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Abstract  Öz 

Newmark Method is a useful approximation for the prediction of the 
amount of earthquake-induced ground movement. According to 
equations produced depending on this Model, critical acceleration is one 
of the most significant parameters. In literature, the critical 
acceleration values of 0.02g, 0.05g, 0.1g, 0.2g, 0.3g and 0.4g have been 
used to calculate the Newmark Displacement. The equations used as 
general solutions to calculate ground displacement are independent of 
these acceleration categories. However, it has been obtaained that the 
regression fits of the analyses have changed according to these 
categories. In practice, to obtain the Newmark Displacement of any 
slope, the critical acceleration of this ground should be firstly 
calculated. Therefore, because the critical acceleration is known, the 
displacement can be calculated more accurately using the equation 
with the most appropriate regression fit in that category. Using 2519 
records belonging to 35 significant worldwide earthquakes, the new 
equations with suitable results in terms of the regression parameters 
have been acquired and the new and previous regression formulas have 
been re-obtained according to the acceleration categories and the 
regression results have been compared. In addition, it has been 
determined that Newmark approximation gives less suitable regression 
results when the ground is stronger.†. 

 Deprem kaynaklı zemin deplasman miktarının tahmini için Newmark 
Yöntemi kullanışlı bir yaklaşımdır. Kritik ivme değeri bu yönteme bağlı 
üretilen denklemler için en önemli parametrelerden biridir. Literatürde 
kritik ivmenin 0,02g; 0,05g; 0,1g; 0,2g; 0,3g ve 0,4g değerleri 
kullanılarak Newmark Deplasmanı hesaplanmaktadır. Zemin 
deplasmanının hesabında genel çözüm olarak kullanılan denklemler bu 
ivme sınıflandırmasından bağımsızdır. Ancak bu sınıflandırmaya bağlı 
olarak analizlerin regresyon uyumlarının değiştiği tespit edilmiştir. 
Pratikte herhangi bir şevin Newmark deplasmanını elde etmek için bu 
zeminin öncelikle kritik ivmesi hesaplanmalıdır. Bu nedenle, kritik ivme 
bilindiğinden, o kategorideki en uygun regresyon uyumuna sahip 
denklem kullanılarak yer değiştirme daha doğru hesaplanabilir. Dünya 
çapındaki 35 önemli depreme ait 2519 kayıt kullanılarak regresyon 
parametreleri açısından uygun sonuçlara sahip yeni denklemler elde 
edilmiş, ivme kategorilerine göre yeni ve önceki regresyon formülleri 
yeniden elde edilerek regresyon sonuçları karşılaştırılmıştır. Ayrıca 
zeminin daha sağlam olduğu durumlarda Newmark yaklaşımının daha 
düşük regresyon sonuçları verdiği tespit edilmiştir 

Keywords: Landslide, Strong Ground Motion, Slope Displacement, 
Newmark Method, Critical Acceleration 

 Anahtar kelimeler: Heyelan, Kuvvetli Yer Hareketi, Şev Deplasmanı, 
Newmark Yöntemi, Kritik İvme 

1 Introduction 

Permanent ground deformation or displacement (PGD) is very 
significant effect of an earthquake. Estimation or calculation of 
the amount and effects of this movement is significant for 
engineering structures [1-22]. Newmark suggested the sliding 
block model (Fig. 1a) to estimate the slope displacement [23]. 
According to this approximation earthquake-induced slope 
displacement can be calculated depending on strong ground 
motion records (Fig. 1b).  
In this method, ground is described as a block (Fig. 1a) that 
slides and this block has a critical acceleration level that 
triggers it. Considering Fig.1, previous acceleration values of 
the X point, block has no motion for ac=0.2g because the 
acceleration rates are below this critic level of acceleration 
(ac=0.2g). After the X point the velocity diagram can be plotted 
by integrating the acceleration-time graph which above the ac 
value. The velocity rises to top point called as Y point.  

                                                           
*Corresponding author/Yazışılan Yazar 
*Yazışılan yazar/ 

 
Figure 1. Newmark approximation [23]. 

The sliding block maintains to move because of its inertia, while 
the acceleration record falls below the critical acceleration 
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value. Because of the friction force and reverse movement of 
the slope, the movement of the block stops at Z point. When the 
similar process continuous at other points where the 
acceleration record above the critical acceleration value, the 
total movement of the sliding block is obtained in consequence. 
According to this method, in addition to accepting that the soil 
slides in blocks, it is assumed that the static and dynamic soil 
shear strength is homogeneous, the dynamic pore water 
pressure is neglected, the critical acceleration remains constant 
throughout the analysis, and the reverse movement of the 
sliding block is prevented. For this reason, it is not appropriate 
to use this model in situations outside the acceptance limits of 
the method, such as cohesionless soil, which do not slip in 
blocks, increase in pore water pressure and liquefaction. 
Critical acceleration has been described as Equ.1 [24]. 

