane 
no. 1 is more frequently used by heavy vehicles those tend to 
change lane relatively lesser than other vehicle classes. Please 
note that it is inappropriate to support the same behavior in 
terms of vehicle counts since the maximum of the vehicle 
counts is observed when the traffic is flowing at an optimum 
speed. Therefore, it is the main reason that we consider 
density as a function of both the flow and the speed, as traffic 
flow theory dictates. 

2.2 Flow Modelling Sub-Process 

Macroscopic flow models, those are analogous enough to make 
the hydrodynamic theory useful in describing traffic dynamics, 
trace the collective vehicle dynamics in terms of aggregate 
variables such as density, flow-rate, and speed and are useful 
in reproducing freeway flow dynamics [17]. One of the 
frequently argued problems of vehicular flow modeling has 
been the need to adopt fundamental diagram in flow modeling 
process. Considering the findings on the wide scattering of 
empirical freeway data [18],[19],[15], we have chosen to 
utilize a macroscopic flow model with a fundamental diagram 
and remove the noise in real data by filtering. 

For modeling, we follow the fluid dynamics approach to theory 
of continuous vehicular traffic flow, defined upon the variables 
of flow-rate, q, density, , and speed, u, and referred to as the 
LWR theory [11],[12]. This theory assumes that flow is strictly 
a function of density, q = Q(), and consequently speed is 
strictly a function of density, u = U(). The LWR model can be 
described by a single partial differential equation in 

conservation form as given by Equation (1) or alternatively as 
given by Equation (2), 

  
0

x
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t








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  0
x

C
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



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











 (2) 

where; C()=(Q())/. The LWR theory expresses that slight 
fluctuations in flow are propagated upstream along kinematic 
waves, where the speed is given by c = C(), such as the slope 
of flow-density curve. Given the appropriate boundary 
conditions, solution to this model can be obtained by 
determining the function (x, t), where x and t represent space 
and time respectively. Different variations of the macroscopic 
model given by Equation (2) can be characterized by the 
speed-density relationship u=U() and, consequently, by the 
adopted fundamental diagram. 

In order to obtain a convergent approximation to the 
continuous LWR model, we utilize the discrete cell 
transmission approach of Daganzo [9] that adopts a two-phase 
simplified fundamental diagram as shown in Figure 2. 

 

Figure 2: Simplified two phase fundamental diagram of flow-
density. 

In the graphical representation the fundamental diagram (see 
Figure 2), uff is the free-flow speed, ucong is the backward wave 
propagation speed in congestion, jam is the jamming density, 
opt is the optimum density and qmax is the capacity. 

The cell transmission model (CTM) is discrete both in space 
and time. It divides the freeway into sections called ‘cells’. The 
traffic flow entering a cell bounded by points s and s+1, is 
considered to be constant between two successive times t and 
t+t and is determined by Equation (3) [9], 

           1ss,
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1ss, q,tρρu,tρumintq    (3) 

where;  tρ 1ss, 
 is the average density of cell s, s+1 between 

times t and t+t, 
1ss,

jam
ρ 

 is the jamming density of cell s, s+1, 

s1,-s

ff
u  is the free flow speed in cell s-1, s, 

1ss,

cong
u 

 is the congestion 

wave speed in cell s, s+1, and 1ss,

max
q   is the capacity of cell s, s+1. 

A schematic representation of our freeway test stretch divided 
into two cells those correspond to sections is provided in 
Figure 3. Note that the formulation of flow propagation via cell 
interfaces is useful for real-time applications, as flow variables 
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are measured by point sensors and sensors may be mounted 
to match exact points. 

 

Figure 3: Schematic representation of freeway test stretch 
divided into sections. 

Considering the prevailing phase speeds and densities, the 
flow on each section is determined by Equation (9) for each 
time interval t. 

