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Abstract  Öz 

Articulated Mobile Cranes are specially designed systems intended for 
lifting and transporting loads of varying weights and dimensions. The 
physical dimensions of these systems may vary depending on their field 
of application and specific technical requirements. Such variations can 
have significant impacts on both lifting capacity and operational speed. 
Dimensional changes may lead to undesirable deviations within the 
safety limits established during the design phase. Therefore, in order to 
optimize the dimensions of these mechanisms, the statistical nature of 
manufacturing and measurement errors must be carefully assessed. In 
this study, the dimensional optimization of crane boom lifting 
mechanisms was performed based on reliability analysis by combining 
Monte Carlo Simulation with the Particle Swarm Optimization method 
to determine the optimal mechanism dimensions. According to the 
results obtained, it was found that the lambda values for different 
operating modes are primarily influenced by the geometric parameter 
(ψ) and, to a lesser extent, by the cylinder speed (vc). Depending on the 
selected parameters, the lambda value was observed to vary between 
0.35 and 0.55. 

 Araç üstü mobil vinçler, farklı ağırlık ve boyutlardaki yükleri kaldırmak 
ve taşımak amacıyla özel olarak tasarlanmış sistemlerdir. Bu 
sistemlerin fiziksel boyutları, kullanım alanlarına ve farklı teknik 
isteklere bağlı olarak değişkenlik gösterebilir. Bu durum hem kaldırma 
kapasitesi üzerinde hem de hareket hızı üzerinde önemli etkiler 
yaratabilir. Boyutsal değişimler, tasarım aşamasında belirlenmiş 
güvenlik sınırları içerisinde istenmeyen sapmalara neden olabilir. Bu 
yüzden, bu mekanizmaların boyutlarını optimize etmek için üretim ve 
ölçüm hatalarının istatistiksel doğasının dikkatli biçimde 
değerlendirilmesi gerekir. Bu çalışmada, vinç bom kaldırma 
mekanizmalarının boyutsal optimizasyonu amacıyla Monte Carlo 
simülasyonu ile Parçacık Sürü Optimizasyonu yöntemi birlikte 
kullanılarak, mekanizmanın optimum boyutları güvenilirlik temelli 
olarak belirlenmiştir. Elde edilen sonuçlara göre, farklı çalışma modları 
için lambda değerlerinin, öncelikle geometri parametresinden (ψ) ve 
daha az ölçüde silindir hızından (vc) etkilendiği ve seçilen 
parametrelere göre lambda değerinin 0,35-0,55 arasında değiştiği 
tespit edilmiştir. 

Keywords: Knuckle Joint Crane, Lifting Mechanism, Reliability, 
Monte-Carlo Simulation, Particle Swarm Optimization 
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1 Introduction 

Mobile cranes are machines designed specifically for lifting and 
transporting loads, usually equipped with either wheeled or 
tracked chassis. These cranes are widely utilized across 
industries like construction, heavy industry, energy, and 
maritime sectors. These cranes can lift a range of loads from 
elevated or confined spaces, utilizing their long arms and lifting 
mechanisms, which are powered by hydraulic and mechanical 
forces. Due to their portability, mobile cranes can be easily 
relocated to different sites and tailored to suit their carrying 
capacity. Optimizing both weight and capacity is essential for 
maximizing the efficiency of these machines, lowering fuel 
consumption, boosting maneuverability, and improving 
transportation safety. Optimizing the dimensions of a boom 
crane's lifting mechanism is crucial for enhancing its efficiency, 
safety, and overall performance. The crane's boom, which acts 
as the main load-bearing arm, must be carefully designed and 
optimized in terms of length, angle, and material composition 
to effectively lift and transport heavy loads. Proper dimensional 
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optimization ensures that the crane operates within its 
intended capacity, preventing overloading that could result in 
mechanical failures, safety hazards, or even catastrophic 
accidents. By fine-tuning these dimensions, the crane can 
achieve optimal lifting power and stability while maintaining its 
range of motion and precision. 