𝑎𝑐 = 𝑔 [
𝑐

𝛾ℎ
+ cos 𝛼 . tan ∅ − sin 𝛼] (1)  

While ac is the critic value of acceleration, g refers to 
gravitational acceleration. α is the angle of the sliding block 
with horizontal. The friction angle of soil is Ø. c, γ and h are soil 
cohesion, material unit weight and slope thickness respectively. 
The following regression formula (to be mentioned to as 
Ambraseys & Menu Equ.) has been developed to calculate 
Newmark Displacement by Ambraseys and Menu [25]; 
 

𝑙𝑜𝑔𝛿 = 0.90 + 𝑙𝑜𝑔 [(1 −
𝑎𝑐

𝑎𝑚𝑎𝑥
)

2.53

(
𝑎𝑐

𝑎𝑚𝑎𝑥
)

−1.09

] 
(2) 

 
Jibson has modified this equation (to be mentioned to as 
Modified Ambraseys & Menu Equ.) as follows [26]; 
 

𝑙𝑜𝑔𝛿 = 0.215 + 𝑙𝑜𝑔 [(1 −
𝑎𝑐

𝑎𝑚𝑎𝑥
)

2.341

(
𝑎𝑐

𝑎𝑚𝑎𝑥
)

−1.438

] (3) 

 
Where ac is the critical acceleration and amax is the maximum 
acceleration of an earthquake. 
Jibson has suggested another formula (Equ.4) to estimate the 
slope movement (to be mentioned to as Jibson93 Equ.). The 
critical acceleration  (ac) values of 0.02g, 0.05g, 0.1g, 0.2g, 0.3g 
and 0.4g have been used for developing the new regression 
equation [27]. 
 

      𝑙𝑜𝑔𝛿 = 1.460𝑙𝑜𝑔𝐼𝑎 − 6.642𝑎𝑐 + 1.546                       (4) 

Where; δ is displacement in cm, ac is critical acceleration in g 
and Ia (m/s) is Arias intensity expressed as follows [28]: 
 

𝐼𝑎 =
𝜋

2𝑔
∫ [𝑎(𝑡)]2

𝑇𝑑

0

𝑑𝑡 (5) 

Wilson and Keefer have proposed Equ.6 to predict Arias 
Intensity (m/s). In this equation M is the earthquake moment 
magnitude and R is the earthquake source distance (km) [29]. 
 
                          𝑙𝑜𝑔𝐼𝑎 = 𝑀 − 2𝑙𝑜𝑔𝑅 − 4.1                          (6) 

Jibson et. al. have recommended Equ.7 (to be mentioned to as 
Jibson98 Equ.) as below [30]; 
 
                  𝑙𝑜𝑔𝛿 = 1.521𝑙𝑜𝑔𝐼𝑎 − 1.993𝑙𝑜𝑔𝑎𝑐 − 1.546           (7) 

Equation 8 has been offered by Jibson (2007) as folllows (to be 
mentioned to as Jibson2007/1 Equ.) 
 

𝑙𝑜𝑔𝛿 = −2.71 + 𝑙𝑜𝑔 [(1 −
𝑎𝑐

𝑎𝑚𝑎𝑥
)

2.335

(
𝑎𝑐

𝑎𝑚𝑎𝑥
)

−1.478

]

+ 0.424𝑀 

(8) 

 In this same paper, Jibson has proposed Equ.9 (to be 
mentioned as Jibson2007/2 Equ.) 
 

𝑙𝑜𝑔𝛿 = 0.561 𝑙𝑜𝑔 𝐼𝑎 − 3.8331 𝑙𝑜𝑔 (
𝑎𝑐

𝑎𝑚𝑎𝑥

) − 1.474 (9) 

Hsieh et.al. have been produced another regression formula (to 
be mentioned to as Hsieh Equ.) as follows [31]; 
 
𝑙𝑜𝑔 𝛿 = 0.847𝑙𝑜𝑔𝐼𝑎 − 10.62𝑎𝑐 + 6.587𝑎𝑐𝑙𝑜𝑔𝐼𝑎 + 1.84        (10)                               

Yigit has suggested a new regression formula (to be mentioned 
to as Yigit 2020/1 Equ.) as below [32]; 
 

𝐿𝑜𝑔 𝛿 = 1.2185𝑙𝑜𝑔𝐼𝑎 − 1.3669𝑙𝑜𝑔𝑎𝑐

+ 1.5811𝑙𝑜𝑔 (1 −
𝑎𝑐

𝑎𝑚𝑎𝑥
) − 0.5532 

(11) 

Another study has been developed by Yigit as Equ.11 (to be 
referred to as Yigit 2020/2 Form) [33]; 
 

