PAMUKKALE UNIVERSITESI MUHENDiSLiK FAKULTESI YIL : 2008
PAMUKKALE UNIVERSITY ENGINEERING FACULTY ciLt - 14

MUHENDISLiK BiLIMLERI DERGISI savi 2
JOURNAL OF ENGINEERING SCIENCES SAYFA : 125-143

AN EFFICIENT ANALYSIS FOR ABSORPTION AND GAIN
COEFFICIENTS IN ‘SINGLE STEP-INDEX WAVEGUIDE’S BY
USING THE ALPHA METHOD

Mustafa TEMIZ, Ozgiir 0. KARAKILINC, Mehmet UNAL
Pamukkale Universitesi, Mithendislik Fakiiltesi, Elektrik-Elektronik Miihendisligi Boliimii, 20020, Denizli

Gelis Tarihi : 12.09.2007
Kabul Tarihi : 17.04.2008

ABSTRACT

In this study, some design parameters such as normalized frequency and especially normalized propagation
constant have been obtained, depending on some parameters which are functions of energy eigenvalues of the
carriers such as electrons and holes confined in a single step-index waveguide laser (SSIWGL) or single step-
index waveguide (SSIWG). Some optical expressions about the optical power and probability quantities for the
active region and cladding layers of the SSIWG or SSIWGL have been investigated. Investigations have been
undertaken in terms of these parameters and also individually the optical even and odd electric field waves with
the lowest-modes were theoretically computed. Especially absorption coefficients and loss coefficients addition
to some important quantities of the single step-index waveguide lasers for the even and odd electric field waves
are evaluated.

Key Words : Normalized frequency, Normalized propagation constant, Probability, Confinement factor, Gain,
Absorption coefficient, Loss.

ALFA METODU KULLANILARAK ‘BASAMAK KIRILMA INDISLI TEI_(L_i DALGA
KILAVUZLARI'NDA SOGURMA VE KAZANC KATSAYILARINA ILISKIN
KULLANISLI BIR ANALIZ

OZET

Bu calismada, adim kirilma indisli tekli dalga kilavuzlu lazerde veya adim kirilma indisli tekli dalga kilavuzunda
hapsedilmis elektron ve delik gibi tasiyicilara ait enerji 6zdegerlerinin fonksiyonlari olan bazi parametrelere
bagli normalize frekans ve 6zellikle normalize yayilim sabiti gibi tasarim parametreleri elde edilmistir. Adim
kirtlma indisli tekli dalga kilavuzunun veya adim kirilma indisli tekli dalga kilavuzlu lazerin aktif ve gomlek
bolgeleri icin optik giic ve olasilik nicelikleri ile ilgili bazi optik ifadeler, bu parametreler cinsinden
incelenmistir. Arastirmalar bu parametreler cinsinden yapilmistir ve de teorik olarak en diisiik ¢ift ve tek modlu
optik elektrik alan dalgalar igin ayr1 ayr1 hesaplanmistir. Cift ve tek elektrik alan dalgalart i¢in, adim kirilma
indisli tekli dalga kilavuzlu lazerlerde bazi 6nemli biyiikliiklere ilave olarak ozellikle sogurma ve kayip
katsayilar1 degerlendirilmistir.

Anahtar Kelimeler : Normalize frekans, Normalize yayilim sabiti, Olasilik, Hapsedicilik faktorii, Kazang, Sogurma
katsayisi, Kayp.
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1. INTRODUCTION

To understand basic principles that govern the
operations of the step-index waveguide lasers, we
must have a basic comprehension of simple
waveguide problem. The step-index waveguide
lasers, for example, consist of 20-30 atomic layers
(Verdeyen, 1989) and have been increasingly used
to read the information stored on the compact disk.
A waveguide or waveguide laser has simply three
basic regions, as shown, schematically, in Figure 1.
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Figure 1. Regions of an ASSIWG or an ASSIWGL.

The step-index waveguide lasers produce light
thanks to the unique atomic geometry of the layered
crystals. The regions I and III in the waveguide are
called cladding layers (CLs) which are high-bandgap
layers and the region II is also called active region
(AR) which is low-bandgap layer as shown in
Figure 1. The CLs constitute two barriers which are
erected by energy (Chow and Koch, 1999).The
barriers of energy confine the carriers such as
electrons and holes with photons in the AR. To
confine most of carriers and photons between two
CLs, the waveguide is realized by the bandgap
engineering. If the width 2a of the AR is comparable
to the characteristic length such as Broglie
wavelength, then the quantum size effect (QSE)
occurs (Chow and Koch, 1999).

Heterostructure constructions are formed from the
multiple heterojunctions. If the AR with the thin
layer is used as a narrower-band material, then it is
obtained a double-heterojunction structure, as
depicted in Figure-1 which shows the regions of
asymmetric single step-index waveguide (ASSIWG)
or asymmetric single step-index waveguide laser
(ASSIWGL). The regions can be formed from
dissimilar materials, such as p-GaAs (p-type
Gallium Arsenide) and n-Al,Ga; As (n-type
Aluminum Gallium Arsenide), with x being the
fraction of aluminum being replaced by gallium in
the GaAs material.

The semiconductor materials GaAs and AlAs
(Aluminum Arsenide) have almost identical lattice
constants (Verdeyen, 1989). The notations n;, ny and
nyy in Figure-1 are indices of the regions. The usual
relationship between the indices in the three regions
is ny>np>ny;. For other material compositions of the
AR and the CLs, In; Ga,Asy Py, (Indium-Gallium-
Arsenide-Phosphate) and InP (Indium-Phosphate)
can be used, with x and y being the fractions of
gallium and arsenide being replaced by indium and
phosphate in the InP material respectively
(Carroll et al., 1998).

The SSIWG or SSIWGL is a key element for some
semiconductor quantum devices. For example, if the
waveguide structure repeats itself in a periodic
manner, it is known as a multiple quantum well,
such as super lattices and quantum cascade lasers
whose operation is based on resonant tunneling and
the population inversion between subbands. The
population inversion can be achieved by using
resonant tunneling (Harrison, 2000). Inter subband
energy difference and consequently the emission
wavelength can be tuned by changing the well and
barrier parameters.

There is no any expression in academic works about
the absorption coefficients or the gain coefficients
which are in terms of the normalized propagation
constant (NPC) for even and odd electric field waves
in the waveguides (WGs). The ASSIWG in terms of
the normalized propagation constant (NPC) and its
importance is firstly studied and then some new
expressions about the absorption, the loss and the
gain coefficients in terms of the NPC in the SSIWG
or SSIWGL are obtained for both even and odd
electric field waves. The NPC is an important

structural ~ parameter and is  given by
oa=(n, -n,)/(n, —n,) for the SSIWG or
SSIWGL. Here n 1S effective index.

2. PRELIMINARIES
Electrons or holes fall into the ARs of the

waveguides. They are within the same layer of the
material of the waveguides. Therefore, both types of
charge carriers are localized in the same region of
the space in which fast recombination occurs. One-
dimensional potential can be generally considered as
some of the standard assumptions. But generally, the
electric field wave is used in the electrical
engineering, instead of the potential. Therefore, to
constitute certain confined (bound) states for
electrons in the conduction band and holes in the
valance band of the AR material of the waveguides,
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wave functions such as electric field wave can be
employed to describe these carriers, since the
electric field wave is a special potential per unit
length (Verdeyen, 1989).

