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ABSTRACT 
 
 

In this study, some design parameters such as normalized frequency and especially normalized propagation 
constant have been obtained, depending on some parameters which are functions of energy eigenvalues of the 
carriers such as electrons and holes confined in a single step-index waveguide laser (SSIWGL) or single step-
index waveguide (SSIWG). Some optical expressions about the optical power and probability quantities for the 
active region and cladding layers of the SSIWG or SSIWGL have been investigated. Investigations have been 
undertaken in terms of these parameters and also individually the optical even and odd electric field waves with 
the lowest-modes were theoretically computed. Especially absorption coefficients and loss coefficients addition 
to some important quantities of the single step-index waveguide lasers for the even and odd electric field waves 
are evaluated. 
 
Key Words : Normalized   frequency,    Normalized    propagation    constant,   Probability,    Confinement    factor, Gain, 
                        Absorption coefficient,  Loss. 

 
 

ALFA METODU KULLANILARAK ‘BASAMAK KIRILMA İNDİSLİ TEKLİ DALGA 
KILAVUZLARI’NDA SOĞURMA VE KAZANÇ KATSAYILARINA İLİŞKİN 

KULLANIŞLI BİR ANALİZ 
 
 

ÖZET 
 
 

Bu çalışmada, adım kırılma indisli tekli dalga kılavuzlu lazerde veya adım kırılma indisli tekli dalga kılavuzunda 
hapsedilmiş elektron ve delik gibi taşıyıcılara ait enerji özdeğerlerinin fonksiyonları olan bazı parametrelere 
bağlı normalize frekans ve özellikle normalize yayılım sabiti gibi tasarım parametreleri elde edilmiştir. Adım 
kırılma indisli tekli dalga kılavuzunun veya adım kırılma indisli tekli dalga kılavuzlu lazerin aktif ve gömlek 
bölgeleri için optik güç ve olasılık nicelikleri ile ilgili bazı optik ifadeler, bu parametreler cinsinden 
incelenmiştir. Araştırmalar bu parametreler cinsinden yapılmıştır ve de teorik olarak en düşük çift ve tek modlu 
optik elektrik alan dalgaları için ayrı ayrı hesaplanmıştır. Çift ve tek elektrik alan dalgaları için, adım kırılma 
indisli tekli dalga kılavuzlu lazerlerde bazı önemli büyüklüklere ilave olarak özellikle soğurma ve kayıp 
katsayıları değerlendirilmiştir. 
 
Anahtar Kelimeler :  Normalize    frekans,   Normalize  yayılım sabiti,  Olasılık,  Hapsedicilik faktörü,   Kazanç, Soğurma 
                                      katsayısı, Kayıp. 
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1. INTRODUCTION 
 
 

To understand basic principles that govern the 
operations of the step-index waveguide lasers, we 
must have a basic comprehension of simple 
waveguide problem. The step-index waveguide 
lasers, for example, consist of 20-30 atomic layers 
(Verdeyen, 1989) and have been increasingly used 
to read the information stored on the compact disk. 
A waveguide or waveguide laser has simply three 
basic regions, as shown, schematically, in Figure 1. 
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Figure 1. Regions of an ASSIWG or an ASSIWGL. 
 
The step-index waveguide lasers produce light 
thanks to the unique atomic geometry of the layered 
crystals. The regions I and III in the waveguide are 
called cladding layers (CLs) which are high-bandgap 
layers and the region II is also called active region 
(AR) which is low-bandgap layer as shown in  
Figure 1. The CLs constitute two barriers which are 
erected by energy (Chow and Koch, 1999).The 
barriers of energy confine the carriers such as 
electrons and holes with photons in the AR. To 
confine most of carriers and photons between two 
CLs, the waveguide is realized by the bandgap 
engineering. If the width 2a of the AR is comparable 
to the characteristic length such as Broglie 
wavelength, then the quantum size effect (QSE) 
occurs (Chow and Koch, 1999). 
 
Heterostructure constructions are formed from the 
multiple heterojunctions. If the AR with the thin 
layer is used as a narrower-band material, then it is 
obtained a double-heterojunction structure, as 
depicted in Figure-1 which shows the regions of 
asymmetric single step-index waveguide (ASSIWG) 
or asymmetric single step-index waveguide laser 
(ASSIWGL). The regions can be formed from 
dissimilar materials, such as p-GaAs (p-type 
Gallium Arsenide) and n-AlxGa1-xAs (n-type 
Aluminum Gallium Arsenide), with x being the 
fraction of aluminum being replaced by gallium in 
the GaAs material.  

The semiconductor materials GaAs and AlAs 
(Aluminum Arsenide) have almost identical lattice 
constants (Verdeyen, 1989). The notations nI, nII and 
nIII in Figure-1 are indices of the regions. The usual 
relationship between the indices in the three regions 
is nII>nI>nIII. For other material compositions of the 
AR and the CLs, In1-xGaxAsy P1-y  (Indium-Gallium-
Arsenide-Phosphate) and InP (Indium-Phosphate) 
can be used, with x and y being the fractions of 
gallium and arsenide being replaced by indium and 
phosphate in the InP material respectively                
(Carroll et al., 1998). 
 
The SSIWG or SSIWGL is a key element for some 
semiconductor quantum devices. For example, if the 
waveguide structure repeats itself in a periodic 
manner, it is known as a multiple quantum well, 
such as super lattices and quantum cascade lasers 
whose operation is based on resonant tunneling and 
the population inversion between subbands. The 
population inversion can be achieved by using 
resonant tunneling (Harrison, 2000). Inter subband 
energy difference and consequently the emission 
wavelength can be tuned by changing the well and 
barrier parameters. 
 
There is no any expression in academic works about 
the absorption coefficients or the gain coefficients 
which are in terms of the normalized propagation 
constant (NPC) for even and odd electric field waves 
in the waveguides (WGs). The ASSIWG in terms of 
the normalized propagation constant (NPC) and its 
importance is firstly studied and then some new 
expressions about the absorption, the loss and the 
gain coefficients in terms of the NPC in the SSIWG 
or SSIWGL are obtained for both even and odd 
electric field waves. The NPC is an important 
structural parameter and is given by 
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nnnnα −−=  for the SSIWG or 

SSIWGL. Here efn  is effective index. 

 
 

2. PRELIMINARIES 
 
 

Electrons or holes fall into the ARs of the 
waveguides. They are within the same layer of the 
material of the waveguides. Therefore, both types of 
charge carriers are localized in the same region of 
the space in which fast recombination occurs. One-
dimensional potential can be generally considered as 
some of the standard assumptions. But generally, the 
electric field wave is used in the electrical 
engineering, instead of the potential. Therefore, to 
constitute certain confined (bound) states for 
electrons in the conduction band and holes in the 
valance band of the AR material of the waveguides, 
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wave functions such as electric field wave can be 
employed to describe these carriers, since the 
electric field wave is a special potential per unit 
length (Verdeyen, 1989). 
 
The confined (bound) states are the states where the 
carriers are confined in the AR which is highly deep 
well. These states for carriers in the AR of the 
SSIWG can be described by the quantized even and 
odd electric field waves as follows; 
 

a2

xn
AcosxAcosE IIyII

π
α == ,n=1, 3, 5,...,(even)   (1) 

 

a2

xn
BsinxBsin αe IIyII

π
== ,n=2, 4, 6,...,(odd) (2) 

 
Eqs.(1) and (2) promptly verify the Schrödinger 
wave equation∗ (Pozar, 1998). The particle confining 
in one-dimensional electric field wave Ey, weather it 
may be an electron or a hole, can move in a plane 
layer. The field, which describes the particle 
(electron or hole), becomes even field EyII as a 
cosine term or becomes odd field eyII as  a sine term. 
While Schrödinger’s equation gives a solution along 
the axis x, the one-dimensional electric field wave (a 
special potential wave per unit length) have the 
energy eigenvalues (EEVs) Ex=En, n=1, 2, 3,... . 
 