𝐿𝑜𝑔 𝛿 = 1.37𝑙𝑜𝑔𝐼𝑎 − 1.62𝑙𝑜𝑔𝑎𝑐 + 0.46𝑙𝑜𝑔 (
𝑎𝑐

𝑎𝑚𝑎𝑥
)

+ 1.93𝑙𝑜𝑔 (1 −
𝑎𝑐

𝑎𝑚𝑎𝑥
) − 0.493 

(12) 

The regression parameters of all of these equations have been 
gathered in Table-1. According to this table it can be said that 
Hsieh Equ. is the most suitable equation with respect to the 
regression factors (R2 & standard deviation, σ). However, with 
respect to data used in this manuscript, these results have 
changed as shown in Table-3. 
 

         Table 1. The regression parameters of the regression 

                                analyses 

 Equation    R2          σ (cm) 

Modified Ambraseys&Menu  
 

0.84 0.510 
Jibson-93  0.87 0.409 

Jibson-98  0.83 0.375 

Hesieh  0.89 0.295 

Jibson2007/1  0.87 0.454 

Jibson2007/2  0.75 0.616 

Yigit 2020/1  0.86 0.337 

Yigit 2020/2  0.87 0.333 

 
 

2 Analyzes 

 
Earthquake acceleration-time data used in the paper have been 
obtained from the Republic of Turkiye Disaster & Emergency 



 

 

Management Authority Presidential of Earthquake Department 
and Pacific Earthquake Research Center (PEER) websites [34, 
35]. Depending on this data, previous regression equations 
have been re-analyzed. These examinations have been carried 
out considering the ac values of 0.02g, 0.05g, 0.1g, 0.2g, 0.3g and 
0.4g. With in this framework, two new regression formulas 
have been developed. For these analyses, 2519 strong ground 
motion records (MW > 6.0) of 35 significant earthquakes have 
been used (Table 2). Compared to previous studies, more 
seismic records and earthquake data have been used in these 
analyzes. (For Ambraseys & Menu 50 records of 11 earthquake, 
for Jibson93 11 earthquakes's data, for Jibson98 555 records of 
13 earthquakes, for Jibson2007 2270 records of 30 earthquake 
and for Yigit2020 2307 records of 26 earthquake had been used 
in previous studies). 
On the other hand, estimation properties of new and previous 
formulas according to soil strength have been investigated. 
That means the regression fits of all equations obtained in the 
scope of this paper have been investigated according to critical 
acceleration categories. 
 

2.1 General equations 

Using the significant earthquake data in Table 2 former 
regression formulas have been re-acquired as following 
equations: 
Ambraseys & Menu Form; 

𝑙𝑜𝑔𝛿 = −0.13223 + 𝑙𝑜𝑔 [(1 −
𝑎𝑐

𝑎𝑚𝑎𝑥
)

1.3268

(
𝑎𝑐

𝑎𝑚𝑎𝑥
)

−1.5653

] (13) 

When the previous and the new forms of Ambraseys & Menu 
have been compared (Fig.2), it can be said that the original form 
gives bigger results than the others do. The modified and the 
new regression equation outcomes are closer each other than 
the original results but the new form (this study) has the 
smallest displacement values. According to the data used in this 
study (dots), the original form line is located far from the cloud 
center (Fig.2). 
 

 
Figure 2. Ambraseys & Menu forms 

Table 2. Acceleration-time records [34, 35] 

 Time  Earthquakes Mw Total 
Records 

1 1952  Kern County-USA 7,4 12 
2 1971  San Fernando-USA 6,6 130 
3 1976  Denizli-Turkiye 6,1 3 
4 1976  Friuli-Italy 6,5 15 
5 1978  Tabas-Iran 7,4 21 
6 1979  Imperial Valley-USA 6,5 96 
7 1980  Mammoth Lakes-USA 6,1 9 
8 1983  Erzurum-Turkiye 6,6 3 

9 1983  Canakkale-Turkiye 6,1 4 
10 1983  Coalinga-USA 6,4 290 
11 1984  Morgan Hill-USA 6,1 71 
12 1985  Nahanni-Canada 6,8 8 
13 1986  Malatya-Turkiye 6,0 3 
14 1986  North Palm Springs-USA 6,1 96 
15 1987  Superstition Hills-USA 6,5 28 
16 1988  Adana-Turkiye 6,2 5 
17 1989  Loma Prieta-USA 6,9 248 
18 1992  Erzincan-Turkiye 6,6 3 
19 1992  Izmir-Turkiye 6,0 2 
20 1992  Cape Mendocino-USA 7,0 39 
21 1992  Landers-USA 7,3 231 
22 1994  Northridge-USA 6,7 302 
23 1995  Afyon-Turkiye 6,4 3 
24 1995  Kobe-Japan 6,9 66 
25 1999  Duzce-Turkiye 7,1 9 
26 1999  Kocaeli-Turkiye 7,6 14 
27 1999  Chi-Chi-Taiwan 7,6 300 
28 2000  Cankırı-Turkiye 6,0 3 
29 2002  Afyon-Turkiye 6,5 2 
30 2003  Bingol-Turkiye 6,3 3 
31 2004  Niigata Ken Chuetsu-