The confined (bound) states are the states where the
carriers are confined in the AR which is highly deep
well. These states for carriers in the AR of the
SSIWG can be described by the quantized even and
odd electric field waves as follows;

nmx
E, = Acosa,x = ACOSE ,n=1,3,5,...,(even) (1)

DX 0=2, 4, 6.,....,(odd) (2)
a

e . = Bsina X = Bsin
yII il

Egs.(1) and (2) promptly verify the Schrodinger
wave equation” (Pozar, 1998). The particle confining
in one-dimensional electric field wave E,, weather it
may be an electron or a hole, can move in a plane
layer. The field, which describes the particle
(electron or hole), becomes even field Ey; as a
cosine term or becomes odd field ey as a sine term.
While Schrodinger’s equation gives a solution along
the axis X, the one-dimensional electric field wave (a
special potential wave per unit length) have the
energy eigenvalues (EEVs) E,=E,, n=1, 2, 3,... .

Eyy or ey is an electric wave function, representing
the carrier of interest. The amplitudes A an B in
Egs.(1) and (2) can be given expressed as;

A = 20,
2¢ + sin2{

20,

B= |——u1
20 —sin2¢' @

3

which give the probabilities of the AR being unity
for both even and odd fields, respectively. The prime
shown on the parameters in Eq.(4) symbolize odd
field. In the SSIWG with infinitely deep well, the

“Essentially, each of Egs.(1) and (2) is phasor. For example

j(ot +
EyII (x,t) can be written as EyH(x, t) = Acosocnxej(m 2

in the complex form. That is:

EyII x,t) = Blcos(ax + ot + zP) + jsin((xHx + ot + zB) +
cos[aHx — (ot + zB)] - jsin[(xHx — (ot + zP)]

Re EyII (x,t) = Blcos[ax + (ot + zB)] + cos[ax — (ot + zP)]

,AI2=B.

energy eigenvalues (EEVs) E, for different quantum
states (Schiff, 1982) are given by

E, =n’w’h*/8m’'a’, n=1,2,3, .. ©)
where 7 and m" are normalized Planck constant as
fi=h/2m and effective mass for a carrier,
respectively. For the SSIWG having finitely depth

V,, EEVs E, (Gasiorowicz, 1974; Schiff, 1982;
Harrison, 2000) are given by

Vzhznz
—kz’ v, Il=1, 2, 3, e

EI/ :VO _En =
8ma

(©)

The integers v and n are mode numbers about the
electric field wave. Therefore, the energy eigenvalue
(EEV) of a carrier depends on the mode number. In
Eq.(6), V, in the conduction band is a barrier
potential which is determined by the construction of
the semiconductor material used (Pozar, 1998; Chow
and Koch, 1999) and characterizes the depth of the
SSIWG. The barrier potential can be also designed
by V. in the valance band as edge potential energy.
That is, in any finitely deep SSIWG, the conduction
or valance band has appearance of Figure 2b, with
the potential energy V(x), representing the
discontinuities in the conduction and valance band
edges between the different materials. That is, the
discontinuity in the conduction (or valance) band
can be represented by the constant potential term V,
(or V,). Here, V, is the valance band edge potential
energy. Hereafter, we shall take the potential barrier
V, into account in the conduction band.

As seen in Eq.(1) or Eq.(2) that o, =nzn/2a. Hence,

using this relation in Eq.(5) and Eq.(6), it can really
be evaluated (Gasiorowicz, 1974) that

a, :%sz*(vo—Ev).

Thus, in the regions I and III of the SSIWG
evanescent fields, which correspond to the even and
odd fields in the AR (in region II) (Temiz, 2001;
2002), respectively are given by;

(7

E, =Aexp[a,(x+a)], ®)
Eym = AHICXP[_am (x = a)],
A=Ay =A; =Acos{ )]

and
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e, = Bexp[a,(x +a)], (10)

e,m = Byexp [_am (x- a)] »B, =B, =B, =Bsin{ (11)

The parameter { and the propagation constants oy, oy
and oy (Gasiorowicz, 1974; Temiz, 2002) in the
above equations are given by

C=oua (12)
and
2 2 on 2 2
a, =B, —(—)" =B, -k, , (13)
C
2 on 2 2 2
Oy =(_H)2 _Bz =ku _Bz > (14
C
2 2 wn 2 2
oy =B, —( 111)2 =B, —ky > 15)
C
k="t=kn, k,=2t=kn, (6
C C
wn
ky =—"=k,ny. amn
C
ko = w/c = 2n/A (18)

Where k,, k,, A and o are the free space wave
vector, wave number, the wavelength and angular
frequency of the optical field, respectively.

B, in Eqgs.(13)-(15) represents the phase constant.
The fields Ey; and ey;, i=LILIII, propagate with phase
factor exp(-jB,z) in the z-direction. We consider the
nature of the modes as a function of the phase
constant P, at the angular fixed frequency ®. The
conditions kj<p,<ky; and kp<p,<kj are obtained by
choosing the refractive indexes as ny<n;<n;. These
chosen refraction indexes make the right-hand side
of the propagation constants oy, oy and oy in
Eqgs.(13)-(15) real. In this case, the right-hand sides
of Eqgs.(13)-(15) will really become as real
quantities.

The mode number of a confined field depends on the
values of nj, ny, ny, the wavelength A and the
thickness of the AR of the SSIWG. The parameters
above defined in Eqgs.(12)-(18) belong to the
ASSIWG shown in Figure 1. Assuming now
n=ny=ngy, then the ASSIWG becomes single
symmetric step-index waveguide (SSSIWG) [or

ASSIWG  becomes SSSIWGL] as well as
a=oy=ary. Therefore, the evanescent electric
expressions in Egs.(8)-(11) can be obtained as given
below;

EyI,III = ALIIIeXp[iaI,III(X T a)] ) (19)

€y = Brm€Xp I:iaI,III (x* a)] , (20)

Where

o, =p (g g 2 Oy (21)
C

LI > LI
C

Cladding layers (CLs)

Asy

y —
I X (I) (¢ 89) (I1T)

ng Nk N

Active region
(AR)

Figure 2a. Three basic regions of the ASSIWG, (b)
The variation of one-dimensional potential energy
V(x).

The positive and negative signs in Eqs.(19) and (20)
correspond hereto region I and III respectively.

In this method if the indices of the regions, the
thickness 2a of the AR and the wavelength A for the
SSSIQWL are given, the NPC a is obtained.
Absorption and gain coefficients, such as a lot of
quantities of the waveguide, have obtained in terms
of the NPCs a in even and odd fields, directly.

Therefore, we will study the ASSIWG, SSSIWG or
SSSIWGL, the properties of the optical threshold
absorption coefficients, the absorption coefficients,
the threshold gain coefficients, the gain coefficients,
the threshold losses of the SSSIWG or SSSIWGL,
the threshold power gains and the power gains in
terms of the NPC a for even and odd electric field
waves in the SSSIWG or SSSIWGL in this given
alpha (o) method. Figure 3 shows the electrical field
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variations in the CLs and AR of the SSSIWGL for
A=1.55x10"° m, a=4000 A° n;=n, ;;=3.5, n;=3.7.
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200 <1500
100 -2000 o .
1} 5000 0O a 1 15 2
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Figure 3. Electrical fields variations in the CLs and
AR of the SSSIWGL.

