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Abstract  Öz 

The purpose of the study is to improve the cancer detection in medical 
images using the Fourier Net (FNet) architecture and the Local 
Interpretable Model-agnostic Explanations (LIME) method. The FNet 
architecture excels in extracting features from high-dimensional 
images and anatomical representations. LIME, on the other hand, is an 
algorithm to make the model's decisions interpretable. After applying 
the FNet architecture to the existing data, the LIME explainability 
method has been applied to determine whether the model outputs 
meaningful results from the image. Using deep learning techniques, the 
proposed algorithm represents cancer types with distinctive and robust 
features. An additional assessment by an expert pathologist was carried 
out to prove the results obtained after the LIME interpretation. Thus, 
medical professionals and researchers will be able to evaluate whether 
this method developed using FNet and LIME can provide a more 
interpretable and effective approach to cancer diagnosis. The proposed 
study lays the foundation for developing effective systems that assist 
doctors and pathologists in evaluating histopathological tissue images. 
Additionally, this study aims to enhance the reliability of machine 
learning methods. 

 Çalışmanın amacı, Fourier Net (FNet) mimarisi ve Yerel Yorumlanabilir 
Model-Agnostik Açıklamalar (LIME) yöntemi kullanılarak tıbbi 
görüntülerde kanser tespitini geliştirmektir. FNet mimarisi, yüksek 
boyutlu görüntülerden ve anatomik temsillerden öne çıkan özellikleri 
başarıyla çıkarma yeteneğine sahiptir. Öte yandan, LIME, modelin 
kararlarını yorumlanabilir hale getirmek için kullanılan bir 
algoritmadır. Mevcut verilere FNet mimarisi uygulandıktan sonra, 
modelin görüntülerden anlamlı sonuçlar üretip üretmediğini 
değerlendirmek amacıyla LIME açıklanabilirlik yöntemi uygulanmıştır. 
Önerilen algoritma, derin öğrenme teknikleri kullanılarak kanser 
türlerini belirgin ve güçlü özelliklerle temsil etmektedir. Ayrıca, LIME 
yorumlamasından elde edilen sonuçların doğruluğunu kanıtlamak 
amacıyla uzman bir patolog tarafından ek bir değerlendirme 
gerçekleştirilmiştir. Bu sayede, tıp uzmanları ve araştırmacılar, FNet ve 
LIME kullanılarak geliştirilen bu yöntemin kanser teşhisinde daha 
yorumlanabilir ve etkili bir yaklaşım sağlayıp sağlamadığını 
değerlendirebileceklerdir. Önerilen çalışma, doktorlar ve patologların 
histopatolojik doku görüntülerini değerlendirmesine yardımcı olacak 
etkili sistemlerin geliştirilmesi için bir temel oluşturmaktadır. Ek 
olarak, bu çalışma makine öğrenimi yöntemlerinin güvenilirliğini 
artırmayı amaçlamaktadır. 

Keywords: FNet, explainable artificial intelligence, Lung cancer, 
Colon cancer, Pathological assessment. 

 Anahtar kelimeler: FNet, Açıklanabilir yapay zeka, Akciğer kanseri, 
Kolon kanseri, Patolojik değerlendirme. 

1 Introduction 

Globally, cancer is the second leading cause of mortality, 
following cardiovascular diseases [1]. According to the 2022 
WHO reports, approximately 10 million people died from 
cancer. Lung cancer is the leading cause of cancer-related 
mortality, accounting for 1,817,469 fatalities. Colon cancer 
ranks fifth in mortality, with 538.167 deaths reported. In the 
male population, colon and lung cancers have a higher 
prevalence [2]. The organism consists of countless cells that 
proliferate and reproduce through division. Certain cell 
populations may become defective or are replaced by normal 
cells after a certain age. However, errors occurring during cell 
division process or genetic mutations can lead to uncontrolled 
cell proliferation. This uncontrolled proliferation disrupts the 
body’s normal functioning, leading to development of a disease 
known as cancer. Unlike healthy cells, cancer cells can 
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proliferate without responding to growth signals, fail to 
undergo apoptosis when needed, and thus contribute to tumor 
formation [3]. Colon & lung cancer exhibit distinct symptoms 
and causes. These cancers are among the most prevalent 
malignancies  and can sometimes develop simultaneously [4]. 
In a study spanning 76 months, the medical care and outcomes 
of inmates diagnosed with simultaneous colon & lung cancers 
were investigated. Among 3102 patients diagnosed with lung 
cancer, 17 individuals received a diagnosis of colon cancer 
within one month. Significantly, chronic smoking and 
overweight were not identified as particular aspects among the 
inmates. While the simultaneous occurrence of both cancers is 
rare , especially in incidentally diagnosed cases, it is crucial to 
appropriately manage such patients appropriately [5]. Cancer 
patients may not show symptoms at the initial phase of the 
disease or exhibit only a few symptoms, but when symptoms 
fully manifest, the lesion has progressed significantly, 
indicating some delays in treatment [6]. Molecular imaging 
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technologies, including MRI, PET and X-ray are capable of early 
diagnosis and staging [7]. However, chest X-rays haven’t been 
studied as a screening test for lung cancer in high risk 
individuals [8]. Furthermore, diagnosing cancer cases can be 
time-consuming and subjective, particularly in the early stages, 
among doctors. Early detection and diagnosis methods can help 
overcome these challenges [7]. Another approach used in 
monitoring to especially lung nodule development is based on 
the analysis of multiple images [9]. Artificial intelligence 
techniques play a crucial role in the early diagnosis of 
biomedical images, predicting disorders, and identifying 
serious health issues [10]. 

