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Abstract  Öz 

Scheduling involves the allocation of tasks to machines under specific 
constraints and criteria. As schedules are constructed and jobs are 
assigned to machines, various scheduling challenges arise. This study 
focuses on the NP-hard Unrelated Parallel Machine Scheduling Problem 
with Sequence-Dependent Setup Times (UPMSPSDT), where jobs have 
varying processing times across machines, and setup times between jobs 
depend on the machine. The objective is to minimize the makespan 
(Cmax) of the final schedule. Due to its computational complexity, exact 
methods are ineffective in solving UPMSPSDT efficiently, leading 
researchers to explore metaheuristic approaches for near-optimal 
solutions. This study aims to enhance solution quality for UPMSPSDT 
using the Variable Neighborhood Search (VNS) algorithm, a single-
solution metaheuristic. To this end, a novel neighborhood structure is 
introduced, inspired by the shell-changing behavior of crabs, 
complementing existing structures in the literature. Additionally, three 
different local search strategies are evaluated based on the makespan 
values obtained through neighborhood transitions and are applied 
iteratively using a local search selection strategy. Furthermore, an 
improved version of a greedy initial solution from the literature is 
proposed to generate higher-quality starting solutions. The proposed 
Crab-inspired Neighborhood-based VNS (CNVNS) is tested on a widely 
used benchmark dataset, and the results are analyzed. Findings indicate 
that the proposed algorithm outperforms benchmarked approaches in 
achieving lower Cmax values, demonstrating its effectiveness in solving 
UPMSPSDT. 

 

 Çizelgeleme, belirli kısıtlar ve kriterler doğrultusunda görevlerin 
makinelere tahsis edilmesi sürecidir. Çizelgeler oluşturulup işler 
makinelere atandıkça çeşitli çizelgeleme problemleri ortaya 
çıkmaktadır. Bu çalışma, işler farklı makinelere göre değişen işlem 
sürelerine sahipken ve işler arasındaki hazırlık süreleri makineye bağlı 
olarak değişirken, nihai tamamlanma süresinin (Cmax) en aza 
indirilmesini amaçlayan Sıra Bağımlı Hazırlık Süreli İlişkili Olmayan 
Paralel Makine Çizelgeleme Problemi (UPMSPSDT) üzerine 
odaklanmaktadır. Hesaplama açısından NP-zor bir problem olması 
nedeniyle, kesin yöntemler UPMSPSDT’yi etkin bir şekilde çözmede 
yetersiz kalmakta ve bu nedenle araştırmacılar yaklaşık çözümler elde 
etmek için metasezgisel yaklaşımlara yönelmektedir. Bu çalışmada, 
Değişken Komşuluk Arama (DKA) algoritması kullanılarak UPMSPSDT 
için daha kaliteli çözümler elde edilmesi amaçlanmaktadır. Bu 
doğrultuda, yengeçlerin kabuk değiştirme davranışından esinlenen ve 
literatürde mevcut komşuluk yapılarını tamamlayıcı nitelikte yeni bir 
komşuluk yapısı önerilmektedir. Ayrıca, üç farklı yerel arama yöntemi, 
komşuluk değişimlerinden elde edilen tamamlanma süresi (Cmax) 
değerlerine göre değerlendirilmiş ve yerel arama seçim stratejisi 
kullanılarak iteratif olarak uygulanmıştır. Bunun yanı sıra, 
literatürdeki açgözlü (greedy) başlangıç çözümüne yönelik bir 
iyileştirme önerilerek, daha yüksek kaliteli başlangıç çözümlerinin elde 
edilmesi hedeflenmiştir. Önerilen Yengeç İlhamlı Komşuluk Tabanlı DKA 
(CNVNS) algoritması, yaygın olarak kullanılan bir test veri seti üzerinde 
değerlendirilmiş ve sonuçlar analiz edilmiştir. Elde edilen bulgular, 
önerilen algoritmanın karşılaştırıldığı diğer yaklaşımlara kıyasla daha 
düşük Cmax değerleri ürettiğini ve UPMSPSDT çözümünde etkinliğini 
ortaya koyduğunu göstermektedir. 

Keywords: Variable neighborhood search, Metaheuristic, Unrelated 
parallel machine scheduling problem with sequence-dependent setup 
times. 

 Anahtar kelimeler: Değişken Komşuluk Arama, Metasezgisel, Sıra 
bağımlı hazırlık süreli ilişkisiz paralel makine çizelgeleme. 

1 Introduction 

Scheduling process stands as a crucial process inherent in 
numerous production problems, wielding a substantial impact 
on the overall efficiency of the production process. 
Consequently, it demands meticulous planning by businesses to 
ensure optimal operational outcomes. Indeed, the intricacies of 
scheduling can differ significantly from one business to another 
as different production systems in workshops have caused 
distinct scheduling problems. 

                                                           
*Corresponding author/Yazışılan Yazar 

The aim of scheduling is to optimize one or more objectives 
while efficiently allocating resources to tasks. In the context of 
workshop scheduling, where resources typically refer to 
machines, and the tasks correspond to jobs. Scheduling 
problems can be classified according to the way jobs arrive or 
the number of machines. In deterministic scheduling problems, 
all job-related parameters such as processing times and setup 
times are known in advance before the scheduling begins. 
There is no change in the number of jobs or machines during 
scheduling [1]. When classifying the scheduling problems 
based on the number of machines involved, they can be broadly 
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classified into two models: the single-machine and the multiple-
machine models. In the case of scheduling with more than one 
machine, there are three basic models: parallel, serial and flow 
shop models [2]. In the context of parallel machine scheduling, 
unrelated machines refer to a set of machines that perform the 
same function but differ in their capabilities and capacities. An 
appropriate number of machines with different capabilities and 
capacities is widely used in many sectors such as textile, 
chemistry, electronic manufacturing, etc. As it increases 
flexibility in business [3]. In the Unrelated Parallel Machine 
Scheduling Problem with Sequence-Dependent Setup Times 
(UPMSPSDT), the processing times of each job on each machine 
are different. In this problem, the machines process the jobs 
with different capacities according to the jobs. At the same time, 
each job needs a setup time in that machine before it can be 
processed. The jobs have a setup time in the machine according 
to the last job processed before it. Even if there are no prior jobs 
distinct setup times may exist for each job on each machine. 