3. SOME KEY PARAMETERS

For even and odd fields in the SSIWG the
eigenvalue equations (Temiz, 2001; 2002) is given
by,

n/C = tang, (22)
and
n'/{'= —cot{' (23)

respectively where (, and m are defined by
{=o0ya=Vcos{ and n=0,a=Vsin{ for even
field in Eq.(1), and similarly, {' and n' are also
defined by {'=a'ya=V'sin{ and n'=a'\na=V'cos(' for
odd field in Eq.(2). These are parametric variables of
the EEVs of the carriers (Iga, 1994; Temiz, 2001) in
the SSIWG and therefore can be used as variables
for the EEVs in the normalized coordinate systems
{m and {'-n' for even and odd fields, respectively.
The parameters (£, n) and (£, ') of these normalized
coordinate systems form separately circles with the
radius V and V' as;

which are called the normalized frequencies (NFs)
for even and odd fields respectively. The radii given
in Eq.(24) can also be expressed as;

24)

V=(ahn2m'V, V=(a/hn2m V. (25)

in terms of the structural parameters of the used
material of the SSIWG (Temiz, 2001; 2002). In
Eq.(25), m*, V,, V,' and % represent the mass of the
carrier, the barrier potentials for even and odd fields
and the normalized Planck constant respectively. We
must remember that the primes in these formulas
represent the odd mode symbolically. Another
alternative form (Iga, 1994) of Eq.(25) is given as;

2n 2 2 2m 2n
V:7a1/nll —n, ITanH\/?A:TaNA, (26)

2
(A= ny2-Nypy _ Dy-Nyy )
2n,? My

as the radius of the circle, as shown in Figure-4
(Temiz, 2001; 2002). The symbol A and the
abbreviation NA in Eq.(26) are normalized index
difference (usually expressed in percent) and
numerical aperture respectively. The approximation
of A arises from the assumption that ny is very close
in value to nyy. as reported elsewhere (Iga, 1994).
NF V is calculated from given indices ny, ny, ny; as
shown in Eq.(26). The NF V embodies the structural
parameters of the SSIWG and is function of the
wavelength A, the length a and the NA, as shown in
Eq.(26).

The normalized propagation constants (NPCs) a and
o' for even and odd fields are defined by

a=n’/V’ =sin’C, 27
a'=n"/V*=cos( (28)
respectively as reported in the literature

(Temiz, 2001; 2002).

Figure 4. The coordinate points of the EEVs of the
charged carriers in the normalized coordinate system
¢ in a SSSIWG or SSSIWGL (dotted lines belong
to odd field).
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Eqs(27) and (28) give the other parameters L and
L' as

L=1-a={/V: =cos’¢=a, (29)
and
L'=1-da'=¢"/vV?=sin’=a (30)

respectively. The parametric variables , ', 1 and 1’
can therefore be expressed (Temiz, 2001; 2002) as
follows;

(=Vii—a=VJL, 31
c=Vi-a'=Vii-L = Vi (32)
and

n=Vva, (33)
n'= Vo = viyL (34)

The parameters L and L' characterize the depth of
the SSSIWG or SSSIWGL for even and odd fields
respectively. Eqs.(26)-(34) impose that the NF V is
equal to V' in the same SSIWG or SSSIWGL for
given indices. Therefore, the NF V=V' yields only
one NPC in the same SSSIWG or SSSIWGL. That
is, the parameters , {' and n, n' for even and odd
fields become identical quantities, resulting as {=C,
n=n', since V=V' and o=a' in the same SSSIWG or
SSSIWGL.

4. SOME PROBABILITY RATIOS OF
EVEN AND ODD FIELDS IN THE
REGIONS OF THE ASSIWGL

A field function probability ratio, R, can be defined
as the ratio of the total evanescent field function
probability I;, (Ii+]y), in the region I and III to the
active field function probability (Ij;) in the AR in the

ASSIWGL. For even mode, R is expressed as;

I [ [E y(OEy, (x)*} dx + E[E (E (x)*] dx

L —R==%=

I _Ta[E (OE (0" dx

_ :ﬁ[Ey,(XH)Z} dx+ZnEm(x)2]dx -
I |E, o[ Jax

or

L[(x)+1,(x)

R = (36)
1)
where
a ) B )

L= [[E, 0 dx, 1, = J[E, )] dx, (37)

and
o 2
IIII = J‘EyIII (X)‘ dx (38)

are field function probabilities in the regions I, II
and III respectively in the ASSIWGL. If we consider
Ey=Ey=Ey i in the ASSIWGL, then we obtain
SSSIWGL [See Eq.(19)] and consequently the field

function probability ratio R as;

2] [E o OB 1 (0 Jax  J[E (O 1 (0 Jax

R=—L=-4 =

ZZ 6, OB, (%) Jax

(f [E JI (x)E o (X)# ]dx

(39

or

[[E 0] dx
R-_t=—a (40)

In a 2

_[Eyn (x))‘ dx

0
where

ot 2 a 2
L = [|E, 0| dx, 1, = 2£|Eyn ®| dx @n

are field function probabilities in the regions I or III
and II in the SSSIWGL respectively.

By repeating the same procedure and conditions for
odd mode, we can have the probability ratio T as

—a

| e, (Ve ; (%) * ] dx + T [e o (0 gy (X) * ] dx

S VR
' I'II _T leyu (x)e yi (X)*de
—a 2 = 1 2
4 Meﬂ ® _]d" * iﬁf’ ] Jo 42)
T ikl s
or
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I ®+I',; x)
I

(43)

T=
s

in the ASSIWGL. Similarly, if we get ey=ey=eym
in the SSSIWGL [See Eq.(20)], we obtain the field
function probability ratio T as;

o ZJ[ (e, (00 Jdx _ J Wfdx
U 2ffe, (e, 0 Jdx  fle, (0] dx

I'I.HI = J’eyI,HI(X)eyI.IH (X)dX ? (45)

I, = _ajeyn (e, (dx = zieyn (e, (0dx . (46)

A lot of simple mathematical operations give the
probabilities of the some electric field wave
components as;

a )
I, =] E,(0E,(x)dx=A, 20, (47)
1 H 2
I'=] e, (X)e, (x)dx=B, R2a,, (48)
I, = IEyH (®E,; (x)dx
a a 2
=2 £ E (OB, () dx= 2{ B,y (0 dx=1, (49)
Iy = Je (e, (x)dx
a a 2
= 2‘!;6)/lI (e, (x)dx = 2£‘eyu (x)‘ dx =1, (50)
< 2
Ip= J. EyIII (X)EyIII (x)dx= Ay 120 > 61y
, < 2
IIII = Ieylll(x)eylll (X) dx= BIII /2(1111 4 (52)
for ASSIWGL and
o0 2
ILm = -[EyI,III (X)EyLm (X) dx= ALIH /ZaI,HI ’ (53)
hos 2
I Lm I eyl,m (X)eyI,IH (x)dx = BLIII / 20*1,111 » (54)
for the SSSIWGL by reminding the integral

t, = f|Eyj|2dx of even field Ey; and t; = f|eyj|2dx

for odd field, j=I, I, IIL. That is, t; or tj represents
physically the probability of finding an electron or a
hole in dx interval at the jth region of the SSIWL for
even or odd field, respectively.