Japan 
6,6 303 

32 2011  Van-Turkiye 7,0 5 
33 2014  Aegean Sea - Turkiye 6,5 87 
34 2017  Aegean Sea - Turkiye 6,2 48 
35 2017  Bodrum - Turkiye 6,5 57 

 

Jibson93 Form; 
 
𝑙𝑜𝑔 𝛿 = 1.3877𝑙𝑜𝑔𝐼𝑎 − 8.22137𝑎𝑐 + 1.5775                   (14) 

Figure 3 shows the comparison of the original and the obtained 
Jibson93 forms for Ia=3 m/s. The harmony of these two 
equations is good at low and large values of ac. However, the 
original form generally gives higher results than the new form. 
Besides, for the other values of Ia, these results have not 
changed. 
 

 
Figure 3. Jibson93 forms 
Jibson98 Form; 
 
𝑙𝑜𝑔 𝛿 = 1.5168𝑙𝑜𝑔𝐼𝑎 − 2.023𝑙𝑜𝑔𝑎𝑐 − 1.6648                  (15) 

To compare the new and the original forms of Jibson98, Fig.4 
has been plotted for Ia=3 m/s. According to this comparison, the 
original form of Jibson98 gives higher displacement values than 
the new form. This case has not changed for other investigated 
Arias Intensity (Ia) values. On the other hand, the accordance of 
original and obtained equations decreases for small values of 
critical acceleration (ac). 
 



 

 

 
Figure 4. Jibson98 forms 
 
Jibson2007/1 Form; 
 

𝑙𝑜𝑔𝛿 = −3.0372 + 

𝑙𝑜𝑔 [(1 −
𝑎𝑐

𝑎𝑚𝑎𝑥
)

1.3593

(
𝑎𝑐

𝑎𝑚𝑎𝑥
)

−1.5863

] + 0.4288𝑀 

(16) 

The comparison between the original and the new equations of 
Jibson2007/1 Form has been observed in Fig.5. As shown in the 
figure, original form results are bigger than the obtained form 
results. Moreover, it has been determined that this case is valid 
for all M values, as well. 
 

 
Figure 5. Jibson2007/1 forms 
 
Jibson2007/2 Form; 
 

𝑙𝑜𝑔𝛿 = 0.4642 𝑙𝑜𝑔 𝐼𝑎 − 1.8579 𝑙𝑜𝑔 (
𝑎𝑐

𝑎𝑚𝑎𝑥

) − 0.411  (17) 

It is seen in Fig.6 that the original and re-obtained regression 
equations of Jibson2007/2 Form have not good fit. Two 
equations overlap at ac⁄amax =0.3g. For other values of Arias 
Intensity, the same results have been obtained. 
 

 
Figure 6. Jibson2007/2 forms 
 
Hsieh Form; 
 
𝑙𝑜𝑔 𝛿 = 

1.1791𝑙𝑜𝑔𝐼𝑎 − 9.8863𝑎𝑐 + 5.2351𝑎𝑐𝑙𝑜𝑔𝐼𝑎 + 1.6246        (18) 

Obtained and the original Hesieh equations overlap at Ia=4.5 
m/s (Fig.7). It has been observed from the investigation that 
when Ia less than 4.5 m/s and ac<approximately 0.15g, the New 
Hsieh Equ. gives low displacement values. Besides, when Ia 
bigger than 4.5 m/s and ac<approximately 0.15g, the New Hsieh 
Equ. has grater displacement values than the original form. 
Apart from these cases, the two equations overlap. 
 

 
Figure 7. Hsieh forms 
 
Yigit 2020/1 Form; 
 
𝐿𝑜𝑔 𝛿 = 1.2085𝑙𝑜𝑔𝐼𝑎 − 1.3575𝑙𝑜𝑔𝑎𝑐 + 

1.59𝑙𝑜𝑔 (1 −
𝑎𝑐

𝑎𝑚𝑎𝑥
) − 0.5417                          (19) 

 
Yigit 2020/2 Form; 
 

   𝐿𝑜𝑔 𝛿 = 1.3697𝑙𝑜𝑔𝐼𝑎 − 1.6168𝑙𝑜𝑔𝑎𝑐 +

   0.4616𝑙𝑜𝑔 (
𝑎𝑐

𝑎𝑚𝑎𝑥
) + 1.9265𝑙𝑜𝑔 (1 −

𝑎𝑐

𝑎𝑚𝑎𝑥
) −

   0.4926  

 (20) 

