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Abstract

The purpose of the study is to improve the cancer detection in medical
images using the Fourier Net (FNet) architecture and the Local
Interpretable Model-agnostic Explanations (LIME) method. The FNet
architecture excels in extracting features from high-dimensional
images and anatomical representations. LIME, on the other hand, is an
algorithm to make the model's decisions interpretable. After applying
the FNet architecture to the existing data, the LIME explainability
method has been applied to determine whether the model outputs
meaningful results from the image. Using deep learning techniques, the
proposed algorithm represents cancer types with distinctive and robust
features. An additional assessment by an expert pathologist was carried
out to prove the results obtained after the LIME interpretation. Thus,
medical professionals and researchers will be able to evaluate whether
this method developed using FNet and LIME can provide a more
interpretable and effective approach to cancer diagnosis. The proposed
study lays the foundation for developing effective systems that assist
doctors and pathologists in evaluating histopathological tissue images.
Additionally, this study aims to enhance the reliability of machine
learning methods.

Keywords: FNet, explainable artificial intelligence, Lung cancer,
Colon cancer, Pathological assessment.
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Calismanin amaci, Fourier Net (FNet) mimarisi ve Yerel Yorumlanabilir
Model-Agnostik Aciklamalar (LIME) yéntemi kullanilarak tibbi
gortintiilerde kanser tespitini gelistirmektir. FNet mimarisi, yiiksek
boyutlu gériintiilerden ve anatomik temsillerden éne ¢ikan ozellikleri
basariyla cikarma yetenegine sahiptir. Ote yandan, LIME, modelin
kararlarint - yorumlanabilir hale getirmek icin kullanilan bir
algoritmadir. Mevcut verilere FNet mimarisi uygulandiktan sonra,
modelin  gortintiilerden anlamli  sonuglar liretip iiretmedigini
degerlendirmek amaciyla LIME aciklanabilirlik yontemi uygulanmistir.
Onerilen algoritma, derin 6grenme teknikleri kullanilarak kanser
tiirlerini belirgin ve giiclii 6zelliklerle temsil etmektedir. Ayrica, LIME
yorumlamasindan elde edilen sonuglarin dogrulugunu kanitlamak
amactyla uzman bir patolog tarafindan ek bir degerlendirme
gergeklestirilmistir. Bu sayede, tip uzmanlari ve arastirmacilar, FNet ve
LIME kullanilarak gelistirilen bu yéntemin kanser teshisinde daha
yorumlanabilir ve etkili bir yaklasim saglayp saglamadigini
degerlendirebileceklerdir. Onerilen calisma, doktorlar ve patologlarin
histopatolojik doku gériintiilerini degerlendirmesine yardimci olacak
etkili sistemlerin gelistirilmesi icin bir temel olusturmaktadir. Ek
olarak, bu calisma makine oOgrenimi yéntemlerinin giivenilirligini
artirmay! amaglamaktadir.

Anahtar Kkelimeler: FNet, Aciklanabilir yapay zeka, Akciger kanseri,
Kolon kanseri, Patolojik degerlendirme.

1 Introduction

Globally, cancer is the second leading cause of mortality,
following cardiovascular diseases [1]. According to the 2022
WHO reports, approximately 10 million people died from
cancer. Lung cancer is the leading cause of cancer-related
mortality, accounting for 1,817,469 fatalities. Colon cancer
ranks fifth in mortality, with 538.167 deaths reported. In the
male population, colon and lung cancers have a higher
prevalence [2]. The organism consists of countless cells that
proliferate and reproduce through division. Certain cell
populations may become defective or are replaced by normal
cells after a certain age. However, errors occurring during cell
division process or genetic mutations can lead to uncontrolled
cell proliferation. This uncontrolled proliferation disrupts the
body’s normal functioning, leading to development of a disease
known as cancer. Unlike healthy cells, cancer cells can

*Corresponding author/Yazisilan Yazar

proliferate without responding to growth signals, fail to
undergo apoptosis when needed, and thus contribute to tumor
formation [3]. Colon & lung cancer exhibit distinct symptoms
and causes. These cancers are among the most prevalent
malignancies and can sometimes develop simultaneously [4].
In a study spanning 76 months, the medical care and outcomes
of inmates diagnosed with simultaneous colon & lung cancers
were investigated. Among 3102 patients diagnosed with lung
cancer, 17 individuals received a diagnosis of colon cancer
within one month. Significantly, chronic smoking and
overweight were not identified as particular aspects among the
inmates. While the simultaneous occurrence of both cancers is
rare , especially in incidentally diagnosed cases, it is crucial to
appropriately manage such patients appropriately [5]. Cancer
patients may not show symptoms at the initial phase of the
disease or exhibit only a few symptoms, but when symptoms
fully manifest, the lesion has progressed significantly,
indicating some delays in treatment [6]. Molecular imaging