The problem addressed in this study (UPMSPSDT), there are 
parallel machines and where the parallel machines are 
unrelated. The processing time of jobs on the machines are 
different. Additionally, setup times are both sequence-
dependent, meaning they vary based on the preceding job, and 
machine-dependent. The identical parallel machine scheduling 
problem, which is a simpler version of this problem, is an Np-
hard problem when the number of machines is 2 with no set up 
time [4]. As the number of jobs and machines increases, many 
practical scheduling problems exhibit growing complexity. Due 
to the NP-Hard nature of these problems, obtaining an optimal 
solution within a reasonable computational time may not 
always be feasible [5]. Given that a simpler version of this 
problem is NP-hard, it directly follows that the more complex 
UPMSPSDT is also NP-hard. In this problem, the objective is to 
minimize the final completion time (Cmax) from scheduling. 
Exact solution methods are not sufficient to solve the problems 
in the NP-hard class. Metaheuristic methods are used to solve 
this class of problems. Metaheuristics aim to iterate a candidate 
solution and improve the candidate solution according to the 
given criteria. Although they do not guarantee an exact solution, 
metaheuristic algorithms can solve optimization problems that 
other exact methods techniques cannot solve effectively [6]. 

The goal of this study is to propose an adapted VNS algorithm 
with a new proposed neighborhood structure (CNVNS), a new 
proposed greedy initial solution and a local search strategy and 
to find more efficient solution to the problem with this 
algorithm. 

In this context, the past studies compared with the proposed 
algorithm are mentioned in the” Literature review” section. The 
commonly used neighborhood structures in VNS algorithm and 
the newly proposed neighborhood structure inspired by the 
“Crabs Shell Exchange” are given in the” Neighborhood 
structures” section. The modified version of greedy initial 
solution algorithm which is developed by [7] is given under the 
section” Proposed new initial solution”. In this study, two local 
searches are also proposed to improve the result obtained from 
neighborhood exchange. The proposed local searches are 
evaluated and applied with a local search strategy according to 
the obtained Cmax values after neighborhood change. 

2 Related literature 

In this study, the benchmark dataset created by [6] was used to 
measure the effectiveness of the proposed metaheuristic 
algorithm. The problem and dataset of interest have been 

studied in academic research and many researchers have 
proposed solutions to the problem with different 
metaheuristics [6-18]. The benchmark dataset used and the 
results of other researchers can be found and a summary of the 
studies using the same benchmark dataset is given in Table 1. 

Table 1. A summary of the studies using the same benchmark 
dataset 

No Reference Algorithm Compared 
1 [6] PH (Partitioning Heuristic) - 
2 [7] Tabu Search 1 
3 [8] Meta-RaPS 1 
4 [9] Ant Colony Optimisation 1,2,3 

5 [10] 
Simulated Annealing and Genetic 

1 
Algorithm 

6 [11] Restricted Simulated Annealing 1,2,3,4 

7 [12] 
Multi-start Variable Neighbourhood 
Descent 

3,4 

8 [13] 
Artificial Bee Colony- Hybrid Artificial 
Bee Colony 

1,2,3,4,5 

9 [14] Ant Colony Optimisation 1,2,3,4 
10 [15] Genetic Algorithm and Local Search 4,5 

11 [16] 
Automata- Adaptive Large 
Neighbourhood Search 

4,9 

12 [17] 
Genetic Algorithm + Variable 
Neighbourhood Descent + Simulated 
Annealing (GIVP) 

4,5,10 

13 [18] Worm Optimisation Algorithm 2,6,8,9,10 

As Table 1 illustrates, the UPMSPSDT has garnered significant 
attention from the research community, leading to the 
development of various metaheuristic algorithms. This table 
also motivates researchers to propose new methods and 
solutions for solving the problem. 

UPMSPST has also been a focus of academic research, with 
various objective functions and datasets being explored. Some 
of the recent studies in this area include: 

In the study by [19] a novel model for the UPMSPST was 
introduced, incorporating both limited workforce and the 
learning effects of workers. To solve this model, a 
Combinatorial Evolutionary Algorithm (CEA) was developed, 
which utilized List Scheduling (LS), the Shortest Setup Time 
(SST) priority rule, and the Earliest Completion Time (ECT) 
priority rule. For evaluation purposes, 72 test instances were 
generated, and the Taguchi method was applied to determine 
the optimal parameter combinations. The performance of the 
proposed algorithm was compared against other algorithms, 
demonstrating its effectiveness. 

In the study by [20], the researchers addressed a real-world 
industrial problem in a textile factory, enhancing the parallel 
machine scheduling problem which has sequence-dependent 
setup times by incorporating two additional features: machine 
eligibility and limited resources. The goal of the study was to 
balance the workload by accounting for the dynamic layout 
between jobs in the workshop and identifying machine groups. 
A mathematical model was developed to represent the 
problem, and a genetic algorithm was employed to obtain 
solutions. 

In the study by [21], the authors tackled the unrelated parallel 
machine energy-efficient scheduling problem with sequence-
dependent setup times, considering varying energy 
consumption tariffs. The study examined setup times in two 
distinct ways: separately from processing times and jointly 
with processing times. For both cases, mixed-integer linear 
programming (MILP) models were developed. In the scenario 
where setup times were treated separately, solutions were 
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achieved for problems involving up to 16 machines and 45 jobs, 
while for the joint setup time models, solutions were obtained 
for up to 20 machines and 40 jobs. To handle large-scale 
problems, the researchers also developed a fix-and-relax 
heuristic, allowing solutions for instances ranging from 20 to 
100 jobs. 

In their study, [22] focus on a multi-objective optimization 
problem in the context of the unrelated parallel machine 
scheduling problem, the objective is to minimize both the total 
tardiness and total completion time. To address this, they 
propose a novel metaheuristic algorithm as an alternative to 
the Augmented ϵ-Constraint (AEC) algorithm. The authors 
emphasize that their proposed algorithm demonstrates 
superior performance compared to the AEC algorithm, 
particularly in terms of solution quality and computational 
efficiency. 

In the study by [23], the researchers aimed to solve same 
problem with a Group Genetic Algorithm, which is an enhanced 
version of the standard Genetic Algorithm. They introduced a 
novel mutation operator, referred to as ”2-Items,” resulting in a 
52% improvement over the original mutation operator. 

In another study, [24] tackled an unrelated parallel machine 
scheduling problem specific to Vestel. The goal was to minimize 
both early and tardy completion times in a production 
environment with unrelated parallel machines. To solve this, 
they employed the Imperial Competitive Algorithm. Their 
results demonstrated a 39% improvement over the current 
state-of-the-art methods, as well as surpassing the best 
algorithms in the literature by 23% and 12%. 