Previous and the new Yigit 2020 Forms approximately have the 
same results though 212 strong ground motion records have 
been added to the original studies. Therefore, the comparisons 
between the new and original Yigit forms have not been 
needed. Using the same data in Table 2, two new regression 
formulas have been developed for ac values of 0.02g, 0.05g, 
0.1g, 0.2g, 0.3g and 0.4g as follows (to be mentioned to as New-
1 Equ and New-2 Equ., respectively); 
 



 

 

New-1 Form; 
Depending on Arias Intensity (Ia, m/s), critical acceleration (ac, 
g) and maximum acceleration (amax, g), New Form-1 regression 
formula has been offered as Eq.21; 
𝑙𝑜𝑔 𝛿 = 1.3163 𝑙𝑜𝑔 𝐼𝑎 − 2.077 𝑙𝑜𝑔 𝑎𝑐 +

0.4087𝑙𝑜𝑔 𝑎𝑚𝑎𝑥 − 1.4977                                                                               
(21) 

New-2 Form; 
 
The New Form-2 has been obtained by adding the LogM 
parameter to the Yigit2020/1 Form as follows; 
 

𝑙𝑜𝑔 𝛿 = 1.1818 𝑙𝑜𝑔 𝐼𝑎 − 1.31 𝑙𝑜𝑔 𝑎𝑐 + 1.6671 𝑙𝑜𝑔 (1 −

𝑎𝑐

𝑎𝑚𝑎𝑥
) + 1.3369 𝑙𝑜𝑔 𝑀 − 1.5804                                                                               

(22) 

To be able to compare the regression parameters of these 
analyses, Table 3 has been prepared. According to this table it 
can be said that Jibson98, Yigit2020/1, Yigit2020/2, New Form-
1 and New Form-2 have more suitable regression results than 
the others. Thus, useful two new regression equations have 
been obtained in scope of this study. Depending on this finding 
more suitable regression equations (Jibson98, Yigit2020/1, 
Yigit2020/2, New Form-1 and New Form-2) have been 
compared in Fig.8 using Chi Chi - Taiwan 
(Rsn1244_Chichi_Chy101-N)  record's values (M=7.6,   Ia=2.998, 
amax=0.398g). With respect to this figure, in general, while New 
Form-1 has the least displacement values, New Form-2 gives 
the highest results. However, this situation is not constant and 
may change with variation of parameters on which the 
regression equations depend. For instance, among these 
equations, the only equation dependent on M is New Form-2, so 
this equation is more sensitive to changes in M than the others. 

 
Figure 8. The comparison of suitable forms 

Table 3. The regression parameters of the new analyses 

 Equation R2 σ (cm) 

Ambraseys&Menu  
 

0.67 0.523 
Jibson-93  0.71 0.489 

Jibson-98  0.82 0.392 

Jibson2007/1  0.71 0.492 

Jibson2007/2  0.74 0.468 

Hsieh  0.76 0.447 

Yigit 2020/1  0.86 0.338 

Yigit 2020/2  0.87 0.333 

New-1  0.82 0.386 

New-2  0.87 0.336 

 

2.2 2.2. Analyses Depending on Critical Acceleration 
Categories 

 
Some previous studies have shown that regression behaviors of 
the Forms have changed depending on critical acceleration 
according to each other as shown in Fig. 9. For example, while 
Jibson98 Form has a larger displacement than Hsieh Form at 
ac= 0.02g; Hsieh Form gives a greater displacement at ac= 0.1g 
than Jibson98 Form, according to Fig.9. Therefore, in this 
section, it is aimed to investigate which formula outputs more 
convenient results in terms of the regression results at the same 
critical acceleration value. Thus, when the critical acceleration 
value that triggers the movement of the examined slope during 
shaking is known (can be calculated from Equ.1), earthquake-
induced displacement can be obtained more properly, selecting 
the more appropriate regression equation at that critical 
acceleration value. 
 

 
Figure 9. ac –Displacement relation according to the forms [32] 
 
Considering the ac values of 0.02g, 0.05g, 0.1g, 0.2g, 0.3g and 
0.4g, the forms mentioned above (Table 3) have been re-
obtained separately. For these constant values of the critical 
acceleration, the templates of these forms have been produced 
as below; 
 
For Ambraseys & Menu Form; 
 

𝑙𝑜𝑔𝛿 = 𝐶 + 𝑙𝑜𝑔 [(1 −
𝑎𝑐

𝑎𝑚𝑎𝑥

)
𝐷

(
𝑎𝑐

𝑎𝑚𝑎𝑥

)
𝐸

] (23) 

For Jibson93, Jibson98 and Hsieh Forms; 
 