993


mailto:dr.asli.unlu@gmail.com
https://orcid.org/0000-0002-6863-7150
https://orcid.org/0000-0003-1874-9098
https://orcid.org/0000-0002-1432-8360

Pamukkale Univ Muh Bilim Derg, 31(6), 993-1003, 2025
D. Seker, A. Akhan, A. Yildiz

technologies, including MRI, PET and X-ray are capable of early
diagnosis and staging [7]. However, chest X-rays haven’t been
studied as a screening test for lung cancer in high risk
individuals [8]. Furthermore, diagnosing cancer cases can be
time-consuming and subjective, particularly in the early stages,
among doctors. Early detection and diagnosis methods can help
overcome these challenges [7]. Another approach used in
monitoring to especially lung nodule development is based on
the analysis of multiple images [9]. Artificial intelligence
techniques play a crucial role in the early diagnosis of
biomedical images, predicting disorders, and identifying
serious health issues [10].

When considering the findings in the literature, it is evident that
there are various approaches for the evaluation and
classification of histopathological tissue images as follows: in
their study, Mangal et al. (2020) utilized a convolutional-based
diagnostic system to evaluate colon and lung cancer data. This
shallow CNN model classified the 3-classes lung data as 97.2%
and the 2- classes colon data as 96% [11]. Masud et al. (2021),
aimed to automate cancer diagnosis to save time and costs by
employing a hybrid approach based on deep learning. In this
convolution-based model, they achieved a rate of 96.33%
accuracy [12]. Adu et al. (2021) introduced a capsule-based
method for the automatic detection and classification of colon
& lung cancers. This research developed a novel hybrid feature
technique utilizing encoders and a new horizontal compression
function to suppress the feature set. The recommended
methodology yielded an accuracy of 99.23% [13]. On the other
hand, Ali & Ali (2021) developed a hybrid model combining
traditional layers, separable convolution layers, and capsule
networks to discriminate colon and lung cancers. In the pre-
processing stage, they applied gamma correction, color
balancing, image sharpening, and multiscale merging. The
current model utilizes two inputs: raw images processed
through standard convolutional layers in the first input block
and preprocessed images through separable convolution layers
in the second block, both fed into a capsule network for
classification. Experimental outcomes yielded that the
proposed model accomplished meaningful success across all
classes within a 99.58% overall accuracy for colon and lung
cancer [14]. Ibrahim & Talaat (2022) reported a deep learning-
based approach utilizing EfficientNetB7 for feature extraction
and Modified Neural Networks (MNNs) for the multi-way
classification of colon and lung cancers. Their results indicated
that the system achieved an accuracy 0f 99.5% [15]. Meanwhile,
Talukder et al. (2022), introduced a hybrid method for
identifying colon and lung cancers. This approach used
MobileNet to extract features and an ensemble soft voting
classifier. The simulation results demonstrated that this
technique achieved a 99.3% accuracy in identifying colon and
lung cancers [16]. In their study, Raju & Rau (2022) utilized
visualization techniques, GradCam and SmoothGrad, to better
classify histopathological images and enhance their quality.
They classified five different colon and lung tissue
histopathological  images using  MobileNetV2  and
InceptionResnetV2 architecture. This suggested framework
accurately identified cancer tissues up to 99.95%. Their aim
was to help healthcare providers in developing a computerized
and robust system to detect many types of colon & lung cancers
[17]. Kumar et al. (2022) compare handcrafted and deep
learning-based feature extraction methods for lung and colon
cancer classification. Handcrafted features and deep features
from seven transfer learning models were evaluated using