When considering the findings in the literature, it is evident that 
there are various approaches for the evaluation and 
classification of histopathological tissue images as follows: in 
their study, Mangal et al. (2020) utilized a convolutional-based 
diagnostic system to evaluate colon and lung cancer data. This 
shallow CNN model classified the 3-classes lung data as 97.2% 
and the 2- classes colon data as 96% [11]. Masud et al. (2021), 
aimed to automate cancer diagnosis to save time and costs by 
employing a hybrid approach based on deep learning. In this 
convolution-based model, they achieved a rate of 96.33% 
accuracy [12]. Adu et al. (2021) introduced a capsule-based 
method for the automatic detection and classification of colon 
& lung cancers. This research developed a novel hybrid feature 
technique utilizing encoders and a new horizontal compression 
function to suppress the feature set. The recommended 
methodology yielded an accuracy of 99.23% [13]. On the other 
hand, Ali & Ali (2021) developed a hybrid model combining 
traditional layers, separable convolution layers, and capsule 
networks to discriminate colon and lung cancers. In the pre-
processing stage, they applied gamma correction, color 
balancing, image sharpening, and multiscale merging. The 
current model utilizes two inputs: raw images processed 
through standard convolutional layers in the first input block 
and preprocessed images through separable convolution layers 
in the second block, both fed into a capsule network for 
classification. Experimental outcomes yielded that the 
proposed model accomplished meaningful success across all 
classes within a 99.58% overall accuracy for colon and lung 
cancer [14]. Ibrahim & Talaat (2022) reported a deep learning-
based approach utilizing EfficientNetB7 for feature extraction 
and Modified Neural Networks (MNNs) for the multi-way 
classification of colon and lung cancers. Their results indicated 
that the system achieved an accuracy of 99.5% [15]. Meanwhile, 
Talukder et al. (2022), introduced a hybrid method for 
identifying colon and lung cancers. This approach used 
MobileNet to extract features and an ensemble soft voting 
classifier. The simulation results demonstrated that this 
technique achieved a 99.3% accuracy in identifying colon and 
lung cancers [16]. In their study, Raju & Rau (2022) utilized 
visualization techniques, GradCam and SmoothGrad, to better 
classify histopathological images and enhance their quality. 
They classified five different colon and lung tissue 
histopathological images using MobileNetV2 and 
InceptionResnetV2 architecture. This suggested framework 
accurately identified cancer tissues up to 99.95%. Their aim 
was to help healthcare providers in developing a computerized 
and robust system to detect many types of colon & lung cancers 
[17]. Kumar et al. (2022) compare handcrafted and deep 
learning-based feature extraction methods for lung and colon 
cancer classification. Handcrafted features and deep features 
from seven transfer learning models were evaluated using 

Gradient Boosting (GB), SVM-RBF, Multi-Layer Perceptron 
(MLP), and Random Forest (RF) classifiers. Deep features 
significantly outperformed handcrafted features, with 
DenseNet-121 and RF achieving 98.60% accuracy, 98.63% 
precision, 0.985 F1-score, and 1.0 ROC-AUC [18]. In their study, 
Wahid et al. (2023) compared their proposed simple 
customized CNN model with three different pre-trained CNN 
models, namely GoogLeNet, ResNet18 and ShuffleNet V2. The 
evaluation metrics provided the highest accuracy with 
ResNet18 for classifying lung cancer and with ShuffleNet V2 for 
evaluating colon data, achieving 99.87% accuracy. Their 
proposed customized CNN model achieved accuracy of 93.02% 
for lung data and 88.26% for colon data. Moreover, they 
demonstrated that their proposed CNN model had a shorter 
training time compared to GoogLeNet and ResNet18 [19]. 
Tummala et al. (2023) achieved 99.97% an accuracy on the test 
set for 5- classes classification based on colon & lung data using 
5-fold cross-validated and tested EfficientNetV2 models. They 
also strengthened their study using Saliency maps [20]. 
Mehmood et al. (2022) proposed a transfer learning-driven 
approach to automatically categorize colon and lung cancer 
pathological images. In this technique, they applied the contrast 
enhancement method not to all images but only to the class 
with low performance to reduce computational cost and 
increase accuracy (increased from 89% to 98.4%) [21].  Fan et 
al. (2021) proposed a transfer learning architecture 
incorporating softmax and SVM for categorizing colon and lung 
cancers. To improve classifying accuracy, the fully connected 
layer of the softmax classifier was input into the SVM classifier. 
Their findings showed that the proposed model achieved an 
accuracy of 99.4% on the LC25000 data [22]. Aitazaz et al. 
(2023) evaluated the diagnostic performance of Vision 
Transformer (ViT) vs. pre-trained CNN architectures for colon 
and lung images. The study's findings revealed that the ViT 
architecture outperformed the pre-trained CNNs. Moreover, 
the results demonstrated that the ViT-L32 model, which has 
more layers, achieved higher accuracy compared to the ViT-
B32 model [23]. Ahmet et al. (2023) present an interpretable 
lung cancer diagnostic system utilizing various ML models 
including Random Forest, Decision Tree, Logistic Regression, 
and Naive Bayes classifier. The research is conducted using the 
same dataset of lung tissue images. Random Forest and Logistic 
Regression classifiers emerged with the highest accuracy, 
reaching 97% in predicting lung cancer among the diverse ML 
models explored. Additionally, the study employs SHapley 
Additive exPlanations (SHAP) and LIME to demonstrate the 
explainability of the employed ML structures [24].  