𝑙𝑜𝑔 𝛿 = 𝐴𝑙𝑜𝑔𝐼𝑎 + 𝐶                                                (24) 

For Jibson2007/1 Form; 
 

𝑙𝑜𝑔𝛿 = 𝐶 + 𝑙𝑜𝑔 [(1 −
𝑎𝑐

𝑎𝑚𝑎𝑥

)
𝐷

(
𝑎𝑐

𝑎𝑚𝑎𝑥

)
𝐸

] + 𝐺𝑀 
         (25) 

For Jibson2007/2 Form; 
 

𝑙𝑜𝑔𝛿 = 𝐴 𝑙𝑜𝑔 𝐼𝑎 + 𝐸 𝑙𝑜𝑔 (
𝑎𝑐

𝑎𝑚𝑎𝑥

) + 𝐶 (26) 

For Yigit 2020/1 Form; 
 



 

 

𝐿𝑜𝑔 𝛿 = 𝐴𝑙𝑜𝑔𝐼𝑎 + 𝐷𝑙𝑜𝑔 (1 −
𝑎𝑐

𝑎𝑚𝑎𝑥
) + 𝐶                        (27) 

 
For Yigit 2020/2 Form; 
 

𝐿𝑜𝑔 𝛿 = 𝐴𝑙𝑜𝑔𝐼𝑎 + 𝐸𝑙𝑜𝑔 (
𝑎𝑐

𝑎𝑚𝑎𝑥
) + 𝐷𝑙𝑜𝑔 (1 −

𝑎𝑐

𝑎𝑚𝑎𝑥
) + 𝐶     (28) 

 
For New-1 Form; 
 
𝑙𝑜𝑔 𝛿 = 𝐴 𝑙𝑜𝑔 𝐼𝑎 + 𝐵𝑙𝑜𝑔 𝑎𝑚𝑎𝑥 + 𝐶                                                                                   (29) 

 
For New-2 Form; 
 

𝑙𝑜𝑔 𝛿 = 𝐴 𝑙𝑜𝑔 𝐼𝑎 + 𝐷 𝑙𝑜𝑔 (1 −
𝑎𝑐

𝑎𝑚𝑎𝑥
) + 𝐹 𝑙𝑜𝑔 𝑀 + 𝐶                                                                               (30) 

 
The regression parameters of the analyses are as in the Table 4 
and the coefficients belonging to these equations have been 
calculated as in the Table 5 according to ac values;

 
               

 

               Table 1. The regression parameters of the analyses according to critical acceleration categories. 

Form ac=0.02g ac=0.05g ac=0.1g ac=0.2g ac=0.3g ac=0.4g 

Ambraseys & Menu Form 
R2=0.70     
σ=0.501 

R2=0.71        
σ=0.487 

R2=0.66   
σ=0.495 

R2=0.53   
σ=0.525 

R2=0.53   
σ=0.516 

R2=0.46   
σ=0.519 

Jıbson93, Jıbson98 and 
Hesieh Forms 

R2=0.86    
σ=0.344 

R2=0.83        
σ=0.373 

R2=0.75  
σ=0.421 

R2=0.66   
σ=0.445 

R2=0.53   
σ=0.512 

R2=0.45   
σ=0.518 

Jıbson 2007/1 Form 
R2=0.77        
σ=0.473 

R2=0.74        
σ=0.457 

R2=0.69   
σ=0.474 

R2=0.57   
σ=0.505 

R2=0.55   
σ=0.502 

R2=0.47   
σ=0.515 

Jıbson 2007/2 Form 
R2=0.86        
σ=0.344 

R2=0.84        
σ=0.359 

R2=0.80  
σ=0.380 

R2=0.73   
σ=0.400 

R2=0.65   
σ=0.442 

R2=0.60   
σ=0.443 

Yigit 2015 Form 
R2=0.89        
σ=0.299 

R2=0.87        
σ=0.325 

R2=0.84  
σ=0.344 

R2=0.75   
σ=0.382 

R2=0.71   
σ=0.408 

R2=0.65   
σ=0.423 

Yigit 2020/1 Form 
R2=0.88        
σ=0.321 

R2=0.87        
σ=0.327 

R2=0.84  
σ=0.344 

R2=0.75   
σ=0.381 

R2=0.71   
σ=0.406 

R2=0.64   
σ=0.422 

Yigit 2020/2 Form 
R2=0.89        
σ=0.301 

R2=0.87        
σ=0.325 

R2=0.84  
σ=0.344 

R2=0.75   
σ=0.381 

R2=0.71   
σ=0.407 

R2=0.64   
σ=0.422 

New Form-1 
R2=0.86        
σ=0.344 

R2=0.84        
σ=0.359 

R2=0.80  
σ=0.380 

R2=0.73   
σ=0.400 

R2=0.65   
σ=0.442 

R2=0.60   
σ=0.443 

New Form-2 
R2=0.88        
σ=0.311 

R2=0.87        
σ=0.327 

R2=0.84  
σ=0.344 

R2=0.75   
σ=0.382 

R2=0.71   
σ=0.407 

R2=0.64   
σ=0.422 

 
Table 5. The coefficients of the templates. 