In their study, [25] proposed a “fix and optimize” algorithm for 
the unrelated parallel machine scheduling problem, focusing on 
solving subproblems grouped by subsets of machines. To 
address these subproblems, they introduced a mathematical 
program known as MPA, which was used to obtain solutions. 
Computational experiments revealed that this approach 
produced significantly higher-quality solutions compared to a 
standalone exact algorithm. When compared to the best 
heuristic approaches in the literature, the proposed algorithm 
performed better in instances with a high number of jobs per 
machine but showed lower performance in instances with 
fewer jobs per machine. 

In their 2024 study, [26] introduced an unrelated parallel 
machine scheduling problem inspired by a station in the wind 
tower production process, which involved setup times for the 
machines. They also incorporated a new feature, involving 
supportive machines that assist those facing capacity 
shortages. A mixed-integer linear programming (MILP) model 
was formulated for this problem, and solutions were explored 
using three different algorithms: a constructive heuristic, 
Simulated Annealing, and Tabu Search. The effectiveness of 
these algorithms was compared based on their performance in 
solving the problem. 

This study [27] addresses a complex real-world scheduling 
problem that can be formulated as UPMSPSDT with due dates, 
and machine eligibility constraints. The main objective is to 
simultaneously minimize total tardiness and makespan. To 
achieve this, a mathematical model is adapted and extended to 
obtain optimal solutions for small-scale instances. For large-
scale cases, various simulated annealing variants are proposed, 
leveraging different neighborhood structures and investigating 
innovative heuristic move selection strategies. The 
experimental results demonstrate that the methods are capable 

of improving upon the results produced by state-of-the-art 
approaches for a wide range of instances, including those 
drawn from the literature. 

In the subsequent section, we’ll begin by presenting the newly 
proposed initial solution, essential for metaheuristic 
algorithms to commence their optimization process. 

In the study [28], the authors introduced a Constraint 
Programming (CP) model designed to address UPMSPSDT. A 
key feature of their model is the integration of realistic 
constraints, including precedence relationships, release dates, 
and machine eligibility restrictions. To effectively solve this 
complex problem, they proposed two distinct branching 
strategies, which proved instrumental in successfully resolving 
small- and medium-sized problem instances. This work 
highlights the efficacy of CP in handling intricate scheduling 
challenges with practical relevance. 

This study [29] investigates a variant of the Unrelated Parallel 
Machine Scheduling Problem with Sequence-Dependent Setup 
Times (UPMSPSDT), augmented with an additional resource 
constraint. The objective function is to minimize total weighted 
tardiness. In this context, a relaxed Mixed-Integer Linear 
Programming (MILP) model is proposed, integrated with a 
Constraint Programming (CP) component. For solving the 
problem, one heuristic (ATCS) and two meta-heuristic 
algorithms (GA and SA) were employed. The results were 
comparatively analyzed using both a raw benchmark dataset 
and a real-world problem instance. 

In their study [30], beyond minimizing solely the makespan 
(Cmax), the authors aimed to schedule resource-constrained 
maintenance activities concurrently. To this end, a mixed-
integer linear programming (MILP) model was proposed. For 
solving the real-world problem instance, which utilized actual 
factory data, a hybrid Genetic Algorithm (GA) model was 
developed. This model demonstrated superior results 
compared to the current factory practices. 

This study [31] addresses an Unrelated Parallel Machine 
Scheduling Problem with Sequence-Dependent Setup Times 
(UPMSPSDT), uniquely extended to incorporate a personnel 
availability constraint for machine setups. Given that the 
number of available personnel is less than the number of 
machines, the scheduling must also account for personnel shift 
changes. Consequently, a Mixed-Integer Linear Programming 
(MILP) model is formulated with the objective of minimizing 
Cmax (makespan). The practical utility of the proposed model 
has been demonstrated through its application to a real 
industrial case study. 

In their study [32], the authors utilized the same dataset as the 
present work. They proposed a solution based on a Genetic 
Algorithm (GA) and compared its performance with that of the 
ACOII algorithm. It was reported that the GA demonstrated 
superior effectiveness, particularly in problems where setup 
times or processing times are dominant. 

The problem addressed in this study [33] is the scheduling of 
jobs on unrelated parallel machines, considering both setup 
times and delivery times. In addition to proposing a mixed-
integer programming model solved via CPLEX, a novel local 
search-based Adaptive Large Neighborhood Search (ALNS) 
algorithm has been developed to handle large-scale problem 
instances. To evaluate the performance of the proposed 
algorithm, a column generation approach is introduced, and 
comprehensive computational experiments are conducted on 
4200 benchmark instances with up to 20 machines and 320 
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jobs. The results indicate that the proposed algorithm 
outperforms four state-of-the-art algorithms previously 
developed to solve similar problems. 

3 Mahtematical model 

In addition to the heuristic solutions developed for the solution 
of the UPMSPSDST problem, an integer programming model is 
also presented [7]. The steps and formulas of the presented 
model are given below. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒           𝐶𝑚𝑎𝑥 

subject to 
(1) 

∑ ∑ 𝑋𝑖,𝑗,𝑘 = 1             ∀𝑗 = 1, … , 𝑛

𝑚

𝑘=1

𝑛

 𝑖≠𝑗
𝑖=0

 (2) 

∑ 𝑋𝑖,𝑗,𝑘 − ∑ 𝑥ℎ,𝑗,𝑘 = 0 

𝑛

 𝑗≠ℎ
𝑗=0

𝑛

 𝑖≠ℎ
𝑖=0

                      ∀ℎ = 1, … , 𝑛, ∀𝑘

= 1, … , 𝑚 

(3) 

𝐶𝑗 ≥ 𝐶𝑖 + ∑ 𝑋ℎ,𝑗,𝑘(𝑆𝑖,𝑗,𝑘 + 𝑃𝑗,𝑘)

𝑚

  𝑘=1

+ 𝐻𝑉 (∑ 𝑋𝑖,𝑗,𝑘 − 1 

𝑚

  𝑘=1

)      ∀ℎ

= 1, … , 𝑛, ∀𝑖 = 0, … , 𝑛, ∀𝑗 = 1, … , 𝑛   

(4) 

𝐶𝑗 ≤ 𝐶𝑚𝑎𝑥  ∀𝑗 = 1, … , 𝑛 (5) 

