Pamukkale Univ Muh Bilim Derg, XX(X), XX-XX, 20XX

Pamukkale Universitesi Miihendislik Bilimleri Dergisi

A new neighborhood-based VNS algorithm for unrelated parallel machine
scheduling problem with sequence-dependent setup times

Sira bagiml hazirlik siireli iliskisiz paralel makine ¢izelgeleme problemi
icin yeni bir komsuluk tabanli DKA algoritmasi

Giinay Kilig?", Arzu Organ?

1Pamukkale University, Rectorate, Denizli, Tiirkiye.
gkilic@pau.edu.tr
2Business Administration, Faculty of Economics and Administrative Sciences, Pamukkale University, Denizli, Tiirkiye.
aorgan@pau.edu.tr

Received/Gelis Tarihi: 11.02.2025
Accepted/Kabul Tarihi: 13.08.2025

Revision/Diizeltme Tarihi: 08.08.2025

doi: 10.5505/pajes.2025.05935
Research Article/Arastirma Makalesi

Abstract

Scheduling involves the allocation of tasks to machines under specific
constraints and criteria. As schedules are constructed and jobs are
assigned to machines, various scheduling challenges arise. This study
focuses on the NP-hard Unrelated Parallel Machine Scheduling Problem
with Sequence-Dependent Setup Times (UPMSPSDT), where jobs have
varying processing times across machines, and setup times between jobs
depend on the machine. The objective is to minimize the makespan
(Cmax) of the final schedule. Due to its computational complexity, exact
methods are ineffective in solving UPMSPSDT efficiently, leading
researchers to explore metaheuristic approaches for near-optimal
solutions. This study aims to enhance solution quality for UPMSPSDT
using the Variable Neighborhood Search (VNS) algorithm, a single-
solution metaheuristic. To this end, a novel neighborhood structure is
introduced, inspired by the shell-changing behavior of crabs,
complementing existing structures in the literature. Additionally, three
different local search strategies are evaluated based on the makespan
values obtained through neighborhood transitions and are applied
iteratively using a local search selection strategy. Furthermore, an
improved version of a greedy initial solution from the literature is
proposed to generate higher-quality starting solutions. The proposed
Crab-inspired Neighborhood-based VNS (CNVNS) is tested on a widely
used benchmark dataset, and the results are analyzed. Findings indicate
that the proposed algorithm outperforms benchmarked approaches in
achieving lower Cmax values, demonstrating its effectiveness in solving
UPMSPSDT.

Keywords: Variable neighborhood search, Metaheuristic, Unrelated
parallel machine scheduling problem with sequence-dependent setup
times.
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Cizelgeleme, belirli kisitlar ve kriterler dogrultusunda gorevlerin
makinelere tahsis edilmesi stirecidir. Cizelgeler olusturulup isler
makinelere atandikca  cesitli  ¢izelgeleme problemleri ortaya
ctkmaktadir. Bu ¢alisma, isler farkli makinelere gore degisen islem
stirelerine sahipken ve isler arasindaki hazirlik stireleri makineye bagl
olarak degisirken, nihai tamamlanma siiresinin (Cmax) en aza
indirilmesini amaclayan Sira Bagimh Hazirhk Siireli fliskili Olmayan
Paralel = Makine (izelgeleme Problemi (UPMSPSDT) lizerine
odaklanmaktadir. Hesaplama acisindan NP-zor bir problem olmasi
nedeniyle, kesin yéntemler UPMSPSDTYyi etkin bir sekilde ¢6zmede
yetersiz kalmakta ve bu nedenle arastirmacilar yaklasik ¢éziimler elde
etmek icin metasezgisel yaklasimlara yénelmektedir. Bu calismada,
Degisken Komsuluk Arama (DKA) algoritmast kullanilarak UPMSPSDT
icin daha kaliteli ¢éziimler elde edilmesi amaglanmaktadir. Bu
dogrultuda, yengeclerin kabuk degistirme davranisindan esinlenen ve
literatiirde mevcut komsuluk yapilarint tamamlayici nitelikte yeni bir
komsuluk yapisi onerilmektedir. Ayrica, ¢ farkl yerel arama yéntemi,
komsuluk degisimlerinden elde edilen tamamlanma stiresi (Cmax)
degerlerine gére degerlendirilmis ve yerel arama segcim stratejisi
kullanilarak iteratif olarak uygulanmistir. Bunun yani sira,
literatiirdeki aggézIlii (greedy) baslangic ¢6ziimiine yénelik bir
iyilestirme énerilerek, daha ytiksek kaliteli baslangi¢ ¢6ziimlerinin elde
edilmesi hedeflenmistir. Onerilen Yengec [lhaml Komguluk Tabanlh DKA
(CNVNS) algoritmasi, yaygin olarak kullanilan bir test veri seti lizerinde
degerlendirilmis ve sonuclar analiz edilmistir. Elde edilen bulgular,
énerilen algoritmanin karsilastirildig: diger yaklasimlara kiyasla daha
diisiik Cmax degerleri tirettigini ve UPMSPSDT ¢éziimiinde etkinligini
ortaya koydugunu géstermektedir.

Anahtar kelimeler: Degisken Komsuluk Arama, Metasezgisel, Sira
bagiml hazirlik siireli iliskisiz paralel makine ¢izelgeleme.

1 Introduction

Scheduling process stands as a crucial process inherent in
numerous production problems, wielding a substantial impact
on the overall efficiency of the production process.
Consequently, it demands meticulous planning by businesses to
ensure optimal operational outcomes. Indeed, the intricacies of
scheduling can differ significantly from one business to another
as different production systems in workshops have caused
distinct scheduling problems.