Consequently, using Eqs.(47), (49) and (51) in
Eq.(36) yields the field function probability ratio R
as;

I, 20 L 1

/
—L=R= —— (—+—).
I 20, +sin2(, 2n,

(55)

for even field in the ASSIWGL, representing
abscissa (. and ordinate m. of the EEV for the
carriers. Using Egs. (48), (50), (52) in Eq.(43) in the
same way gives us also the field function probability
ratio T as;

20 L' 1 1
L,

PO (56)
20, —sin2C, 27,

r, _
'—' =TI =
Iy

for odd field or since V=V', a=a', L=L', n=n' and
C=C'in the same SSSIWGL,

2¢,L 1 1
. (—+—).

— (57)
20, —sin2l, 2n,  2ny,

r, _
Ly
The optical loss probability function I, (I'}) for even

(odd) field flows through the CLs (Figure 5) in the
ASSIWGL.

X A
LucI'w
h
(111
a
LI . V(x
< > @ _O,lu(ln—» >V
a
L
Q)
* LIy

Figure 5. Different field function probabilities in the
ASSIWGL in the alpha (o) method.

5. ASYMMETRIC FACTOR AND ITS
AFFECTS

After a lot of mathematical manipulations, the
variables (., n; and ny in Eq.(55) for even field in
the ASSIWG are obtained as;
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k NA
ge=a"2 Ja-a+ fiva,)y
\
= \/(l—a)(1+,/1+ap)2 , (58)
N, =ak, NAJI-(1-a)(1A) 1+ fl+a) . (59)

ak /NA
Nu = B

\/4(1+ap)—(1—(x)(1+ 1+a,)> . (60)

Where NA=(n/-n})"”, V=k.aNA. If we get

n, =ny, =n,,, then we have a,=0 [see Eq. (66)]

and v=V,.= 1(051NAC = kcam

NA=NA,, =@, —n,,")"”. The variables ., M

and n'yy in Eq.(56) for odd field in the ASSIWG are
also obtained as:

and

g = KoaNA Ja-oa+ fiva,)y
= — a
e 2 P
\% -
= \/(l—a')(1+ fixa), (61)
W =ak NA1-(1-a)(U4)1+ [T+a, )* (62)

, ak NA .
M= \/4(1+ap)—(1—a)(1+,/1+ap)2.(63)

Eqs.(48) and (49) can give the geometrical average,
i.e. for even field, as

N, = 1/2)[n +n,’] (64)
or a lot of manipulations give
ne:V\/%[l—(l—a)(IM)(H 1+a,)"]+...
,.%[4(1+ap)—(1—a)(1+ 1+a,)’] (65)

The asymmetric factor a, (Bhattacharya, 1998) in
Eqgs.(58)-(65) is given by

2 2
n, —n
| 1
a,=—F5—7 (66)
oy, —n;
Remembering that a,=0 yields the condition

ni=ny;=ny; for the SSIWGL. It is useful to note that
Eq.(64) yields to ne=nym=n. for N=nm=n;m=n. in the
SSIWGL. Also, if it is taken as a,=0 then Eqs.(58)
and (65) give following variables,

C.=C=Vl-a, Ne=n=Va (67
for even field and we have

¢.=via, q.=vil-a, (68)
or taking Egs.(29)-(34) into account it can be
written;

¢.= v = viL, (69)
7. =V1-L = viyL = ViWa (70)

for odd field in the SSSIWGL. That is, for example,
we can take that V=V' and a=a' for even or odd field
in the same SSSIWGL. Therefore, for the same
SSSIWGL, we can write Eq.(68) as;
¢.=¢=VVL. . =n.=Va. (71)
Here note that the variables ., m. and ., m. are
parametric coordinates of the EEVs for carriers in
the SSSIWGL, respectively. The variables . and 1,
in the ASSIWGL for n=3.350, ny=3.351 are plotted
in Figure 6. By taking the asymmetric factor a, in
Eq.(66) into account, we see that the larger
difference (nj-nyy) is, the larger the variables (. and
MNe are, as shown in Figure-6 (also see Figure 7). That
is, as the asymmetric factor a, increases, the two
variables (. and 1. increase non-linearly. It is
obvious to note that the variables {.=5.6274x10"
and 1=2.1217x10"" for the SSSIWGL (a,=0) are
constants on the vertical axis, as shown in Figure-6.
The constants . and n. correspond to the refractive
index N=0=1ng .

™
1
i e
[N
s |
a6 . e
cc .
0.4+
oo
S 05 1 15 2 25 3
a, Axis
Figure 6. The variations of the parametric

coordinates (. an 1. against to the asymmetric factor
a, in the ASSIWGL for n=3.350, n;=3.351.
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For n=4.5, n;=4.8 the variables (. and n, are also
plotted Figure-7. It is obvious to note that the
variables Q.:9.4312x10'15 and nC=9.5530x10‘16 for
the SSSIWGL (a,=0) on the vertical axis are
constants which correspond to the refractive index
n=ny=n 1y, as shown in Figure 7.

14

Lo &

Axes

nap -

Figure 7. The variations of the parametric
coordinates . and m. against to the asymmetric
factor a, in the ASSTWGL for a=14 A°, A=1.55 um,
n=4.5, ny;=4.8 and convenient constant values
.=9.4312x10™" and 1,=9.5530x10" on the vertical
axis.

If it is taken as NENm=Nrm and N'=N'm=N'1w=n' in
the SSSIWGL, then using Egs.(49) and (53) in
Eq.(40) gives the field function probability ratio R
as;

Rolo_l-a
I, n+o

(72)

In the same way, using Eqgs.(50) and (54) in Eq.(44)
yields also the field function probability ratio T as;

T, 1-a
T 73)
I, n-—-a
or in the same SSSIWGL
T 1-
T= & = « . (74)
I n-a

I

We desire the optical field function probability Ij; or
I'y being unity for even or odd field, in the AR,
respectively. Therefore, in the SSSIWGL for even
and odd fields, substituting Eqs.(1) and (2) into
Eqgs.(49) and (50) yields respectively Ij; and I'y as

sin2
Iy = A%(a+ —C) =AW,

75
20y )

and

I, =B (a-02 _ prwy

76
20, ° (76)
giving
W, = g+ 302 (77)
20,
W, =g 3026 (78)
20

o

Eqs.(77) and (78) are called the optical effective
mode widths for even and odd fields, respectively
(Kazarinov and Belenky, 1995). These widths take
the leakage of the electric field wave function into
account in forbidden regions classically. Note that
the comparison of Egs.(3) and (4) with Eqgs.(75)-(76)
yields Ij; and I'y as unity for the same SSSIWGL
(obtaining (={', n=n, since V=V' and a=a').