Dimensional optimization also offers a significant advantage in 
terms of fuel efficiency and cost-effectiveness. Cranes tailored 
for specific lifting tasks operate more efficiently, reducing 
unnecessary energy consumption and minimizing excessive 
movements. For example, an optimized boom with the correct 
lifting angle reduces strain on the engine and hydraulic 
systems, helping to extend the crane’s service life while 
lowering maintenance costs. Moreover, adjusting the weight 
distribution and improving the structural integrity of the boom 
can help minimize stress on critical components, further 
boosting operational durability. By designing the lifting 
mechanism with precise dimensions, the crane is less likely to 
experience issues such as tipping or imbalance, which can arise 
if the boom is too long or improperly configured for the load. 
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Ensuring proper balance and stability during lifting helps 
minimize the risk of accidents, protecting both workers and 
equipment. Through advanced simulation and computational 
modeling, engineers can predict the crane’s performance in 
various conditions, allowing them to fine-tune its dimensional 
parameters for an optimal design that ensures safe and efficient 
operation across diverse environments. Particle Swarm 
Optimization (PSO) is an evolutionary algorithm inspired by 
nature, making it a powerful tool for solving optimization 
problems. In PSO, a swarm of particles (candidate solutions) 
navigates through the solution space to find the optimal 
answer. Each particle keeps track of its best previous position 
and aims to move toward it, while the entire swarm’s memory 
is shaped by the best solution found collectively. By 
incorporating both cognitive and social elements, PSO 
promotes faster and more accurate convergence. This method 
is capable of optimizing multiple parameters simultaneously, 
efficiently avoiding local minima and leading to a global 
solution. The PSO algorithm, introduced by Kennedy and 
Eberhart [1], is known for requiring less computational time 
compared to other optimization algorithms. As a result, it has 
been successfully applied to solve a wide range of problems [2-
7]. The algorithm begins by defining unknown parameters, 
referred to as particles, and assigning them random positions. 
These particles move through the search space to minimize an 
objective function. The fitness of each particle is evaluated 
based on the objective function, which is used to update both 
the best position of the individual particle and the best position 
found by all particles collectively at each computational step. 

Particle Swarm Optimization is a commonly used metaheuristic 
algorithm for solving optimization problems. The method is 
simple, easy to implement, and converges quickly [8]. It has 
been extensively applied in structural reliability analysis [9-
11]. Dimensional optimization of a lifting mechanism, 
combining Particle Swarm Optimization (PSO) with Monte 
Carlo simulation, provides an effective solution to the 
challenges posed by measurement and manufacturing errors in 
dimensions. The PSO algorithm is used to determine the 
optimal design parameters for the mechanism, considering 
factors such as load capacity, efficiency, and structural integrity. 
However, real-world applications often face complications due 
to inaccuracies in dimensions arising from measurement or 
manufacturing deviations. To address these uncertainties, 
Monte Carlo simulation is used to perform probabilistic 
analysis, simulating various scenarios with different error 
distributions to evaluate the impact of dimensional 
inaccuracies on the mechanism’s performance and reliability. 
By merging PSO’s optimization capabilities with Monte Carlo’s 
ability to model and mitigate the effects of dimensional 
variations, the resulting lifting mechanism becomes more 
robust, ensuring consistent performance despite real-world 
errors. This integrated approach enhances both the accuracy 
and resilience of the design, making it less sensitive to 
production variability. Monte Carlo Simulation is an analytical 
method that utilizes random sampling, often employed to 
model uncertainties and randomness. The simulation creates 
multiple solution scenarios by using numerous random 
samples to explore all potential outcomes of a given problem. 
Monte Carlo simulation is especially powerful for analyzing 
nonlinear, complex, and uncertain systems. By generating a 
large number of random samples, it can simulate the behavior 
of a system and deliver statistically reliable results. The 
integration of PSO and Monte Carlo simulation improves the 

accuracy and reliability of solutions for optimization problems. 
While PSO navigates the solution space, Monte Carlo simulation 
offers more realistic results by accounting for uncertainties and 
randomness within the system. This is particularly useful in 
engineering and manufacturing, where measurement errors 
and uncertainties frequently occur. These errors may originate 
from several factors, including material properties and the 
production process, which could influence the precision of the 
design. While PSO determines the optimal parameters during 
the solution process, Monte Carlo simulation addresses 
uncertainty and measurement errors in these parameters, 
leading to more robust and reliable results. 