*Corresponding author/Yazisilan Yazar

The aim of scheduling is to optimize one or more objectives
while efficiently allocating resources to tasks. In the context of
workshop scheduling, where resources typically refer to
machines, and the tasks correspond to jobs. Scheduling
problems can be classified according to the way jobs arrive or
the number of machines. In deterministic scheduling problems,
all job-related parameters such as processing times and setup
times are known in advance before the scheduling begins.
There is no change in the number of jobs or machines during
scheduling [1]. When classifying the scheduling problems
based on the number of machines involved, they can be broadly



classified into two models: the single-machine and the multiple-
machine models. In the case of scheduling with more than one
machine, there are three basic models: parallel, serial and flow
shop models [2]. In the context of parallel machine scheduling,
unrelated machines refer to a set of machines that perform the
same function but differ in their capabilities and capacities. An
appropriate number of machines with different capabilities and
capacities is widely used in many sectors such as textile,
chemistry, electronic manufacturing, etc. As it increases
flexibility in business [3]. In the Unrelated Parallel Machine
Scheduling Problem with Sequence-Dependent Setup Times
(UPMSPSDT), the processing times of each job on each machine
are different. In this problem, the machines process the jobs
with different capacities according to the jobs. At the same time,
each job needs a setup time in that machine before it can be
processed. The jobs have a setup time in the machine according
to the last job processed before it. Even if there are no prior jobs
distinct setup times may exist for each job on each machine.

The problem addressed in this study (UPMSPSDT), there are
parallel machines and where the parallel machines are
unrelated. The processing time of jobs on the machines are
different. Additionally, setup times are both sequence-
dependent, meaning they vary based on the preceding job, and
machine-dependent. The identical parallel machine scheduling
problem, which is a simpler version of this problem, is an Np-
hard problem when the number of machines is 2 with no set up
time [4]. As the number of jobs and machines increases, many
practical scheduling problems exhibit growing complexity. Due
to the NP-Hard nature of these problems, obtaining an optimal
solution within a reasonable computational time may not
always be feasible [5]. Given that a simpler version of this
problem is NP-hard, it directly follows that the more complex
UPMSPSDT is also NP-hard. In this problem, the objective is to
minimize the final completion time (Cmax) from scheduling.
Exact solution methods are not sufficient to solve the problems
in the NP-hard class. Metaheuristic methods are used to solve
this class of problems. Metaheuristics aim to iterate a candidate
solution and improve the candidate solution according to the
given criteria. Although they do not guarantee an exact solution,
metaheuristic algorithms can solve optimization problems that
other exact methods techniques cannot solve effectively [6].

The goal of this study is to propose an adapted VNS algorithm
with a new proposed neighborhood structure (CNVNS), a new
proposed greedy initial solution and a local search strategy and
to find more efficient solution to the problem with this
algorithm.

In this context, the past studies compared with the proposed
algorithm are mentioned in the” Literature review” section. The
commonly used neighborhood structures in VNS algorithm and
the newly proposed neighborhood structure inspired by the
“Crabs Shell Exchange” are given in the” Neighborhood
structures” section. The modified version of greedy initial
solution algorithm which is developed by [7] is given under the
section” Proposed new initial solution”. In this study, two local
searches are also proposed to improve the result obtained from
neighborhood exchange. The proposed local searches are
evaluated and applied with a local search strategy according to
the obtained Cmax values after neighborhood change.

2 Related literature

In this study, the benchmark dataset created by [6] was used to
measure the effectiveness of the proposed metaheuristic
algorithm. The problem and dataset of interest have been

studied in academic research and many researchers have
proposed solutions to the problem with different
metaheuristics [6-18]. The benchmark dataset used and the
results of other researchers can be found and a summary of the
studies using the same benchmark dataset is given in Table 1.

Table 1. A summary of the studies using the same benchmark

dataset

No Reference Algorithm Compared

1 [6] PH (Partitioning Heuristic) -

2 (7] Tabu Search 1

3 8] Meta-RaPS 1

4 [9] Ant Colony Optimisation 1,2,3
Simulated Annealing and Genetic

> [10] Algorithm 1

6 [11] Restricted Simulated Annealing 1,2,3,4

7 [12] Multi-start Variable Neighbourhood 34
Descent

8 [13] Artificial Bee Colony- Hybrid Artificial 12345
Bee Colony

9  [14] Ant Colony Optimisation 1,2,3,4

10 [15] Genetic Algorithm and Local Search 4,5
Automata- Adaptive Large

11 [16] Neighbourhood Search 49
Genetic Algorithm + Variable

12 [17] Neighbourhood Descent + Simulated 4,5,10
Annealing (GIVP)

13 [18] Worm Optimisation Algorithm 2,6,8,9,10

As Table 1 illustrates, the UPMSPSDT has garnered significant
attention from the research community, leading to the
development of various metaheuristic algorithms. This table
also motivates researchers to propose new methods and
solutions for solving the problem.

UPMSPST has also been a focus of academic research, with
various objective functions and datasets being explored. Some
of the recent studies in this area include:

In the study by [19] a novel model for the UPMSPST was
introduced, incorporating both limited workforce and the
learning effects of workers. To solve this model, a
Combinatorial Evolutionary Algorithm (CEA) was developed,
which utilized List Scheduling (LS), the Shortest Setup Time
(SST) priority rule, and the Earliest Completion Time (ECT)
priority rule. For evaluation purposes, 72 test instances were
generated, and the Taguchi method was applied to determine
the optimal parameter combinations. The performance of the
proposed algorithm was compared against other algorithms,
demonstrating its effectiveness.

In the study by [20], the researchers addressed a real-world
industrial problem in a textile factory, enhancing the parallel
machine scheduling problem which has sequence-dependent
setup times by incorporating two additional features: machine
eligibility and limited resources. The goal of the study was to
balance the workload by accounting for the dynamic layout
between jobs in the workshop and identifying machine groups.
A mathematical model was developed to represent the
problem, and a genetic algorithm was employed to obtain
solutions.