Form ac=0.02g ac=0.05g ac=0.1g ac=0.2g ac=0.3g ac=0.4g 

Ambraseys & Menu 
Form 

C= -0.0284  
D= 2.3297   
E= -1.4453 

C= -0.1589  
D= 1.6681   
E= -1.7735 

C= -0.0814  
D= 1.4400   
E= -1.8516 

C= -0.1401  
D= 1.0925   
E= -1.9909 

C= 0.7498  
D= 2.2184   
E= -0.5864 

C= 0.6006  
D= 1.6468   
E= -0.3762 

Jıbson93, Jibson98 
and Hesieh Forms 

A= 1.4062   
C= 1.6805 

A= 1.6461   
C= 1.0364 

A= 1.7465   
C= 0.4244 

A= 1.8059   
C= -0.3230 

A= 1.5538   
C= -0.6806 

A= 1.4394   
C= -0.9290 

Jıbson 2007/1 Form 

C= -3.8497  
D= 2.5097   
E= -1.4778   
G= 0.5635 

C= -2.9290  
D= 1.8314   
E= -1.7598   
G= 0.4160 

C= -2.5432  
D= 1.5693   
E= -1.8150   
G= 0.3730 

C= -2.7110  
D= 1.3475   
E= -1.7705  
G= 0.4066 

C= -1.7303  
D= 2.1655   
E= -0.5934  
G= 0.3654 

C= -1.0392  
D= 1.4974   
E= -0.5601  
G= 0.2259 

Jıbson 2007/2 Form 
A= 1.4533   
C= 0.0895   
E= 1.7783 

A= 1.3268   
C= 0.5702   
E= -0.6572 

A= 1.2524   
C= -0.1107   
E= -1.1942 

A= 1.3414   
C= -0.6513  
E= -1.4229 

A= 1.1308   
C= -0.9732  
E= -1.8294 

A= 1.1455   
C= -1.1698  
E= -1.7911 

Yigit 2020/1 Form 
A= 1.1750   
C= 1.7350  
D= 1.5526 

A= 1.2727   
C= 1.2445  
D= 1.5833 

A= 1.2745   
C= 0.8440  
D= 1.6018 

A= 1.3856   
C= 0.2765  
D= 1.3529 

A= 1.0529   
C= 0.2827  
D= 1.7519 

A= 1.0172   
C= -0.0477  
D= 1.3104 

Yigit 2020/2 Form 

A= 1.4768   
C= 2.7107  
D= 2.5659   
E= 0.8599 

A= 1.3537   
C= 1.5039  
D= 1.8796   
E= 0.3107 

A= 1.2847   
C= 0.8795  
D= 1.6439   
E= 0.0546 

A= 1.3551   
C= 0.1510  
D= 1.1960   
E= -0.2430 

A= 1.0554   
C= 0.3152  
D= 1.7930   
E= 0.0617 

A= 1.0213  
C= -0.2838  
D= 1.0548   
E= -0.4769 



 

 

New Form-1 
A= 1.4533   
B= -0.0895  
C= 1.6264 

A= 1.3268   
B= 0.6572  
C= 1.4252 

A= 1.2524       
B= 1.1942  
C= 1.0836 

A= 1.3414   
B= 1.4229  
C= 0.3433 

A= 1.1308   
B= 1.8294  
C= -0.0166 

A= 1.1455   
B= 1.7911  
C= -0.4571 

New Form-2 

A= 1.1042   
C= -0.7572  
D= 1.9006    
F= 2.9989 

A= 1.2724   
C= 1.2377  
D= 1.5840    
F= 0.0083 

A= 1.2924   
C= 1.3306  
D= 1.5683   
F= -0.5974 

A= 1.3917   
C= 0.4168  
D= 1.3451   
F= -0.1747 

A= 1.0655   
C= 0.6147  
D= 1.7447   
F= -0.4113 

A= 1.0840   
C= 1.7176  
D= 1.3059   
F= -2.1781 

 
 