Manufacturing and measurement uncertainties are critical 
factors that can significantly influence design accuracy. In 
production processes, factors such as tolerances, material 
variations, and slight machine calibration errors can all impact 
the precision of the design. These errors, particularly in 
complex systems, can compromise the accuracy and reliability 
of the results. Monte Carlo simulation models these random 
errors and simulates the system’s behavior under different 
scenarios. When combined with PSO, this approach allows for a 
deeper understanding of how uncertainties affect the system, 
enabling the creation of more reliable, real-world designs. 
Therefore, the integration of these two techniques provides 
more robust and accurate optimization solutions, resulting in 
more realistic engineering outcomes. 

Reliability problems are typically formulated as nonlinear 
programming problems subject to constraints [12, 13], which 
can be quite complex. Given that randomness is valuable for 
finding a global solution [14], metaheuristic approaches have 
become more popular than gradient methods for solving 
structural optimization problems. 

Coelho [15] developed an efficient particle swarm optimization 
algorithm based on Gaussian distribution and chaotic 
sequences to address reliability–redundancy optimization 
problems. Liu et al. [16] introduced a reliability-based design 
optimization method to tackle the CFRP battery box lightweight 
design challenge. 

Liu et al. [17] proposed a modified particle swarm optimization 
algorithm to address the reliability redundancy optimization 
problem, while Malhotra et al. [18] applied PSO for software 
reliability prediction. 

In practical engineering applications, various sources of 
uncertainty frequently arise due to inconsistencies in material 
properties, manufacturing processes, and measurement 
techniques [19-23]. Accordingly, the consideration of 
uncertainties in engineering design has garnered increasing 
attention in recent years [24-26]. For example, Xian et al. [27] 
introduced a comprehensive analytical framework for 
stochastic optimization of nonlinear viscous dampers used in 
energy-dissipating systems, which was successfully applied to 
uncertainty-based optimization in suspension bridge 
applications. 

 
With the growing complexity of engineering systems, the 
presence of diverse and interacting uncertainties has become 
inevitable, often resulting in challenges related to their 
identification and quantification [28]. If such uncertainties are 
not properly accounted for, ensuring the reliability and safety 
of engineering systems becomes increasingly difficult [29-32].  
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In this context, the Reliability-Based Design Optimization 
(RBDO) methodology has been widely employed to enhance the 
safety and robustness of complex mechanical systems [33]. 
RBDO seeks to maintain system reliability within acceptable 
bounds while optimizing performance-related objective 
functions [34]. 

This study focuses on optimizing the dimensions of a three-limb 
mechanism used to position the movable arm in mobile cranes. 
The goal is to achieve minimum acceleration and maximum 
moment arm by incorporating dimensional uncertainty 
through the Monte Carlo approach, integrated with the PSO 
technique. 

2 Modeling and Method 

Figure 1 shows the schematic representation of lifting 
mechanism widely used in knuckle joint boom cranes.  

 

Figure 1. Schematics of lifting mechanism used in knuckle joint 
boom cranes 

By using geometric relations, the following equations can be 
obtained 

𝛹 +  𝜃 +  𝛽 = 180 =  𝜋 (1) 
𝜎 +  𝜃 =  𝛾 (2) 

𝛽 +  𝜃 + 𝛾 =  𝜋 −  𝛹 = 𝐹𝑖𝑥𝑒𝑑 (3) 
𝛽 = 𝜋 −  𝛹 − 𝛾 −  𝜃  (4) 

Applying the Sinus theorem, we get equations (5), (6) and (7) 
as follows; 

|𝐴𝐵|

𝑠𝑖𝑛 𝛾
=  

|𝐴𝐶|

𝑠𝑖𝑛 𝛽
 (5) 

𝛾 =  𝑠𝑖𝑛−1(
|𝐴𝐵|

|𝐴𝐶|
 . 𝑠𝑖𝑛 𝛽) (6) 

𝛽 +  𝑠𝑖𝑛−1(
|𝐴𝐵|

|𝐴𝐶|
 . 𝑠𝑖𝑛 𝛽) −  𝜋 + 𝛹 =  − 𝜃 (7) 

Introducing a new parameter as =[AB]/[AC], Eq (8) can be 

obtained; 

𝜃 ≥ 0   𝛽 =  𝑡𝑎𝑛−1(
𝑠𝑖𝑛(𝛹 + 𝜃)

𝜆 − 𝑐𝑜𝑠( 𝛹 + 𝜃) 
) 