In the study by [21], the authors tackled the unrelated parallel
machine energy-efficient scheduling problem with sequence-
dependent setup times, considering varying energy
consumption tariffs. The study examined setup times in two
distinct ways: separately from processing times and jointly
with processing times. For both cases, mixed-integer linear
programming (MILP) models were developed. In the scenario
where setup times were treated separately, solutions were



achieved for problems involving up to 16 machines and 45 jobs,
while for the joint setup time models, solutions were obtained
for up to 20 machines and 40 jobs. To handle large-scale
problems, the researchers also developed a fix-and-relax
heuristic, allowing solutions for instances ranging from 20 to
100 jobs.

In their study, [22] focus on a multi-objective optimization
problem in the context of the unrelated parallel machine
scheduling problem, the objective is to minimize both the total
tardiness and total completion time. To address this, they
propose a novel metaheuristic algorithm as an alternative to
the Augmented e-Constraint (AEC) algorithm. The authors
emphasize that their proposed algorithm demonstrates
superior performance compared to the AEC algorithm,
particularly in terms of solution quality and computational
efficiency.

In the study by [23], the researchers aimed to solve same
problem with a Group Genetic Algorithm, which is an enhanced
version of the standard Genetic Algorithm. They introduced a
novel mutation operator, referred to as ”"2-Items,” resulting in a
52% improvement over the original mutation operator.

In another study, [24] tackled an unrelated parallel machine
scheduling problem specific to Vestel. The goal was to minimize
both early and tardy completion times in a production
environment with unrelated parallel machines. To solve this,
they employed the Imperial Competitive Algorithm. Their
results demonstrated a 39% improvement over the current
state-of-the-art methods, as well as surpassing the best
algorithms in the literature by 23% and 12%.

In their study, [25] proposed a “fix and optimize” algorithm for
the unrelated parallel machine scheduling problem, focusing on
solving subproblems grouped by subsets of machines. To
address these subproblems, they introduced a mathematical
program known as MPA, which was used to obtain solutions.
Computational experiments revealed that this approach
produced significantly higher-quality solutions compared to a
standalone exact algorithm. When compared to the best
heuristic approaches in the literature, the proposed algorithm
performed better in instances with a high number of jobs per
machine but showed lower performance in instances with
fewer jobs per machine.

In their 2024 study, [26] introduced an unrelated parallel
machine scheduling problem inspired by a station in the wind
tower production process, which involved setup times for the
machines. They also incorporated a new feature, involving
supportive machines that assist those facing -capacity
shortages. A mixed-integer linear programming (MILP) model
was formulated for this problem, and solutions were explored
using three different algorithms: a constructive heuristic,
Simulated Annealing, and Tabu Search. The effectiveness of
these algorithms was compared based on their performance in
solving the problem.

This study [27] addresses a complex real-world scheduling
problem that can be formulated as UPMSPSDT with due dates,
and machine eligibility constraints. The main objective is to
simultaneously minimize total tardiness and makespan. To
achieve this, a mathematical model is adapted and extended to
obtain optimal solutions for small-scale instances. For large-
scale cases, various simulated annealing variants are proposed,
leveraging different neighborhood structures and investigating
innovative heuristic move selection strategies. The
experimental results demonstrate that the methods are capable

of improving upon the results produced by state-of-the-art
approaches for a wide range of instances, including those
drawn from the literature.

In the subsequent section, we’ll begin by presenting the newly
proposed initial solution, essential for metaheuristic
algorithms to commence their optimization process.

In the study [28], the authors introduced a Constraint
Programming (CP) model designed to address UPMSPSDT. A
key feature of their model is the integration of realistic
constraints, including precedence relationships, release dates,
and machine eligibility restrictions. To effectively solve this
complex problem, they proposed two distinct branching
strategies, which proved instrumental in successfully resolving
small- and medium-sized problem instances. This work
highlights the efficacy of CP in handling intricate scheduling
challenges with practical relevance.

This study [29] investigates a variant of the Unrelated Parallel
Machine Scheduling Problem with Sequence-Dependent Setup
Times (UPMSPSDT), augmented with an additional resource
constraint. The objective function is to minimize total weighted
tardiness. In this context, a relaxed Mixed-Integer Linear
Programming (MILP) model is proposed, integrated with a
Constraint Programming (CP) component. For solving the
problem, one heuristic (ATCS) and two meta-heuristic
algorithms (GA and SA) were employed. The results were
comparatively analyzed using both a raw benchmark dataset
and a real-world problem instance.

In their study [30], beyond minimizing solely the makespan
(Cmax), the authors aimed to schedule resource-constrained
maintenance activities concurrently. To this end, a mixed-
integer linear programming (MILP) model was proposed. For
solving the real-world problem instance, which utilized actual
factory data, a hybrid Genetic Algorithm (GA) model was
developed. This model demonstrated superior results
compared to the current factory practices.

This study [31] addresses an Unrelated Parallel Machine
Scheduling Problem with Sequence-Dependent Setup Times
(UPMSPSDT), uniquely extended to incorporate a personnel
availability constraint for machine setups. Given that the
number of available personnel is less than the number of
machines, the scheduling must also account for personnel shift
changes. Consequently, a Mixed-Integer Linear Programming
(MILP) model is formulated with the objective of minimizing
Cmax (makespan). The practical utility of the proposed model
has been demonstrated through its application to a real
industrial case study.

In their study [32], the authors utilized the same dataset as the
present work. They proposed a solution based on a Genetic
Algorithm (GA) and compared its performance with that of the
ACOII algorithm. It was reported that the GA demonstrated
superior effectiveness, particularly in problems where setup
times or processing times are dominant.