The output probabilities I, and I', are given by

IL=1,-d+,)=1,-1, (79)
where

I=I1+I, (80)
I, =T, ~(I,+,)=T,-T,, (81)
I, =1 +I, (82)

in which I, and I, are the loss probabilities
(Figure 5). It is important to remind that if these
probabilities are divided by electromagnetic
impedance of the relevant region then we obtain the
optical electromagnetic field power of the relevant
region.

6. LOSS PROBABILITIES RELEVANT
TO LOSS POWERS OF EVEN AND
OLD FIELDS IN THE ASSIWGL AND
SSSIWGL

Taking Eq.(49) into account, Eq.(55) yields the loss
probability
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20, L 11

(=)
2C, +sin2{, 2n,

I (83)

for even field, and also taking Eq.(50) into account,
Eq.(56) gives the loss probability

I'l :42C6.L (L_{_i)
2C'e _Slnzg'e 2n1 2nm

for odd field in the ASSIWGL. From Eqgs.(83) and
(84), we obtain

(84)

L 1 L l1-a
I, =— -~ = = (85)
nl+n/Vv n+oa n+a
) 1 L 1-0a
I, =— o= = (86)
nl+n/V n'+a  n'+a’
by taking n=n=n.m=n.=n and {=C in the
SSSIWGL. Eq.(86) becomes
1-a
r,= 87)
- n+a
in the same SSSIWGL.

7. INPUT PROBABILITIES IN THE
ASSIWGL AND SSSIWGL

The input probabilities I; and I relevant the input
powers (Gasiorowicz, 1974; Temiz, 2002) in the
ASSIWGL in Figure-5 are generally defined as

=0+ +I, =1, +I, (88)

=[E,;(0E,; (x)dx + IEYI (XE, (x)dx +

.I.EyIII (X)EyIII (Xﬁx ’ (89)

a

or

L =1+£+£=1+I/ (90)
' 20, 20,

for even field and

[p=T 0 40y =T+, 2y

= ja'eyn ®e,, (x)dx + Teyl (x)e, (x)dx +

I e (X ey X )dx (92)
or
['=1+B +B/ =141 93)

20, 200,

for odd field. In the SSSIWGL I; and I'; have become
as follows:

L= ZIE (E , (x)dx + 2jE W (OB, (0dX (94)
or

[=1, 421, =1, +1, (95)
for even field and

I = 2je e, dx +2[e  (x)e,, (x)dx  (96)
or

I=T1 421, =T +T, 97)

for odd field. At the end, referring to Eqs.(49) and
(50), we obtain I; and I; as;

L =2flE, (of dx+1,=1, +1 =141, ©98)
1 I 2
I'=2fle,, (x) dx+T =T, +I =1+T, 99)
0
or the probabilities Ij; and I'y
a 2
I, =1 -1, =2f[E, (x) dx. (100)
0
I,=1I,-T,=2ffe,, (x)dx. (101)
0

in the AR. Referring to Egs.(1) and (2), evaluating
the integrals in Eqs.(100) and (101) enables us to
calculate as;

I, =1 -1, =2A>cos’ (a,x)dx = A’ (a +S;L2C) =1 (102)

il

I, =T —T', = 2B’ sin’ (a,x)dx = B*(a- S;“—%) =1(103)
0

o

Which are in agreement with Eqgs.(75)-(78). In
addition, after from performing the integrals of
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Egs.(94) and (96), we obtain the following
equations:
Ay 20 + sin2(
+ sin
Ii _tum [0‘1_111 . +1]
(. 2a,c08°C
2
A i +1
_Aum [ nz 2¢ + sin2¢ i1 = n (104)
oy cosg 2¢ n+a
B 2(-sin
— sin
= = [0y ot 1]
O ZU,HSII'I C
2 . ' _ '
_ B, [ .nz 2L —sin2¢ 1= n+1 '2(1 (105)
a, sin’C 2 I-a
or in the same SSSIWGL
r=1=2 (106)
and
IH = Az[a+21 sin2(q‘a)]:Az[a+2£€sin2(;} (107)
I',= 132[a—21 sin(an)]ZBz[a—zicsin(ZQ (108)

1

It is seen that using Eqgs.(3) and (4) into Eqs.(76) and
(76) gives respectively the constants A and B as;

A =1/ yW_, (109)
B=1/JW, . (110)

We see from Eqs.(109), (110) that the amplitudes of
even and odd fields vary with the optical effective
width of the SSSIWGL and indirectly the
propagation constant oy;.

8. SOME SPECIAL PARAMETERS
AND CONFINEMENT FACTORS
RELEVANT TO THE REGIONS OF
THE ASSIWGL AND SSSIWGL

_ — 1,
Probability ratio K can be defined as =

(Temiz, 2002). Just as, the ratio of the loss
probability to the input probability for even field can
be obtained as;

L _R=[A 20+ A, 120, M1+ A+ A ] (111
I 20, 20

in the ASSIWL. Eq.(111) yields

K=1l-o 1

= _ (112)
n+1 1+1/R

for the SSSIWGL. Also the probability ratio q for

odd field in the ASSIWG (Temiz, 2002) can be
defined as;

I —_— 2 2 2 2
I—,* =q=[B,/20,+B20,1/[1+B, /20, +B, 2a,

(113)
which gives

L_g= 170 ! (114)
0 14n=2a . 1
I 1+n—2a 14
T
for the SSSTWGL.

For the ASSIWGL, the confinement factor (CF) Fy
(Temiz, 2002) for even field in the region II is
defined and calculated as;

I ’ ’

T =F=1/1+ A +A¢]. (115)

Ii 2(XI 2(11[1

Eq.(115) yields

r,=2m_ K gl (116)
1+n R R

for the SSSIWGL. In the same way, for the
confinement factor for odd field (Temiz, 2002) in
the region II is also defined and calculated as;

I' B .2
—n_ F' =11 m
r L "2 ]

B/’

117
20, (17

1 1

for the ASSIWGL and therefore, from Eq.(117) we
obtain

- 1 _ g
=—1= - -1-g=- 118
A n=2a et e
or
n—a
= 119
' 1+n-20 (1)
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for the SSSIWGL. Thus, we have (Temiz, 2002) the
relations

K+TI' =1,

I

q+A, =1 (120)
Here remember again that the prime denote the
parameters for odd field symbolically. The
parameters K in Eq.(112), T’y in Eq.(116), @ in
Eq.(114), and Ay in Eq.(1119) have been used to
represent the some special probability ratios and the

confinement factors for even and odd fields in the
SSSIWGL, respectively.