Gradient Boosting (GB), SVM-RBF, Multi-Layer Perceptron
(MLP), and Random Forest (RF) classifiers. Deep features
significantly outperformed handcrafted features, with
DenseNet-121 and RF achieving 98.60% accuracy, 98.63%
precision, 0.985 F1-score, and 1.0 ROC-AUC [18]. In their study,
Wahid et al. (2023) compared their proposed simple
customized CNN model with three different pre-trained CNN
models, namely GoogLeNet, ResNet18 and ShuffleNet V2. The
evaluation metrics provided the highest accuracy with
ResNet18 for classifying lung cancer and with ShuffleNet V2 for
evaluating colon data, achieving 99.87% accuracy. Their
proposed customized CNN model achieved accuracy of 93.02%
for lung data and 88.26% for colon data. Moreover, they
demonstrated that their proposed CNN model had a shorter
training time compared to GoogLeNet and ResNet18 [19].
Tummala et al. (2023) achieved 99.97% an accuracy on the test
set for 5- classes classification based on colon & lung data using
5-fold cross-validated and tested EfficientNetV2 models. They
also strengthened their study using Saliency maps [20].
Mehmood et al. (2022) proposed a transfer learning-driven
approach to automatically categorize colon and lung cancer
pathological images. In this technique, they applied the contrast
enhancement method not to all images but only to the class
with low performance to reduce computational cost and
increase accuracy (increased from 89% to 98.4%) [21]. Fan et
al. (2021) proposed a transfer learning architecture
incorporating softmax and SVM for categorizing colon and lung
cancers. To improve classifying accuracy, the fully connected
layer of the softmax classifier was input into the SVM classifier.
Their findings showed that the proposed model achieved an
accuracy of 99.4% on the LC25000 data [22]. Aitazaz et al.
(2023) evaluated the diagnostic performance of Vision
Transformer (ViT) vs. pre-trained CNN architectures for colon
and lung images. The study's findings revealed that the ViT
architecture outperformed the pre-trained CNNs. Moreover,
the results demonstrated that the ViT-L32 model, which has
more layers, achieved higher accuracy compared to the ViT-
B32 model [23]. Ahmet et al. (2023) present an interpretable
lung cancer diagnostic system utilizing various ML models
including Random Forest, Decision Tree, Logistic Regression,
and Naive Bayes classifier. The research is conducted using the
same dataset of lung tissue images. Random Forest and Logistic
Regression classifiers emerged with the highest accuracy,
reaching 97% in predicting lung cancer among the diverse ML
models explored. Additionally, the study employs SHapley
Additive exPlanations (SHAP) and LIME to demonstrate the
explainability of the employed ML structures [24].

Considering the aforementioned studies, most of the research
is built on convolutional based deep architectures and
conventional ML algorithms for histopathological image
assessment and classification. A few studies combine their
results with explainable methods. In this study, the
transformer-based Fourier Net (FNet) architecture is utilized.
FNet is a transformer architecture that consists of a Fourier
sub-layer followed by a feedforward sub-layer in each layer,
without attention layers [25]. With this transformer based deep
learning model, it is observed that a large number of images can
be trained with few parameters, resulting in a fast and effective
outcome. An additional ViT model is utilized considering same
hyper-parameters with FNet so that we will validate our results
with different transformer-based network. To strengthen the
study, the effective classification of the FNet model outputs are
explained using the LIME model. According to our knowledge,
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none of the previous studies have implemented Fourier
Transforms instead of the attention mechanism in Transformer
block to carry out an effective classification task for current
dataset Additive explainable methods (i.e. LIME) are gaining
popularity to elaborate the black-box behavior of deep layered
architectures. Additionally, images classified as false negatives
and false positives, obtained through the confusion matrix, are
re-interpreted with the assistance of an expert pathologist. The
FNet and ViT architectures will classify 3 classes of lung tissue
images, 2 classes of colon histopathological images and 2
classes of microscopic pathological breast cancer dataset. LIME
will test a pathology image, which is desired to be analyzed by
the trained machine learning algorithm, and will provide
insight into which parts of the image the algorithm extracts the
most features from. Following this process, the validation
aspect of the relevant algorithm will be observed by comparing
the regions drawn with LIME with the regions evaluated by the
expert pathologist.

The rest of the paper is organized as follows: a brief data
description will be given in the Materials section. The working
mechanism of the FNet deep learning network and LIME
explainer method will be explained with details in Method
section. Moreover, required pre-processing steps, and
calculation of performance metrics will be illustrated. Result
and discussion section will put forward the crucial outcomes of
the current study by comparison of literature studies. Finally,
the current paper will be concluded with a brief conclusion
section

2 Material and methods

In the current study, histopathological tissue images of the lung
with three different classes and colon including 2 different
classes are labeled by reading them in a computer environment.
The images are resized to smaller dimensions to improve the
performance of the processing machine (Step 1). Subsequently,
the labeled images are split into training and test sets before the
classification stage (Step 2). The labeled data belonging to

relevant classes were passed through the classification stage
using the proposed deep learning architecture with an
interpretable approach (Step 3), and the created algorithm was
tested with performance metrics (Step 4). Finally, an expert
physician interpretation for regions sketched by LIME has been
performed (Step 5). All the mentioned steps are provided in a
flowchart diagram in Figure 1.