The problem addressed in this study [33] is the scheduling of
jobs on unrelated parallel machines, considering both setup
times and delivery times. In addition to proposing a mixed-
integer programming model solved via CPLEX, a novel local
search-based Adaptive Large Neighborhood Search (ALNS)
algorithm has been developed to handle large-scale problem
instances. To evaluate the performance of the proposed
algorithm, a column generation approach is introduced, and
comprehensive computational experiments are conducted on
4200 benchmark instances with up to 20 machines and 320



jobs. The results indicate that the proposed algorithm
outperforms four state-of-the-art algorithms previously
developed to solve similar problems.

3 Mahtematical model

In addition to the heuristic solutions developed for the solution
of the UPMSPSDST problem, an integer programming model is
also presented [7]. The steps and formulas of the presented
model are given below.

Minimize Crnax
subject to (1)

n m
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Where,

n: Number of jobs

m: Number of machines

C;: Completion time of job j

P; . processing time of job j on machine k

S;jx: Setup time if job j is scheduled directly after job i on
machine k

So,jx: Setup time if job j is scheduled to go first on machine k

X; jk: Lifjob j is scheduled directly after job i on machine k and
0 otherwise

Xo,jk: 1ifjob j is scheduled first on machine k and 0 otherwise
Xj ot 1ifjob j is scheduled last on machine k and 0 otherwise
HV: alarge positive integer

The objective of the model, as defined in Equation (1), is to
minimize the makespan (Cmax). Constraints (2) ensure that
each job is assigned to only one machine and scheduled only
once. Constraints (3) guarantee that each job has a predecessor
and a successor. Constraints (4) serve a dual purpose. They
calculate the completion time of each job ((;) based on its
predecessor (C;) and the corresponding setup and processing
times. Crucially, they also act as sub-tour elimination
constraints based on the Miller-Tucker-Zemlin (MTZ)
formulation. By enforcing a monotonically increasing sequence
of completion times, these constraints make any cyclical
assignment mathematically infeasible. Constraints (5) define
the makespan by ensuring that it is no smaller than the
completion time of any job. Constraint (6) ensures that each
machine begins its sequence with exactly one job, which follows

the dummy job 0, thereby establishing a unique starting point
for each machine. As a result, there is no need to explicitly
define a constraint for the last job on each machine, since this
condition is implicitly satisfied by Constraints (3) and (6).
Constraints (7) and (8) ensure that completion times are non-
negative and that the dummy job's completion time is zero,
respectively. Lastly, constraints (9) state that the decision
variable x is binary across all domains. Additionally, the model
does not require explicit subtour elimination constraints (e.g.,
position-based variables like U; because the completion time
constraints (Constraints 4) inherently prevent cycles.

4 Proposed initial solution

There are two different approaches for generating an initial
solution of metaheuristic algorithms: the generation of random
initial solutions or the application of greedy algorithms. While
greedy algorithms generate higher quality solutions, they
increase the probability that the solution will be searched in a
more restricted space and stuck at the local optimum. Random
initialization algorithms, on the other hand, allow the heuristic
algorithm to search more different areas in the solution space.
In this case, finding the final solution is more difficult and will
take longer time. The greedy algorithm proposed in this study
is inspired and modified from the algorithm proposed in [7]. In
the algorithm proposed by [7] the average of the setup times
and the processing times are evaluated and the jobs are
assigned to the machine based on the ratio between the job
with the smallest time and the next smallest time. If the
calculated ratio is greater than the specified ratio, it adds the
jobs to the list of unassigned jobs. In the second stage, it assigns
the unassigned jobs above a certain ratio to the machine with
the least completion time among the machines. In our proposed
algorithm, diverging from the approach outlined in [7], the
objective is to maintain balanced machine loads by consistently
assigning jobs to the least loaded machine. Additionally, the
focus lies on minimizing the overall completion time by
strategically determining the best position for newly assigned
jobs within the machine. The initial solution was derived from
a modified version of an algorithm previously validated in a
peer-reviewed scientific publication. Since it consistently
outperforms random initial solutions, it was decided to conduct
the actual experiments using this greedy initial solution rather
than random ones. The proposed initial solution algorithm is
given in Algorithm 1.

Algorithm 1. The Proposed Greedy Initial Solution Function

Input: M: All machines, N: Set of jobs, UM: Unassigned
machines.

Output: X: Final schedule of jobs assigned to machines

1: procedure GreedylInitialSolution (M,N,UM)

2: UM «@, me@,j<d,X <3,

3: Calculate all avarage setup times for each machine

4: fori=1toNdo

5: m=find least loaded machine

6: j= Find the job j with the smallest processing time +
smallest average setup time on machine m

7: find optimal position for job j on machine m

8: X.append(m, j)

9: N.remove(j)

10: end for

11: Return X

12: end procedure




5 Neighborhood structures

To find a better solution for UPMSPSDT, typically 5 different
neighborhood structures are used in the literature. Three of
these are intra-machine job exchanges and two are inter-
machine job exchanges. Intra-machine exchanges can be
performed by swapping two jobs on the same machine, adding
a job after a later job, or reversing the order between two jobs
on a machine. Inter-machine job swapping can be done by
swapping jobs on two different machines or by inserting a job
on one machine behind a job on another machine [34]. In our
study, alongside these five different neighborhood structures, a
novel nature-inspired neighborhood exchange algorithm is
introduced.

5.1 Proposed crab shell exchange algorithm

The vacancy chain in resource planning has also been described
with crabs of the species Pagurus longicarpus. In resource
allocation via vacancy chains, when an individual occupies an
initially available resource unit, they vacate their previous unit,
which becomes available for another person to take, and so
forth. This process can be described as an interdependent
sequence of consecutively vacated resource units. Such a chain
facilitates the acquisition of new resource units by multiple
individuals, contingent upon the prior resource acquisitions of
others [35]. Crab shell exchange is modelled in two different
ways: synchronous and asynchronous. Synchronized cavity
chains occur when multiple crabs, positioned adjacent to an
available empty shell, align in a descending order of size. Once
the largest crab occupies the vacant shell, a swift sequence of
successive shell exchanges follows. In asynchronous cavity
chains, a crab that finds an appropriate empty shell will
exchange its own shell and subsequently wait for another crab
to discover and utilize the vacated shell. As a result,
asynchronous gap chains are characterized by the absence of
social interactions or queue formation, with sequential shell
switching occurring over extended periods. In contrast,
synchronized shell switching is more likely to result in the
discovery of the most optimal shell [36].