We can generally define the confinement factors for
regions of the ASSIWG, representing them by F;, Fy
and Fy;. Just as, the confinement factors for regions I
and III of the ASSIWG in Figure-5 can be given as

£=FI A e A
I 20, 20,
L
_ (121)
%(2@ +5in20) + L(1+n,/n,)

+ Am2 ]

20,

m

and

I 2
L-F, =A7m/[1+
L 20, 2a,

L

20,

I

Alz + lAm2 ]

(122)

R .
% (2¢ +sin20) + L(1 + 1, /m,)

for even field. Also, in the similar way we can
obtain respectively

¥ _B’

/[1+E+E
20,

20, 20,

L
= (123)

L T .
?(2g—sng )+L(+n, MmYy)

and

Iv 2 2 2
g =By e BO LB
20, 20,

L
=— (124)
n TS Co
TIH (2C-sin2¢) + L(1+n'y, M)

I'I ! 2'(xlll

for odd field. By denoting the confinement factors in
the SSSIWGL with I'y and I'yy; for the regions I and
IIT respectively, if it is taken as m=n=n,m=n, then
Eqgs.(121)-(124) give the relations

—K (125)

A=A, =A,=

I L

1
-q (126)
2

noting that the confinement factors for the regions I
and III are equal to each other as I';=I'y=I";; and

A=Ap=A;;m for even and odd fields in the
SSSIWGL, respectively.

It is here important to say that the sums of the
confinement factors Fy, Fyy and Fy; (F,,F; andF'})

for even (odd) field is equal to unity. Therefore, can
be written

F +F

' +E =1 (127)

F +F +F =1 (128)

in the ASSIWGL (Kazarinov and Belenky, 1995).

For the SSSIWGL, we can also obtain
(Kazarinov and Belenky, 1995) the relation

r+r, +0 =T +20 =1 (129)
or

M =0-T)2=Kn (130
and

A FAp+Ay =A+2A =1 (131)
or

Ay = (I-A)2=792. (132)

Note that Eqs.(130) and (132) give the confinement
factors in the CLs, for the regions I and III in the
SSSIWGL, in terms of the confinement factors I’y
and Ay in the AR or the probability ratios K and g
of related regions
respectively.

for even and odd fields
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9. ABSORPTION COEFFICIENTS
AND GAIN COEFFICIENTS

Important parameters for the characterization and
simulation of the laser are the threshold absorption
coefficient and the threshold gain coefficient. To see
the influence of many-body effects in the SSIWG,
we can compute the threshold absorption
coefficients and absorption coefficients, the
threshold loss coefficients, the threshold power gain
coefficients and power gain coefficients, the
threshold power gains, the power gains for even and
odd electric field waves.

Here, ki, k; (k' k';) in the ASSIWG or k; ; (k'; 3) in
the SSSIWGL are defined as absorption coefficients
in even (odd field) in the regions I and III for the
ASSIWGL or SSSIWGL, respectively. It is
generally evident that the total absorption coefficient
in the ASSIWGL can be respectively given by

k=kF +k,E +k,F, (133)
for even field and
k'=k' F +k,F +k,F (134)

for odd field (Bhattacharya, 1998). Taking k=0 and
k'=0 in the SSSIWGL give respectively k,=-g;, and
k'»=-g'n (Bhattacharya, 1998) and therefore we get
consequently as;

k,F, +k,F, (135)

=gk

k' F,+k',F,=¢,F;. (136)
which give the threshold conditions. Here, g,Fj; and
g'wF'y are called the threshold modal gain for even
and odd fields in the ASSIWG respectively. The
parameter g (g'w) is the threshold gain coefficient

which is described by the structural properties of the
SSSIWGL for even (odd) field (Bhattacharya,

:5 and
R

1998). Remembering that, g=1-A, T

|

q
Ay ==

r
and a=a' into account in the same SSSIWGL, we
obtain the threshold absorption coefficient from

Eq.(135) in even field as;

and taking the equations {=C', n=n', V=V'

km,,, — gmru = gmru
2r

Lm

— glIvFII :&: _kz

(137)

I-T’ K R R

and from Eq.(136) in the odd field as

o —EuA 8N g A g, Tk
A 1-A q T

Lm u

(138)

Note that Eqgs.(137) and (138) give threshold
absorption coefficients in terms of the confinement
factors for even and odd fields in the regions I and
II for the SSSIWGL, respectively. Also, the
threshold absorption coefficient for even or odd field
becomes function of the threshold gain coefficient
respectively.

10. GAINS AT THE THRESHOLD
CONDITIONS IN SSSIWGL FOR
EVEN AND ODD FIELDS

The absorption coefficient k depends on the
population difference (N;-N,) between the lower
energy level E; and the upper energy level E, in a
two-level laser system. Ny and N, are the electron
densities in the lower and upper energy levels,
respectively. Generally, for E;>E; and N;>N,, the
absorption coefficient k is positive. This represents a
SSSIWGL with loss. In this case, there is
attenuation. At the population inversion, N,>Nj, the
absorption coefficient k becomes negative. This case
corresponds to the amplification in the SSSTWGL.

The losses in the SSSIWGL can occur due to carrier
absorption and scattering at defects and
inhomogeneities and other nonradiative transitions.
These absorption coefficients (losses) for the regions
I and III have been described by a, and a3 (a;=03) in
the SSSIWGL in ref. (Bhattacharya, 1998) as
a+az+I'y=1, in which 'y represents the confinement
factor of the region II of the SSSIWGL. Remember
that we have represented the absorption coefficients,
the confinement factors with k; (k'), F; (F}), i=I, II,
I and with k; 3 (k'; 3), I't (A'y) for even (odd) field
in the regions in the ASSIWGL and SSSIWGL
respectively.

As the rate of stimulated emission increases in the
AR, the round-trip gain in the cavity overcomes the
losses and the lasing begins. For even (odd) field the
gain at which this occurs is called the threshold gain
coefficient gy, (g'yn). The laser modes emerge at the
threshold gain. The optical effect width in Eq. (77)
or (78) is the thickness where optical mode extends
for even or odd field. As it has been seen, the
threshold case is an important passing point in the
gain profile.
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The light intensity or small-signal power gain after
traveling on the length 2/ ¢ of a waveguide is

generally given by

2g -

)
G=G,[RR,)e

8ol (139)
Where G, is the initial intensity (Verdeyen, 1989), g
(g") and g, (g',) are respectively the gain coefficient
and the total loss coefficient in the cavity per unit
length for even (odd) field. If g>Ig | (g'>Ig',l), the
intensity grows and the SSSIWGL gives net
amplification for even (odd) field. Therefore, when
the round-trip gain exactly is equal to the loss at the
threshold, G=G,, we have

2 - l
1=RR,e 0 ~[gon L (140)
which yields the relation
1 1
o 4l L (141)
glh golh 2,€g IIRIR2

for even field (Verdeyen, 1989). In the same way we
obtain

. 1 1

g.-8 0.,,"‘27&1“ RR.