EyII or eyII is an electric wave function, representing 
the carrier of interest. The amplitudes A an B in 
Eqs.(1) and (2) can be given expressed as; 
 

   
sin2ζ2ζ

2α
A II

+
=             (3) 

 

   
sin2ζ'2ζ'

2α
B II'

−
=             (4) 

 
which give the probabilities of the AR being unity 
for both even and odd fields, respectively. The prime 
shown on the parameters in Eq.(4) symbolize odd 
field. In the SSIWG with infinitely deep well, the 

                                                
∗Essentially, each of Eqs.(1) and (2) is phasor. For example 
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in the complex form. That is:  
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energy eigenvalues (EEVs) En for different quantum 
states (Schiff, 1982) are given by 
 

2*222

n /8mπnE ah= ,  n=1, 2, 3, ...                       (5) 

 
where h  and m* are normalized Planck constant as 

h / 2= πh  and effective mass for a carrier, 
respectively. For the SSIWG having finitely depth 
Vo, EEVs Eν (Gasiorowicz, 1974; Schiff, 1982; 
Harrison, 2000) are given by 
 

2*

222

no

8m

πν
EVE

a

h
=−=ν , ν, n=1, 2, 3, ...  .             (6) 

 
The integers ν and n are mode numbers about the 
electric field wave. Therefore, the energy eigenvalue 
(EEV) of a carrier depends on the mode number. In 
Eq.(6), Vo in the conduction band is a barrier 
potential which is determined by the construction of 
the semiconductor material used (Pozar, 1998; Chow 
and Koch, 1999) and characterizes the depth of the 
SSIWG. The barrier potential can be also designed 
by Vc in the valance band as edge potential energy. 
That is, in any finitely deep SSIWG, the conduction 
or valance band has appearance of Figure 2b, with 
the potential energy V(x), representing the 
discontinuities in the conduction and valance band 
edges between the different materials. That is, the 
discontinuity in the conduction (or valance) band 
can be represented by the constant potential term Vo 
(or Vv). Here, Vv is the valance band edge potential 
energy. Hereafter, we shall take the potential barrier 
Vo into account in the conduction band.  
 

As seen in Eq.(1) or Eq.(2) that =IIα nπ/2a. Hence, 

using this relation in Eq.(5) and Eq.(6), it can really 
be evaluated (Gasiorowicz, 1974) that  
 

)E(V*2m
1

α voII −=
h

.           (7) 

 
Thus, in the regions I and III of the SSIWG 
evanescent fields, which correspond to the even and 
odd fields in the AR (in region II) (Temiz, 2001; 
2002), respectively are given by; 
 

[ ]yI I I E A exp α (x ) ,= + a           (8) 

 

[ ]yIII III III E A exp α (x )= − − a , 

 

I III I,IIIA A A Acosζ= = =            (9) 

 
and 
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[ ]yI I I e B exp α (x ) ,= + a         (10) 

 

[ ]yIII III III e B exp α (x )= − − a ,
I III I,IIIB B B Bsin= = = ζ (11) 

 
The parameter ζ and the propagation constants αI, αII 

and αIII (Gasiorowicz, 1974; Temiz, 2002) in the 
above equations are given by 
 

aIIαζ =            (12) 

 
and 
 

 ,)(
2

I

2

z

2I2

z

2

I kβ
c

ωn
βα −=−=         (13) 

 

2

z

2

II

2

z

2II2

II βkβ
c

ωn
α )( −=−= ,        (14) 

 

2

III

2

z

2III2

z

2

III kβ
c

ωn
βα )( −=−= ,        (15) 

 

Io
I

I nk
c

ωn
k == ,      IIo

II
II nk

c
ωnk ==          (16) 

 

IIIo

III

III nk
c

ωn
k == ,                                             (17) 

 
2π/λω/cko ==            (18) 

 
Where ko, ko, λ and ω are the free space wave 
vector, wave number, the wavelength and angular 
frequency of the optical field, respectively. 
 
βz in Eqs.(13)-(15) represents the phase constant. 
The fields Eyi and eyi, i=I,II,III, propagate with phase 
factor  exp(-jβzz) in the z-direction. We consider the 
nature of the modes as a function of the phase 
constant βz at the angular fixed frequency ω. The 
conditions kI<βz<kII and kIII<βz<kII are obtained by 
choosing the refractive indexes as nIII<nI<nII. These 
chosen refraction indexes make the right-hand side 
of the propagation constants αI, αII and αIII in 
Eqs.(13)-(15) real. In this case, the right-hand sides 
of Eqs.(13)-(15) will really become as real 
quantities. 
 
The mode number of a confined field depends on the 
values of nI, nII, nIII, the wavelength λ and the 
thickness of the AR of the SSIWG. The parameters 
above defined in Eqs.(12)-(18) belong to the 
ASSIWG shown in Figure 1. Assuming now 
nI=nIII=nI,III, then the ASSIWG becomes single 
symmetric step-index waveguide (SSSIWG) [or 

ASSIWG becomes SSSIWGL] as well as 
αI=αIII=αI,III. Therefore, the evanescent electric 
expressions in Eqs.(8)-(11) can be obtained as given 
below; 
 

yI, III I, III I, III E A exp α (x ) = ± ± a ,        (19) 

 

yI, III I, III I, III e B exp α (x ) = ± ± a ,        (20) 
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Figure 2a. Three basic regions of the ASSIWG, (b) 
The variation of one-dimensional potential energy 
V(x). 
 
The positive and negative signs in Eqs.(19) and (20) 
correspond hereto region I and III respectively. 
 
In this method if the indices of the regions, the 
thickness 2a of the AR and the wavelength λ for the 
SSSIQWL are given, the NPC α is obtained. 
Absorption and gain coefficients, such as a lot of 
quantities of the waveguide, have obtained in terms 
of the NPCs α in even and odd fields, directly. 
 
Therefore, we will study the ASSIWG, SSSIWG or 
SSSIWGL, the properties of the optical threshold 
absorption coefficients, the absorption coefficients, 
the threshold gain coefficients, the gain coefficients, 
the threshold losses of the SSSIWG or SSSIWGL, 
the threshold power gains and the power gains in 
terms of the NPC α for even and odd electric field 
waves in the SSSIWG or SSSIWGL in this given 
alpha (α) method. Figure 3 shows the electrical field 
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variations in the CLs and AR of the SSSIWGL for 
λ=1.55x10-6 m, a=4000 Ao nI=nI,III=3.5, nII=3.7.  
 

 
 

Figure 3. Electrical fields variations in the CLs and 
AR of  the SSSIWGL. 

 
 

3. SOME KEY PARAMETERS 
 
 

For even and odd fields in the SSIWG the 
eigenvalue equations (Temiz, 2001; 2002) is given 
by, 
 
η/ζ tanζ= ,           (22) 

 
and 
 

'ζζ' cot/η' −=            (23) 

 
respectively where ζ, and η are defined by 

IIζ α Vcosζ= =a  and I,IIIη α Vsinζ= =a  for even 

field in Eq.(1), and similarly, ζ' and η' are also 
defined by ζ'=α'IIa=V'sinζ' and η'=α'I,IIIa=V'cosζ' for 
odd field in Eq.(2). These are parametric variables of 
the EEVs of the carriers (Iga, 1994; Temiz, 2001) in 
the SSIWG and therefore can be used as variables 
for the EEVs in the normalized coordinate systems 
ζ-η and ζ'-η' for even and odd fields, respectively. 
The parameters (ζ, η) and (ζ', η') of these normalized 
coordinate systems form separately circles with the 
radius V and V' as; 

 
22
ηζV += ,  22 ''' ηζV +=         (24) 

 
which are called the normalized frequencies (NFs) 
for even and odd fields respectively. The radii given 
in Eq.(24) can also be expressed as; 
 

o
*V ( / ) 2m V= ha , oV'*2mV )/(' ha=    (25) 

in terms of the structural parameters of the used 
material of the SSIWG (Temiz, 2001; 2002). In 
Eq.(25), m*, Vo, Vo' and h  represent the mass of the 
carrier, the barrier potentials for even and odd fields 
and the normalized Planck constant respectively. We 
must remember that the primes in these formulas 
represent the odd mode symbolically. Another 
alternative form (Iga, 1994) of Eq.(25) is given as; 
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as the radius of the circle, as shown in Figure-4 
(Temiz, 2001; 2002). The symbol ∆ and the 
abbreviation NA in Eq.(26) are normalized index 
difference (usually expressed in percent) and 
numerical aperture respectively. The approximation 
of ∆ arises from the assumption that nII is very close 
in value to nI,II. as reported elsewhere (Iga, 1994). 
NF V is calculated from given indices nI, nII, nIII as 
shown in Eq.(26). The NF V embodies the structural 
parameters of the SSIWG and is function of the 
wavelength λ, the length a and the NA, as shown in 
Eq.(26).  
 