∑ 𝑋0,𝑗,𝑘 = 1   

𝑛

  𝑗=0

∀𝑘 = 1, … , 𝑚 (6) 

𝐶𝑗 ≥ 0   ∀𝑗 = 1, … , 𝑛 (7) 
𝐶0 = 0 (8) 

𝑋𝑖,𝑗,𝑘 ∈  {0,1}  ∀𝑖 = 0, … , 𝑛, ∀𝑗 = 0, … , 𝑛 ,    ∀𝑘 = 1, … , 𝑚 (9) 

Where, 

𝑛: Number of jobs  

𝑚: Number of machines 

𝐶𝑗: Completion time of job 𝑗 

𝑃𝑗,𝑘: processing time of job 𝑗 on machine 𝑘 

𝑆𝑖,𝑗,𝑘: Setup time if job 𝑗 is scheduled directly after job 𝑖 on 

machine 𝑘 

𝑆0,𝑗,𝑘: Setup time if job 𝑗 is scheduled to go first on machine 𝑘 

𝑋𝑖,𝑗,𝑘: 1 if job 𝑗 is scheduled directly after job 𝑖 on machine 𝑘 and 

0 otherwise 

𝑋0,𝑗,𝑘: 1 if job 𝑗 is scheduled first on machine 𝑘 and 0 otherwise 

𝑋𝑗,0,𝑘: 1 if job 𝑗 is scheduled last on machine 𝑘 and 0 otherwise 

𝐻𝑉: a large positive integer 

The objective of the model, as defined in Equation (1), is to 
minimize the makespan (Cmax). Constraints (2) ensure that 
each job is assigned to only one machine and scheduled only 
once. Constraints (3) guarantee that each job has a predecessor 
and a successor. Constraints (4) serve a dual purpose. They 
calculate the completion time of each job (𝐶𝑗) based on its 

predecessor (𝐶𝑖) and the corresponding setup and processing 
times. Crucially, they also act as sub-tour elimination 
constraints based on the Miller-Tucker-Zemlin (MTZ) 
formulation. By enforcing a monotonically increasing sequence 
of completion times, these constraints make any cyclical 
assignment mathematically infeasible. Constraints (5) define 
the makespan by ensuring that it is no smaller than the 
completion time of any job. Constraint (6) ensures that each 
machine begins its sequence with exactly one job, which follows 

the dummy job 0, thereby establishing a unique starting point 
for each machine. As a result, there is no need to explicitly 
define a constraint for the last job on each machine, since this 
condition is implicitly satisfied by Constraints (3) and (6). 
Constraints (7) and (8) ensure that completion times are non-
negative and that the dummy job's completion time is zero, 
respectively. Lastly, constraints (9) state that the decision 
variable 𝑥 is binary across all domains. Additionally, the model 
does not require explicit subtour elimination constraints (e.g., 
position-based variables like 𝑈𝑗  because the completion time 

constraints (Constraints 4) inherently prevent cycles. 

4 Proposed initial solution 

There are two different approaches for generating an initial 
solution of metaheuristic algorithms: the generation of random 
initial solutions or the application of greedy algorithms. While 
greedy algorithms generate higher quality solutions, they 
increase the probability that the solution will be searched in a 
more restricted space and stuck at the local optimum. Random 
initialization algorithms, on the other hand, allow the heuristic 
algorithm to search more different areas in the solution space. 
In this case, finding the final solution is more difficult and will 
take longer time. The greedy algorithm proposed in this study 
is inspired and modified from the algorithm proposed in [7]. In 
the algorithm proposed by [7] the average of the setup times 
and the processing times are evaluated and the jobs are 
assigned to the machine based on the ratio between the job 
with the smallest time and the next smallest time. If the 
calculated ratio is greater than the specified ratio, it adds the 
jobs to the list of unassigned jobs. In the second stage, it assigns 
the unassigned jobs above a certain ratio to the machine with 
the least completion time among the machines. In our proposed 
algorithm, diverging from the approach outlined in [7], the 
objective is to maintain balanced machine loads by consistently 
assigning jobs to the least loaded machine. Additionally, the 
focus lies on minimizing the overall completion time by 
strategically determining the best position for newly assigned 
jobs within the machine. The initial solution was derived from 
a modified version of an algorithm previously validated in a 
peer-reviewed scientific publication. Since it consistently 
outperforms random initial solutions, it was decided to conduct 
the actual experiments using this greedy initial solution rather 
than random ones. The proposed initial solution algorithm is 
given in Algorithm 1. 

Algorithm 1. The Proposed Greedy Initial Solution Function 

Input: M: All machines, N: Set of jobs, UM: Unassigned 

machines. 

Output: X: Final schedule of jobs assigned to machines 

1: procedure GreedyInitialSolution (M,N,UM) 

2:   UM ←Ø, m ←Ø, j ←Ø, X ←Ø, 

3:   Calculate all avarage setup times for each machine 

4:    for i = 1 to N do 

5:         m=find least loaded machine 

6:  j= Find the job j with the smallest processing time + 

smallest average setup time on machine m 

7:         find optimal position for job j on machine m 

8:        X.append(m, j) 

9:        N.remove(j) 

10:   end for 

11:  Return X 

12: end procedure 
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5  Neighborhood structures 

To find a better solution for UPMSPSDT, typically 5 different 
neighborhood structures are used in the literature. Three of 
these are intra-machine job exchanges and two are inter-
machine job exchanges. Intra-machine exchanges can be 
performed by swapping two jobs on the same machine, adding 
a job after a later job, or reversing the order between two jobs 
on a machine. Inter-machine job swapping can be done by 
swapping jobs on two different machines or by inserting a job 
on one machine behind a job on another machine [34]. In our 
study, alongside these five different neighborhood structures, a 
novel nature-inspired neighborhood exchange algorithm is 
introduced. 

5.1 Proposed crab shell exchange algorithm 

The vacancy chain in resource planning has also been described 
with crabs of the species Pagurus longicarpus. In resource 
allocation via vacancy chains, when an individual occupies an 
initially available resource unit, they vacate their previous unit, 
which becomes available for another person to take, and so 
forth. This process can be described as an interdependent 
sequence of consecutively vacated resource units. Such a chain 
facilitates the acquisition of new resource units by multiple 
individuals, contingent upon the prior resource acquisitions of 
others [35]. Crab shell exchange is modelled in two different 
ways: synchronous and asynchronous. Synchronized cavity 
chains occur when multiple crabs, positioned adjacent to an 
available empty shell, align in a descending order of size. Once 
the largest crab occupies the vacant shell, a swift sequence of 
successive shell exchanges follows. In asynchronous cavity 
chains, a crab that finds an appropriate empty shell will 
exchange its own shell and subsequently wait for another crab 
to discover and utilize the vacated shell. As a result, 
asynchronous gap chains are characterized by the absence of 
social interactions or queue formation, with sequential shell 
switching occurring over extended periods. In contrast, 
synchronized shell switching is more likely to result in the 
discovery of the most optimal shell [36]. 