𝜃 ≤ 0   𝛽 =  𝑡𝑎𝑛−1(
𝑠𝑖𝑛(𝛹 − 𝜃)

𝜆 − 𝑐𝑜𝑠( 𝛹 − 𝜃) 
) 

(8) 

 

Then, the moments arm (d(θ)) can be expressed as follows 

𝑑(𝜃) =  |𝐴𝐵| . 𝑠𝑖𝑛 𝛽   

This type of mechanism generally operates at very low 
acceleration. However, it should still be considered during the 
optimization process. It is assumed that the hydraulic cylinder 
moves at a constant velocity, it still can cause angular 
acceleration due to variation of angular positions of members. 
The angular velocity and angular acceleration are expressed as 
follows. 

𝜃̇ =  
𝑑𝜃

𝑑𝑡
=  

𝑉𝐶  . sin 𝛾

 |𝐴𝐶|
 (9) 

𝜃̈ =  
𝑑2𝜃

𝑑𝑡2
=  

𝑉𝐶

 |𝐴𝐶|
 . 𝑐𝑜𝑠 𝛾  . 𝛾′ (10) 

  Where, dγ/dt and dβ/dt are expressed as; 

𝑑𝛾

𝑑𝑡
=  𝛾′ =  sin−1(𝜆 . sin 𝛽) =  

𝜆 . cos 𝛽 . (
𝑑𝛽
𝑑𝑡

)

√1 − 𝜆2 . sin2 𝛽 
 

(11) 
Where 

𝛽̇ =  
𝑑𝛽

𝑑𝑡
=  

1 − 𝜆 . 𝑐𝑜𝑠(𝜃 −  𝛹)

1 − 2𝜆 . 𝑐𝑜𝑠(𝜃 −  𝛹) + 𝜆2
 .

𝑉𝐶

|𝐴𝐶|
 . 𝜆2 .

𝑉𝐶

|𝐴𝐶|
 . 𝜆 . 𝑠𝑖𝑛 𝛽 

Finally, the angular acceleration of arm member is expressed as 
follows. 

𝜃̈ =   
𝑉𝐶

 |𝐴𝐶|
 . 𝑐𝑜𝑠(𝑠𝑖𝑛−1(𝜆 . 𝑠𝑖𝑛 𝛽)) .

𝜆 . 𝑐𝑜𝑠 𝛽

√1 − 𝜆2 . 𝑠𝑖𝑛2 𝛽 
 . 𝛽̇ (12) 

In this study, the optimization process was carried out in the 
parameters presented in Table 1, which are the variables used 
in the PSO algorithm, by taking into account both measurement 
errors and variations in hydraulic systems for various reasons. 
For this purpose, a noise term was added to the () angle 
selected in the mechanism and the velocity (vc) of the hydraulic 
cylinder in accordance with the Gaussian distribution. 
Algorithm parameters are shown in Table 2 while Pseudocode 
for the solution is presented in Table 3. 

Table 1. Mechanism design parameters 

Parameter Name Value Variation 

 angle (Deg.) -15 to +83  

 angle (Deg.) +15 to +75 ±1% 

Cylinder velocity (vc) 
(m/s) 

0.005 to 0.015 ±1% 

Table 2. Algorithm parameters 

Parameter Name Value 

Population Size 30 

Number of Iteration 100 

Inertial Weight 0.7 

c1 1.5 
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c2 1.5 

The velocity of the ith particle, vi, is calculated as follows [1]: 

Vit+1=ω.vit+ c1.r1.(xbest,it-xit)+ c2.r2.(xbest,gt-xit) 

The new position of the ith particle is then determined as 

follows: 

Xit+1= Xit +Vit+1 

Where 

vit: Velocity of ith particle at instant t 

vit+1: Velocity of ith particle at instant t+1 

ω: Inertial coefficient 

C1, C2: Cognitive Coefficient (personal learning factor) and 
Social Coefficient (global learning factor): 

r1, r2: Random coefficients selected between [0.1] 

xbest,it: Personal best point of ith particle 

xbest,gt: Global best position 

xit: Position of ith particle at instant t 

Table 3. Pseudo Code 

Pseudo Code 

Initialize a population, positions of each particle, #of 
iteration 

Add Gaussian noise for variables  

Assign random values to particles 

Evaluate the objective value of each particle  

Determine initial pbest and gbest  

 while termination criteria are not satisfied do  

   for each particle do  

  Update the velocity for the particle  

     Update the new location for the particle  

     Determine the objective value for the 
particle in its new location  

     Update pbest and pbest if required  

end for  

Save optimal λ at each iteration 

 End while  

  Calculate mean, standard deviation and 95% confidence 
interval 

  Write λoptimum, standard deviation and 95% confidence 
interval 

End 

 