3 Results 

 
When compare the original equations (Table 1) with the 
general equations obtained in this study (Table 3), it can be 
determined that the regression fits of Ambraseys-Menu Equ., 
Jibson93 Equ., Jibson2007/1 Equ. and Hsieh Equ. have 
decreased. On the other hand, Jibson 2007/2 and Jibson98 
Forms have approximately the same results for both cases 
based on the regression parameters. Yigit 2020/1 and 
Yigit2020/2 Forms have not been compared in terms of the 
original and the obtained equations because data used in both 
cases are almost the same. Thus, the results are nearly equal.  
In this study, two new equations (New Form-1 and New Form-
2) have been suggested. These equations have great regression 
fits, as can be seen in Table 3. With regard to regression 
parameters (goodness of fit, R2 and standard deviation, σ), two 
proposed equations are among the useful equations with the 
best results as shown in Table 3. 
To compare the goodness of fits of the general solutions (Table 
3) with the equations’ R2 values obtained according to critical 
acceleration categories, Table 6 has been prepared. In this 
table, shaded areas refer to regions that the R2 values obtained 
according to critical acceleration categories bigger than the R2 
values obtained from general solutions. For instance, shaded R2 
value of Jibson98 for ac=0.02g (R2=0.86) and ac=0.05g 
(R2=0.83) bigger than the R2 value of Jibson98 according to 
general solution (R2= 0.82). It can be seen from the table that 
the category-based fits are better than the general fits at low 
critical acceleration values. 

Table 6. Comparison of the R2 values    

Critical 
Acceleration 
Categories 

0.02g 0.05g 0.1g 0.2g 0.3g 0.4g 

Ambraseys-Menu 
Equ. 

0.70 0.71 0.66 0.53 0.53 0.46 

Jıbson-93 Equ. 0.86 0.83 0.75 0.66 0.53 0.45 

Jıbson-98 Equ. 0.86 0.83 0.75 0.66 0.53 0.45 

Hesieh Equ. 0.86 0.83 0.75 0.66 0.53 0.45 

Jıbson 2007/1 Equ. 0.77 0.74 0.69 0.57 0.55 0.47 

Jıbson 2007/2 Equ. 0.86 0.84 0.80 0.73 0.65 0.60 

Yigit 2020/1 Equ. 0.88 0.87 0.84 0.75 0.71 0.64 

Yigit 2020/2 Equ. 0.89 0.87 0.84 0.75 0.71 0.64 

New-1 Equ. 0.86 0.84 0.80 0.73 0.65 0.60 

New-2 Equ. 0.88 0.87 0.84 0.75 0.71 0.64 

 
As shown in Table 4 and Fig.10 the regression equation fits 
decrease when critical acceleration increases. It means that if 
an investigated slope has relatively greater critical acceleration, 
the proper estimation of the movement of this slope due to an 
earthquake is getting difficult in this approach. 

According to Fig.10, Ambraseys & Menu Form has the least 
regression fits for all critical acceleration categories.  Jıbson 
2007/2 Form and New Form-1 are in the same group and give 
the same regression parameters according to critical 
acceleration categories. Therefore, using the new equation 
simplifies the calculation of the displacement. 
Besides, Jibson93, Jibson98 and Hsieh Forms have the most 
severe change in terms of the regression fit. For these forms, 
while ac changes from 0.02g to 0.4g, regression goodness varies 
from 0.86 to 0.45. 
 

 
Figure 10. R2 - ac relations for the forms 
 
On the other hand, Yigit 2020/1 Form, Yigit 2020/2 Form and 
New Form-2 have the same and most appropriate regression 
fits except for ac ≤ 0.05g. When ac ≤ 0.05g, the goodness of fit of 
Yigit 2020/2 Form becomes more suitable than the others do. 
Although there is a bit of a difference between Yigit 2020/1 
Form and New Form-2 in Table 3, when both equations are 
compared it can be said that moment magnitude has not 
changed the regression results according to Table 6. This 
consequence may have been obtained since moment magnitude 
is effective in Equ.6 that Arias Intensity, which is the parameter 
of both equations, is calculated. 

4 Conclusions 

Newmark Method is a considerable analysis to predict the 
earthquake-induced slope displacement. Depending on 
Newmark approximation, some significant and useful 
regression equations have been obtained. In general, these 
formulas depend on critical acceleration (ac, g), maximum 
acceleration (amax, g), Aria Intensity (Ia, m/s), moment 
magnitude (Mw). In practice, after the calculation of critical 
acceleration of investigated region, the ground displacement is 
estimated. Therefore, instead of the general solution, the 
equations prepared according to critical acceleration 
categories should be used. In this study, it is determined that 
Yigit 2020/2 Form is the most convenient equation in terms of 
the critical acceleration category. Besides, Yigit 2020/1 Form 



 

 

and New Form-2 have approximately the same regression 
results as the Yigit 2020/2 Form. On the other hand, it can be 
seen from the results of this study that two new suitable 
regression formulas have been obtained. 
For stronger grounds, regression equations obtained according 
to Newmark Method have less suitable regression outcomes. In 
other words, if the critical acceleration of any slope increases, 
the degree of the estimation accuracy of Newmark 
Displacement decreases. Therefore, it can be said that 
Newmark Method can predict the earthquake-induced 
displacement of the weaker slopes more suitable. 
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