The crabs’ shell exchange algorithm was first proposed in 2019. 
The proposed algorithm is based on the search for a better shell 
than the shell acquired by each crab. The algorithm consists of 
3 steps. Each crab finds a new shell randomly each time. The 
most suitable shell identified is carried over to the subsequent 
generation. The total number of shells remains constant, and 
the likelihood of crabs locating a shell is determined by 
predefined probabilities [37]. This method is similar to the 
asynchronous shell change of crabs. 

Algorithm 2. Crab Neighbors Function 

Input: M: number of machines, N: number of jobs, X: the initial 

schedule of jobs assigned to machines [[mi, jk], ...,] i: 1, ... , M, k:1, 

... ,N, UJ : unassigned jobs  

Output: X: the final schedule of jobs assigned to machines [[mi, 

jk], ...,] 

1: procedure CrabNeighbors (X, M, N, UJ) 

2:  UJ ←Ø 

3:    for i = 1 to M do 

4:  job← find random job assigned to machine mi in X // 

each job is like a crab coming out of its shell 

5:         UJ.append (job) 

6:         X. remove ([mi, job]) 

7: end for 

8:    Machines =sort machines by workload descending in X // 

like a chain of crabs 

9:   for each mac in Machines do find job in UJ has least 

processing time in mac // finding optimal Shell fort he crab 

11: X.append(mac, job) 

12: UJ.remove(job) 

13:   end for 

14:   Return X 

15: end procedure 

In the proposed new neighborhood structure algorithm, the 
jobs selected from the machines are likened to crabs emerging 
from their shells and searching for new shells. The vacancies on 
the appropriate machine are calculated according to the loads 
on the remaining machines after removing one job from each 
machine. The pseudo code of this neighborhood structure is 
given in Algorithm 2. This algorithm is similar to synchronized 
shell exchange. 

6 Proposed local search selection strategy and 
local search algorithms 

Local search stands as a pivotal step aimed at enhancing an 
existing candidate solution. In VNS, local search is applied after 
neighborhood change in order to improve the initial solution. 

In this study, the objective function is to minimize Cmax. For 
this minimization, 3 different local searches are proposed. Two 
of the proposed local searches are largescale and costly local 
searches. The first of these local searches LS1 (Replace Jobs on 
Critical Machine with All Jobs One by One) aims to replace all 
jobs on the critical machine with all jobs in the list and to obtain 
a more appropriate solution value according to the objective 
function. The second local search LS2 (Insert Jobs on Critical 
Machine with All Possibilities One by One) aims to obtain the 
more appropriate solution value by inserting all the jobs on the 
critical machine before the jobs on other machines. If the job 
added before is the last job to be processed on the machine, it 
also tries to add it after it. LS1 and LS2 local searches work 
effectively if there is only 1 machine that is costlier than the best 
solution found in the objective function. If there is more than 
one machine that is costlier than the critical machine according 
to the previous iteration, changing the jobs on the critical 
machine will not allow improvement in the objective function. 

LS1 and LS2 local search only deals with the jobs on the critical 
machine. The third local search LS3 (Change Two Critical 
Machines Jobs) deals with 2 critical machines at the same time, 
not with jobs on a single machine like LS1 and LS2. LS3 aims at 
better scheduling of both machines at the same time by 
replacing all the jobs on 2 machines that are larger than the 
Cmax value obtained in the previous iteration. 

The order of use of local searches is linked to a selection 
strategy based on the best known Cmax value and the machine 
loads obtained by neighborhood change. In this context, after 
each neighborhood exchange, the workloads (C values) of the 
machines are compared with the best known Cmax value. If 
there is 1 critical machine with a value greater than Cmax or if 
the Cmax value has decreased with the neighborhood change, 
LS1 and LS2 local searches are used to decrease the workload 
of this machine. In other words, if only one machine exceeds the 
current Cmax after a neighborhood move, focusing the local 
search on that specific machine—through LS1 and LS2—allows 
for a more targeted and effective reduction of the makespan. 
Since other local searches involve multiple machines, they may 
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not yield meaningful improvements in such cases. Thus, this 
selective application ensures a more efficient use of local search 
operators. If there is more than one critical machine, these 
machines are handled together. The local search selection 
strategy using these local searches is given in Algorithm 3. 

Algorithm 3 Local Search Choose Function 

Input: Cmaxbest: Stored best Cmax value, X’: Neighborhood 

applied list LS1: Replace Jobs on Critical Machine with All Jobs 

One by One, LS2= Insert Jobs on Critical Machine with All 

Possibilities One by One, LS3= Change Two Critical Machines 

Jobs, cmcount= Critical machine count 

Output: X: Final schedule of jobs assigned to machines 

1: procedure Local Search Choose (X’, LS1, LS2, LS3, Cmaxbest) 

2: cmcount ← 0 

3: Calculate each machine Cvalues of (X’) 

4: cmcount =compare (Cvalues, Cmaxbest) 

5: if cmcount <2 then 

6: X” = Apply LS1 to X’ 

7: if Cmax of X” <Cmaxbest then 

8: X←X”, X’←X”, Cmaxbest ← Cmax of X” 

9:                end if 

10: X” = Apply LS2 to X’ 

11: if Cmax of X” <Cmaxbest then 

12: X←X”, X’←X”, Cmaxbest ← Cmax of X” 

13: end if 

14: else 

15: X” = apply LS3 to X’ 

16: if Cmax of X” <Cmaxbest then 

17: X←X”, X’←X”, Cmaxbest ← Cmax of X” 

18:              end if 

19: end if 

20: Return X 

21: end procedure 

As seen in Algorithm 3, local search selection is evaluated 
according to Cmax values. LS1, LS2, LS3 local search algorithms 
used in Algorithm 3 are given respectively. The first of these, 
LS1, is given in Algorithm 4. 