The crabs’ shell exchange algorithm was first proposed in 2019.
The proposed algorithm is based on the search for a better shell
than the shell acquired by each crab. The algorithm consists of
3 steps. Each crab finds a new shell randomly each time. The
most suitable shell identified is carried over to the subsequent
generation. The total number of shells remains constant, and
the likelihood of crabs locating a shell is determined by
predefined probabilities [37]. This method is similar to the
asynchronous shell change of crabs.

8: Machines =sort machines by workload descending in X //
like a chain of crabs

9: for each mac in Machines do find job in U] has least
processing time in mac // finding optimal Shell fort he crab

11: X.append(mac, job)
12: UJ.remove(job)
13: end for
14: ReturnX

15: end procedure

Algorithm 2. Crab Neighbors Function

Input: M: number of machines, N: number of jobs, X: the initial
schedule of jobs assigned to machines [[m;, j], ..,] i: 1, ..., M, k:1,
..,N, UJ : unassigned jobs

Output: X: the final schedule of jobs assigned to machines [[m;,

1|
1: procedure CrabNeighbors (X, M, N, U])

2: U] <@
3: fori=1toMdo
4: job« find random job assigned to machine miin X //

each job is like a crab coming out of its shell
5: UJ.append (job)

6: X. remove ([m;, job])

7: end for

In the proposed new neighborhood structure algorithm, the
jobs selected from the machines are likened to crabs emerging
from their shells and searching for new shells. The vacancies on
the appropriate machine are calculated according to the loads
on the remaining machines after removing one job from each
machine. The pseudo code of this neighborhood structure is
given in Algorithm 2. This algorithm is similar to synchronized
shell exchange.

6 Proposed local search selection strategy and
local search algorithms

Local search stands as a pivotal step aimed at enhancing an
existing candidate solution. In VNS, local search is applied after
neighborhood change in order to improve the initial solution.

In this study, the objective function is to minimize Cmax. For
this minimization, 3 different local searches are proposed. Two
of the proposed local searches are largescale and costly local
searches. The first of these local searches LS1 (Replace Jobs on
Critical Machine with All Jobs One by One) aims to replace all
jobs on the critical machine with all jobs in the list and to obtain
a more appropriate solution value according to the objective
function. The second local search LS2 (Insert Jobs on Critical
Machine with All Possibilities One by One) aims to obtain the
more appropriate solution value by inserting all the jobs on the
critical machine before the jobs on other machines. If the job
added before is the last job to be processed on the machine, it
also tries to add it after it. LS1 and LS2 local searches work
effectively if there is only 1 machine thatis costlier than the best
solution found in the objective function. If there is more than
one machine that is costlier than the critical machine according
to the previous iteration, changing the jobs on the critical
machine will not allow improvement in the objective function.

LS1 and LS2 local search only deals with the jobs on the critical
machine. The third local search LS3 (Change Two Critical
Machines Jobs) deals with 2 critical machines at the same time,
not with jobs on a single machine like LS1 and LS2. LS3 aims at
better scheduling of both machines at the same time by
replacing all the jobs on 2 machines that are larger than the
Cmax value obtained in the previous iteration.

The order of use of local searches is linked to a selection
strategy based on the best known Cmax value and the machine
loads obtained by neighborhood change. In this context, after
each neighborhood exchange, the workloads (C values) of the
machines are compared with the best known Cmax value. If
there is 1 critical machine with a value greater than Cmax or if
the Cmax value has decreased with the neighborhood change,
LS1 and LS2 local searches are used to decrease the workload
of this machine. In other words, if only one machine exceeds the
current Cmax after a neighborhood move, focusing the local
search on that specific machine—through LS1 and LS2—allows
for a more targeted and effective reduction of the makespan.
Since other local searches involve multiple machines, they may



not yield meaningful improvements in such cases. Thus, this
selective application ensures a more efficient use of local search
operators. If there is more than one critical machine, these
machines are handled together. The local search selection
strategy using these local searches is given in Algorithm 3.

13: end for
14: Return X
15: end procedure

Algorithm 3 Local Search Choose Function

Input: Cmaxbest: Stored best Cmax value, X: Neighborhood
applied list LS1: Replace Jobs on Critical Machine with All Jobs
One by One, LS2= Insert Jobs on Critical Machine with All
Possibilities One by One, LS3= Change Two Critical Machines
Jobs, cmcount= Critical machine count

Output: X: Final schedule of jobs assigned to machines

1: procedure Local Search Choose (X', LS1, LS2, LS3, Cmaxbest)
2: cmcount « 0

3 Calculate each machine Cvalues of (X’)

4 cmcount =compare (Cvalues, Cmaxbest)

5: if cmcount <2 then

6: X" =Apply LS1to X’

7: if Cmax of X" <Cmaxbest then

8 XX”, X'«X”, Cmaxbest « Cmax of X”
9

: end if
10: X" =Apply LS2 to X’
11: if Cmax of X” <Cmaxbest then
12: XX”, X'«X”, Cmaxbest « Cmax of X”
13: end if
14: else
15: X" =apply LS3 to X’
16: if Cmax of X" <Cmaxbest then
17: XX”, X'«X”, Cmaxbest « Cmax of X”
18: end if
19: end if
20: Return X

21: end procedure

Algorithm 4 is a simple algorithm. The processing time
increases according to the number of machines and jobs. The
computational complexity of LS1 algorithm is calculated as
follows. N is the total number of jobs, M is the total number of
machines, and if it is assumed that the jobs are evenly
distributed to the machines, each machine is expected to have
N / M number of jobs. In LS1, since each job on the critical
machine is replaced by all other jobs, the computational
complexity is N * (N / M). Another local search LS2 is given in
Algorithm 5.

