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Abstract  Öz 

In this study, the mechanical properties of tensile samples produced in 
3D printers with the fused deposition method (FDM) were investigated. 
Here, the parameters such as layer (filament) thickness, infill type and 
support angle in the FDM method were examined. The production was 
produced with Up-right and edge directions. As a result of the 
experiments, the best layer thickness in terms of tensile strength was 
0.09 mm, and the infill type was full infill type, while different results 
were obtained in the support angle. According to the variance analysis 
(ANOVA) values, it was observed that the layer thickness and infill type 
were quite effective on the tensile strength, but the support angle was 
at a negligible level. In the second stage, the results were estimated with 
xgboost and catboost from the machine learning algorithms and linear 
regression models. The most effective algorithm on the examined 
mechanical properties was determined as the catboost algorithm. 

 Bu çalışmada ergiyik yığma metodu (Fused Deposition 
Modelleme/FDM) yöntemi ile 3D yazıcılarda üretilen çekme 
numunelerinin mekanik özellikleri incelendi. Burada FDM 
yöntemindeki katman (filament) kalınlığı, dolgu tipi ve support açısı 
gibi parametreler incelendi. Üretim Up-right ve edge yönleri ve her bir 
yön için Taguchi L25 deney tasarımıyla üretildi. Deneyler neticesinde 
çekme mukavemeti açısından en iyi katman kalınlığı 0,09 mm, dolgu tipi 
olarak full dolgu tipi olurken support açısında farklı sonuçlar elde 
edildi. Varyans analizi (ANOVA) değerlerine göre parametrelerden 
katman kalınlığı ve dolgu tipinin çekme mukavemeti üzerinde oldukça 
etkili olduğu ancak support açısının göz ardı edilebilecek düzeyde 
olduğu gözlemlendi. İkinci aşamada sonuçlar makine öğrenmesi 
algoritmalarından xgboost ve catboost ile ve linear regression ile 
tahmin modelleri yapıldı. İncelenen mekanik özellikler üzerinde en 
etkin algoritma catboost algoritması olarak belirlendi. 

Keywords: Fused deposition model, Mechanical properties, Machine 
learning, Regression, Prediction. 

 Anahtar kelimeler: Ergiyik yığma metodu, Mekanik özellikler, 
Makine öğrenmesi, Regresyon, Tahmin. 

1 Introduction 

Fused Deposition Modeling (FDM) is an additive manufacturing 
technique that works by stacking layers upon layers of molten 
material in a heated nozzle to produce a 3D designed part (Fig 
1). FDM is one of the most common techniques employed in the 
field of 3D printing, and it has become one of the popular rapid 
prototyping techniques in recent years. This is due to its ability 
to construct functional parts with complex geometric shapes in 
a short time. The FDM working method is shown in Figure 1.  

 

Figure 1. FDM method. 

 
*Corresponding author/Yazışılan Yazar 

Cantre et al. conducted studies on the positioning of 
Acrylonitrile Butadiene Styrene-ABS and polycarbonate parts 
during 3D software. In these studies, they obtained up to 33% 
differences in the mechanical properties of ABS parts and 20% 
differences in the mechanical properties of polycarbonate parts 
[1].  

Sood et al. examined the effects of parameters such as layer 
thickness and support angle on the mechanical properties of 3D 
models produced by FDM method. In their study, they 
concluded that layer thickness and scanning direction change 
the temperature of the bonds between the layers and therefore 
have an effect on strength [2]. 

Tekinalp et al. compared the mechanical properties of 
reinforced ABS materials and conventional composites. Here, 
the tensile strength and modulus of 3D specimens were 
increased by ∼115% and ∼700%, respectively [3].  

Ning et al.  produced carbon fiber reinforced plastic composite 
parts by FDM method and investigated their tensile strength. In 
their study, they stated that the best layer thickness for tensile 
and yield strength is 0.15 mm and 0.25 mm layer thickness is 
ideal for hardness and ductility [4].  