2.1 Materials

In this research, a dataset named LC25000, containing
histopathological images of colon and lung cancer from the
Kaggle website, is employed to assess the proposed method
[26]. Current dataset, created by Andrew Borkowski and his
team at James A. Haley Veterans' Hospital in Tampa, Florida,
contains 25,000 images, including two types of colon cancer
and three types of lung cancer. The original image dimensions
are (1024,768) pixels, but the images have been resized by the
data owners to (768,768) pixels. The dataset contains a total of
750 lung and 500 colon histopathological images. Through data
augmentation methods (i.e. right and left rotations, horizontal
and vertical flips), a total of 25000 images have been generated.
The total space occupied by the entire dataset is 1.85 GB. To
provide a balanced dataset, the images are evenly distributed
among the five types, with 5000 images allocated to each type.
The focus of this study's analysis will be on 3 classes for lung
cancer lung benign tissue, lung adenocarcinoma, and lung
squamous cell carcinoma; 2 classes for colon cancer benign
tissue and colon adenocarcinoma. This distribution allows for
comprehensive examination and comparison across different
cancer types, facilitating a more nuanced understanding of
diagnostic patterns and potential treatment strategies. Lung
adenocarcinoma arises in glandular cells in the lungs and
constitutes over 40% of lung cancers. Lung squamous cell
carcinoma, on the other hand, originates in the bronchi of the
lungs and accounts for over 30% of lung cancers, making it the
second most common type [27]. The residual category is
benign, remaining localized without metastasizing to other
bodily regions [28].
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Figure 1. The steps followed in the proposed study.
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Colon adenocarcinoma is a type of cancer that begins in the cells
lining the inner surface of the colon. It is the most common kind
of colon cancer, explaining most instances. Adenocarcinomas
are typically developed from adenomatous polyps, which are
precancerous growths in the colon [29]. Colon benign tissue
refers to non-cancerous or non-malignant tissue in the colon.
This tissue does not exhibit abnormal growth or cancerous
characteristics. In this study, a breast cancer dataset is also
additionally used to evaluate the accuracy of the proposed
model. The BreakHis dataset, developed by Spanhol et al,
consists of all slides obtained from a total of 82 patients. This
dataset is not augmented and artificially generated. All images
are unique. This dataset has been divided into patches,
resulting in a two-classes dataset containing 2,479 benign and
5,304 malignant samples. The proposed model is also applied
to this breast cancer dataset, and the results are compared [30].

2.2 A modern multilayer perceptron for image
classification: Fourier Net

Transformer-based attention mechanism is a deep learning
model that has achieved significant success, particularly in
Natural Language Processing (NLP). It was initially introduced
in the study titled "Attention is All You Need" by Vaswani et al.
(2017) [31]. Transformers have emerged as a prominent
structure to overcome many limitations in previous
competitive models. This model has been effectively utilized in
tasks of language understanding and many other sequential
datasets. The attention mechanism is a crucial structure that
forms the foundation of the transformer-based model. This
mechanism allows measuring and weighting the relationship of
each element in an input sequence with all other elements. In
other words, each input element is associated with a weight
that determines how much attention should be paid to other
elements. Thus, the contribution of each element to the
information can be measured based on the content of other
elements.

The attention mechanism provides more effective information
processing, especially when working with long and
interconnected sequences. Additionally, this mechanism
enables parallel processing due to the its ability to focus on
different regions of the input, speeding up both training and
usage of the model [32]. The transformer architecture, utilizing
this attention mechanism, provides a structure capable of
performing language understanding tasks more effectively and
in parallel compared to previous models. In their study, Lee-
Thorp et al. (2021) investigated whether specific token mixing
mechanisms could be used to simplify the relatively complex
self-attention layers in the transformer encoder architecture
[25]. Initially, they substituted the attention sub-layer with two
parameterized matrix multiplications: one for mixing the row
dimension and the other for mixing the hidden dimension.
Encouraged by the promising results of this straightforward
linear mixing scheme, they explored the effectiveness of faster
linear transformations. Surprisingly, the Fourier Transform,
despite having no parameters, scaled exceptionally well for
long inputs, especially on GPUs due to the Fast Fourier
Transform (FFT). This method achieved performance nearly
equivalent to more complex linear mixing techniques.

The FNet model is based on the non-parameterized Fourier
Transform. The FNet model uses a block very similar to the
Transformer block. However, FNet changes the self-attention
layer in the Transformer block with a non-parameterized two-

dimensional Fourier transform layer. One dimensional Fourier
Transform is applied across patches, and another one-
dimensional Fourier Transform is applied across channels. The
Fourier Transform is a mathematical operation that breaks
down a function into its individual frequency components [33].
When applied to a sequence {x,} where n € [0, N — 1] DFT is
formally defined as in Equation 1:

—27
Xe=YNAxen™ 0<k<N-1 1)

This method involves directly applying the Discrete Fourier
Transform (DFT) matrix to the input sequence. The DFT matrix,
denoted as W, which is a Vandermonde matrix constructed for
the roots of unity with an additional normalization factor as
given in Equation 2:

Wiy = (™8™ /) @)

Ineachn,k = 0,...,N — 1. This matrix product operation has
a computational complexity of O(N?2), which is higher than the
FFT. However, it has been observed to be faster for relatively
shorter sequences on Tensor Processing Units (TPUs).

In current study, the hyper-parameters for the FNet
architecture are selected based on experimental trials and
preliminary testing, with the goal of achieving an optimal
balance between model performance and training efficiency.
The selected hyper-parameters are utilized based on initial
experiments to ensure robust training while mitigating the risk
of overfitting. The details of the hyper-parameters are as
follows:

Weight Decay of 0.0001: This value is chosen to prevent overfitting
by applying L2 regularization to the model's weights.