Algorithm 5 Insert Jobs on Critical Machine with All
Possibilities One by One.

As seen in Algorithm 3, local search selection is evaluated
according to Cmax values. LS1, LS2, LS3 local search algorithms
used in Algorithm 3 are given respectively. The first of these,
LS1, is given in Algorithm 4.

Algorithm 4 Replace Jobs on Critical Machine with All Jobs One
by One.

Input: X": Neighborhood applied list M: All machines, j: selected
job, mi: Critical machine, jm: job on machine m,

Output: X: Final schedule of jobs assigned to machines

1: procedure Insert Jobs on Critical Machine with All
Possibilities One by One (X, j, mk, jm)

2 mk = find critical machine ()

3 for each j e mxdo

4 for each me M do

5: for each jme mdo

6: X"«Insert (j before jm)

7 Cmaxnew=calculateCmax(X")
8 if Cmaxnew<Cmaxbest then

9

: XX
10: end if
11: if jmis last job on machine then
12: X"«Insert (j after jm)
13: Cmaxnew=calculateCmax(X")
14: end if
15: if Cmaxnew < Cmaxbest then
16: XX
17: end if
18: end for
19: end for
20: end for
21: Return X

22: end procedure

Input: X’: Neighborhood applied list M: All machines, j: Selected
job, my: Critical machine, jm: Job on machine m, X=stored best
machine and job configurations Output: X: Final schedule of
jobs assigned to machines
1: procedure Replace Jobs on Critical Machine with All Jobs
One by One(X, j, mx, jm)
: mx = find critical machine ()
for each j e mkdo
for each me M do
for each jne mdo
X" =Swap (j, jm)
Cmaxnew=calculateCmax(X")
if Cmaxnew <Cmaxbest then
XeX”
end if
end for
end for
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In LS2, jobs can be added before and after the jobs on the
machine. With N being the total number of jobs and M being the
total number of machines, the jobs assigned to the critical
machine can be added to N + M places. In this case, the
computational complexity is (N + M) * (N / M).

Algorithm 5 works in the same way as Algorithm 4 and searches
for a better Cmax value by adding each job on the critical
machine to each location on all machines. As mentioned before,
when there is more than one critical machine with a completion
time greater than Cmaxbest due to neighborhood change,
performing an operation on one of these machines will not
affect the other critical machine, so there will be no decrease in
Cmax. For this reason, in this case, a better solution is searched
with the LS3 algorithm in which only these two machines are
considered. LS3 algorithm is given in Algorithm 6.

Algorithm 6 Change two critical machines jobs.

Input: X": Neighborhood applied list M: All machines, j: selected
job, mki1: Critical machinel, mg2: Critical machine2, jmi1: job on
machine mki, jm2: job on machine mxk2, Cmaxbest: Best Cmax
value reached so far.



Output: X=Stored best machine and job configurations

1: procedure Change two critical machines jobs(X, j, mg, jm)
2: mx1= find critical machinel

3 my2= find critical machine2

4 for each jmi1 € mx1do

5: for each jm2 e mk2do

6: X"<swap (jm1, jmz)

7: Cmaxnew=calculateCmax(X")
8 if Cmaxnew < Cmaxbest then
9

: X<X"
10: end if
11: end for
12: end for
13: Return X

14: end procedure

The basic VNS algorithm is modified as follows according to
proposed algorithms in this paper and given in Algorithm 8. The
proposed CNVNS algorithm differs from the basic VNS
algorithm in several key aspects, including the method of initial
solution generation, the design of neighborhood structures, and
the selection of local search strategies.

Algorithm 8 Proposed CNVNS Algorithm.

Algorithm 6 seek for an opportunity if there is a chance in
changing jobs on both critical machines which has more Cmax
values. In LS3, the computational complexity is (N / M) * (N /
M) because only jobs on two machines are interchanged.

7 Proposed CNVNS algorithm

The VNS algorithm, a modern heuristic method, was developed
by Nenad Mladenovic and Pierre Hansen in 1997. Since its
inception, the algorithm has been continuously refined and
widely applied across various domains. VNS is a metaheuristic
solution approach that simultaneously utilizes different
neighborhood structures. Based on the principle of
systematically altering the neighborhood structures during the
search process, DKA is a simple yet effective heuristic designed
to solve combinatorial and global optimization problems [38].
Although there are many variants of VNS algorithms [39], this
paper presents an adapted version of the basic VNS. The new
proposed algorithm wuses the proposed initial solution,
neighborhood structures and local search techniques. The Basic
VNS algorithm is given in Algorithm 7.

Input: X: Initial Solution from  Algorithm  1:
GreedylnitialSolution Nk: k=1,2, .., kmax: neighborhood
structures LS: Local Search phase (Algorithm 3:
LocalSearchChoose) which includes Algoritm), f(.): objective
function Output: X: Final schedule of jobs assigned to machines
1: procedure CNVNS

2: while the stop conditon is not met do

3: k=1

4:  while k <=kmax do

5: X'«Nk(X) // CrabNeighbors neighborhood structure
added to Nx

6: X"« LS (X’) // LocalSearchChoose algorithm which uses
Algorithm 4, Algorithm 5 and Algorithm 6 systematically

7: if f(X")<f(X) then

8: ke1, X X7

9: else
10: kek+1
11:  endif

12: end while

13: end while

14: Return X

15: end procedure

Algorithm 7 Basic VNS Algorithm

Input: X: Initial Solution Nk, k=1,2, .., kmax: Neighborhood
structures, LS: Local Search, f(.): objective function
Output: X: Final schedule of jobs assigned to machines
1: procedure VNS
2: while the stop condition is not met do
3: k=1
while k <= kmax do

X'« Nk(X)

X"« LS(X)

if f(X")<f(X) then

ke1, X X"
else

10: kek+1
11: end if
12: end while
13: end while
14:Return X
15:end procedure
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The new proposed algorithm uses the proposed initial solution,
neighborhood structures and local search techniques. The Basic
VNS algorithm is given in Algorithm 7 and the proposed CNVNS
(Crab Neighborhood + VNS) algorithm is given in Algorithm 8.