The normalized propagation constants (NPCs) α and 
α' for even and odd fields are defined by 
 

ζ2sin==
22

/Vηα ,          (27) 

 

ζ'2
cos==

22
/V'η'α'            (28) 

 
respectively as reported in the literature               
(Temiz, 2001; 2002). 
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Figure 4. The coordinate points of the EEVs of the 
charged carriers in the normalized coordinate system 
ζ-η in a SSSIWG or SSSIWGL (dotted lines belong 
to odd field). 
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Eqs(27) and (28)  give the other parameters L and 

'L  as  
 

2 2L 1 α ζ /V= − = ζ
2cos= =α' ,         (29) 

and  
22 '/'α'1L' Vζ=−= ζ

2sin= =α         (30) 

 
respectively. The parametric variables ζ, ζ', η and η' 
can therefore be expressed (Temiz, 2001; 2002) as 
follows; 
 

LVα1Vζ =−= ,          (31) 

 

αV'L'1V''α1V'ζ' =−=−=         (32) 

 
and  
 

αVη = ,           (33) 

 

LV'α'V'η' ==           (34) 

 
The parameters L and L' characterize the depth of 
the SSSIWG or SSSIWGL for even and odd fields 
respectively. Eqs.(26)-(34) impose that the NF V is 
equal to V' in the same SSIWG or SSSIWGL for 
given indices. Therefore, the NF V=V' yields only 
one NPC in the same SSSIWG or SSSIWGL. That 
is, the parameters ζ, ζ' and η, η' for even and odd 
fields become identical quantities, resulting as ζ=ζ', 
η=η', since V=V' and α=α' in the same SSSIWG or 
SSSIWGL.  

 
 

4. SOME PROBABILITY RATIOS OF 
EVEN AND ODD FIELDS IN THE 

REGIONS OF THE ASSIWGL 
 
 

A field function probability ratio, R , can be defined 
as the ratio of the total evanescent field function 
probability Il, (II+IIII), in the region I and III to the 
active field function probability (III) in the AR in the 
ASSIWGL. For even mode, R  is expressed as; 
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are field function probabilities in the regions I, II 
and III respectively in the ASSIWGL. If we consider 
EyI=EyIII=EyI,III in the ASSIWGL, then we obtain 
SSSIWGL [See Eq.(19)] and consequently the field 
function probability ratio R  as; 
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are field function probabilities in the regions I or III 
and II in the SSSIWGL respectively.  
 
By repeating the same procedure and conditions for 
odd mode, we can have the probability ratio r  as  
 

[ ] [ ]
[ ]∫

−

∫+∫
−==

∞−

∞
a

a

a

a

dx
*

(x)(x)ee

dx
*

(x)(x)eedx
*

(x)(x)ee

r

yIIyII

yIIIyIIIyIyI

III'

I'
l

[ ] [ ]
[ ]∫

∫+∫
=

−

∞−

∞−

a

a

a

a

dx(x)e

dx(x)edx(x)e

2

yII

2

yIII

2

yI

        (42) 

 

or 
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II

IIII

I'

(x)I'(x)I'
r

+
=            (43) 

 

in the ASSIWGL. Similarly, if we get eyI=eyIII=eyI,III 
in the SSSIWGL [See Eq.(20)], we obtain the field 
function probability ratio r  as; 
 

[ ]

[ ] ∫

∫
=

∫

∫
=

∞∞

=
a

a

a

a

0

2

yII

2

IIIyI,

0

*

yIIyII

*

IIIyI,IIIyI,

xx

xx

xxx

xxx
r

d)(e

d)(e

d)()e(e2

d)()e(e2

II
I'

I'
l (44) 

 

xxx d)()e(eI' IIIyI,IIIyI,IIII, ∫=
∞

a

,        (45) 

dx(x)(x)eedx(x)(x)eeI' yIIyIIyIIyIIII ∫=∫=
aa

0a-

2 .        (46) 

 

A lot of simple mathematical operations give the 
probabilities of the some electric field wave 
components as; 
 

dx (x)(x)EEI yIyII ∫=
∞−

-a

= I

2

I 2αA / ,         (47) 

 

dx (x)(x)eeI' yIyII ∫=
∞−

-a

= I

2

I 2αB / ,         (48) 

 

dx (x)(x)EEI yIIyIIII ∫
−

=
a

a

 

= dx(x)E2dx(x)ExE2
0

2

yII
0

yIIyII   )( ∫=∫
aa

=1,            (49) 

 

dx (x)(x)eeI' yIIyIIII ∫=
a

a-

 

= xx2xxx2 d)(e d)()e(e
0

2

yII
0

yIIyII ∫=∫
aa

=1,        (50) 

 

dxxExEI  )()( yIIIyIIIIII ∫=
∞

a

= III

2

III 2αA / ,        (51) 

 

dxxx  )()e(eI' yIIIyIIIIII ∫=
∞

a

= III

2

III 2αB / ,        (52) 

 

for ASSIWGL and  
 

dx (x)(x)EEI IIIyI,IIIyI,IIII, ∫=
∞

a

= IIII,

2

IIII, 2αA / ,               (53) 

 

dx (x)(x)eeI' IIIyI,IIIyI,IIII, ∫=
∞

a
= IIII,

2

IIII, 2αB / ,        (54) 

 

for the SSSIWGL by reminding the integral 

dxEt
2

yjj ∫=  of even field Eyj and dxet
2

yjj ∫=′  

for odd field, j=I, II, III. That is, tj or t'j represents 
physically the probability of finding an electron or a 
hole in dx interval at the jth region of the SSIWL for 
even or odd field, respectively.  
 
Consequently, using Eqs.(47), (49) and (51) in 

Eq.(36) yields the field function probability ratio R  
as; 
 

III

I
l

= )
2η

1

2η

1
(

sin2ζ2ζ

L2ζ
R

IIIIee

e
+

+
= .        (55) 

 
for even field in the ASSIWGL, representing 
abscissa ζe and ordinate ηe of the EEV for the 
carriers. Using Eqs. (48), (50), (52) in Eq.(43) in the 
same way gives us also the field function probability 
ratio r  as; 
 

II'

'

I

I
l

= )
2η'

1

2η'

1
(

sin2ζ'2ζ'

L'2ζ'
r

IIIIee

e
+

−
=         (56) 

 

for odd field or since V=V', α=α', L=L', η=η' and 
ζ=ζ' in the same SSSIWGL, 
 

II'

'

I

I
l

= )
11

(
IIIIee

e

2η2ηsin2ζ2ζ

L2ζ
r +=

−
.        (57) 

 

The optical loss probability function Il (I'l) for even 
(odd) field flows through the CLs (Figure 5) in the 
ASSIWGL.  
 

 

      IIII ( 'I III) 

x 

Io 

 a 

  -a 

(I) 

III ( 'I II) 

(III) 

II( 'I I) 

(II) 
V(x) 0   Ii ( i

'I ) 

 
 

Figure 5. Different field function probabilities in the 
ASSIWGL in the alpha (α) method. 