(142)

for odd field. Eq.(141) [Eq.(142)] denotes that the
total loss at the right hand side is equal to the
threshold gain coefficient gy, [g'y] at the left hand
side for even (odd) field. The second term on the
right hand side of Eq.(141) or Eq.(142) denotes the
useful laser output (Bhattacharya, 1998). The gl'y
and gy (g'An and g'wAp) are respectively called
modal gain and threshold modal gain (Kazarinov
and Belenky, 1995) for even (odd) field. The
threshold modal gains are obtained as;

g Iy =(0-Tk = Kk

1,3th

(143

1,3th

gy Ay =U0-Ay )k'l,SLh =qk (144)

'
1,3th

from Eqgs.(130), (135) and Eqgs.(132), (136) for even
and odd fields, respectively. Taking the equations

and
g A =(I-AK, =Tk, =g' +-In_ L (146)
‘ ‘ ‘ " 20, RR,
or so we have the only threshold gains
1 1 _
8 =—""U=-T k5 =—Kk ;,
1 1 (147)
=— (g, +—1
r, @3, "rx)
and
[ 1 '
g _7(1_/\11)1(1%
AI]
1 1 1 1
=—qk 3 =—(gu+——In (148)
AII ’ iy Zg g RIRZ
g

Using Egs. (112) and (114) in Eqgs.(145) and (146),
we have the efficient threshold gain coefficients in
terms of absorption coefficients or some parameters

of the same SSSIWGL such as g, (g',), Eg , Ry and
R, for even (odd) field as;

! gk Loy
8n = BKyyy T 13th
Iy
1+a 1
= (golh In ) (149)
n+a 20 R,
and
g' th ak'],f&lh =
1
I-a I-a 1 1
—k = (g +——In . (150)
n-o 1.3th n_a(goth Zlfg Rle)

It is evident that Eqs.(149) and (150) are also
functions of the NPC o and/or NF V.

The threshold loss in the SSSIWGL having
parameters g, (g'), £ .» Riand R, is given by

; . 1 1
(=C', n=n', V=V' and o=0' into account in the same g, =g, [, ——In =(1-T))k,.,
SSSIWGL, we can write, (Bhattacharya, 1998), 2¢, RR,
1 1 = 1 1

_ —In =KKk,,, ———In (151)

8o Iy = (=T Dk, 5, =Kk, 20, RR, o 2t, RR,
1 1

=g.t 20 In RR (145) or the efficient expressions
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= 1 1 1-a

golh 1,3th 2€k ln R‘RZ T] +1 1.3th
1 1
- In— 152
27 In RR (152)

in terms of the NPC a or

7 1 1 l-a
g = k1.3m _jl Ri = f+1 th
1 1
= 153
57 lnR,R (153)

in terms of NPC o and NF V for even field. In the
same way for odd field we have

1 1
= A ——1In =(1_An)k'|3m
g =8, % RR, .
1 1 1 1
N | =gk’ . — In—— 154
2/ "RR, 'm0 "RR, (59
or
' n_a ] 1 1
h:7 !h_iln
So S in—2a°" 27, "RR,
S LU VR (155)
l+n—-20 "™ 2,
in terms of the NPC a or
A 1 !
—1In
goh =& i 2, RR,
_ 1 1
=gk’ In
q 1,3ht 2/5 Rle
n-o 1 1
= ———1In
1+1-2a 20, RR,
l1-a , 1 1

In (156)

= 71( —_
1+ VAL =24 ™" 20,

in terms of the NPC o and NF V.

In the SSSIWGL with active length £ . of the AR at

the threshold conditions, we get threshold power
gain expressions as;

4 . r?t
Gm:egm 1—‘u € :e[g(l 1—‘u)knm —e f Kn _e‘ 2 ‘ £ (157)

for even field and

G _eégg'm Ay
th —

1
— e‘(gk 2 Ay

_ eég(l_ Ay )k‘mlh _ eéqu‘mm

(158)

for odd field (Verdeyen, 1989; Iga, 1994). Now, we
obtain the efficient threshold gain expressions

I-a I-a ‘K.
G, =e K e+l T Vel T (15
G' =e"gak‘|3m=
1-a 1-a
LK., ——tk,
eltn=-2a ° ’ :e1+v‘/f_2“ o (160)

in terms of the NPC a, threshold absorption
coefficients k; 3, (k'j 3) and NF V for even and odd
fields in the same SSSIWGL. Therefore, we can
respectively write for gain expression as;

1-a 1-a Ik

g3

G=e A n+1 T Watl (161)

1-o , 1-a ,

—1,1 g 13t kaxz
G.:eﬂqu,ﬁ:elm—m :el+V@—2a‘ T (162)

for even and odd fields, in the same way.

In this new approach it has been seen that the
threshold gain coefficients in Eqs.(149), (150) which
are also in terms of the threshold absorption
coefficients, the threshold losses in Eqs.(153), (155)
in the same SSSIWGL, threshold power gains in
Eqgs.(159), (160) and power gains in Eqs.(161), (162)
for even and odd fields have been obtained in terms
of the NPC a as the efficient expressions in the alpha
(o) method.

Just as, now we can give an example for n;=3.351,
n=3.350, a=50 A°, A=1.55 x10°® m (E =0.05 m).
We obtain V=0.00165915890946443 in Eq(26),

0=2.75279818295989x10° in Eq(27),
1.=0.99999724720182 in Eq(29),
(=0.00165915662579804 in Eq(31),
1=2.75280323490291x10° in Eq(33),
R =1.816326993736504x10° in Eq(72),

I1=5.505586262067127x10° in Eq(116),

K =0.99999449441374 in Eq(112). It is seen that
there is only single mode since V<1.57 (Iga, 1994).

We obtain the threshold absorption coefficients from
using Eqs.(112) and (114) into Egs.(159) and (160)
for even and odd fields respectively as;
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_InG, (1+minl_ (1+VYa)nl
e XK f(-e) (-0

(163)

_InG,, _ (1+n-20)Inl_(1+Vya-2)n]
ey ¢,(1-0) ¢, (1-0)

1

L (164)
K

for the same SSSIWGL. Also, using Eqs.(163) and
Eq.(164) into Eqgs.(149) and Eq.(150), gives the
threshold gain coefficients for even and odd fields
respectively as:

InG
g, =—0b (165)
EgFH
0, - InG,, (166)
Z AII
g

in the SSSIWGL. Note that since logarithm In1=0
here, for example, we can get the Gy, and G'y, as a
double precision (fairly little fraction after decimal
point) such as Gy=G'y,=1.000000000000001. The
grater this precision is, the grater truths of founded
results are also. Just as, if we get Gy as

G,=1.000000000000001, l ¢ =0.05

I'=3.623281563416194x107 and

K =0.99996376718437, we have the threshold
absorption and gain coefficients as
K 30=2.220458274174882x10™* m' and
—k,=g;,=4.033078301849409x10° m" in Eq.(163)
and in Eq.(165), respectively. Consequently, we see
that the threshold condition in discussed that
Eq.(140) is satisfied by Eq.(157) for the absorption
coefficient k; 35, and gain coefficient gy as shown

for m,

14 _ l
that G, =e0 T e 2 Tne _1 00000000000000
for these found results in even field.

It is obvious that there are not the values of the
parameters r, q;y and Ay for odd field since V<1.57.

At the threshold, we can obtain the total threshold
loss of the material of the SSSIWGL for even field
as;

lnGlh 1 1

1y
¢, 20 "RR.

gu= (167)

by using Eq.(163) into Eq.(153) and for odd field as;

by using Eq.(164) into Eq.(156). For example, for
G,=1.000000000000001, R;=0.999 and R,=0.995,

fg=0.05 m Eqgs.(167) gives the threshold losses

2on=-1.503260539059904x10*  m' in  the
SSSIWGL.

_ 1 1
g, =8 +2—£p111 RR.