Algorithm 4 Replace Jobs on Critical Machine with All Jobs One 

by One. 

Input: X’: Neighborhood applied list M: All machines, j: Selected 

job, mk: Critical machine, jm: Job on machine m, X=stored best 

machine and job configurations Output: X: Final schedule of 

jobs assigned to machines 

1: procedure Replace Jobs on Critical Machine with All Jobs 

One by One(X, j, mk, jm) 

2:  mk = find critical machine () 

3:  for each j ϵ mk do 

4:  for each m ϵ M do 

5:  for each jm ϵ m do 

6:  X” =Swap (j, jm) 

7:  Cmaxnew=calculateCmax(X”) 

8:                                                  if Cmaxnew <Cmaxbest then 

9:  X←X” 

10:  end if 

11:  end for 

12:  end for 

13:  end for 

14: Return X 

15: end procedure 

Algorithm 4 is a simple algorithm. The processing time 
increases according to the number of machines and jobs. The 
computational complexity of LS1 algorithm is calculated as 
follows. N is the total number of jobs, M is the total number of 
machines, and if it is assumed that the jobs are evenly 
distributed to the machines, each machine is expected to have 
N / M number of jobs. In LS1, since each job on the critical 
machine is replaced by all other jobs, the computational 
complexity is N * (N / M). Another local search LS2 is given in 
Algorithm 5. 

Algorithm 5 Insert Jobs on Critical Machine with All 
Possibilities One by One. 

Input: X’: Neighborhood applied list M: All machines, j: selected 
job, mk: Critical machine, jm: job on machine m, 
Output: X: Final schedule of jobs assigned to machines 
1: procedure Insert Jobs on Critical Machine with All 
Possibilities One by One (X, j, mk, jm) 
2: mk = find critical machine () 
3: for each j ϵ mk do 
4:     for each m ϵ M do  
5:            for each jm ϵ m do 
6: X”←Insert (j before jm) 
7: Cmaxnew=calculateCmax(X”) 
8:                                   if Cmaxnew<Cmaxbest then 
9: X←X” 
10:                                end if 
11:    if jm is last job on machine then  
12:         X”←Insert (j after jm) 
13:                                   Cmaxnew=calculateCmax(X”) 
14:                               end if 
15:                               if Cmaxnew < Cmaxbest then 
16: X←X” 
17:                              end if 
18: end for 
19: end for 
20: end for 
21: Return X 
22: end procedure 

In LS2, jobs can be added before and after the jobs on the 
machine. With N being the total number of jobs and M being the 
total number of machines, the jobs assigned to the critical 
machine can be added to N + M places. In this case, the 
computational complexity is (N + M) * (N / M). 

Algorithm 5 works in the same way as Algorithm 4 and searches 
for a better Cmax value by adding each job on the critical 
machine to each location on all machines. As mentioned before, 
when there is more than one critical machine with a completion 
time greater than Cmaxbest due to neighborhood change, 
performing an operation on one of these machines will not 
affect the other critical machine, so there will be no decrease in 
Cmax. For this reason, in this case, a better solution is searched 
with the LS3 algorithm in which only these two machines are 
considered. LS3 algorithm is given in Algorithm 6. 

Algorithm 6 Change two critical machines jobs. 

Input: X’: Neighborhood applied list M: All machines, j: selected 

job, mk1: Critical machine1, mk2: Critical machine2, jm1: job on 

machine mk1, jm2: job on machine mk2, Cmaxbest: Best Cmax 

value reached so far. 
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Output: X=Stored best machine and job configurations 

1: procedure Change two critical machines jobs(X, j, mk, jm) 

2: mk1= find critical machine1 

3: mk2= find critical machine2 

4: for each jm1 ϵ mk1 do 

5: for each jm2 ϵ mk2 do 

6: X”←swap (jm1, jm2) 

7: Cmaxnew=calculateCmax(X”) 

8: if Cmaxnew < Cmaxbest then 

9: X←X” 

10: end if 

11: end for 

12: end for 

13: Return X 

14: end procedure 

Algorithm 6 seek for an opportunity if there is a chance in 
changing jobs on both critical machines which has more Cmax 
values. In LS3, the computational complexity is (N / M) * (N / 
M) because only jobs on two machines are interchanged. 

7 Proposed CNVNS algorithm 

The VNS algorithm, a modern heuristic method, was developed 
by Nenad Mladenovic and Pierre Hansen in 1997. Since its 
inception, the algorithm has been continuously refined and 
widely applied across various domains. VNS is a metaheuristic 
solution approach that simultaneously utilizes different 
neighborhood structures. Based on the principle of 
systematically altering the neighborhood structures during the 
search process, DKA is a simple yet effective heuristic designed 
to solve combinatorial and global optimization problems [38]. 
Although there are many variants of VNS algorithms [39], this 
paper presents an adapted version of the basic VNS. The new 
proposed algorithm uses the proposed initial solution, 
neighborhood structures and local search techniques. The Basic 
VNS algorithm is given in Algorithm 7. 

Algorithm 7 Basic VNS Algorithm 

Input: X: Initial Solution Nk, k=1,2, ..., kmax: Neighborhood 

structures, LS: Local Search, f(.): objective function 

Output: X: Final schedule of jobs assigned to machines 

1: procedure VNS 

2:    while the stop condition is not met do 

3:  k=1 

4:      while k <= kmax do 

5:          X’← Nk(X) 

6:          X”← LS(X’) 

7:          if f(X”)<f(X) then 

8:               k←1, X← X” 

9:        else 

10:             k←k+1 

11:        end if 

12:    end while 

13:  end while 

14:Return X 

15:end procedure 

The new proposed algorithm uses the proposed initial solution, 
neighborhood structures and local search techniques. The Basic 
VNS algorithm is given in Algorithm 7 and the proposed CNVNS 
(Crab Neighborhood + VNS) algorithm is given in Algorithm 8. 

The basic VNS algorithm is modified as follows according to 
proposed algorithms in this paper and given in Algorithm 8. The 
proposed CNVNS algorithm differs from the basic VNS 
algorithm in several key aspects, including the method of initial 
solution generation, the design of neighborhood structures, and 
the selection of local search strategies. 

Algorithm 8 Proposed CNVNS Algorithm. 