Sa’ude et al. investigated the mechanical properties of ABS 
materials containing copper powders produced by FDM 
method. In their study, they observed that up to 22% copper 



 
 
 
 

Pamukkale Univ Muh Bilim Derg, XX(X), XX-XX, 20XX 
B. Yazar, İ. Yazar, Ü. Yazar, D. Yazar 

 

 

powder reinforcement significantly affected the mechanical 
properties [5].  

Bacak et al. were trying to work out what the process 
parameters were doing to the tensile strength of the PLA 
samples made using the FDM method on a 3D printer. In their 
study, they obtained higher tensile stress at 100% filling rate 
compared to 20% filling rate [6].  

Evlen, aimed to investigate the effects of occupancy rate on 
mechanical properties in three-dimensional printers. They 
observed that the values of roughness and tensile strength 
were opposite to those of 10% and 20% occupancy rate after 
30% occupancy rate [7].  

The process parameters for tensile strength were optimised by 
applying Taguchi methodology. Following a thorough review of 
the data, it was determined that the most effective parameter 
on tensile strength was the fill rate. Research has identified the 
scanning angle and print speed as the other significant 
parameters [8].  

It is imperative that improvements are made in order to meet 
the mechanical requirements of the load-bearing components. 
The study concluded that the addition of 6 mm-long carbon 
fibre reinforcement to the structure can lead to a substantial 
enhancement in part strength. Furthermore, it was determined 
that the printing pattern has a considerable impact on the 
mechanical properties of the structure [9]. 

It was determined through a combination of measurement 
results and Taguchi analysis that an increase in nozzle diameter 
resulted in an increase in the hardness value of the sample. 
Conversely, the lowest values were observed in productions 
made with a nozzle diameter of 0.25 mm, as well as incomplete 
adhesion. The layer height is another effective parameter, with 
a 9.52% impact. The statistical significance of both parameters 
was confirmed by analysis of variance, which also 
demonstrated that the effects of nozzle angle and nozzle 
temperature were minimal. It was established that the printing 
parameters which yielded the highest hardness value within 
the specified ranges were as follows: a nozzle diameter of 0.6 
mm, a layer height of 0.1 mm, a nozzle angle of 30°, and a nozzle 
temperature of 210°C [10]. 

Here, parameters such as layer (filament) thickness, filler type 
and support angle in the FDM method were examined. 
Production was performed with up-right and edge orientations. 
Analysis of variance (ANOVA) was performed. In the second 
stage, the results were predicted by machine learning 
algorithms xgboost and catboost and linear regression. 

2 Material and method 

This technology is employed in the field of three-dimensional 
(3D) printing to manufacture robust, durable, and 
dimensionally stable components that exhibit both 
dimensional accuracy and repeatability. The present study 
investigates the mechanical properties of prototypes (tensile 
specimens) produced by 3D printers utilising the FDM method. 
Flow chart of this study  is shown in Figure 2.  

 

Figure 2. Flowchart of this study 

Here, parameters such as layer (filament) thickness, filler type 
and support angle in the FDM method were controlled by 
Taguchi L25 experimental design and 25 specimens were 
produced in the edge and up-right directions (Figure 5). The 
specimens of this study were produced on Zortrax M200 model 
3D printers (Figure 3). Z-ultrate series ABS filament was used 
as the material. The specimens were dimensionally prepared 
for tensile testing based on ASTM D638 standard with 
dimensions of 165x19x3.2 mm (Figure 4). Up-right and edge 
positioning is given (Figure 4). 3D parameters and levels are 
given in Table 1 and fill type is given in Figure 6. The MTS EM 
tensile device was used to perform this test. The results were 
analyzed and plotted in Minitab 21 program. 

 

Figure 3. 3D printer. 

A. Design of Experiment 

B. 3D Printing of samples 

C. Mechanical tests of samples 

D. Taguchi analysis and ANOVA  

F. Discussions and Conclusions 

 

 

 

 

E. Analysis of mechanical test results 
using machine learning 
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Figure 4. Tensile sample dimensions. 

 

Figure 5. Up-right and edge. 

 

Table 1. 3D print parameters and levels. 