8 Computational experiments and discussion

8.1 Benchmark dataset

The benchmark dataset in this study was developed by [6] and
has been used by many researchers mentioned in Table 1. The
dataset is categorized into two groups: small-size problems and
large-size problems. The small-size dataset utilized in this
study comprises 270 distinct data files that need to be
scheduled on machines with different numbers of jobs j € {6, 7,
8,9, 10 and 11} and different numbers m € {2, 4, 6 and 8}. The
large data set consists of 540 data files in which j € {20, 40, 60,
80, 100 and 120} jobs are scheduled on m € {2, 4, 6, 8, 10 and
12} machines with balanced setup and processing time. In the
large dataset, there are a total of 1080 data files which setup
time is dominant and processing time is dominant. This study
is limited to 540 big data with balanced setup and processing
time. Data and related solutions of existing algorithms are
available on [40].

8.2 Testing CNVNS

The stopping criteria for the VNS algorithm can include the
maximum execution time, the maximum number of iterations,
or the maximum number of iterations without any
improvement [39]. Different stopping criteria and algorithm
execution times have been determined by researchers in the
solution of the problem studied. [10] set the maximum number
of iterations as 500 times the number of jobs [11] terminated
the algorithm if there was no improvement for 214 iterations
or 28 times. [7] tied intra-machine and inter-machine switching



to an iteration number that varies with the number of machines
and ran inter-machine switching at least 25 times. [9] stated
that a small number of iterations is sufficient for relatively
small problems, however, they ran the algorithm for 15000
iterations to obtain the best-known results on large data sets.
As can be seen, there is no standard in the stopping criterion
among researchers.

The software platform Pycharm 2022.1.2 was selected to
develop the proposed algorithms and the algorithms were
coded in Python (3.7). The configuration of the computer on
which the study was run is (Intel(R) Core (TM) i7-6700 CPU @
3.40GHz, 16GB Ram). The proposed algorithm was run one
iteration for 540 instances on a balanced large dataset.
Execution times are reported for all machine job variations.
Average times for each machine and number of jobs are given
in Table 2.

Table 2. Average execution times of the proposed algorithm for
one iteration

Machine Job Average Machine Job Average

Time Time
(s) (s)

2 20 1,065 8 20 0,289
2 40 9,932 8 40 1,894
2 60 35,648 8 60 11,215
2 80 92,260 8 80 24,851
2 100 134,340 8 100 49,227
2 120 235,757 8 120 111,676
4 20 0,364 10 20 0,083
4 40 5,603 10 40 1,144
4 60 21,956 10 60 6,336
4 80 63,842 10 80 19,354
4 100 118,003 10 100 36,384
4 120 176,802 10 120 78,832
6 20 0,381 12 20 0,093
6 40 2,735 12 40 1,406
6 60 15,595 12 60 4,417
6 80 44,827 12 80 10,376
6 100 82,566 12 100 39,843
6 120 129,759 12 120 50,968

In Table 2, the average times shows that number of jobs
increases also the time increases as expected. When 540
samples are considered as a whole, the total running time for
all samples in the benchmark dataset is 24297,374 s. This time
is equal to 404,956 minutes and 6,75 hours. In case of an
improvement in the neighborhood change or local search phase
of the VNS, the neighborhood change is moved to the beginning,
which causes the firstiteration to be longer. When the total time
of 24297,374 seconds is divided by the size of instances (540),
the running time per instance is 44,995 seconds. This time for
one iteration can be considered reasonable. As stated above,
there is no standardized stopping criterion for the algorithm. A
reasonable number of iterations was determined and tested to
ensure adequate runtime for the algorithms. The algorithm was
run for 100 iterations on small and large data sets and the test
results are given in Table 3 and Table 4. In the given tables the
best-known result of each machine job combination is indicated

in bold and italic. If there are equal best solutions they are all
indicated as bold and italic. Firstly, the success of the proposed
algorithm is tested with small size problems in the benchmark
dataset. The algorithm is run and the best results are reported.
For 270 data sets, Cmax values are grouped according to the
number of machines and jobs. The test results are shown in
Table 3[17].

Table 3. Minimum Cmax value averages of small data set

Mach.- [13] 8] 71 [61 CNVNS  Optimal
Job

2-6 394,73 394,73 394,73 396,40 394,73 394,73
2-7 491,00 491,00 491,00 495,07 491,00 491,00
2-8 517,40 517,40 517,40 522,60 517,40 517,40
2-9 598,47 598,47 598,87 603,80 598,47 598,47
2-10 638,93 638,93 638,93 645,33 638,93
2-11 710,73 710,73 710,73 721,27 710,40
4-6 245,00 245,00 245,00 251,73 245,00 245,00
4-7 252,27 252,27 252,27 265,07 252,27 252,27
4-8 264,73 264,73 264,73 271,27 264,73 264,73
4-9 346,07 346,07 346,87 346,40 346,07
4-10 359,47 359,53 359,47 361,60 359,47
4-11 366,33 366,47 366,33 374,33 366,33
6-8 234,47 234,47 234,47 242,07 234,47
6-9 238,53 238,53 238,53 249,53 238,53
6-10 246,00 246,47 246,00 259,47 245,93
6-11 251,27 251,60 251,27 274,53 250,80
8-10 226,13 226,13 226,13 232,00 226,13
8-11 232,47 232,47 232,47 235,60 232,47

When analyzing Table 3, it is evident that the CNVNS algorithm
achieves successful results on the small dataset. A direct
comparison with compared previously applied algorithms on
the same dataset reveals that the proposed algorithm
consistently attains optimal or superior outcomes across
numerous instances

In metaheuristic algorithms, it is accepted if the gap is less than
gap <0,1 according to the gap= (f - f0) % f value calculated in
small size problems [41]. CNVNS algorithm has reached optimal
values in all of the problems which has optimal solutions in the
small size data set. Therefore, the algorithm can be deemed
effective based on these outcomes.