Batch Size: A batch size of 128 is selected considering memory
constraints and the ability of achieving stable gradient updates
during training.

Number of Epochs: A total of 50 epochs is used, providing sufficient
time for the model to converge based on the learning curves
observed during initial trials.

Dropout Rate: A dropout rate of 0.2 is applied to prevent
overfitting, and this value demonstrated effective performance for
the task at hand.

Image Size: Input images are resized to 64x64 pixels to strike a
balance between computational efficiency and the retention of
relevant features for classification.

Patch Size: The patch size is set to 8x8 to capture finer details in the
image while maintaining a reasonable model size.

Number of Patches with 64: The number of patches is determined
based on the image size and patch size to ensure sufficient
representation of the spatial information in the image.

Embedding Dimension: An embedding dimension of 256 is selected
based on empirical testing to provide adequate capacity for feature
representation while maintaining computational efficiency.

Number of Block: The number of blocks is determined through
experimentation, where four blocks provided optimal trade-off
between performance and computational cost. This value
determines how many FNet layer (Fourier transform-based
processing blocks) would be used in the FNet architecture. This is
a hyper-parameter affecting the depth of the model.

The selection of these hyper-parameters is guided by
monitoring the model's performance on the validation set and
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observing the learning curves generated from the initial trials.
This approach ensured that the most convenient combination
of hyper-parameters is chosen for robust model training and
enhanced generalization.

As highlighted in the FNet study, the model’s performance can
be further enhanced by increasing the embedding dimensions,
increasing the number of FNet blocks, and training the model
within more epochs. Additionally, experimenting with larger
input image sizes and varying patch sizes may also lead to
improved results. The FNet architecture is known to scale
efficiently with long inputs, operate significantly faster than
attention-based Transformer models, and deliver competitive
accuracy results, making it suitable for large-scale applications
[25].

The illustration of a FNet architecture with an N encoder block
can be seen in Figure 2. In essence, the self-attention sublayer
in each Transformer encoder layer is replaced with a Fourier
sublayer. This Fourier sublayer implements a two-dimensional
Discrete Fourier Transform (DFT) on the embedding input,
which is characterized by its dimensions, mainly sequence
length and hidden dimension. Specifically, it performs one
dimensional DFT along the sequence dimension denoted in
Equation 3:

Y = R(Fseq(Fr(x))) 3)

Where F;.q and another one dimensional DFT along the hidden
dimension are represented as Fj,.

Input ——— Output

Figure 2. The internal blocks of FNet architecture.

2.3 Local interpretable model-agnostic explanations
(LIME)

Deep learning (DL) models often attract attention due to their
effective performance on high dimensional data despite their
complex structures. However, these models are often referred
to as "black box" models [34]. This term indicates the difficulty
in understanding the internal workings and decision processes
of DL models. This situation limits the use of DL in critical
applications. Explainable models are employed to understand
and make transparent the internal workings of DL algorithms.
In this study, following the implementation of the FNet model,
one of the explainable models, the LIME method, is used. The
LIME method interprets decisions based on a specific set of
examples. It adopts a model agnostic approach and is
compatible with any machine learning model, which makes it
commonly used as a basic explainer [35] as illustrated in
Equation (4),

Explanation(x) = argmingeq L(f, g, m,) + Q(g) 4)

Where x represents the example to be explained, g is linear
regression or decision tree as a surrogate model, f is primary
model making predictions like the random forest, m, is
proximity metric for the example x, L is function minimizing the
loss function such as the least mean square error and finally
Q(g) represents the function used to keep the feature count of
the surrogate model low. However, in practice, the feature
count is often determined by the expert.

2.4 Preprocessing steps for data preparation

The images in the current dataset have been resized to (128,
128, 3), and the pixel values, originally ranging from 0 to 255,
have been normalized to the range [0, 1]. The dataset is split
into 5 folds using the train-test split approach. For each fold,
20% of the remaining training set was selected as the validation
set. During training, the training and validation sets are used to
observe the loss and accuracy values across epochs. The
splitting is performed in a way that ensures an equal number of
samples from each class using the 'Stratified' function from the
'scikit-learn' library.

2.5 Performance metrics for diagnostic metrics

Performance metrics including precision, recall, F1-score, and
accuracy values are measured. Precision quantifies the fraction
of correctly predicted positive cases among all cases predicted
as positive. The precision is calculated by dividing the number
of true positives (TP) by the sum of true positives and false
positives (FP). Recall, also known as sensitivity or true positive
rate (TPR), assesses the proportion of correctly predicted
positive cases out of all actual positive cases. It is computed by
dividing the number of true positives (TP) by the sum of TPs
and false negatives (FN). The F1-score represents the harmonic
mean of precision and recall, providing a single metric that
balances both precision and recall. Accuracy measures the
overall correctness of the model's predictions, calculated as the
ratio of correct predictions to total predictions. The summary
of performance metrics calculation can be found in Table 1.