 
 

5. ASYMMETRIC FACTOR AND ITS 
AFFECTS 

 
 

After a lot of mathematical manipulations, the 
variables ζe, ηI and ηIII in Eq.(55) for even field in 
the ASSIWG are obtained as; 
 



An Efficient Analysis for Absorption and Gain Coefficients in Single Step-Index Waveguides…, M. Temiz, Ö. Ö. Karakılınç, M. Ünal 
 

Mühendislik Bilimleri Dergisi  2008  14 (2) 125-143 132 Journal of Engineering Sciences 2008  14 (2) 125-143    
 

eζ = ok NA

2

a
2

p(1 α)(1 1 a )− + +  

=
V

2
2

p(1 α)(1 1 a )− + + ,         (58) 

 

2
I o pk NA 1 (1 α)(1/4)(1 1 a )η = − − + +a ,         (59) 

 

2o
III p p

k NA
4(1 a ) (1 α)(1 1 a )

2
η = + − − + +

a
.  (60) 

 

Where 2 2 1/ 2

II I
NA (n n )= − , V=koaNA. If we get 

I III I,IIIn n n= = , then we have ap=0 [see Eq. (66)] 

and V=Vc

2

IIII,

2

IIoco nnkNAk −== aa  and 
2 2 1/ 2

I,III II I ,III
NA NA (n n )= = − . The variables ζ'e, η'I 

and η'III in Eq.(56) for odd field in the ASSIWG are 
also obtained as: 
 

eζ' =
2

NAk oa 2
p(1 α')(1 1 a )− + +  

=
V

2
2

p(1 α')(1 1 a )− + + ,         (61) 

 

2
I o pk NA 1 (1 α')(1/4)(1 1 a )′η = − − + +a ,        (62) 

 

2o
III p p

k NA
4(1 a ) (1 α')(1 1 a )

2
′η = + − − + +

a
. (63) 

 

Eqs.(48) and (49) can give the geometrical average, 
i.e. for even field, as 
 

2 2

e I III
η (1/2)[η η ]= +           (64) 

 

or a lot of manipulations give 
 

2
e p

1
η V [1 (1 α)(1/4)(1 1 a ) ]

2
= − − + + +K  

2
p p

1
[4(1 a ) (1 α)(1 1 a ) ]

8
+ − − + +K          (65) 

 

The asymmetric factor ap (Bhattacharya, 1998) in 
Eqs.(58)-(65) is given by 
 

2

I

2

II

2

III

2

I
p

nn

nn
a

−

−
=           (66) 

 
Remembering that ap=0 yields the condition 
nI=nIII=nI,III for the SSIWGL. It is useful to note that 
Eq.(64) yields to ηe=ηI,III=ηc for ηI=ηIII=ηI,III=ηc in the 
SSIWGL. Also, if it is taken as ap=0 then Eqs.(58) 
and (65) give following variables, 
 

eζ = cζ V 1 α= − , eη = cη V α=          (67) 
 

for even field and we have 
 

α'V'ζ'c = , α'-1V'η'c = ,        (68) 

 
or taking Eqs.(29)-(34) into account it can be 
written; 
 

LV'α'V'ζ'c == ,          (69) 

 

αV'L'V'L-1V'η'c ===          (70) 

 
for odd field in the SSSIWGL. That is, for example, 
we can take that V=V' and α=α' for even or odd field 
in the same SSSIWGL. Therefore, for the same 
SSSIWGL, we can write Eq.(68) as; 
 

c cζ' ζ V L= = , c cη' η V α= = .         (71) 

 
Here note that the variables ζe, ηe and ζc, ηc are 
parametric coordinates of the EEVs for carriers in 
the SSSIWGL, respectively. The variables ζe and ηe 
in the ASSIWGL for nI=3.350, nII=3.351 are plotted 
in Figure 6. By taking the asymmetric factor ap in 
Eq.(66) into account, we see that the larger 
difference (nI-nIII) is, the larger the variables ζe and 
ηe are, as shown in Figure-6 (also see Figure 7). That 
is, as the asymmetric factor ap increases, the two 
variables ζe and ηe increase non-linearly. It is 
obvious to note that the variables ζc=5.6274x10-15 

and ηc=2.1217x10-17 for the SSSIWGL (ap=0) are 
constants on the vertical axis, as shown in Figure-6. 
The constants ζc and ηc correspond to the refractive 
index nI=nIII=nI,III. 
 

 
 
Figure 6. The variations of the parametric 
coordinates ζe an ηe against to the asymmetric factor 
ap in the ASSIWGL for nI=3.350, nII=3.351. 
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For nI=4.5, nII=4.8 the variables ζe and ηe are also 
plotted Figure-7. It is obvious to note that the 
variables ζc=9.4312x10-15 and ηc=9.5530x10-16 for 
the SSSIWGL (ap=0) on the vertical axis are 
constants which correspond to the refractive index 
nI=nIII=nI,III, as shown in Figure 7. 
 

 
 

Figure 7. The variations of the parametric 
coordinates ζe and ηe against to the asymmetric 
factor ap in the ASSIWGL for a=14 Ao, λ=1.55 µm, 
nI=4.5, nII=4.8 and convenient constant values 
ζc=9.4312x10-15 and ηc=9.5530x10-16 on the vertical 
axis. 
 

If it is taken as ηI=ηIII=ηI,III and η'I=η'III=η'I,III=η'  in 
the SSSIWGL, then using Eqs.(49) and (53) in 

Eq.(40) gives the field function probability ratio R  
as;  
 

αη

α1

I

I
R

II +

−
== l .          (72) 

 

In the same way, using Eqs.(50) and (54) in Eq.(44) 
yields also the field function probability ratio r  as;  
 

III'

(x)I'
r l

=
1-α'

η' α'
=

−
,          (73) 

 

or in the same SSSIWGL 
 

III'

(x)I'
r l=

1-α

η α
=

−
.          (74) 

 

We desire the optical field function probability III or 
I'II being unity for even or odd field, in the AR, 
respectively. Therefore, in the SSSIWGL for even 
and odd fields, substituting Eqs.(1) and (2) into 
Eqs.(49) and (50) yields respectively III and I'II as 
 

e
2

II

2
II WAAI

2α

sin2ζ
=+= )(a          (75) 

and 
 

o

2

II

2

II WB
2α

sin2ζ
BI' =−= )(a          (76) 

 
giving 
 

II

e 2α

sin2ζ
W += a                         (77) 

 

II

o
2α

sin2ζ
W −= a .                        (78) 

 
Eqs.(77) and (78) are called the optical effective 
mode widths for even and odd fields, respectively 
(Kazarinov and Belenky, 1995). These widths take 
the leakage of the electric field wave function into 
account in forbidden regions classically. Note that 
the comparison of Eqs.(3) and (4) with Eqs.(75)-(76) 
yields III and I'II as unity for the same SSSIWGL 
(obtaining ζ=ζ', η=η', since V=V' and α=α'). 
 
The output probabilities Io and I'o are given by 
 

l
II)I(III IIIIIIIIo −=+−= ,         (79) 

 
where  
 

IIII III +=
l

           (80) 

 

l
I'I')I'(I'I'I' IIIIIIIIo −=+−= ,         (81) 

 

IIII ''' III +=
l

           (82) 

 
in which Il and I'l are the loss probabilities         
(Figure 5). It is important to remind that if these 
probabilities are divided by electromagnetic 
impedance of the relevant region then we obtain the 
optical electromagnetic field power of the relevant 
region. 

 
 

6. LOSS PROBABILITIES RELEVANT 
TO LOSS POWERS OF EVEN AND 

OLD FIELDS IN THE ASSIWGL AND 
SSSIWGL 

 
 

Taking Eq.(49) into account, Eq.(55) yields the loss 
probability  
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)(
sin2ζ2ζ

L2ζ
I

ee

e

IIII 2η

1

2η

1
+

+
=

l
             (83) 

 
for even field, and also taking Eq.(50) into account, 
Eq.(56) gives the loss probability 
 

)
2η

1

2η

1
(

ζ'ζ

ζ'

IIIIe

+=
-sin2'2

L'2
I'

e

e

l
         (84) 

 
for odd field in the ASSIWGL. From Eqs.(83) and 
(84), we obtain 
 

αη

α1

αη

L

η/V1

1

η

L
I

2
+

−
=

+
=

+
=

l
         (85) 

 

α'η'

α'1

α'η'

L'

/V'η'1

1

η'

L'
I'

2
+

−
=

+
=

+
=

l
        (86) 

 
by taking ηI=ηIII=ηI,III=ηc=η and ζc=ζ in the 
SSSIWGL. Eq.(86) becomes 
 

αη

α1
I'

+

−
=

l
           (87) 

 
in the same SSSIWGL.  