Input: X: Initial Solution from Algorithm 1: 

GreedyInitialSolution Nk: k=1,2, ..., kmax: neighborhood 

structures LS: Local Search phase (Algorithm 3: 

LocalSearchChoose) which includes Algoritm), f(.): objective 

function Output: X: Final schedule of jobs assigned to machines 

1: procedure CNVNS 

2:   while the stop conditon is not met do 

3: k=1 

4:      while k <=kmax do 

5:         X’←Nk(X) // CrabNeighbors neighborhood structure 

added to Nk 

6:         X”← LS (X’) // LocalSearchChoose algorithm which uses 

Algorithm 4, Algorithm 5 and Algorithm 6 systematically 

7:          if f(X”)<f(X) then 

8:          k←1, X← X” 

9:   else 

10:        k←k+1 

11:       end if 

12:   end while 

13: end while 

14: Return X 

15: end procedure 

 

8 Computational experiments and discussion 

8.1 Benchmark dataset 

The benchmark dataset in this study was developed by [6] and 
has been used by many researchers mentioned in Table 1. The 
dataset is categorized into two groups: small-size problems and 
large-size problems. The small-size dataset utilized in this 
study comprises 270 distinct data files that need to be 
scheduled on machines with different numbers of jobs j ϵ {6, 7, 
8, 9, 10 and 11} and different numbers m ϵ {2, 4, 6 and 8}. The 
large data set consists of 540 data files in which j ϵ {20, 40, 60, 
80, 100 and 120} jobs are scheduled on m ϵ {2, 4, 6, 8, 10 and 
12} machines with balanced setup and processing time. In the 
large dataset, there are a total of 1080 data files which setup 
time is dominant and processing time is dominant. This study 
is limited to 540 big data with balanced setup and processing 
time. Data and related solutions of existing algorithms are 
available on [40]. 

8.2 Testing CNVNS  

The stopping criteria for the VNS algorithm can include the 
maximum execution time, the maximum number of iterations, 
or the maximum number of iterations without any 
improvement [39]. Different stopping criteria and algorithm 
execution times have been determined by researchers in the 
solution of the problem studied. [10] set the maximum number 
of iterations as 500 times the number of jobs [11] terminated 
the algorithm if there was no improvement for 214 iterations 
or 28 times. [7] tied intra-machine and inter-machine switching 
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to an iteration number that varies with the number of machines 
and ran inter-machine switching at least 25 times. [9] stated 
that a small number of iterations is sufficient for relatively 
small problems, however, they ran the algorithm for 15000 
iterations to obtain the best-known results on large data sets. 
As can be seen, there is no standard in the stopping criterion 
among researchers. 

The software platform Pycharm 2022.1.2 was selected to 
develop the proposed algorithms and the algorithms were 
coded in Python (3.7). The configuration of the computer on 
which the study was run is (Intel(R) Core (TM) i7-6700 CPU @ 
3.40GHz, 16GB Ram). The proposed algorithm was run one 
iteration for 540 instances on a balanced large dataset. 
Execution times are reported for all machine job variations. 
Average times for each machine and number of jobs are given 
in Table 2. 

Table 2. Average execution times of the proposed algorithm for 
one iteration 

Machine Job Average 

Time 

(s) 

Machine Job Average 

Time 

(s) 

2 20 1,065 8 20 0,289 

2 40 9,932 8 40 1,894 

2 60 35,648 8 60 11,215 

2 80 92,260 8 80 24,851 

2 100 134,340 8 100 49,227 

2 120 235,757 8 120 111,676 

4 20 0,364 10 20 0,083 

4 40 5,603 10 40 1,144 

4 60 21,956 10 60 6,336 

4 80 63,842 10 80 19,354 

4 100 118,003 10 100 36,384 

4 120 176,802 10 120 78,832 

6 20 0,381 12 20 0,093 

6 40 2,735 12 40 1,406 

6 60 15,595 12 60 4,417 

6 80 44,827 12 80 10,376 

6 100 82,566 12 100 39,843 

6 120 129,759 12 120 50,968 

In Table 2, the average times shows that number of jobs 
increases also the time increases as expected. When 540 
samples are considered as a whole, the total running time for 
all samples in the benchmark dataset is 24297,374 s. This time 
is equal to 404,956 minutes and 6,75 hours. In case of an 
improvement in the neighborhood change or local search phase 
of the VNS, the neighborhood change is moved to the beginning, 
which causes the first iteration to be longer. When the total time 
of 24297,374 seconds is divided by the size of instances (540), 
the running time per instance is 44,995 seconds. This time for 
one iteration can be considered reasonable. As stated above, 
there is no standardized stopping criterion for the algorithm. A 
reasonable number of iterations was determined and tested to 
ensure adequate runtime for the algorithms. The algorithm was 
run for 100 iterations on small and large data sets and the test 
results are given in Table 3 and Table 4. In the given tables the 
best-known result of each machine job combination is indicated 

in bold and italic. If there are equal best solutions they are all 
indicated as bold and italic. Firstly, the success of the proposed 
algorithm is tested with small size problems in the benchmark 
dataset. The algorithm is run and the best results are reported. 
For 270 data sets, Cmax values are grouped according to the 
number of machines and jobs. The test results are shown in 
Table 3[17]. 

Table 3. Minimum Cmax value averages of small data set 

Mach.-
Job 

[13] [8] [7] [6] CNVNS Optimal 

2-6 394,73 394,73 394,73 396,40 394,73 394,73 

2-7 491,00 491,00 491,00 495,07 491,00 491,00 

2-8 517,40 517,40 517,40 522,60 517,40 517,40 

2-9 598,47 598,47 598,87 603,80 598,47 598,47 

2-10 638,93 638,93 638,93 645,33 638,93  

2-11 710,73 710,73 710,73 721,27 710,40  

4-6 245,00 245,00 245,00 251,73 245,00 245,00 

4-7 252,27 252,27 252,27 265,07 252,27 252,27 

4-8 264,73 264,73 264,73 271,27 264,73 264,73 

4-9 346,07 346,07 346,87 346,40 346,07  

4-10 359,47 359,53 359,47 361,60 359,47  

4-11 366,33 366,47 366,33 374,33 366,33  

6-8 234,47 234,47 234,47 242,07 234,47  

6-9 238,53 238,53 238,53 249,53 238,53  

6-10 246,00 246,47 246,00 259,47 245,93  

6-11 251,27 251,60 251,27 274,53 250,80  

8-10 226,13 226,13 226,13 232,00 226,13  

8-11 232,47 232,47 232,47 235,60 232,47  

When analyzing Table 3, it is evident that the CNVNS algorithm 
achieves successful results on the small dataset. A direct 
comparison with compared previously applied algorithms on 
the same dataset reveals that the proposed algorithm 
consistently attains optimal or superior outcomes across 
numerous instances 

In metaheuristic algorithms, it is accepted if the gap is less than 
gap <0,1 according to the gap= (f − f0) % f value calculated in 
small size problems [41]. CNVNS algorithm has reached optimal 
values in all of the problems which has optimal solutions in the 
small size data set. Therefore, the algorithm can be deemed 
effective based on these outcomes. 