Considering the aforementioned studies, most of the research 
is built on convolutional based deep architectures and 
conventional ML algorithms for histopathological image 
assessment and classification. A few studies combine their 
results with explainable methods. In this study, the 
transformer-based Fourier Net (FNet) architecture is utilized. 
FNet is a transformer architecture that consists of a Fourier 
sub-layer followed by a feedforward sub-layer in each layer, 
without attention layers [25]. With this transformer based deep 
learning model, it is observed that a large number of images can 
be trained with few parameters, resulting in a fast and effective 
outcome. An additional ViT model is utilized considering same 
hyper-parameters with FNet so that we will validate our results 
with different transformer-based network. To strengthen the 
study, the effective classification of the FNet model outputs are 
explained using the LIME model. According to our knowledge, 
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none of the previous studies have implemented Fourier 
Transforms instead of the attention mechanism in Transformer 
block to carry out an effective classification task for current 
dataset Additive explainable methods (i.e. LIME) are gaining 
popularity to elaborate the black-box behavior of deep layered 
architectures.  Additionally, images classified as false negatives 
and false positives, obtained through the confusion matrix, are 
re-interpreted with the assistance of an expert pathologist. The 
FNet and ViT architectures will classify 3 classes of lung tissue 
images, 2 classes of colon histopathological images and 2 
classes of microscopic pathological breast cancer dataset. LIME 
will test a pathology image, which is desired to be analyzed by 
the trained machine learning algorithm, and will provide 
insight into which parts of the image the algorithm extracts the 
most features from. Following this process, the validation 
aspect of the relevant algorithm will be observed by comparing 
the regions drawn with LIME with the regions evaluated by the 
expert pathologist.  

The rest of the paper is organized as follows: a brief data 
description will be given in the Materials section. The working 
mechanism of the FNet deep learning network and LIME 
explainer method will be explained with details in Method 
section. Moreover, required pre-processing steps, and 
calculation of performance metrics will be illustrated. Result 
and discussion section will put forward the crucial outcomes of 
the current study by comparison of literature studies.  Finally, 
the current paper will be concluded with a brief conclusion 
section 

2 Material and methods 

In the current study, histopathological tissue images of the lung 
with three different classes and colon including 2 different 
classes are labeled by reading them in a computer environment. 
The images are resized to smaller dimensions to improve the 
performance of the processing machine (Step 1). Subsequently, 
the labeled images are split into training and test sets before the 
classification stage (Step 2). The labeled data belonging to 

relevant classes were passed through the classification stage 
using the proposed deep learning architecture with an 
interpretable approach (Step 3), and the created algorithm was 
tested with performance metrics (Step 4). Finally, an expert 
physician interpretation for regions sketched by LIME has been 
performed (Step 5). All the mentioned steps are provided in a 
flowchart diagram in Figure 1. 

2.1 Materials 

In this research, a dataset named LC25000, containing 
histopathological images of colon and lung cancer  from the 
Kaggle website, is employed to assess the proposed method 
[26]. Current dataset, created by Andrew Borkowski and his 
team at James A. Haley Veterans' Hospital in Tampa, Florida, 
contains 25,000 images, including two types of colon cancer 
and three types of lung cancer. The original image dimensions 
are (1024,768) pixels, but the images have been resized by the 
data owners to (768,768) pixels. The dataset contains a total of 
750 lung and 500 colon histopathological images. Through data 
augmentation methods (i.e. right and left rotations, horizontal 
and vertical flips), a total of 25000 images have been generated. 
The total space occupied by the entire dataset is 1.85 GB. To 
provide a balanced dataset, the images are evenly distributed 
among the five types, with 5000 images allocated to each type. 
The focus of this study's analysis will be on 3 classes for lung 
cancer lung benign tissue, lung adenocarcinoma, and lung 
squamous cell carcinoma; 2 classes for colon cancer benign 
tissue and colon adenocarcinoma. This distribution allows for 
comprehensive examination and comparison across different 
cancer types, facilitating a more nuanced understanding of 
diagnostic patterns and potential treatment strategies.  Lung 
adenocarcinoma arises in glandular cells in the lungs and 
constitutes over 40% of lung cancers. Lung squamous cell 
carcinoma, on the other hand, originates in the bronchi of the 
lungs and accounts for over 30% of lung cancers, making it the 
second most common type [27]. The residual category is 
benign, remaining localized without metastasizing to other 
bodily regions [28].  