The CNVNS algorithm was also run 100 times on the Balanced-
large data set. Cmax values for 540 data sets are grouped
according to the number of machines and jobs. The results are
given in Table4.



Table 4. Min Cmax value averages in balanced-large data set

Machine-Job [17] [15] [13] [13] [11] [9] [7] CNVNS
2-20 124027 123620 123487 123580 123853  1237,80 126487  1234,87
2-40 2436,80 242587 240027 240533 241127 239780 248653  2400,60
2-60 365340  3641,60 358380  3591,87 359887 357460 373647 358373
2-80 484460 483400 475533 476413 477607 473040 494227 475360
2-100 6019,80 592420 593607  5937,20  5897,60  6180,87 5925,00
2-120 7232,80 712627 713553 714440  7082,60  7447,60 712460
4-20 610,07 609,73 608,33 609,40 609,80 617,13 622,93 608,27
4-40 1181,27 118273 115840 116167 116513 117987 120067 115813
4-60 1759,80  1757,00 171813 172520 172907  1737,93 178553  1717,40
4-80 233927  2337,87 228687 229440 230253 229853  2370,13  2284,67
4-100 2892,53 283513  2850,60 285247 284993 293413  2834,93
4-120 346513 340067 341340 341020 340513 351513  3394,07
6-20 446,20 445,93 445,87 446,00 446,13 452,73 449,40 445,87
6-40 794,73 790,87 779,40 782,93 783,67 805,40 803,73 778,00
6-60 1162,13 116240 113347  1137,67 114120 116347 117927  1133,20
6-80 1552,87 154393 151413  1523,07 152793 154533 156860  1511,40
6-100 191013 186933 188133 188347 189747 194060  1867,73
6-120 2286,13 223520  2241,60 225240 225393  2313,07  2227,73
8-20 342,07 340,13 339,47 339,87 339,73 347,60 342,80 339,47
8-40 585,47 589,27 572,67 578,53 577,60 599,27 588,67 573,27
8-60 888,33 882,67 867,93 873,93 874,80 893,80 893,13 865,80
8-80 1150,07 115020 111627  1122,80 112573 114240  1164,60 1116,73
8-100 143873  1430,87  1403,73  1411,87 141440  1439,07 144927 139940
8-120 1707,33  1713,07 166447 167573 168540 168607 173973  1658,87
10-20 248,20 245,73 242,73 245,93 244,13 252,53 260,20 242,73
10-40 470,60 474,53 459,13 465,93 464,20 485,53 474,60 459,20
10-60 695,27 699,47 673,20 682,13 682,27 708,27 692,73 674,27
10-80 920,53 926,60 893,20 902,33 901,53 925,87 920,80 893,27

10-100 1141,53 114900 110767 111700 111520 114153 115327  1106,07
10-120 136220 137860 132687 133433 133227 135167 137633  1320,60
12-20 233,67 231,00 232,00 231,20 241,87 245,00 231,00
12-40 437,87 431,13 433,67 433,47 448,13 436,87 430,93
12-60 581,07 561,87 572,20 570,33 597,33 576,87 563,67
12-80 780,80 762,27 768,73 766,27 790,07 778,47 759,53
12-100 978,93 961,40 963,07 964,27 988,67 981,73 951,40
12-120 1136,67 110587 111533 111027 113873 114640  1099,60




Analyzing Table 4 reveals that the proposed CNVNS algorithm
outperforms competing metaheuristic algorithms,
demonstrating a higher success rate. It achieved the best
performance in 25 out of 36 machine-job configurations
(69,44%) and matched or performed better result in 21 cases
(58,2%). These results highlight the algorithm's effectiveness
across various configurations. In the article [42], the authors
emphasize that the comparative evaluation of optimization
algorithms involves numerous methodological complexities.
They highlight that, in order to ensure a fair and valid
comparison, factors such as algorithm configuration, parameter
settings, characteristics of test instances, and hardware
conditions must be carefully controlled. Therefore, the
algorithms have been compared solely based on their Cmax
values.

9 Conclusions

In this study, a novel metaheuristic algorithm is proposed that
introduces a novel approach to initial solutions through a newly
devised greedy algorithm. This innovative greedy algorithm is
specifically designed to expedite goal achievement while
exploring the solution space, thereby ensuring a high-quality
initial solution. In addition, a nature-inspired neighborhood
structure simulating animal behavior is presented in this study.
In the local search phase, the proposed three different local
searches are efficiently used with a selection algorithm to avoid
unnecessary moves. The algorithm tested on a benchmark
problem and it has been demonstrated that the proposed
method yields superior results when compared to the
alternative algorithms in the literature. As a further study, the
proposed CNVNS algorithm can be combined with other
algorithms to obtain new hybrid algorithms to achieve even
more successful results.

This study provides actionable insights for production planners
and operations managers. Minimizing the makespan enables
faster order fulfillment, improved resource utilization, and
higher production efficiency. The adaptive local search strategy
dynamically identifies bottlenecks and selects appropriate
operators, demonstrating the value of flexible optimization
over rigid heuristics. Additionally, the use of a load-balanced
greedy algorithm for generating initial solutions accelerates
convergence and reduces computational effort, offering a
practical advantage in real-world scheduling environments.
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