The CNVNS algorithm was also run 100 times on the Balanced-
large data set. Cmax values for 540 data sets are grouped 
according to the number of machines and jobs. The results are 
given in Table4. 
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Table 4. Min Cmax value averages in balanced-large data set 

Machine-Job [17] [15] [13] [13] [11] [9] [7] CNVNS 

2-20 1240,27 1236,20 1234,87 1235,80 1238,53 1237,80 1264,87 1234,87 

2-40 2436,80 2425,87 2400,27 2405,33 2411,27 2397,80 2486,53 2400,60 

2-60 3653,40 3641,60 3583,80 3591,87 3598,87 3574,60 3736,47 3583,73 

2-80 4844,60 4834,00 4755,33 4764,13 4776,07 4730,40 4942,27 4753,60 

2-100  6019,80 5924,20 5936,07 5937,20 5897,60 6180,87 5925,00 

2-120  7232,80 7126,27 7135,53 7144,40 7082,60 7447,60 7124,60 

4-20 610,07 609,73 608,33 609,40 609,80 617,13 622,93 608,27 

4-40 1181,27 1182,73 1158,40 1161,67 1165,13 1179,87 1200,67 1158,13 

4-60 1759,80 1757,00 1718,13 1725,20 1729,07 1737,93 1785,53 1717,40 

4-80 2339,27 2337,87 2286,87 2294,40 2302,53 2298,53 2370,13 2284,67 

4-100  2892,53 2835,13 2850,60 2852,47 2849,93 2934,13 2834,93 

4-120  3465,13 3400,67 3413,40 3410,20 3405,13 3515,13 3394,07 

6-20 446,20 445,93 445,87 446,00 446,13 452,73 449,40 445,87 

6-40 794,73 790,87 779,40 782,93 783,67 805,40 803,73 778,00 

6-60 1162,13 1162,40 1133,47 1137,67 1141,20 1163,47 1179,27 1133,20 

6-80 1552,87 1543,93 1514,13 1523,07 1527,93 1545,33 1568,60 1511,40 

6-100  1910,13 1869,33 1881,33 1883,47 1897,47 1940,60 1867,73 

6-120  2286,13 2235,20 2241,60 2252,40 2253,93 2313,07 2227,73 

8-20 342,07 340,13 339,47 339,87 339,73 347,60 342,80 339,47 

8-40 585,47 589,27 572,67 578,53 577,60 599,27 588,67 573,27 

8-60 888,33 882,67 867,93 873,93 874,80 893,80 893,13 865,80 

8-80 1150,07 1150,20 1116,27 1122,80 1125,73 1142,40 1164,60 1116,73 

8-100 1438,73 1430,87 1403,73 1411,87 1414,40 1439,07 1449,27 1399,40 

8-120 1707,33 1713,07 1664,47 1675,73 1685,40 1686,07 1739,73 1658,87 

10-20 248,20 245,73 242,73 245,93 244,13 252,53 260,20 242,73 

10-40 470,60 474,53 459,13 465,93 464,20 485,53 474,60 459,20 

10-60 695,27 699,47 673,20 682,13 682,27 708,27 692,73 674,27 

10-80 920,53 926,60 893,20 902,33 901,53 925,87 920,80 893,27 

10-100 1141,53 1149,00 1107,67 1117,00 1115,20 1141,53 1153,27 1106,07 

10-120 1362,20 1378,60 1326,87 1334,33 1332,27 1351,67 1376,33 1320,60 

12-20 233,67  231,00 232,00 231,20 241,87 245,00 231,00 

12-40 437,87  431,13 433,67 433,47 448,13 436,87 430,93 

12-60 581,07  561,87 572,20 570,33 597,33 576,87 563,67 

12-80 780,80  762,27 768,73 766,27 790,07 778,47 759,53 

12-100 978,93  961,40 963,07 964,27 988,67 981,73 951,40 

12-120 1136,67  1105,87 1115,33 1110,27 1138,73 1146,40 1099,60 
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Analyzing Table 4 reveals that the proposed CNVNS algorithm 
outperforms competing metaheuristic algorithms, 
demonstrating a higher success rate. It achieved the best 
performance in 25 out of 36 machine-job configurations 
(69,44%) and matched or performed better result in 21 cases 
(58,2%). These results highlight the algorithm's effectiveness 
across various configurations. In the article [42], the authors 
emphasize that the comparative evaluation of optimization 
algorithms involves numerous methodological complexities. 
They highlight that, in order to ensure a fair and valid 
comparison, factors such as algorithm configuration, parameter 
settings, characteristics of test instances, and hardware 
conditions must be carefully controlled. Therefore, the 
algorithms have been compared solely based on their Cmax 
values. 

9 Conclusions  

In this study, a novel metaheuristic algorithm is proposed that 
introduces a novel approach to initial solutions through a newly 
devised greedy algorithm. This innovative greedy algorithm is 
specifically designed to expedite goal achievement while 
exploring the solution space, thereby ensuring a high-quality 
initial solution. In addition, a nature-inspired neighborhood 
structure simulating animal behavior is presented in this study. 
In the local search phase, the proposed three different local 
searches are efficiently used with a selection algorithm to avoid 
unnecessary moves. The algorithm tested on a benchmark 
problem and it has been demonstrated that the proposed 
method yields superior results when compared to the 
alternative algorithms in the literature. As a further study, the 
proposed CNVNS algorithm can be combined with other 
algorithms to obtain new hybrid algorithms to achieve even 
more successful results. 

This study provides actionable insights for production planners 
and operations managers. Minimizing the makespan enables 
faster order fulfillment, improved resource utilization, and 
higher production efficiency. The adaptive local search strategy 
dynamically identifies bottlenecks and selects appropriate 
operators, demonstrating the value of flexible optimization 
over rigid heuristics. Additionally, the use of a load-balanced 
greedy algorithm for generating initial solutions accelerates 
convergence and reduces computational effort, offering a 
practical advantage in real-world scheduling environments. 
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