 

 

Figure 1. The steps followed in the proposed study. 
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Colon adenocarcinoma is a type of cancer that begins in the cells 
lining the inner surface of the colon. It is the most common kind 
of colon cancer, explaining most instances. Adenocarcinomas 
are typically developed from adenomatous polyps, which are 
precancerous growths in the colon [29]. Colon benign tissue 
refers to non-cancerous or non-malignant tissue in the colon. 
This tissue does not exhibit abnormal growth or cancerous 
characteristics. In this study, a breast cancer dataset is also 
additionally used to evaluate the accuracy of the proposed 
model. The BreakHis dataset, developed by Spanhol et al., 
consists of all slides obtained from a total of 82 patients. This 
dataset is not augmented and artificially generated. All images 
are unique. This dataset has been divided into patches, 
resulting in a two-classes dataset containing 2,479 benign and 
5,304 malignant samples. The proposed model is also applied 
to this breast cancer dataset, and the results are compared [30]. 

2.2 A modern multilayer perceptron for image 
classification: Fourier Net 

Transformer-based attention mechanism is a deep learning 
model that has achieved significant success, particularly in 
Natural Language Processing (NLP). It was initially introduced 
in the study titled  "Attention is All You Need" by Vaswani et al. 
(2017) [31]. Transformers have emerged as a prominent 
structure to overcome many limitations in previous 
competitive models. This model has been effectively utilized in 
tasks of language understanding and many other sequential 
datasets. The attention mechanism is a crucial structure that 
forms the foundation of the transformer-based model. This 
mechanism allows measuring and weighting the relationship of 
each element in an input sequence with all other elements. In 
other words, each input element is associated with a weight 
that determines how much attention should be paid to other 
elements. Thus, the contribution of each element to the 
information can be measured based on the content of other 
elements. 

The attention mechanism provides more effective information 
processing, especially when working with long and 
interconnected sequences. Additionally, this mechanism 
enables parallel processing due to the its ability to focus on 
different regions of the input, speeding up both training and 
usage of the model [32]. The transformer architecture, utilizing 
this attention mechanism, provides a structure capable of 
performing language understanding tasks more effectively and 
in parallel compared to previous models. In their study, Lee-
Thorp et al. (2021) investigated whether specific token mixing 
mechanisms could be used to simplify the relatively complex 
self-attention layers in the transformer encoder architecture 
[25]. Initially, they substituted the attention sub-layer with two 
parameterized matrix multiplications: one for mixing the row 
dimension and the other for mixing the hidden dimension. 
Encouraged by the promising results of this straightforward 
linear mixing scheme, they explored the effectiveness of faster 
linear transformations. Surprisingly, the Fourier Transform, 
despite having no parameters, scaled exceptionally well for 
long inputs, especially on GPUs due to the Fast Fourier 
Transform (FFT). This method achieved performance nearly 
equivalent to more complex linear mixing techniques. 

The FNet model is based on the non-parameterized Fourier 
Transform. The FNet model uses a block very similar to the 
Transformer block. However, FNet changes the self-attention 
layer in the Transformer block with a non-parameterized two-

dimensional Fourier transform layer.  One dimensional Fourier 
Transform is applied across patches, and another one-
dimensional Fourier Transform is applied across channels. The 
Fourier Transform is a mathematical operation that breaks 
down a function into its individual frequency components [33]. 
When applied to a sequence {𝑥𝑛} where 𝑛 ∈ [0, 𝑁 − 1] DFT is 
formally defined as in Equation 1: 

𝑋𝑘 = ∑ 𝑥𝑛𝑒
−2𝜋

𝑁
𝑛𝑘𝑁−1

𝑛=0      , 0 ≤ 𝑘 ≤ 𝑁 − 1 (1) 

This method involves directly applying the Discrete Fourier 
Transform (DFT) matrix to the input sequence. The DFT matrix, 
denoted as W, which is a Vandermonde matrix constructed for 
the roots of unity with an additional normalization factor as 
given in Equation 2: 

𝑊𝑛𝑘 = (𝑒−
2𝜋
𝑁

𝑛𝑘/√𝑁) (2) 

In each n, k =  0, . . . , N −  1. This matrix product operation has 
a computational complexity of O(𝑁2), which is higher than the 
FFT. However, it has been observed to be faster for relatively 
shorter sequences on Tensor Processing Units (TPUs). 

In current study, the hyper-parameters for the FNet 
architecture are selected based on experimental trials and 
preliminary testing, with the goal of achieving an optimal 
balance between model performance and training efficiency. 
The selected hyper-parameters are utilized based on initial 
experiments to ensure robust training while mitigating the risk 
of overfitting. The details of the hyper-parameters are as 
follows: 

Weight Decay of 0.0001: This value is chosen to prevent overfitting 
by applying L2 regularization to the model's weights. 

Batch Size: A batch size of 128 is selected considering memory 
constraints and the ability of achieving stable gradient updates 
during training. 

Number of Epochs: A total of 50 epochs is used, providing sufficient 
time for the model to converge based on the learning curves 
observed during initial trials. 

Dropout Rate: A dropout rate of 0.2 is applied to prevent 
overfitting, and this value demonstrated effective performance for 
the task at hand. 