3D parameters 
Levels 

1 2 3 4 5 

Build direction  Edge Up-right - - - 

Layer thickness (mm)  0.09 0.14 0.19 0.29 0.39 

Infill type  Full Light Medium Mesh Solid 

Support angle (°)  20 30 40 50 60 

 

 

Figure 6. 3D print infill type. 

 

2.1 Optimization with machine learning 

2.1.1 CatBoost (categorical boosting) 

CatBoost is a gradient boosting algorithm that has been 
specifically developed for the handling of categorical features. 
CatBoost represents a departure from conventional 
methodologies that employ one-hot encoding. Instead, it 
introduces a novel approach that aims to minimise overfitting 
and reduce computational complexity [11]. The system has 
been developed to construct decision trees in an optimal 
manner, utilising both categorical and continuous features. In a 
manner analogous to other gradient boosting methods, 

CatBoost employs an iterative process to incorporate decision 
trees that have been trained on residuals [11]–[13]. The model 
under consideration has been developed for the purpose of 
handling categorical variables by means of ordered target 
statistics. The way these statistics work out target values is by 
looking at past data points, not all data points together. This 
stops the problem of overfitting. The dataset X is defined by the 
target variable Y, with the i-th observation represented by xi 
and the categorical feature Cj. The calculation of the key 
transformation for a categorical feature is outlined as follows:

 

𝐶̂𝑗 =
1

|𝑆𝑗|
∑ 𝑦𝑖

𝑛

𝑥𝑖∈𝑆𝑗

                     (1) 

The location is as follows: 

𝑆𝑗 denotes the set of observations relevant to category Cj. 

𝐶̂𝑗 signifies the average target value for the categorical feature. 

This transformation is achieved through the utilisation of 
ordered goal statistics. In this process, the goal statistic is 
computed for each data point using only preceding data points. 
This process is known as the 'exclusion of data leakage’ [11]–
[13]. 

After the categorical features have been transformed, the model 
then builds decision trees in a way that's similar to standard 
gradient boosting. The idea behind each decision tree is to 
reduce the remaining error from the former model.  

𝐿𝑡 = ∑[𝑦𝑖

𝑁

𝑖=1

− 𝑓𝑡−1(𝑥𝑖) − 𝜂ℎ𝑡(𝑥𝑖)]2 (2) 

The location is as follows: 

The abbreviation '𝑓𝑡−1(𝑥𝑖)' denotes the prediction of the 
previous model, whilst '𝜂' is the learning rate. is employed to 
denote the decision tree model that has been trained on the 
residuals. The objective of each tree is to minimise this residual 
error, with the effect of each tree being adjusted using the 
gradient descent method. Subsequent to the construction of the 



 

 

trees, the last model, f(x), is constituted as a weighted sum of 
all the decision trees. The learning rate (η) is a critical factor in 
the training process, as it determines the importance or weight 
assigned to each tree in the learning process [11]–[13].  

𝑓(𝑥) =  𝑓0(𝑥) + ∑ 𝜂ℎ𝑡

𝑇

𝑡=1

(𝑥) (3) 

In the initial model, designated 𝑓0(𝑥), the mean of the goal 
values is typically employed. The objective function employed 
for the optimisation of the CatBoost model is analogous to that 
utilised in other gradient boosting algorithms. The following 
illustration is offered in order to elucidate the aforementioned 
point. For this purpose, the loss function for regression will be 
considered, i.e. the mean squared error (MSE)[11]–[13]. 

ℒ(𝜃) =  ∑(𝑦𝑖 − 𝑓(𝑥𝑖)

𝑁

𝑖=1

)2 (4) 

The gradient of this loss function is used to help the model 
improve. In machine learning, the new tree (ht(x)) is adjusted 
at each step to match the negative gradient of the loss function. 
This is congruent with the residuals from the preceding model.  