 
 

7. INPUT PROBABILITIES IN THE 
ASSIWGL AND SSSIWGL 

 
 

The input probabilities Ii and I'i relevant the input 
powers (Gasiorowicz, 1974; Temiz, 2002) in the 
ASSIWGL in Figure-5 are generally defined as  
 

l
IIIIII IIIIIIIIi +=++=          (88) 

 

dx(x)(x)EE yIIyII∫
−

=
a

a

+ dx(x)(x)EE yIyI∫
∞−

-a

+

dx(x)(x)EE yIIIyIII∫
∞

a
,          (89) 

 

or 
 

1I
i
= +

2

I

I

A
2α

+
2

III

III

A
2α

=1+ I
l
          (90) 

 

for even field and 
 

l
I'I'I'I'I'I' IIIIIIIIi +=++=           (91) 

 

= dx(x)(x) yIIyII∫
−

a

a

ee + dx(x)(x) yIyI∫
−

∞−

a

ee +

dx(x(x) )yIIIyIII∫
∞

a

ee ,           (92) 

 

or 

i
I ' 1= +

2

I

I

B
2α

+
2

III

III

B
2α

=1+
i

I′           (93) 

 

for odd field. In the SSSIWGL Ii and I'i have become 
as follows: 
 

dx2 (x)(x)EEdx(x)(x)EE2I IIIyI,IIIyI,
0

yIIyIIi ∫
∞

+∫=
a

a

 (94) 

 

or 
 

Ii= III +2 IIII,I = III +
l

I           (95) 

 

for even field and 
 

dx(x)(x)ee2I'
0

yIIyIIi ∫=
a

+ dx(x)(x)ee2
IIIyI,IIIyI,∫

∞

a

      (96) 

 

or 
 

=i'I II'I +2 IIII,'I = II'I +
l
'I           (97) 

 

for odd field. At the end, referring to Eqs.(49) and 
(50), we obtain Ii and I'i as; 
 

=
i

I dx(x)E
0

2

yII2∫
a

+
l

I =
II

I +
l

I =1+
l

I         (98) 

 

=
i

I' dx(x)e
0

2

yII2∫
a

+
l

I' =
II

I' +
l

I' =1+
l

I'         (99) 

or the probabilities III and I'II  
 

=−=
l

III iII
dx(x)E

0

2

yII2∫
a

,       (100) 

 

=−=
l

I'I'I' iII
dx(x)e

0

2

yII2∫
a

.       (101) 

 

in the AR. Referring to Eqs.(1) and (2), evaluating 
the integrals in Eqs.(100) and (101) enables us to 
calculate as; 
 

1)
2α

sin2ζ
(A)dxx(αcos2A

II

2

0
II

22 =+=∫=−= a
a

l
III iII

 (102) 

 

1)
2α

sin2ζ'
-(B

II

2 ==∫=−= a)dxx(αsin2BI'I'I'
0

II

22

iII

a

l
(103) 

 

Which are in agreement with Eqs.(75)-(78). In 
addition, after from performing the integrals of 



An Efficient Analysis for Absorption and Gain Coefficients in Single Step-Index Waveguides…, M. Temiz, Ö. Ö. Karakılınç, M. Ünal 
 

Mühendislik Bilimleri Dergisi  2008  14 (2) 125-143 135 Journal of Engineering Sciences 2008  14 (2) 125-143    
 

Eqs.(94) and (96), we obtain the following 
equations: 
 

1]
ζcos2α

sin2ζ2ζ
[α

α

A
iI

2

II

IIII,

IIII,

2

IIII,
+

+
=

1]
2ζ

sin2ζ2ζ

ζcos

η
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α

A
2

IIII,

2

IIII,
+

+
=

αη

1η

+

+
=       (104) 

 

1]
ζ2α

sin2ζ2ζ
[α

α

B
iI'

2sinII

IIII,

IIII,

2

IIII,
+

−
=  
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2ζ

sin2ζ2ζ

ζsin

η
[

α

B
2

IIII,

2

IIII, +
−

=
α'1

2α'1η'

−

−+
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or in the same SSSIWGL 
 

i'I α1

2α1η

−

−+
= ,                      (106) 

 
and 
 

=III sin2ζ]
2ζ

[A )]sin2(α
2α

1
[A 2

II

II

2 a
aaa +=+ ,            (107) 

 

=III' sin(2ζ]
2ζ

[B)]sin(2α
2α

1
[B 2

II

II

2 a
aaa −=− .            (108) 

 
It is seen that using Eqs.(3) and (4) into Eqs.(76) and 
(76) gives respectively the constants A and B as; 
 

eW1/A = ,                      (109) 

 

oW1/B = .         (110) 

 
We see from Eqs.(109), (110) that the amplitudes of 
even and odd fields vary with the optical effective 
width of the SSSIWGL and indirectly the 
propagation constant αII. 

 
 

8. SOME SPECIAL PARAMETERS 
AND CONFINEMENT FACTORS 

RELEVANT TO THE REGIONS OF 
THE ASSIWGL AND SSSIWGL 

 
 

Probability ratio K  can be defined as 
iI

I
K l

=  

(Temiz, 2002). Just as, the ratio of the loss 
probability to the input probability for even field can 
be obtained as; 

i

I
K

I
= =l [ 2

I I
A /2α + 2

III III
A / 2α ]/[1+

2

I

I

A
2α

+
2

III

III

A
2α

]  (111) 

 
in the ASSIWL. Eq.(111) yields 
 

K =
R/11

1

1

α1

+
=

+η

−         (112) 

 
for the SSSIWGL. Also the probability ratio q  for 

odd field in the ASSIWG (Temiz, 2002) can be 
defined as; 
 

== q
I'
I'

i

l [
I

2

I
2αB / +

III

2

III
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III

2

IIII
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     (113) 
which gives  
 

== q
iI'

I'
l

r

1
1

1

2αη1

α1

+

=
−+

−
       (114) 

 
for the SSSIWGL. 
 
For the ASSIWGL, the confinement factor (CF) FII 
(Temiz, 2002) for even field in the region II is 
defined and calculated as; 
 

II

i

II F
I

I
= =1/[1+

I

2

I

2α

A +
III

2

III

2α

A ].       (115) 

 
Eq.(115) yields  
 

R

1
K1

R

K

η1

ηα
Γ II =−==

+

+
=           (116) 

 
for the SSSIWGL. In the same way, for the 
confinement factor for odd field (Temiz, 2002) in 
the region II is also defined and calculated as;  
 

i

II

I'
I'

= =II'F 1/[1+
I

2

I

2α
B +

III

2

III

2α
B ]       (117) 

 
for the ASSIWGL and therefore, from Eq.(117) we 
obtain 
 

=
II
Λ

2α'η'1

α'η'

−+

−
=

r
1

r1

1 q
q =−=

+
       (118) 

 
or  

=
II
Λ

2αη1

αη

−+

−
.                      (119) 
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for the SSSIWGL. Thus, we have (Temiz, 2002) the 
relations  
 

K + IIΓ =1,  q + =IIΛ 1.       (120) 

 
Here remember again that the prime denote the 
parameters for odd field symbolically. The 

parameters K  in Eq.(112), ΓII in Eq.(116), q  in 

Eq.(114), and ΛII in Eq.(1119) have been used to 
represent the some special probability ratios and the 
confinement factors for even and odd fields in the 
SSSIWGL, respectively. 
 
We can generally define the confinement factors for 
regions of the ASSIWG, representing them by FI, FII 
and FIII. Just as, the confinement factors for regions I 
and III of the ASSIWG in Figure-5 can be given as 
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       (121) 

 
and 
 

i

III

I

I
= IIIF =
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+
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       (122) 

 
for even field. Also, in the similar way we can 
obtain respectively  
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and  
 

i

III
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I'
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III
F' =

2

III
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B
2α

/[1+
2

I
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B
2α

+
2
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] 

=
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ζ

η'

L

III

III ++−

      (124) 

for odd field. By denoting the confinement factors in 
the SSSIWGL with ΓI and ΓIII for the regions I and 
III respectively, if it is taken as ηI=ηIII=ηI,III=η, then 
Eqs.(121)-(124) give the relations 
 

IΓ = IIII,III ΓΓ = = K
2

1
        (125) 

IΛ = IIII,III ΛΛ = = q
2

1
        (126) 

 
noting that the confinement factors for the regions I 
and III are equal to each other as ΓI=ΓIII=ΓI,III and 
ΛI=ΛIII=ΛI,III for even and odd fields in the 
SSSIWGL, respectively. 
 