Image Size: Input images are resized to 64x64 pixels to strike a 
balance between computational efficiency and the retention of 
relevant features for classification. 

Patch Size: The patch size is set to 8x8 to capture finer details in the 
image while maintaining a reasonable model size. 

Number of Patches with 64: The number of patches is determined 
based on the image size and patch size to ensure sufficient 
representation of the spatial information in the image. 

Embedding Dimension: An embedding dimension of 256 is selected 
based on empirical testing to provide adequate capacity for feature 
representation while maintaining computational efficiency. 

Number of Block: The number of blocks is determined through 
experimentation, where four blocks provided optimal trade-off 
between performance and computational cost. This value 
determines how many FNet layer (Fourier transform-based 
processing blocks) would be used in the FNet architecture. This is 
a hyper-parameter affecting the depth of the model. 

The selection of these hyper-parameters is guided by 
monitoring the model's performance on the validation set and 
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observing the learning curves generated from the initial trials. 
This approach ensured that the most convenient combination 
of hyper-parameters is chosen for robust model training and 
enhanced generalization.  

As highlighted in the FNet study, the model’s performance can 
be further enhanced by increasing the embedding dimensions, 
increasing the number of FNet blocks, and training the model 
within more epochs. Additionally, experimenting with larger 
input image sizes and varying patch sizes may also lead to 
improved results. The FNet architecture is known to scale 
efficiently with long inputs, operate significantly faster than 
attention-based Transformer models, and deliver competitive 
accuracy results, making it suitable for large-scale applications 
[25]. 

The illustration of a FNet architecture with an N encoder block 
can be seen in Figure 2. In essence, the self-attention sublayer 
in each Transformer encoder layer is replaced with a Fourier 
sublayer. This Fourier sublayer implements a two-dimensional 
Discrete Fourier Transform (DFT) on the embedding input, 
which is characterized by its dimensions, mainly sequence 
length and hidden dimension. Specifically, it performs one 
dimensional DFT along the sequence dimension denoted in 
Equation 3:  

𝑦 = 𝑅(𝐹𝑠𝑒𝑞(𝐹ℎ(𝑥))) (3) 

Where 𝐹𝑠𝑒𝑞  and another one dimensional DFT along the hidden 

dimension are represented as 𝐹ℎ. 

 

Figure 2. The internal blocks of FNet architecture. 

2.3 Local interpretable model-agnostic explanations 
(LIME) 

Deep learning (DL) models often attract attention due to their 
effective performance on high dimensional data despite their 
complex structures. However, these models are often referred 
to as "black box" models [34]. This term indicates the difficulty 
in understanding the internal workings and decision processes 
of DL models. This situation limits the use of DL in critical 
applications. Explainable models are employed to understand 
and make transparent the internal workings of DL algorithms. 
In this study, following the implementation of the FNet model, 
one of the explainable models, the LIME method, is used. The 
LIME method interprets decisions based on a specific set of 
examples. It adopts a model agnostic approach and is 
compatible with any machine learning model, which makes it 
commonly used as a basic explainer [35] as illustrated in 
Equation (4),  

𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑔€𝐺 𝐿(𝑓, 𝑔, 𝜋𝑥) + Ω(𝑔) (4) 

Where x represents the example to be explained, g is linear 
regression or decision tree as a surrogate model, f is primary 
model making predictions like the random forest, πx is 
proximity metric for the example x, L is function minimizing the 
loss function such as the least mean square error and finally 
Ω(g) represents the function used to keep the feature count of 
the surrogate model low. However, in practice, the feature 
count is often determined by the expert. 

2.4 Preprocessing steps for data preparation 

The images in the current dataset have been resized to (128, 
128, 3), and the pixel values, originally ranging from 0 to 255, 
have been normalized to the range [0, 1]. The dataset is split 
into 5 folds using the train-test split approach. For each fold, 
20% of the remaining training set was selected as the validation 
set. During training, the training and validation sets are used to 
observe the loss and accuracy values across epochs. The 
splitting is performed in a way that ensures an equal number of 
samples from each class using the 'Stratified' function from the 
'scikit-learn' library. 

2.5 Performance metrics for diagnostic metrics 

Performance metrics including precision, recall, F1-score, and 
accuracy values are measured. Precision quantifies the fraction 
of correctly predicted positive cases among all cases predicted 
as positive. The precision is calculated by dividing the number 
of true positives (TP) by the sum of true positives and false 
positives (FP). Recall, also known as sensitivity or true positive 
rate (TPR), assesses the proportion of correctly predicted 
positive cases out of all actual positive cases. It is computed by 
dividing the number of true positives (TP) by the sum of TPs 
and false negatives (FN). The F1-score represents the harmonic 
mean of precision and recall, providing a single metric that 
balances both precision and recall. Accuracy measures the 
overall correctness of the model's predictions, calculated as the 
ratio of correct predictions to total predictions. The summary 
of performance metrics calculation can be found in Table 1.  

Table 1. Definitions of the performance metrics used for 
evaluations. 