CatBoost also uses regularization techniques to stop 
overfitting. The model we're talking about uses a mix of 
features and techniques to improve how well the model 
generalises. In order to achieve this objective, an exploration is 
undertaken of a variety of methodologies for combining 
features [11]–[13]. The regularization term can be expressed as 
follows:  

Ω(ℎ𝑡) = 𝛾𝑇 +
1

2
𝜆 ∑(𝜔𝑗)2

𝑇

𝑗=1

 (5) 

The location is as follows: 

T is the number of leaves in the tree, 

𝜔𝑗  is the weight of each leaf node, 

It is evident that both γ and λ function as regularization 
parameters, thereby exerting a degree of control over the 
complexity of the trees. 

In the field of polymer research, CatBoost is great for working 
with complex data sets that include both categories and 
continuous variables. To show this, think about a study of 
polymer materials. In this study, the conditions during the 
polymerisation process (e.g. temperature, pressure, and types 
of catalyst) can be put into groups. At the same time, properties 
such as tensile strength, viscosity, and melting temperature are 
continuous variables. CatBoost has been shown to be good at 
dealing with different types of data. You can build strong 
predictive models without having to do a lot of preparation or 
creating features [11]–[13]. 

To illustrate this point, consider the task of predicting the 
tensile strength of a polymer. This can be achieved through the 
consideration of various processing conditions and chemical 
additives: 

𝑦̂𝑖 = 𝑓(𝑥𝑖) = 𝑓0 (𝑥𝑖) + ∑ 𝜂ℎ𝑡

𝑇

𝑡=1

(𝑥𝑖) (6) 

In this study, the dependent variable is represented by Y_i, 
which is the predicted tensile strength. The independent 
variables are represented by X_i, which includes both 
continuous features (e.g. temperature) and categorical features 
(e.g. the type of chemical additive).  

CatBoost has been shown to be effective in handling categorical 
features directly, thus obviating the necessity for one-hot 
encoding. This property has been demonstrated to reduce 
computational complexity, enhancing the model's efficiency 
and accuracy. Consequently, CatBoost is well-suited for 
polymer field tasks involving substantial and intricate datasets. 

 

2.1.2 XGBoost (eXtreme gradient boosting) 

XGBoost is an improved version of the gradient boosting 
algorithm. It has been designed to make training more efficient, 
improve prediction accuracy and make models easier to 
understand. Using regularisation techniques is important for 
preventing overfitting. It also helps to manage data that is 
incomplete and use more efficient training methods, such as 
parallelisation and hardware optimisations [11], [14]. XGBoost 
constructs models by sequentially integrating decision trees, 
with each tree being calibrated to the residuals (errors) from 
the preceding model. In essence, the objective is to minimise 
the loss function by incorporating an additional regularisation 
term. That'll help stop overfitting. 

At the t-th iteration, the model is updated as follows:  

𝐿𝑡 = ∑[𝑦𝑖

𝑁

𝑖=1

− 𝑓𝑡−1(𝑥𝑖) − 𝜂ℎ𝑡(𝑥𝑖)]2 (7) 

The location is as follows: 

For instance, the true label for i is denoted by y_i. To illustrate, 
within a decision tree, f_(t-1) (x_i) denotes the model's 
prediction for instance i at the preceding step, h_t (x_i) signifies 
the prediction of the new decision tree at the t^(th) step, and η 
denotes the learning rate [11]. This formula is employed to 
minimise the residual error from the preceding model. The 
ultimate model prediction is the aggregate of all tree 
predictions. XGBoost basically penalises complexity and 
reduces overfitting by using regularisation [15]. We include the 
regularisation term Ω(f) in The objective function is defined as 
follows to keep the model's complexity in check. 

Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆 ∑(𝜔𝑗)2

𝑇

𝑗=1

 (8) 

The location is as follows:  

It can thus be concluded that T denotes the total number of 
leaves in the tree, w_j denotes the weight of the j-th leaf, and γ 
is a regularisation parameter that controls the number of leaves 
in the tree. In addition, there is another regularisation 
parameter, denoted by λ, that controls the size of the weights 
[11]. 

The regularization term has been demonstrated to function as 
a mechanism that discourages the development of overly 
complex trees with numerous leaves and substantial weights, 
thereby aiding in the process of preventing overfitting [16]. 