The flow modeling component uses the procedure explained 
above for the real-time simulation of actual traffic dynamics 
and the consequent reconstruction of section performances. 
The real-time reconstruction of flow variables are sequentially 
used to update and partition the fundamental diagrams of 
speed-flow and flow-density at each computation time 
interval, as explained in the following. 

2.3 Flow Pattern Classification 

The third sub-process involves the partitioning of 
fundamental diagrams considering pre-defined rules and 
matching the predicted density to the appropriate partition. It 
is important to note that in the present study, partitioning a 
diagram in real-time by updating the critical values of flow in 
each time step corresponds to the dynamic -may also be 
referred to as time-varying- classification and specification of 
traffic patterns. In order to figure out exclusively the 
performance of pattern specification, an additional example in 
which neural mappings are matched using the level of service 
(LOS) measures [3]. 

2.3.1 Classification Using HC LOS Measures 

The LOS measures for multi-lane freeways in the Highway 
Capacity Manual (HCM) [3] are used to rule partitions. We 
transfer the LOS measures A through F [3] for flow pattern 
(FP) representation in terms of vehicle per kilometer-lane, as 
given by Equation (4).  



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


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


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







otherwiseF,

28ρ22ifE,

22ρ17ifD,

17ρ11ifC,

11ρ7ifB,

7ρifA,

FP  (4) 

In HCM [3], the boundary between LOS E and F represents 
capacity. The breakdown of flow, signified by the LOS F, is 
determined when demand flows are greater than the capacity. 
In cases where capacity is exceeded, the LOS method in HCM 
[3] does not produce density estimates and, consequently, 
specific values within the LOS F. 

2.3.2 Classification Using Multivariate Methods of 
Partitional Cluster Analysis 

The boundaries of partitions given by Equation (4) remain 
constant throughout the simulation horizon, where a time-

varying partitioning is performed by the multivariate methods 
using the procedure in [2]. 

The multivariate classification approach is analogous to the 
dynamic classification procedure defined in [2] Critical 
measures to obtain clusters are dynamically updated 
throughout the simulation time interval that the whole data 
set is introduced. This approach differs from the LOS based 
classification in terms of bounding density measures all of 
which are obtained considering the mean and deviation 
statistics of data set, specifically the K-means clustering 
method which is performed using different distance measures, 
i.e., Square-Euclidian Distance (SED) and City-Block Distance 
(CBD). Considering such a possible on-site implementation of 
the proposed approach supported by information 
dissemination hardware, the variation on road users’ 
perception should stay in certain limits for appropriate 
behavior adaptations. This requires the dissemination of a 
reasonable number of information messages those are 
signified by captured shifts on patterns. Moreover, in order to 
obtain a consistent comparative evaluation with the HCM LOS 
case, we set the user-defined class number to six. In each time 
step, the segmentation on the fundamental diagram is updated 
considering the critical distance measures that are calculated 
using data set of density accumulated ‘till the reference 
computation time interval. Partitioning is applied considering 
the current density range and calculated multivariate 
measures. The flow pattern is specified by considering the 
match of the current density prediction to the appropriate 
class on the updated diagram. Therefore, the transitions and 
jumps on patterns between successive times are captured. 
Illustrations provided in the paper show the overall 
fundamental diagram partitions that are obtained at the end of 
the simulation. 

In our research since we aimed to comparatively analyze the 
boundaries of clusters’ with the corresponding HCM LOS 
boundaries the optimum number of clusters are initially 
assigned on purpose, assuming each LOS as a cluster. 

2.3.2.1 K-Means Clustering 

The Cluster analysis is used for classifying the objects which 
have similar characteristics. In cluster analysis, contrary to 
discriminant analysis, in the beginning there are no sets and 
we define the border of sets and member of sets. Cluster 
analysis is used to identify groups or clusters of homogenous 
individuals. Results of clustering process, there must be high 
internal homogeneity within cluster and high external 
heterogeneity between clusters [20]. 