Confidence interval is obtained as follows; 

𝐶𝐼 = 1.96 ∗ 𝜎/√𝑁 

Where; σ and N represents standard deviation and number of 
iterations respectively. Here, the coefficient 1.96 is a constant 
for 95% confidence level. On the other hand, random noise at 
the variables is calculated as follows. 

Var_new=Var_original+ GaussianNoise(0, Var_original * 0.01) 

 

Where, a number with mean of zero and standard deviation 
equals to Var_original*0.01 that fits the Gaussian distribution is 
added to the original variable. 

The objective function selected during the optimization process 
must be expressed in terms of geometric dimensions and 
cylinder speed. The first component of the objective function, 
angular acceleration and the change in the moment arm, 
depend on the cylinder speed (vc), the  ratio, and the angle (), 
as shown in Equations 11 and 12. Similarly, the moment arm 
depends on the angle (). The objective and constraints of the 
optimization process is as seen in Table 4. Since the geometry 
of the mechanism is idealized, the geometric constraints should 
be taken into account. The diameter of an actual pin used in a 
crane can be about 120 to 180 mm. For this aim, a constraint is 
defined as seen in Table 4. 

Table 4. Objectives and restrictions 

Objectives 

#1 Minimum angular acceleration 
#2 Maximum β at θ=-15/+83 interval 
#3 Minimum variation at β at θ=-15/+83 interval 

Constraint 
#1 𝜆 − 𝑐𝑜𝑠(𝛹 +  𝜃)  ≠  0 (Numerical constraint) 
#2 |𝜆. 𝑠𝑖𝑛 𝛽| ≤ 1 (Numerical constraint) 
#3 λmin> 0,15 (Manufacturability constraint) 

The objective function targeted in optimization has a structure 
that combines different objectives. When considering a crane 
boom, it becomes clear that several elements must be 
combined. These elements are described below. First, 
considering the crane boom's own mass and the mass it lifts, it 
becomes clear that angular acceleration must also be 
minimized. Second, to minimize cylinder forces and linkage 
forces, the moment arm must be maximum at every angular 
position. Third, to ensure proper control of the crane, the 
change in the moment arm depending on the angular position 
must also be minimized. In order to obtain the requirements, 
following type objective function has been defined. 

𝐹 = 𝑤1 . 𝐹1 +  𝑤2 . 𝐹2 +  𝑤3 . 𝐹3  (13) 

Where, F1, F2 and F3 represents, maximization of the moment 
arm, minimization of the change in the moment arm and 
minimization of the angular acceleration respectively. Various 
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requirements are expected from cranes in various applications. 
For example, when lifting a delicate load, angular acceleration 
may be the most important factor. In another application, 
however, maximizing the moment arm may be the most 
important factor. Taking all these factors into account, the 
operating modes and weights in Table 5 were determined by 
clustering the different requirements for each component of 
the objective function and assigning a weight to each 
component of the objective function. The above mentioned 
factors have been weighted and the overall objective function is 
then defined as Eq.(13) under specified constraints. A code has 
been developed by using MS-Excel VBA for solving the above-
mentioned problem by using PSO and the results are visualized 
by using Minitab. 

Table 5. Selected weighting factors for different working 
modes 

Mode w1 w2 w3 

Economy 0.3 0.4 0.3 
Safety 0.2 0.4 0.4 
Performance 0.6 0.2 0.2 

 

𝐹 = w1 ∗ min(abs(𝜃̈)) − w2 ∗ max(β) + w3
∗ min (abs(dβ/dy))     

(14) 

3 Results and Discussions 

In Figure 2-4, the optimum lambda values obtained for different 
cylinder velocities (vc) and geometry parameter (ψ) values for 
economy, safety and performance modes are presented, 
respectively. As seen in the figures, the lambda value 
approaches 1 at values close to the 35- and 65-degrees values 
of ψ. In addition, it is understood that the optimum lambda 
value decreases with the increase in cylinder velocity. This 
situation is similar for all operating modes. On the other hand, 
as seen in Figure 2-4, it is understood that a minimum region is 
formed for the optimum lambda value at the middle values of 
the ψ variable in different operating modes. The position of this 
region also changes depending on the cylinder velocity (vc). In 
Figure 5-7, statistical evaluations of the data presented in 
Figure 2-4 are presented in the form of main effects plot. As can 
be seen in these figures, the optimum lambda values for 
different operating modes are highly dependent on the 
geometry parameter (ψ) value. It can also be evaluated that the 
optimum values of lambda are slightly dependent on the 
cylinder velocity. 