Table 1. Definitions of the performance metrics used for

evaluations.
Metric Definition
TP + TN
Accuracy
TP + FP + FN + TN
. TP
Precision _—
TP + FP
TP
Recall S —
TP + FN
Precision X Recall
F1-score ( — )
Precision 4+ Recall

A confusion matrix is a tool utilized to assess the effectiveness
of a classification model. It compares the actual classes with the
classes predicted by the model, showing correct and incorrect
predictions. It typically includes four main terms: True Positive
(TP), True Negative (TN), False Positive (FP), and False
Negative (FN). The metrics for benign tissue (BT, BNG),
adenocarcinoma (ADC), and squamous cell carcinoma (SCC) for
the three-classes lung cancer data have been calculated as
shown in Table 2.

Additionally, the metrics for benign tissue (BT, BNG) and
adenocarcinoma (ADC) for the two-classes colon cancer data
have been written according to Table 3.
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Table 2. Evaluation of lung cancer performance metrics.

Predicted
BT SCC FN TN
ADC-ADC+
TP for BT: BT-ADC+ ADC-SCC+
BT BT-BT BT-ADC BT-SCC BT-SCC SCC-ADC+
SCC-SCC
BT-BT+
-“E TP for ADC: ADC-BT+ BT-SCC+
_q.; ADC ADC-BT ADC-ADC ADC-SCC ADC-SCC SCC-BT+
°© SCC-SCC
BT-BT+
TP for SCC: SCC-BT+ BT-ADC+
SCC SCC-ADC SCC-ADC SCC-SCC SCC-ADC ADC-BT+
ADC-ADC
FP ADC-BT+ BT-ADC+ BT-SCC+
SCC-BT SCC-ADC ADC+SCC
Table 3. Evaluation of colon cancer performance metrics.
Predicted
ADC BT
E ADC TP FP
g
3
BT FN TN

Training accuracy represents the ratio of correct predictions on
the training dataset by a model. Validation accuracy, on the
other hand, measures the performance of the model on the
validation dataset. Both training and validation accuracies are
important metrics for assessing the overall classification ability
of a model. Training loss is a metric that measures the
performance of a model on the training dataset. Validation loss,
on the other hand, evaluates the performance of the model on
the validation dataset. Loss quantifies how far the predictions
of the model are from the actual values. Lower loss values may
indicate better model performance. Loss is typically calculated
using the following formula:

N
1
Loss = NZ Error(y;,y') (5)
=1

Where N represents the number of samples, y; denotes the
actual value, and y; refers to the predicted value. In a well-
trained machine learning architecture, the accuracy value of the
training-validation set should consistently increase over
epochs, while the loss values of the training-validation set
should consistently decrease. In the current study, the FNet
architecture was trained along 50 epochs.

3 Results and discussion

The FNet architecture has been trained over 50 epochs to
classify histopathological images of colon (adenocarcinoma-

benign) and lung (adenocarcinoma-squamous cell carcinoma-
benign). Moreover, we additionally included breast (benign-
malignant) tissue cell images to validate the robustness of
proposed architecture. We put the results of this additional
experiment as an ablation study. During the training phase of
the proposed FNet architecture, accuracy and loss values are
calculated after each epoch. Finally, confusion matrices for the
classes are computed for test set The relevant representations
are observed in Figure 3 for colon, lung and breast tissue
images.

In terms of lung tissue images, all adenocarcinoma images of
lung tissues are correctly identified except 7 of them are
classified as squamous cell carcinoma. 6 of squamous cell
carcinoma are incorrectly classified as adenocarcinoma and the
rest of them are correctly discriminated. All benign tissues are
correctly identified. In terms of colon tissues, 995 out of 1000
images of adenocarcinoma are classified as benign tissue
images. Only single benign image 1is classified as
adenocarcinoma. Finally, while observing the confusion matrix
of breast tissue classification, 43 out of 495 benign are
incorrectly classified as malignant. Moreover, only 35
malignant images are incorrectly identified as benign among
1061 images. The number of images in each class for breast
tissue dataset is not balanced and proposed FNet still yields fair
performance metrics as it can be seen in Table 4.
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Figure 3. Accuracy-loss plots during the epochs of the training phase and confusion matrix during the testing phase for colon, lung
and breast histopathological images (ADC: Adenocarcinoma, SCC: Squamuos cell carcinoma, BNG: Benign tissue, MLG: Malignant

tissue).

Table 4. Performance metrics obtained from proposed deep learning architecture (ADC: Adenocarcinoma, SCC: Squamuos cell

carcinoma, BNG: Benign tissue, MLG: Malignant tissue).