It is here important to say that the sums of the 

confinement factors FI, FII and FIII ( IF' , IIF'  and IIIF' ) 

for even (odd) field is equal to unity. Therefore, can 
be written  
 

IF + IIIF + IIF =1         (127) 

 

I'F + III'F + II'F =1         (128) 

 
in the ASSIWGL (Kazarinov and Belenky, 1995). 
For the SSSIWGL, we can also obtain       
(Kazarinov and Belenky, 1995) the relation  
 

IIIIIIII ΓΓΓΓ =++ + IIII,2Γ =1       (129) 

 
or 
 

/2K2ΓΓ )/(1 IIIIII, =−=        (130) 

 
and 
 

IIIIIIII ΛΛΛΛ =++ + IIII,2Λ =1       (131) 

 
or 
 

/2q2ΛΛ )/(1 IIIIII, =−= .       (132) 

 
Note that Eqs.(130) and (132) give the confinement 
factors in the CLs, for the regions I and III in the 
SSSIWGL, in terms of the confinement factors ΓII 

and ΛII in the AR or the probability ratios K  and q  

of related regions for even and odd fields 
respectively. 
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9. ABSORPTION COEFFICIENTS 
AND GAIN COEFFICIENTS 

 
 

Important parameters for the characterization and 
simulation of the laser are the threshold absorption 
coefficient and the threshold gain coefficient. To see 
the influence of many-body effects in the SSIWG, 
we can compute the threshold absorption 
coefficients and absorption coefficients, the 
threshold loss coefficients, the threshold power gain 
coefficients and power gain coefficients, the 
threshold power gains, the power gains for even and 
odd electric field waves. 
 
Here, k1, k3 (k'1, k'3) in the ASSIWG or k1,3 (k'1,3) in 
the SSSIWGL are defined as absorption coefficients 
in even (odd field) in the regions I and III for the 
ASSIWGL or SSSIWGL, respectively. It is 
generally evident that the total absorption coefficient 
in the ASSIWGL can be respectively given by 
 

III3II2I1 FkFkFkk ++=         (133) 

 
for even field and  
 

III3II2I1 F'kF'kF'k'k' ++=          (134) 

 
for odd field (Bhattacharya, 1998). Taking k=0 and 
k'=0 in the SSSIWGL give respectively k2=-gth and 
k'2=-g'th (Bhattacharya, 1998) and therefore we get 
consequently as;  
 

IIthIII3I1 FgFkFk =+         (135) 

 

IIthIII3I1 F'g'F'k'F'k' =+ .        (136) 

 
which give the threshold conditions. Here, gthFII and 
g'thF'II are called the threshold modal gain for even 
and odd fields in the ASSIWG respectively. The 
parameter gth (g'th) is the threshold gain coefficient 
which is described by the structural properties of the 
SSSIWGL for even (odd) field (Bhattacharya, 

1998). Remembering that, 
IIΛ1q −= , 

R

K
Γ II =  and 

r

q
Λ II =  and taking the equations ζ=ζ', η=η', V=V' 

and α=α' into account in the same SSSIWGL, we 
obtain the threshold absorption coefficient from 
Eq.(135) in even field as; 
 

R

k-

R

g
2thIIth

II

IIth

IIII,

IIth

1,3th

K

Γg

Γ-1

Γg

2Γ

Γg
k =====           (137) 

 
and from Eq.(136) in the odd field as 
 

r

k'

r

g'

q

Λg'

Λ-1

Λg'

2Λ

Λg'
k' 2rhIIth

II

IIth

IIII,

IIth

1,3th

−
=====        (138) 

 
Note that Eqs.(137) and (138) give threshold 
absorption coefficients in terms of the confinement 
factors for even and odd fields in the regions I and 
III for the SSSIWGL, respectively. Also, the 
threshold absorption coefficient for even or odd field 
becomes function of the threshold gain coefficient 
respectively. 

 
 

10. GAINS AT THE THRESHOLD 
CONDITIONS IN SSSIWGL FOR 

EVEN AND ODD FIELDS 
 
 

The absorption coefficient k depends on the 
population difference (N1-N2) between the lower 
energy level E1 and the upper energy level E2 in a 
two-level laser system. N1 and N2 are the electron 
densities in the lower and upper energy levels, 
respectively. Generally, for E2>E1 and N1>N2, the 
absorption coefficient k is positive. This represents a 
SSSIWGL with loss. In this case, there is 
attenuation. At the population inversion, N2>N1, the 
absorption coefficient k becomes negative. This case 
corresponds to the amplification in the SSSIWGL. 
 
The losses in the SSSIWGL can occur due to carrier 
absorption and scattering at defects and 
inhomogeneities and other nonradiative transitions. 
These absorption coefficients (losses) for the regions 
I and III have been described by α1 and α3 (α1=α3) in 
the SSSIWGL in ref. (Bhattacharya, 1998) as 
α1+α3+ΓII=1, in which ΓII represents the confinement 
factor of the region II of the SSSIWGL. Remember 
that we have represented the absorption coefficients, 
the confinement factors with ki (k'i), Fi (F'i), i=I, II, 
III and with k1,3 (k'1,3), ΓII (Λ'II) for even (odd) field 
in the regions in the ASSIWGL and SSSIWGL 
respectively. 
 
As the rate of stimulated emission increases in the 
AR, the round-trip gain in the cavity overcomes the 
losses and the lasing begins. For even (odd) field the 
gain at which this occurs is called the threshold gain 
coefficient gth (g'th). The laser modes emerge at the 
threshold gain. The optical effect width in Eq. (77) 
or (78) is the thickness where optical mode extends 
for even or odd field. As it has been seen, the 
threshold case is an important passing point in the 
gain profile. 
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The light intensity or small-signal power gain after 

traveling on the length 2 gl  of a waveguide is 

generally given by  
 

go
2ıo

)g2(g
)eR(RGG

l−
=        (139) 

 
Where Go is the initial intensity (Verdeyen, 1989), g 
(g') and go (g'o) are respectively the gain coefficient 
and the total loss coefficient in the cavity per unit 
length for even (odd) field. If g>|go| (g'>|g'o|), the 
intensity grows and the SSSIWGL gives net 
amplification for even (odd) field. Therefore, when 
the round-trip gain exactly is equal to the loss at the 
threshold, G=Go, we have 
 

gothth

2ı

)g2(g
eRR1

l−
=        (140) 

 
which yields the relation  
 

th oth

g ı 2

1 1g g ln
2 R R

= +
l

        (141) 

 
for even field (Verdeyen, 1989). In the same way we 
obtain 
 

th oth

g ı 2

1 1
g ' g ' ln

2 R R
= +

l
        (142) 

 
for odd field. Eq.(141) [Eq.(142)] denotes that the 
total loss at the right hand side is equal to the 
threshold gain coefficient gth [g'th] at the left hand 
side for even (odd) field. The second term on the 
right hand side of Eq.(141) or Eq.(142) denotes the 
useful laser output (Bhattacharya, 1998). The gΓII 
and gthΓII (g'ΛII and g'thΛII) are respectively called 
modal gain and threshold modal gain (Kazarinov 
and Belenky, 1995) for even (odd) field. The 
threshold modal gains are obtained as; 
 

1,3th1,3thIIIIth k)kΓ(1Γ g K=−=         (143 

 

1,3th1,3thIIIIth k'qk'Λ(1Λ g' ) =−=       (144) 

 
from Eqs.(130), (135) and Eqs.(132), (136) for even 
and odd fields, respectively. Taking the equations 
ζ=ζ', η=η', V=V' and α=α' into account in the same 
SSSIWGL, we can write, (Bhattacharya, 1998), 
 

1,3th1,3thIIIIth k)kΓ(1Γ g K=−=

oth

g ı 2

1 1
g ln

2 R R
= +

l
                     (145) 

 

and 
 

1,3th1,3thIIth
k')k'(1 g' qΛΛ

II
=−=

oth

g ı 2

1 1
g ' ln

2 R R
= +

l
     (146) 

 
or so we have the only threshold gains 
 

1,3th

II

1,3thII

II

th kK
Γ

1
)kΓ(1

Γ

1
 g =−=

)
2ıg

oth

II RR

1
ln

2

1
(g

Γ

1

l
+=                      (147) 

 
and 
 

1,3thII

II

th )k'(1
1

 g' Λ
Λ

−=

)
21g

oth

II

1,3th

II RR

1
ln

2

1
(g'

Λ

1
k'q

Λ

1

l

+== .      (148) 

 
Using Eqs. (112) and (114) in Eqs.(145) and (146), 
we have the efficient threshold gain coefficients in 
terms of absorption coefficients or some parameters 

of the same SSSIWGL such as go (g'o), g
l , R1 and 

R2 for even (odd) field as; 
 

1,3th1,3th

II

th k
αη

α1
kK

Γ

1
 g

+

−
==     

)
21g

oth
RR

1
ln

2

1
(g

αη

α1

l

+
+

+
=                            (149) 

 
and 
 

1,3th

II

th k'q
Λ

1
 g' = =

)
RR

1
ln

2

1
(g'
αη

α1
k'
αη

α1

21g
oth1,3th

l
+

−

−
=

−

− .                  (150) 

 
It is evident that Eqs.(149) and (150) are also 
functions of the NPC α and/or NF V. 
 