~ L1 =1.503300869842922x10* and
20 'RR,

2 - {
=R R E Yo in Eq(40)  yields
0.99401994299813. So, smaller the difference of
gn-Zomn 1S, Eq(140) is approaches 1. This case is
determined by R; and R,.

in Eq(141) gives

8u-8u

g oth

The multimode corresponds to the case V>1.57
(Iga, 1994). Therefore, there are more modes in the
following example, since V>1.57.

As a matter of fact, now we can give another
example for V=2 which gives
0=0.734843732945432, L=0.26515626705457,
(=1.02986652932226 and n=1.71446053666503,
R =0.10825778991384, T =0.27067345726183,
I'i=0.78698425176433, Ap=0.78698425176433,
K =0.09768285943856, q=0.21301574823567.
There are also the parameters T, q and Ay for odd

field, since V>1.57 with R, K and T'yy. That is, in
this example there is only one mode for each of even
and odd fields for V=2.

We can give second example for odd field here. For
fg =0.05 m and A; =0.78698425176433 and

q=0.21301574823567, if we get Gy as

G=1.000000000000001, we have calculated the
threshold absorption coefficient and threshold gain
coefficient as k'; 3,=1.042385864726654x10™"° m™
and  -k)=g',=2.821461858064267x10"* m" in
Eqgs.(164) and (166), respectively. We see also that
the threshold condition in discussed Eq.(140) is
satisfied by Eq.(160) for these threshold absorption
k'i 3 and threshold gain coefficient g'y, coefficient
for odd field, as easily shown that

whnle _ KAy

G\ = e®

these found results.

=1.00000000000000 for

Our results of this work are suitable found results in
ref. (Popescu, 2005). Because, for values
A=0.5145x10° m, np=1.55, n=157, 2a=1

g = th —Lln 1 (168) um.=10000 A® in ref.. (Popescu, 2005), we have
"y 20, RR, achieved normalized frequency as

¢ V=3.0506106640935 in our method. Whereas, V has
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given by Popescu as 3.05061, as shown in ref.
(Popescu, 2005). It is seen that the normalized
frequency V found in our method is more sensitive
than  the normalized frequency in  ref
(Popescu, 2005).

Thus, we have seen from the samples above that
Eq.(140) is numerically satisfied by found results for
even and odd fields at the threshold. In fact, to
initiate oscillation fast, it is generally pumped by 4
times threshold gain coefficient (Verdeyen, 1989)
such as 4gy, practically and so the modal gain at the
beginning becomes bigger than the threshold modal
gain gL'y or g'wAnr.

11. GAIN COEFFICIENTS AND
LASER GAIN FOR EVEN AND ODD
FIELD IN SSSIWGL

Taking Eqs.(137), (138) and Eqgs.(149), (150) into
account, the absorption coefficients or gain
coefficients at the outside of the threshold condition
can be in the similar way written as;

I T T
k= _fn B £ (169)
ZFI.III 1'FH K R
and
k'],3 = g‘AH = g‘AH = g'lh AH :% (170)
AI.III 1'AH q r
or for amplification
1 _—
-k, = g=—Kk,, (171)
1—‘II -
and
1
-k,=g=—aqak\, (172)
A .

for even and odd electric field waves, respectively.
On the other hand, using Egs.(169) and (170) into
Egs.(161) and (162) gives the gain coefficients in
terms of the power gains

g= 1nG (=-k, for amplification)

{1

g I

(173)

and

InG'

g=
ngII

( =-k', for amplification) (174)

in the SSSIWGL at any absorption or gain level for
even and odd electric field waves, respectively.

Note that Egs. (171) and (172) give respectively gain
coefficient in terms of NPC a and absorption
coefficient for related regions I and III for even and
odd electric field waves in the same SSSIWGL.
Figure 8 and Figure 9 show the ratios of absorption
coefficients to the gain coefficients in terms of NPC

k173 _n+(1_ 1

o for n=1.71446053666503 as —= — and
g l-a R
k' -
B _N~¢ :l in even and odd fields,
g l-o T

respectively. The relations of absorption coefficients
and the gain coefficients for even and odd fields are
important two formulas of the efficient results. The
ordinate 1n=1.71446053666503 corresponds to
abscissa (=1.02986652932226 of the energy
eigenvalue of the electrons in the normalized
coordinate system (-n for V=2, as given above
example. Note that the curves in Figure 8 and Figure
9 of the lowest modes for even and odd fields are
fairly different in amplitudes of the ratios of
absorption coefficients to the gain coefficient.

o

1 A

Figure 8. The curve of the ratio of absorption
coefficient to the gain coefficient against NPC a in
even field.

For fg =0.05 K =0.09768285943856,

q=0.21301574823567, I'n=0.78698425176433,

An=0.78698425176433, and laser gain G=G'=2000,
the absorption coefficients and the gain coefficients
for even and odd fields are obtained from Eqs.(161),

m,
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(162) and Egs.(173), (174) as
k; 5=1.556240778214087x10° m’,
k' 3=7.136469976983041x10” m’ and
—k,=g=1.684751872232560x10" m’ and

-k',=g'=1.931653001315258x10> m’', respectively.
Just as, we can see that the found these gain
coefficients g and g' give the found absorption
coefficients k;3 and k'y35, in Eqgs.(169), (170)
respectively. These calculations confirm accuracy
and sensibility of this alpha (¢)) method.

Figure 9. The curve of the ratio of the absorption
coefficient to the gain coefficient against NPC o in
odd field.

12. RESULTS

In this work, firstly the parametric variables { and 1
of the EEVs for carriers and some probability ratios
and the confinement factors in terms of these
variables for the ASSIWG have been obtained. Also,
we have got some probability ratios and the
confinement factors in terms of NPC a or NF V for
the SSSIWGL.

It has been shown that these parametric variables {
and 1 vary non-linearity for the ASSIWGL. They are
constants on the vertical axis for the SSSIWGL as
shown in Figure-6 and Figure-7, respectively.
Furthermore, as efficient expressions, the threshold
absorption  coefficients, the threshold gain
coefficients, the threshold power gains and the
power gains for each of even and odd field have
been evaluated in terms of parametric variables {
and m, the NPC O or NF V, individually. On the
other hand, the total loss of the region expressions in
threshold conditions in terms of the NPC a for both
the even and the odd fields were obtained.

Initially, some special probability ratios, the
confinement factors and some special relations of
the quantities for the same ASSIWGL and
SSSIWGL for both the even and odd fields have

particularly been obtained. Besides the threshold
absorption  coefficients, the threshold gain
coefficients, the threshold total losses, the threshold
power gains, the power gains expressions, the
absorption coefficients, the gain coefficients for the
same SSSIWGL have also obtained initially in terms
of the NPC a during this theoretical alpha (o)
approach. These are all efficient and important
expressions and hence it can be argued that the alpha
(o) approach presents an efficient method, especially
for the design considerations in this field.

It must also noted that the threshold gain coefficients
give the threshold power gains almost as a unity
(with very precision) in the SSSIWGL.

On the other hand, in case if the length Y4 g of

waveguide, reflection coefficients R; and R,,
expected gain G of the waveguide are given, then the
absorption coefficients, the gain coefficients, total
losses of the device and the ratios of the absorption
to the gain coefficients for even and odd fields in the
SSSIWGL can theoretically be evaluated efficiently
by means of the proposed o approach.
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