Transformer Models Tissue Datasets

Performance Metrics

Best Fold

Precision ADC:0.99; SCC:0.99; BNG:1

Recall ADC:0.99; SCC:0.99; BNG:1

Lung F1-score ADC:0.99; SCC:0.99; BNG:1
Accuracy 100%

FNet Precision ADC:1; BNG:1
Number of Trainable Colon Recall ADC:0.99; BNG:1
Parameters: 580,611 Fl-score ADC:1; BNG:1

Accuracy 100%
Precision BNG:0.93; MLG:0.96
Breast Recall BNG:0.91; MLG:0.97
F1-score BNG:0.92; MLG:0.96
Accuracy 0.95%
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Table 4. Continued.

Transformer Models Tissue Datasets

Performance Metrics

Best Fold

Precision ADC:0.98; SCC:0.99; BNG:1
Lung Recall ADC:0.99; SCC:0.98; BNG:1
F1-score ADC:0.99; SCC:0.99; BNG:1
ViT Accuracy 0.99%
Number of Trainable Precision ADC:1; BNG:0.99
Parameters: 21,659,588 Colon Recall ADC:0.99; BNG:1
F1-score ADC:0.99; BNG:0.99
Accuracy 0.99%
Precision BNG:0.90; MLG:0.96
Breast Recall BNG:0.93; MLG:0.95
F1-score BNG:0.91; MLG:0.96
Accuracy 0.94%

Besides utilizing FNet architecture, classification results of ViT
are also provided as anablation study. Both deep learning
algorithms cover 3 different datasets. We can clearly observe
the superiority of FNet on different datasets and its comparison
with another transformer-based algorithm (i.e. ViT). When it
comes to computational complexity, FNet serves faster,
accurate and less complex training stage. In FNet, the number
of trainable parameters is 580,611, meanwhile, in ViT
algorithm, around 22M parameter is observed. FNet yields
more accurate results with less computational expenses.

Most of the colon and lung cancer multi-classification
approaches given in the introduction section rely on deep
learning methods and show promising levels of accuracy. In the
literature, studies on breast histopathology, as well as colon
and lung datasets, show that LIME analyses applied to test data
after machine learning-based classification consistently
demonstrate their reliability across diverse medical
histopathology datasets [36].

In the medical field, interpretability is just as crucial as
accuracy, as errors can have life-threatening consequences.
While deep learning has indeed been successful in many
disciplines, its fundamental 'black box' nature hinders its
reliability in the medical field. For reliable disease diagnosis,
the interpretability and transparency are necessary in addition
to accurately image classification. Meaningful results in this
context require large amounts of high-quality data, significant
computational burden, and efficient model architecture.
Consequently, this approach can provide competitive accuracy
along with being more interpretable and understandable.
Alongside performance metrics, a medical image classification
approach also should prioritize interpretability and
transparency, fostering user trust and adoption of the method.
Therefore, adding interpretability to deep learning models is
one of the popular research topics. In the proposed study,
applying the LIME interpretability method to train the FNet
architecture and highlight the learned regions in the images has
significantly enhanced the research value.

This approach has made the internal learning mechanisms of
the FNet architecture more understandable and interpretable,
clarifying which features and regions the model emphasizes
while learning. The use of the LIME method has increased the
interpretability of deep learning models, which are often
referred to as ‘black boxes,' particularly in image-based
learning processes, by reducing the model's complexity. Thus,
highlighting the learned regions has helped us understand the
model's decisions and learning processes more transparently,
enhancing the overall impact of the proposed method.

3.1 Evaluations of tissue images by experienced
pathologist

Mutations lead to the formation of masses composed of cells
that proliferate uncontrollably, independent of normal
physiology, and behave differently from the tissue in which
they originate, known as neoplasms or tumors. Neoplasms are
categorized as benign and malignant based on their behavior in
the organism they develop in. Malignant neoplasms tend to
cause damage at the site of development (destruction) and
show a tendency to spread to distant tissues (metastasis). They
are named according to the cell they originate from and
classified as carcinoma (of epithelial cell origin) and sarcoma
(of stromal cell origin) [37].

Lung adenocarcinoma and squamous cell carcinoma are
originated from the alveolar and bronchial epithelium of the
lung; colon adenocarcinoma is arised from the crypt epithelium
and both of these carcinomas evolved from precursor lesions.
In pathology routine, to diagnose invasive carcinoma, besides
observing abnormal cellular appearance, it is necessary to
identify the abnormal behavior of these cells structurally.
Cellular atypia is mostly evaluated by looking at the nucleus
characteristics of the cell (such as enlargement, irregular
borders, hyperchromasia, etc.). The invasion of atypical cells
beyond the basal membrane, which should confine them, into
the stroma (infiltration), along with stromal alterations
(desmoplasia), supports the diagnosis of invasive carcinoma
[38]. Pathologists evaluate tissues under the microscope using
different magnifications of objectives to assess the described
histological changes in wide areas. The areas observed in the
photo frames in this study are insufficient to observe these
histological changes. Therefore, based on the diagnosis in the
database accepted as correct by the pathologist, interpretations
have been made using a few representative images for
classification in Table 5.