There are two main clustering algorithms; one is hierarchical 
and the other is non-hierarchical algorithm. In this study, non-
hierarchical algorithm is used due to its simplicity and 
consequent computation load in comparison to hierarchical 
algorithm. 

Non-hierarchical clustering is applied initially selecting cluster 
seeds as cluster centers. In comparison to hierarchical 
methods, it requires the adequate number of clusters at the 
beginning of the clustering process. Following, non-
hierarchical clustering needs the centroids. If there is no 
information about seed’s point, the method takes the initial 
observation as a cluster seed. To conclude, the non-
hierarchical clustering procedure uses the steps given in 
Figure 4 [21]. Procedure given by Figure 4 [21] can also be 
used for hierarchical clustering except for partitioning 

sensor@0m 

s=1 

s, s+1 
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methods and decide on the distance concept for calculating 
centroid steps. 

The non-hierarchical clustering uses several algorithms. 
Sequential, parallel and optimization algorithms are well-
known algorithms for non-hierarchical clustering algorithms 
[22]. For sequential threshold, all observations within a 
specified distance of the seed are clustered and then extra 
seeds are added. In parallel to threshold, several seeds are 
selected and assigned objects within the threshold distance to 
the closest seed. For optimization, it allows observations to be 
moved to a cluster that has become closer [22]. 

All the above mentioned clustering algorithms are known as 
the K-means algorithm. K-means term is suggested by 
different researchers for describing an algorithm which 
assigns each item to the cluster having the nearest centroid. In 
K-means clustering, there is a center point that represents a 
cluster [23]. Lots of partitional clustering methods do exist. In 
this paper, K-means algorithm is used for classification. 

The literature in which clustering methods are applied to 
transportation problems in Turkey is quite limited. A recent 
study investigating the performance of K-means and fuzzy 
clustering methods on traffic accident data of Denizli city for 
the years of 2004, 2005 and 2006 is resented in [24]. In this 
study, the initial numbers of clusters have been selected as 15. 
However, as a result of minimum iterations, the optimum 
numbers of clusters have been found 7. Moreover, fuzzy 
clustering methods have been found more useful than k- 
means. 

 

Figure 4: Procedure in Clustering [21]. 

2.3.2.2 K-means Clustering by Using Square Euclidian 
Distance 

The “distance” concept has to be defined while using K-means 
clustering. Distance represents a member of data sets range 
between cluster’s centroids. In this study, two types of 
distance are used for finding the centroids’ of clusters. First is 
the Square Euclidian distance (SED), which needs to be 
explained by Euclidian distance. It is simply the geometric 
distance in a multidimensional space and computed as given 
by Equation (5) [25]; 

   
21

2
,distance 








 

ni
ii yxyx  (5) 

Where x is denoted the coordinate of a point’s value on the x 
axis in Cartesian system, y is denoted of a point’s value on the 
y axis in Cartesian system, and n is the number of 
observations. 

The SED is computed as given by Equation (6) (24); 
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


ni

ii yxyx
2

,distance  (6) 

The distance between clusters is distance between centroids. 

2.3.2.3 K-means Clustering by Using the City-Block 
Distance 

Manhattan or City-Block distance is the distance between two 
points measured along axes at a right angle. In a plane with p1 
at(x1,y1) and p2 at (x2,y2), the City-Block distance (CBD) can be 
obtained as given by Equation (7) [26]; 

2121 yyxx   (7) 

Although some of relevant researches are aimed to find 
similarities, the CBD and the SED are computationally 
different [27]. 

3 Problem Formulation and Solution Analysis 

The basic version of K-means clustering can be arranged in 
four steps [23]; 

1) Initialize a K-partition randomly or based on some prior 
knowledge. Calculate the cluster prototype matrix; 

M=[m1,………,mK) 

Where M is denoted as a prototype matrix and m is the sample 
mean for the each cluster. 