The threshold loss in the SSSIWGL having 

parameters go (g'o), g
l , R1 and R2 is given by 

 

2ıg

IIthoth
RR

1
ln

2

1
Γgg

l

−= =
1,3thII

)kΓ(1−

g ı 2

1 1
ln

2 R R
−

l
1,3thkK=

g ı 2

1 1
ln

2 R R
−

l
      (151) 

 
or the efficient expressions 
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oth
g 1,3thkK=

g ı 2

1 1
ln

2 R R
−

l
1,3th

k
1η

α1

+

−
=

g ı 2

1 1
ln

2 R R
−

l
                      (152) 

 
in terms of the NPC α or 
 

oth
g 1,3thkK=

g ı 2

1 1
ln

2 R R
−

l
1,3thk

1αV

α1

+

−
=

g ı 2

1 1
ln

2 R R
−

l
                      (153) 

 
in terms of NPC α and NF V for even field. In the 
same way for odd field we have  
 

2ıg

IIthoth
RR

1
ln

2

1
g'g

l
−= Λ =

1,3th
)k'Λ(1

II
−

g ı 2

1 1
ln

2 R R
−

l
=

1,3thk'q
g ı 2

1 1
ln

2 R R
−

l
               (154) 

 
or 
 

2ıg

thoth RR
1

ln
2
1

g'
2αη1

αη
g'

l
−

−+

−
=  

=
1,3th

k'
2αη1

α-1

−+ g ı 2

1 1
ln

2 R R
−

l
                    (155) 

 
in terms of the NPC α or  
 

2ıg

IIthoth
RR

1
ln

2

1
Λg'g'

l

−=  

=
2ıg

1,3ht
RR

1
ln

2

1
k'q

l
−

2ıg

th
RR

1
ln

2

1
g

2αη1

αη
'

l

−
−+

−
=  

=
1,3th'k

2αLV1

α-1

−+ g ı 2

1 1
ln

2 R R
−

l
      (156) 

 
in terms of the NPC α and NF V.  
 

In the SSSIWGL with active length 
g

l  of the AR at 

the threshold conditions, we get threshold power 
gain expressions as;  
 

g
II2thgth1,3IIggIIth

th

Γ k-eK e
)kΓ(1 

eΓ geG
llll

==
−

==  (157) 

 
for even field and 
 

1,3th'g1,3th'IIgIIthg
th

kq
e

)kΛ -(1
e

Λ g'
eG'

lll
===

II2g Λ '
e

kl−
=                      (158) 
 
for odd field (Verdeyen, 1989; Iga, 1994). Now, we 
obtain the efficient threshold gain expressions  
 

== th1,3g

th

kK 
eG

l
1,3thg1,3thg k

1αV

α1

e
k

1η

α1

e
ll

+

−

=+

−

(159) 

 

1,3thg
th

k'eG' ql= = 

1,3thg1,3thg k'
2αLV1

α-1

e
k'

2αη1

α-1

e
ll

−+=−+
                  (160) 

 
in terms of the NPC α, threshold absorption 
coefficients k1,3th (k'1,3th) and NF V for even and odd 
fields in the same SSSIWGL. Therefore, we can 
respectively write for gain expression as;  
 

== 1,3g kK 
eG
l

1,3g1,3g
k

1αV

α1

e
k

1η

α1

e

ll

+

−

=
+

−

                    (161) 
 

1,3g k'eG' ql= =
1,3g1,3thg k'

2αLV1

α-1

e
k'

2αη1

α-1

e
ll

−+=−+       (162) 
 
for even and odd fields, in the same way. 
 
In this new approach it has been seen that the 
threshold gain coefficients in Eqs.(149), (150) which 
are also in terms of the threshold absorption 
coefficients, the threshold losses in Eqs.(153), (155) 
in the same SSSIWGL, threshold power gains in 
Eqs.(159), (160) and power gains in Eqs.(161), (162) 
for even and odd fields have been obtained in terms 
of the NPC α as the efficient expressions in the alpha 
(α) method.  
 
Just as, now we can give an example for nII=3.351, 

nI,III=3.350, a=50 Ao, λ=1.55 x10-6 m (
g

l =0.05 m). 

We obtain V=0.00165915890946443 in Eq(26), 
α=2.75279818295989x106 in Eq(27), 
L=0.99999724720182 in Eq(29), 
ζ=0.00165915662579804 in Eq(31), 
η=2.75280323490291x10-6 in Eq(33), 
R =1.816326993736504x105 in Eq(72), 
ΓII=5.505586262067127x10-6 in Eq(116), 
K =0.99999449441374 in Eq(112). It is seen that 
there is only single mode since V<1.57 (Iga, 1994).  
 

We obtain the threshold absorption coefficients from 
using Eqs.(112) and (114) into Eqs.(159) and (160) 
for even and odd fields respectively as; 
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α)(1

)ln1αV(1

α)(1

η)ln1(1

K

lnG
k

ggg
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th1,3
−

+
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−

+
==

lll

      (163) 

 

α)(1

2α)ln1-αV(1

α)(1

2α)ln1-η(1

q

lnG'
'

ggg
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th1,3k
−

+
=

−

+
==

lll

 (164) 

 
for the same SSSIWGL. Also, using Eqs.(163) and 
Eq.(164) into Eqs.(149) and Eq.(150), gives the 
threshold gain coefficients for even and odd fields 
respectively as: 
 

II

th
Γ

 g
g

thlnG

l

=          (165) 

II

th  g'
Λ

lnG

g

th

l

=          (166) 

 
in the SSSIWGL. Note that since logarithm ln1=0 
here, for example, we can get the Gth and G'th as a 
double precision (fairly little fraction after decimal 
point) such as Gth=G'th=1.000000000000001. The 
grater this precision is, the grater truths of founded 
results are also. Just as, if we get Gth as 

Gth=1.000000000000001, for gl =0.05 m, 

ΓII=3.623281563416194x10-5 and 

K =0.99996376718437, we have the threshold 
absorption and gain coefficients as 
k1,3th=2.220458274174882x10-14 m-1 and                      
–k2=gth=4.033078301849409x10-9 m-1 in Eq.(163) 
and in Eq.(165), respectively. Consequently, we see 
that the threshold condition in discussed that 
Eq.(140) is satisfied by Eq.(157) for the absorption 
coefficient k1,3th and gain coefficient gth as shown 

that 
gII2gIIth

th

Γ k-
e

Γ g
eG

ll
== =1.00000000000000 

for these found results in even field.  
 
It is obvious that there are not the values of the 
parameters r, qI,III and ΛII for odd field since V<1.57. 
 
At the threshold, we can obtain the total threshold 
loss of the material of the SSSIWGL for even field 
as; 
 

oth
g =

g

thlnG

l g ı 2

1 1
ln

2 R R
−

l
        (167) 

 
by using Eq.(163) into Eq.(153) and for odd field as; 
 

oth
g' =

g

thlnG'

l g ı 2

1 1
ln

2 R R
−

l
       (168) 

 

by using Eq.(164) into Eq.(156). For example, for 
Gth=1.000000000000001, R1=0.999 and R2=0.995, 

gl =0.05 m Eqs.(167) gives the threshold losses  

goth=-1.503260539059904x10-4 m-1 in the 
SSSIWGL.  
 

th oth

g ı 2

1 1
g g ln

2 R R
= +

l
 in Eq(141) gives 

th oth

g ı 2

1 1
g g ln

2 R R
− =

l
=1.503300869842922x10-4 and 

gothth

2ı

)g2(g
eRR1

l−
=  in Eq(140) yields 

0.99401994299813. So, smaller the difference of     
gth-goth is, Eq(140) is approaches 1. This case is 
determined by R1 and R2. 
 