Metric Definition 

Accuracy 
TP + TN

TP + FP + FN + TN
 

Precision 
TP

TP + FP
 

Recall 
TP

TP + FN
 

F1-score 2 × (
Precision ×  Recall

Precision + Recall
) 

A confusion matrix is a tool utilized to assess the effectiveness 
of a classification model. It compares the actual classes with the 
classes predicted by the model, showing correct and incorrect 
predictions. It typically includes four main terms: True Positive 
(TP), True Negative (TN), False Positive (FP), and False 
Negative (FN). The metrics for benign tissue (BT, BNG), 
adenocarcinoma (ADC), and squamous cell carcinoma (SCC) for 
the three-classes lung cancer data have been calculated as 
shown in Table 2. 

Additionally, the metrics for benign tissue (BT, BNG) and 
adenocarcinoma (ADC) for the two-classes colon cancer data 
have been written according to Table 3.  
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Table 2. Evaluation of lung cancer performance metrics. 

 Predicted   

  BT ADC SCC FN TN 
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BT 

 

TP for BT: 

BT-BT 

 

 

BT-ADC 

 

 

BT-SCC 

 

BT-ADC+ 

BT-SCC 

ADC-ADC+ 

ADC-SCC+ 

SCC-ADC+ 

SCC-SCC 

 

 

ADC 

 

 

ADC-BT 

 

TP for ADC: 

ADC-ADC 

 

 

ADC-SCC 

 

ADC-BT+ 

ADC-SCC 

BT-BT+ 

BT-SCC+ 

SCC-BT+ 

SCC-SCC 

 

 

SCC 

 

 

SCC-ADC 

 

 

SCC-ADC 

 

TP for SCC: 

SCC-SCC 

 

SCC-BT+ 

SCC-ADC 

BT-BT+ 

BT-ADC+ 

ADC-BT+ 

ADC-ADC 

 FP ADC-BT+ 

SCC-BT 

BT-ADC+ 

SCC-ADC 

BT-SCC+ 

ADC+SCC 

  

Table 3. Evaluation of colon cancer performance metrics. 

  Predicted 

  ADC BT 

O
b
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rv

ed
  

ADC 
 
 

 
TP 

 
FP 

BT FN TN 

Training accuracy represents the ratio of correct predictions on 
the training dataset by a model. Validation accuracy, on the 
other hand, measures the performance of the model on the 
validation dataset. Both training and validation accuracies are 
important metrics for assessing the overall classification ability 
of a model. Training loss is a metric that measures the 
performance of a model on the training dataset. Validation loss, 
on the other hand, evaluates the performance of the model on 
the validation dataset. Loss quantifies how far the predictions 
of the model are from the actual values. Lower loss values may 
indicate better model performance. Loss is typically calculated 
using the following formula: 

𝐿𝑜𝑠𝑠 =
1

𝑁
∑ 𝐸𝑟𝑟𝑜𝑟(𝑦𝑖 , 𝑦′𝑖)

𝑁

𝑖=1

 (5) 

Where N represents the number of samples, 𝑦𝑖   denotes the 
actual value, and  𝑦𝑖

′ refers to the predicted value. In a well-
trained machine learning architecture, the accuracy value of the 
training-validation set should consistently increase over 
epochs, while the loss values of the training-validation set 
should consistently decrease. In the current study, the FNet 
architecture was trained along 50 epochs. 

3 Results and discussion 

The FNet architecture has been trained over 50 epochs to 
classify histopathological images of colon (adenocarcinoma- 

benign) and lung (adenocarcinoma-squamous cell carcinoma-
benign). Moreover, we additionally included breast (benign-
malignant) tissue cell images to validate the robustness of 
proposed architecture. We put the results of this additional 
experiment as an ablation study.   During the training phase of 
the proposed FNet architecture, accuracy and loss values are 
calculated after each epoch. Finally, confusion matrices for the 
classes are computed for test set The relevant representations 
are observed in Figure 3 for colon, lung and breast tissue 
images. 

In terms of lung tissue images, all adenocarcinoma images of 
lung tissues are correctly identified except 7 of them are 
classified as squamous cell carcinoma. 6 of squamous cell 
carcinoma are incorrectly classified as adenocarcinoma and the 
rest of them are correctly discriminated. All benign tissues are 
correctly identified. In terms of colon tissues, 995 out of 1000 
images of adenocarcinoma are classified as benign tissue 
images. Only single benign image is classified as 
adenocarcinoma. Finally, while observing the confusion matrix 
of breast tissue classification, 43 out of 495 benign are 
incorrectly classified as malignant. Moreover, only 35 
malignant images are incorrectly identified as benign among 
1061 images. The number of images in each class for breast 
tissue dataset is not balanced and proposed FNet still yields fair 
performance metrics as it can be seen in Table 4.  
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Figure 3. Accuracy-loss plots during the epochs of the training phase and confusion matrix during the testing phase for colon, lung 
and breast histopathological images (ADC: Adenocarcinoma, SCC: Squamuos cell carcinoma, BNG: Benign tissue, MLG: Malignant 

tissue). 

Table 4. Performance metrics obtained from proposed deep learning architecture (ADC: Adenocarcinoma, SCC: Squamuos cell 
carcinoma, BNG: Benign tissue, MLG: Malignant tissue). 