In addition, the term "benign" used in the classification in the
study represents normal tissue. In squares where the texture is
correctly classified, artificial intelligence has not interpreted
the areas selected as having a normal appearance throughout
the area.

4 Conclusion

In this study, we have demonstrated the efficacy of integrating
the FNet architecture with the LIME method for the detection
of colon & lung cancer in histopathological images. The FNet
architecture, which utilizes a transformer-based approach with
a Fourier transform layer, proved to be effective in extracting
meaningful features from pathological medical images.
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The application of the LIME method further enhanced the
interpretability of the model's decisions, allowing for clearer
insights into the decision-making process of the deep learning
model.

Our experimental results indicate that the proposed deep-XAl
method achieves high accuracy in classifying different types of
colon & lung cancers. The integration of expert pathologist

evaluations with LIME outputs validated the reliability of the
model's predictions.

This methodology not only enhances cancer detection accuracy
but also offers a transparency and interpretable framework,
which is vital for clinical contexts where comprehending the
reasoning behind a model's prediction.

Table 5. Evaluations of colon and lung tissue images by experienced pathologist within LIME explanations.

Identified Tissue Image

Explanations

Colon tissue images

Correctly classified as adenocarcinoma

In this image, the kernel sizes selected by artificial intelligence are similar
and exhibit a monotonous appearance in the area. Unlike normal epithelial
cells, clustering, vesicular appearance, and prominent nucleoli stand out. By
considering these features as atypical, one could have made the correct
classification. In fact, the nuclear characteristics within the red triangle in
the photograph are more supportive for the diagnosis of carcinoma.
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It is adenocarcinoma, but misclassified as benign

Artificial intelligence may have considered this square as normal tissue due
to the low cellularity of the selected areas (marked by a circle). Additionally,
the existing nuclei in the selected area appear small and monotonous.

Lung tissue images

Correctly classified as adenocarcinoma

In this photo frame, cells in the area identified diagnostically by artificial
intelligence exhibit atypical cytological features such as enlargement, shape
and size variation, and hyperchromasia. Although no obvious invasion is
observed, accurate classification may have been made based on this
atypical appearance.

Correctly classified as squamous cell carcinoma

In the cells marked in this square with oval, nuclear enlargement,
hyperchromasia, and irregular shape are prominent. Although obvious
invasion is not observed, nuclei are more densely seen in the areas marked
by artificial intelligence.

It is benign but misclassified as squamous cell carcinoma

In this image, enlargement, hyperchromasia, shape, and size variations are
observed in the nuclei marked with circular symbols within the area
identified diagnostically by artificial intelligence. These features may be
considered as atypical findings.

0 &

80

100 120

It is squamous cell carcinoma, but misclassified as benign

In this image, areas recognized as peripheral by artificial intelligence
typically exhibit cytoplasm, with fewer instances of nuclear structures.
These nuclei are similar in size and shape, presenting a monotonous
appearance. Moreover, due to the denser presence of cytoplasm in enclosed
areas, it may be deemed as normal tissue by artificial intelligence.
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Despite the promising results, the proposed study has some
limitations. One significant drawback is the computational
complexity associated with the Fourier-Net architecture, which
may pose challenges in terms of processing time and resource
requirements, particularly with very large datasets.
Additionally, while the LIME method enhances interpretability,
it is inherently local and may not fully capture the global
behavior of the model, potentially leading to incomplete
explanations in some cases. Furthermore, the reliance on a
single dataset (LC25000) limits the generalizability of the
findings; diverse datasets with varying conditions and image

qualities are needed to validate the robustness of the proposed
method.

Overall, the integration of F-Net and LIME offers a robust and
interpretable solution for histopathological image analysis,
contributing to more effective and reliable cancer diagnosis
systems. This study lays the groundwork for future research in
developing advanced, interpretable Al systems to support
medical professionals in making informed decisions in cancer
diagnosis.

The impact of this study on existing literature is substantial. It
advances the field of medical image analysis by integrating an
effective transformer-based architecture with explainable Al
techniques, addressing the critical need for transparency in
deep learning models used in clinical settings. This approach
bridges the gap between high-performance Al models and their
interpretability, enhancing trust among medical professionals
and promoting the integration of Al into routine diagnostic
practices.

Future researches should focus on leveraging vision-based
foundation models for generating feature embeddings and
utilizing the extracted embeddings with novel classifiers to
improve classification performance. Additionally, integrating
various explainable Al techniques, such as SHAP, Grad-CAM,
and Rollout, could further enhance model interpretability and
provide deeper insights into the decision-making process.
These advancements hold the potential to create robust,
interpretable, and effective Al systems for cancer classification.
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