The multimode corresponds to the case V>1.57   
(Iga, 1994). Therefore, there are more modes in the 
following example, since V>1.57. 
 
As a matter of fact, now we can give another 
example for V=2 which gives 
α=0.734843732945432, L=0.26515626705457, 
ζ=1.02986652932226 and η=1.71446053666503, 

R =0.10825778991384, r =0.27067345726183, 
ΓII=0.78698425176433, ΛII=0.78698425176433, 

K =0.09768285943856, q =0.21301574823567. 

There are also the parameters r , q  and ΛII for odd 

field, since V>1.57 with R , K  and ΓII. That is, in 
this example there is only one mode for each of even 
and odd fields for V=2. 
 
We can give second example for odd field here. For 

gl =0.05 m and ΛII =0.78698425176433 and 

q =0.21301574823567, if we get Gth as 

Gth=1.000000000000001, we have calculated the 
threshold absorption coefficient and threshold gain 
coefficient as k'1,3th=1.042385864726654x10-13 m-1 
and -k'2=g'th=2.821461858064267x10-14 m-1 in 
Eqs.(164) and (166), respectively. We see also that 
the threshold condition in discussed Eq.(140) is 
satisfied by Eq.(160) for these threshold absorption 
k'1,3th and threshold gain coefficient g'th coefficient 
for odd field, as easily shown that 

gII 2gIIth
th

Λk'-
e

Λ g'
eG'

ll
== =1.00000000000000 for 

these found results. 
 
Our results of this work are suitable found results in 
ref. (Popescu, 2005). Because, for values 
λ=0.5145x10-6 m, nI,III=1.55, nII=1.57, 2a=1 
µm=10000 Ao in ref. (Popescu, 2005), we have 
achieved normalized frequency as 
V=3.0506106640935 in our method. Whereas, V has 
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given by Popescu as 3.05061, as shown in ref. 
(Popescu, 2005). It is seen that the normalized 
frequency V found in our method is more sensitive 
than the normalized frequency in ref                  
(Popescu, 2005). 
 
Thus, we have seen from the samples above that 
Eq.(140) is numerically satisfied by found results for 
even and odd fields at the threshold. In fact, to 
initiate oscillation fast, it is generally pumped by 4 
times threshold gain coefficient (Verdeyen, 1989) 
such as 4gth practically and so the modal gain at the 
beginning becomes bigger than the threshold modal 
gain gthΓII or g'thΛII. 

 
 

11. GAIN COEFFICIENTS AND 
LASER GAIN FOR EVEN AND ODD 

FIELD IN SSSIWGL 
 
 

Taking Eqs.(137), (138) and Eqs.(149), (150) into 
account, the absorption coefficients or gain 
coefficients at the outside of the threshold condition 
can be in the similar way written as; 
 

R

g

K

gΓ

Γ-1

gΓ

2Γ

gΓ
k II

II

II

IIII,

II

1,3 ====        (169) 

 
and 
 

r

g'

q

Λg'

Λ-1

Λg'

Λ

Λg'
k' IIth

II

II

IIII,

II

1,3 ====       (170) 

 
or for amplification 
 

1,3

II

2 kK
Γ

1
 gk ==-         (171) 

 
and 
 

1,3

II

2 k'q
Λ

1
 g'k' ==−         (172) 

 
for even and odd electric field waves, respectively. 
On the other hand, using Eqs.(169) and (170) into 
Eqs.(161) and (162) gives the gain coefficients in 
terms of the power gains 
 

IIgΓ

lnG
g

l

= (=-k2 for amplification)       (173) 

 
and  

IIΛg

lnG'
g'

l

= ( =-k'2  for amplification)      (174) 

 
in the SSSIWGL at any absorption or gain level for 
even and odd electric field waves, respectively. 
 
Note that Eqs. (171) and (172) give respectively gain 
coefficient in terms of NPC α and absorption 
coefficient for related regions I and III for even and 
odd electric field waves in the same SSSIWGL. 
Figure 8 and Figure 9 show the ratios of absorption 
coefficients to the gain coefficients in terms of NPC 

α for η=1.71446053666503 as 
R

1

α1

αη

g

k 1,3
=

−

+
=  and 

r

1

α1

αη

g'

k'1,3
=

−

−
=  in even and odd fields, 

respectively. The relations of absorption coefficients 
and the gain coefficients for even and odd fields are 
important two formulas of the efficient results. The 
ordinate η=1.71446053666503 corresponds to 
abscissa ζ=1.02986652932226 of the energy 
eigenvalue of the electrons in the normalized 
coordinate system ζ-η for V=2, as given above 
example. Note that the curves in Figure 8 and Figure 
9 of the lowest modes for even and odd fields are 
fairly different in amplitudes of the ratios of 
absorption coefficients to the gain coefficient. 
 

 
 

Figure 8. The curve of the ratio of absorption 
coefficient to the gain coefficient against NPC α in 
even field. 
 

For gl =0.05 m, K =0.09768285943856, 

q =0.21301574823567, ΓII=0.78698425176433, 

ΛII=0.78698425176433, and laser gain G=G'=2000, 
the absorption coefficients and the gain coefficients 
for even and odd fields are obtained from Eqs.(161), 
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(162) and Eqs.(173), (174) as 
k1,3=1.556240778214087x103 m-1, 
k'1,3=7.136469976983041x102 m-1 and                          
–k2=g=1.684751872232560x102 m-1 and                       
-k'2=g'=1.931653001315258x102 m-1, respectively. 
Just as, we can see that the found these gain 
coefficients g and g' give the found absorption 
coefficients k1,3 and k'1,3, in Eqs.(169), (170) 
respectively. These calculations confirm accuracy 
and sensibility of this alpha (α) method. 
 

 
 

Figure 9. The curve of the ratio of the absorption 
coefficient to the gain coefficient against NPC α in 
odd field. 

 
 

12. RESULTS 
 
 

In this work, firstly the parametric variables ζ and η 
of the EEVs for carriers and some probability ratios 
and the confinement factors in terms of these 
variables for the ASSIWG have been obtained. Also, 
we have got some probability ratios and the 
confinement factors in terms of NPC α or NF V for 
the SSSIWGL. 
 
It has been shown that these parametric variables ζ 
and η vary non-linearity for the ASSIWGL. They are 
constants on the vertical axis for the SSSIWGL as 
shown in Figure-6 and Figure-7, respectively. 
Furthermore, as efficient expressions, the threshold 
absorption coefficients, the threshold gain 
coefficients, the threshold power gains and the 
power gains for each of even and odd field have 
been evaluated in terms of parametric variables ζ 
and η, the NPC α  or NF V, individually. On the 
other hand, the total loss of the region expressions in 
threshold conditions in terms of the NPC α for both 
the even and the odd fields were obtained.  
 
Initially, some special probability ratios, the 
confinement factors and some special relations of 
the quantities for the same ASSIWGL and 
SSSIWGL for both the even and odd fields have 

particularly been obtained. Besides the threshold 
absorption coefficients, the threshold gain 
coefficients, the threshold total losses, the threshold 
power gains, the power gains expressions, the 
absorption coefficients, the gain coefficients for the 
same SSSIWGL have also obtained initially in terms 
of the NPC α during this theoretical alpha (α) 
approach. These are all efficient and important 
expressions and hence it can be argued that the alpha 
(α) approach presents an efficient method, especially 
for the design considerations in this field.  
 
It must also noted that the threshold gain coefficients 
give the threshold power gains almost as a unity 
(with very precision) in the SSSIWGL. 
 

On the other hand, in case if the length gl  of 

waveguide, reflection coefficients R1 and R2, 
expected gain G of the waveguide are given, then the 
absorption coefficients, the gain coefficients, total 
losses of the device and the ratios of the absorption 
to the gain coefficients for even and odd fields in the 
SSSIWGL can theoretically be evaluated efficiently 
by means of the proposed α approach.  
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