Transformer Models Tissue Datasets Performance Metrics Best Fold 
 
 
 
 

FNet 
Number of Trainable 
Parameters: 580,611 

 
 

Lung 

Precision ADC:0.99; SCC:0.99; BNG:1 
Recall ADC:0.99; SCC:0.99; BNG:1 

F1-score ADC:0.99; SCC:0.99; BNG:1 
Accuracy 100% 

 
Colon 

Precision ADC:1; BNG:1 
Recall ADC:0.99; BNG:1 

F1-score ADC:1; BNG:1 
Accuracy 100% 

 
Breast 

Precision BNG:0.93; MLG:0.96 
Recall BNG:0.91; MLG:0.97 

F1-score BNG:0.92; MLG:0.96 
Accuracy 0.95% 
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Table 4. Continued. 

Transformer Models Tissue Datasets Performance Metrics Best Fold 
 
 
 

ViT 
Number of Trainable 

Parameters: 21,659,588 

 
Lung 

Precision ADC:0.98; SCC:0.99; BNG:1 
Recall ADC:0.99; SCC:0.98; BNG:1 

F1-score ADC:0.99; SCC:0.99; BNG:1 
Accuracy 0.99% 

 
Colon 

Precision ADC:1; BNG:0.99 
Recall ADC:0.99;  BNG:1 

F1-score ADC:0.99; BNG:0.99 
Accuracy 0.99% 

 
Breast 

Precision BNG:0.90; MLG:0.96 
Recall BNG:0.93; MLG:0.95 

F1-score BNG:0.91; MLG:0.96 
Accuracy 0.94% 

 

Besides utilizing FNet architecture, classification results of ViT 
are also provided as anablation study. Both deep learning 
algorithms cover 3 different datasets. We can clearly observe 
the superiority of FNet on different datasets and its comparison 
with another transformer-based algorithm (i.e. ViT). When it 
comes to computational complexity, FNet serves faster, 
accurate and less complex training stage. In FNet, the number 
of trainable parameters is 580,611, meanwhile, in ViT 
algorithm, around 22M parameter is observed. FNet yields 
more accurate results with less computational expenses. 

Most of the colon and lung cancer multi-classification 
approaches given in the introduction section rely on deep 
learning methods and show promising levels of accuracy. In the 
literature, studies on breast histopathology, as well as colon 
and lung datasets, show that LIME analyses applied to test data 
after machine learning-based classification consistently 
demonstrate their reliability across diverse medical 
histopathology datasets [36].  

In the medical field, interpretability is just as crucial as 
accuracy, as errors can have life-threatening consequences. 
While deep learning has indeed been successful in many 
disciplines, its fundamental 'black box' nature hinders its 
reliability in the medical field. For reliable disease diagnosis, 
the interpretability and transparency are necessary in addition 
to accurately image classification. Meaningful results in this 
context require large amounts of high-quality data, significant 
computational burden, and efficient model architecture. 
Consequently, this approach can provide competitive accuracy 
along with being more interpretable and understandable. 
Alongside performance metrics, a medical image classification 
approach also should prioritize interpretability and 
transparency, fostering user trust and adoption of the method. 
Therefore, adding interpretability to deep learning models is 
one of the popular research topics. In the proposed study, 
applying the LIME interpretability method to train the FNet 
architecture and highlight the learned regions in the images has 
significantly enhanced the research value.  

This approach has made the internal learning mechanisms of 
the FNet architecture more understandable and interpretable, 
clarifying which features and regions the model emphasizes 
while learning. The use of the LIME method has increased the 
interpretability of deep learning models, which are often 
referred to as 'black boxes,' particularly in image-based 
learning processes, by reducing the model's complexity. Thus, 
highlighting the learned regions has helped us understand the 
model's decisions and learning processes more transparently, 
enhancing the overall impact of the proposed method. 

3.1 Evaluations of tissue images by experienced 
pathologist 

Mutations lead to the formation of masses composed of cells 
that proliferate uncontrollably, independent of normal 
physiology, and behave differently from the tissue in which 
they originate, known as neoplasms or tumors. Neoplasms are 
categorized as benign and malignant based on their behavior in 
the organism they develop in. Malignant neoplasms tend to 
cause damage at the site of development (destruction) and 
show a tendency to spread to distant tissues (metastasis). They 
are named according to the cell they originate from and 
classified as carcinoma (of epithelial cell origin) and sarcoma 
(of stromal cell origin) [37].  

Lung adenocarcinoma and squamous cell carcinoma are 
originated from the alveolar and bronchial epithelium of the 
lung; colon adenocarcinoma is arised from the crypt epithelium 
and both of these carcinomas evolved from precursor lesions. 
In pathology routine, to diagnose invasive carcinoma, besides 
observing abnormal cellular appearance, it is necessary to 
identify the abnormal behavior of these cells structurally. 
Cellular atypia is mostly evaluated by looking at the nucleus 
characteristics of the cell (such as enlargement, irregular 
borders, hyperchromasia, etc.). The invasion of atypical cells 
beyond the basal membrane, which should confine them, into 
the stroma (infiltration), along with stromal alterations 
(desmoplasia), supports the diagnosis of invasive carcinoma 
[38]. Pathologists evaluate tissues under the microscope using 
different magnifications of objectives to assess the described 
histological changes in wide areas. The areas observed in the 
photo frames in this study are insufficient to observe these 
histological changes. Therefore, based on the diagnosis in the 
database accepted as correct by the pathologist, interpretations 
have been made using a few representative images for 
classification in Table 5.  