 

Figure 2. Optimum lambda values for different cylinder 
velocity (vc) and geometry parameter (ψ) for economy mode 

 

Figure 3. Optimum lambda values for different cylinder 
velocity (vc) and geometry parameter (ψ) for safety mode 

 

Figure 4. Optimum lambda values for different cylinder 
velocity (vc) and geometry parameter (ψ) for performance 

mode 

 

Figure 5. Main effect of cylinder velocity (vc) and geometry 
parameter (ψ) for economy mode 
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Figure 6. Main effect of cylinder velocity (vc) and geometry 
parameter (ψ) for safety mode 

 

Figure 7. Main effect of cylinder velocity (vc) and geometry 
parameter (ψ) for performance mode 

In general, it is quite difficult to ensure absolute certainty in 
flow control, especially in hydraulic systems. Experimental 
observations have revealed that there is approximately a 1% 
uncertainty in the cylinder movement velocity related to this 
phenomenon. Similarly, for the geometry parameter (ψ), 
measurement errors, joint clearances, and assembly errors lead 
to an assumed uncertainty of about 1%, and calculations have 
been carried out accordingly. Considering these uncertainties, 
the evaluations have been made based on a 95% confidence 
interval. A 95% confidence interval means that there is a 95% 
probability that the predicted optimal lambda value lies within 
this range. A narrow confidence interval indicates that the 
results have low uncertainty and that the optimization is 
reliable. A wide confidence interval suggests greater variability 
or uncertainty and may require further improvements to the 
model. Figures 8-10 present the confidence interval values for 
different operating modes. As shown in the figures, while 
cylinder velocity (vc) does not have a significant impact on the 
confidence interval, it is clear that the most influential 
parameter is the ψ value. It is observed that in all operating 
modes, the situation is similar, with the optimal lambda values 
obtained within a very narrow range, indicating that the 
optimal lambda values are achieved with high certainty. 

 

Figure 8. Contour plot of 95% confidence interval values  for 
economy mode  

 

Figure 9. Contour plot of 95% confidence interval values  for 
safety mode 

 

Figure 10. Contour plot of 95% confidence interval values  for 
performance mode 

4 Conclusions 

The optimization of lambda values for different operating 
modes in hydraulic systems is primarily influenced by the 
geometry parameter (ψ) and, to a lesser extent, the cylinder 
velocity (vc). As observed, the lambda value approaches 1 at 
both the minimum and maximum ψ values, with a clear 
decrease in the optimal lambda value as cylinder velocity 
increases. This behavior is consistent across all operating 
modes, highlighting the dominant effect of the ψ parameter. 

It is concluded that the analysis indicates that a minimum 
region for the optimal lambda value forms at the middle values 
of ψ, and this region's position is influenced by changes in 
cylinder velocity. Statistical evaluations confirm that the 
lambda values are highly sensitive to ψ, while cylinder velocity 
has a smaller effect on optimization. The uncertainties 
associated with hydraulic system control, such as variations in 
cylinder velocity and geometry parameter measurements, were 



 
 
 
 

Pamukkale Univ Muh Bilim Derg, XX(X), XX-XX, 20XX 
 

 

7 
 

accounted for in the evaluation process. A 95% confidence 
interval was used to assess the reliability of the results, with the 
narrow range of the confidence intervals indicating a high 
degree of certainty in the optimal lambda values across all 
operating modes. These findings suggest that the optimization 
model is reliable, although further improvements may be 
necessary if wider variability or uncertainty is observed in 
future studies. It is also concluded that precise control of the 
geometry parameter (ψ) plays a critical role in achieving 
optimal system performance, with cylinder velocity having a 
secondary, though still significant, influence on the overall 
optimization. 
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