2) Assign each object in the data set to the nearest cluster Cl, 
i.e, 

ijljlj mxmxifCx  ,  for j=1, ... , N, i≠l, and i=1,………,K; 

Where xj is a set of objects and Cl is denoted as clusters which 
are organized to objects. 

3) Recalculate the cluster prototype matrix based on the 
current partition, 
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



ij Cx

ji x
N

m
1

1
 

4) Repeat steps 2 and 3 until there is no change for each 
cluster. 

K-means assumes that the number of clusters K is already 
known by users, which, unfortunately, usually is not true in 
practice [23]. However, there is no method for specifying the 
best numbers of K clusters. Therefore, identifying K in advance 
becomes a very important topic in cluster validity [28]. 

In this study, there is no necessity to find the optimum number 
of clusters since a user defined pattern number adopted from 
the HCM LOS concept [3] exists. 

Following the step of cluster number determination, the 
method to compute both the distances between centroids and 
the distance of each observation to the cluster centroid has to 
be selected. 

Decide on clustering variables 

Decide on the clustering type 

Partitioning methods 

Decide on the number cluster 

Decide on the distance concept for calculating centroids 

Validate and interpret the cluster solution 
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The density values specific to centroids and borders obtained 
to cluster flow patterns in this study using SED and CBD 
methods are presented in Table 1. 

Table 1: Calculation method of k values. 

Value of kcentroid Value of kborder 
K 2*K=P 
L (L-P)+L=R 
M (M-R)+M=T 
N (N-T)+N=W 
O (O-W)+O=Z 

The total number of density data input to clustering analyses 
is 8000. The number of clusters specific to SED and CBD 
measures based computations are resented in Table 2. 

Table 2: Number of clusters specific to SED and CBD measure 
based calculations. 

Flow State Number of Clusters for SED Number of Clusters for CBD 

1 1620 992 
2 2734 1543 
3 2180 1737 
4 600 1107 
5 866 2621 

The overall fundamental diagrams of flow vs. density specific 
to each lane are presented in Figure 5, Figure 6, Figure 7 and 
Figure 8. 

To represent deviations of K-means cluster partitioning from 
LOS-based partitioning the coefficient of determination is 
calculated specific to SED and CBD measures and presented in 
Table 3. 

Table 3: R2 values for each lane by calculated using the SED 
and CBD methods. 

Method and Number of Lane R2 
SED1 0.9385 
SED2 0.8702 
SED3 0.9733 
SED4 0.9909 
CBD1 0.8873 
CBD2 0.8842 
CBD3 0.9940 
CBD4 0.9891 

To visually express the comparative evaluation, the partitions 
obtained using SED, CBD and HCM LOS methods are resented 
in Figure 9 and Figure 10. 

 
Figure 5: Fundamental diagram of density vs. flow for lane1. 

 
Figure 6: Fundamental diagram of density vs. flow for lane2. 

 
Figure 7: Fundamental diagram of density vs. flow for lane3. 

 
Figure 8: Fundamental diagram of density vs. flow for lane4. 

  

Figure 9: Comparison between SED clustering and HCM LOS 
method. 
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Figure 10: Comparison between CBD clustering and HCM LOS 
method.Conclusions 

This research showed that the application of K-means 
clustering method yielded to results consistent with static 
classification computations adopting the HCM LOS concept. It 
is seen that although the procedure followed by multivariate 
clustering methods is systematically dynamic the partitions 
over the fundamental diagram approximately match with the 
flow patterns derived by the static partitioning method. The 
values of determination coefficient calculated by using the K-
means method are evaluated to statistically derive this 
conclusion. 

Further directions in our research are to; i- alternate the 
critical distance measure to obtain cluster centroids, such as 
the Chebyshev distance, and etc., ii- apply multivariate 
reduction methods prior to clustering, such as the Principal 
Component Analysis and Discriminant Analysis Principal 
Component Analysis, and iii- to evaluate of performance of 
multivariate clustering methods in comparison to the dynamic 
classification methods in [2]. 
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