In addition, the term "benign" used in the classification in the 
study represents normal tissue. In squares where the texture is 
correctly classified, artificial intelligence has not interpreted 
the areas selected as having a normal appearance throughout 
the area. 

4 Conclusion 

In this study, we have demonstrated the efficacy of integrating 
the FNet architecture with the LIME method for the detection 
of colon & lung cancer in histopathological images. The FNet 
architecture, which utilizes a transformer-based approach with 
a Fourier transform layer, proved to be effective in extracting 
meaningful features from pathological medical images.  
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The application of the LIME method further enhanced the 
interpretability of the model's decisions, allowing for clearer 
insights into the decision-making process of the deep learning 
model. 

Our experimental results indicate that the proposed deep-XAI 
method achieves high accuracy in classifying different types of 
colon & lung cancers. The integration of expert pathologist 

evaluations with LIME outputs validated the reliability of the 
model's predictions. 

This methodology not only enhances cancer detection accuracy 
but also offers a transparency and interpretable framework, 
which is vital for clinical contexts where comprehending the 
reasoning behind a model's prediction. 
 

 

Table 5. Evaluations of colon and lung tissue images by experienced pathologist within LIME explanations. 

Identified Tissue Image Explanations 

 

 

 

 

 

 

Colon tissue images 

 

Correctly classified as adenocarcinoma 

In this image, the kernel sizes selected by artificial intelligence are similar 
and exhibit a monotonous appearance in the area. Unlike normal epithelial 
cells, clustering, vesicular appearance, and prominent nucleoli stand out. By 
considering these features as atypical, one could have made the correct 
classification. In fact, the nuclear characteristics within the red triangle in 
the photograph are more supportive for the diagnosis of carcinoma. 

 

It is adenocarcinoma, but misclassified as benign 

Artificial intelligence may have considered this square as normal tissue due 
to the low cellularity of the selected areas (marked by a circle). Additionally, 
the existing nuclei in the selected area appear small and monotonous. 

 

 

 

 

 

 

 

 

 

 

 

 

Lung tissue images 

 

Correctly classified as adenocarcinoma 

In this photo frame, cells in the area identified diagnostically by artificial 
intelligence exhibit atypical cytological features such as enlargement, shape 
and size variation, and hyperchromasia. Although no obvious invasion is 
observed, accurate classification may have been made based on this 
atypical appearance. 

 

Correctly classified as squamous cell carcinoma 

In the cells marked in this square with oval, nuclear enlargement, 
hyperchromasia, and irregular shape are prominent. Although obvious 
invasion is not observed, nuclei are more densely seen in the areas marked 
by artificial intelligence. 

 

It is benign but misclassified as squamous cell carcinoma 

In this image, enlargement, hyperchromasia, shape, and size variations are 
observed in the nuclei marked with circular symbols within the area 
identified diagnostically by artificial intelligence. These features may be 
considered as atypical findings. 

 

It is squamous cell carcinoma, but misclassified as benign 

In this image, areas recognized as peripheral by artificial intelligence 
typically exhibit cytoplasm, with fewer instances of nuclear structures. 
These nuclei are similar in size and shape, presenting a monotonous 
appearance. Moreover, due to the denser presence of cytoplasm in enclosed 
areas, it may be deemed as normal tissue by artificial intelligence. 
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Despite the promising results, the proposed study has some 
limitations. One significant drawback is the computational 
complexity associated with the Fourier-Net architecture, which 
may pose challenges in terms of processing time and resource 
requirements, particularly with very large datasets. 
Additionally, while the LIME method enhances interpretability, 
it is inherently local and may not fully capture the global 
behavior of the model, potentially leading to incomplete 
explanations in some cases. Furthermore, the reliance on a 
single dataset (LC25000) limits the generalizability of the 
findings; diverse datasets with varying conditions and image  

qualities are needed to validate the robustness of the proposed 
method.  

Overall, the integration of F-Net and LIME offers a robust and 
interpretable solution for histopathological image analysis, 
contributing to more effective and reliable cancer diagnosis 
systems. This study lays the groundwork for future research in 
developing advanced, interpretable AI systems to support 
medical professionals in making informed decisions in cancer 
diagnosis. 

The impact of this study on existing literature is substantial. It 
advances the field of medical image analysis by integrating an 
effective transformer-based architecture with explainable AI 
techniques, addressing the critical need for transparency in 
deep learning models used in clinical settings. This approach 
bridges the gap between high-performance AI models and their 
interpretability, enhancing trust among medical professionals 
and promoting the integration of AI into routine diagnostic 
practices. 

Future researches should focus on leveraging vision-based 
foundation models for generating feature embeddings and 
utilizing the extracted embeddings with novel classifiers to 
improve classification performance. Additionally, integrating 
various explainable AI techniques, such as SHAP, Grad-CAM, 
and Rollout, could further enhance model interpretability and 
provide deeper insights into the decision-making process. 
These advancements hold the potential to create robust, 
interpretable, and effective AI systems for cancer classification. 
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