The last thing we need to do to minimise the objective function 
in XGBoost is combine the loss function (residuals) and the 
regularisation term:  



 

 

ℒ(𝑓) =  ∑ 𝐿(𝑦𝑖 , 𝑓(𝑥𝑖)

𝑁

𝑖=1

+  Ω(𝑓) (9) 

The location is as follows: 

The loss function L(𝑦𝑖 , 𝑓(𝑥𝑖)), which is employed to quantify the 
discrepancy between the true label yi and the predicted value 
f(xi), is a fundamental component of the model. The 
regularization term Ω(f), which was previously defined, plays a 
crucial role in ensuring the stability and accuracy of the model. 
The objective of XGBoost is to identify the function f(x) that 
minimises the objective function [11]. 

XGBoost constructs trees by employing a greedy algorithm that 
selects the optimal split at each node, as determined by the 
objective function. The optimal split Q for a given node can be 
determined by maximising the gain: 

Gain (q) = 
1

2
 ( 

(∑ 𝑔𝑖 )
2

𝑖∈𝐿

ℎ𝐿+𝜆
+  

(∑ 𝑔𝑖 )
2

𝑖∈𝑅

ℎ𝑅+𝜆
−

(∑ 𝑔𝑖 )
2

𝑖∈𝑆

ℎ𝑆+𝜆
 ) (10) 

The location is as follows: 

It is evident that 'gi' and 'hi' represent the gradient and Hessian 
of the loss function, respectively, i.e. the first and second 
derivatives. Furthermore, 'L', 'R', and 'S' denote the left, right, 
and split node, in that order [11]. 

The gain is defined as the reduction in loss following the 
implementation of the split. It is important to note that the 
objective of the split is to maximise the gain [17]. 

The final prediction is derived from the summation of the 
predictions of all individual trees once they have been 
constructed. 

𝑓(𝑥) =  𝑓0(𝑥) + ∑ 𝜂ℎ𝑡

𝑇

𝑡=1

(𝑥) (11) 

The location is as follows:  

The initial model, designated 𝑓0(𝑥), is frequently the mean 
value of the target. The learning rate is denoted by η, and the 
prediction from the t-th tree is represented by ht(x). 

So, the prediction for a new instance is worked out by adding 
together the predictions of all the trees, with the weights based 
on the learning rate [18]. XGBoost is a machine learning 
algorithm that incorporates early stopping as a means of 
preventing overfitting [19]. During the training phase, the 
model checks how well it is performing on a separate set of data 
after each boosting round. If the performance on the validation 
set doesn't get better after a set number of rounds (called the 
early stopping round'), the training is stopped [11], [18], [19]. 

XGBoost has been shown to be a useful tool for predicting 
polymer properties, especially when numerical and categorical 
features are both present. When researchers study polymers, 
they often work with large sets of data. These data include 
numbers (for example, how thick a liquid is, how strong it is, 
and what its heat properties are) and categories (for example, 
the type of polymer, the catalyst used, and the conditions of the 
reaction). XGBoost is particularly good at making these types of 
predictions because it can process both numerical and 
categorical data, and it learns quickly [11]. For instance, Ueki et 
al. [20] used machine learning (ML) to predict how much we 
could graft in a radiation-induced graft polymerisation of 
methacrylate ester monomers onto PE-coated PP fabric. The 
XGBoost model was the best at predicting what would happen, 

and it showed that monomer polarizability and O2 NMR shift 
were the main things affecting grafting efficiency.  

𝑦̂𝑖 = 𝑓(𝑥𝑖) = 𝑓0 (𝑥𝑖) +  ∑ 𝜂ℎ𝑡

𝑇

𝑡=1

(𝑥𝑖) (12) 

To illustrate this point, consider the potential of XGBoost in 
predicting the stability of a polymer under various conditions. 
These conditions may include exposure to UV radiation or 
chemical reactions, with the relevant features being molecular 
structure, temperature, and the type of additives utilised [11]. 
The ultimate prediction for polymer property 𝑦̂𝑖 can be 
expressed as follows. 

 

Çevik et al. investigated the optimisation of parameters in the 
micro-milling of aluminium alloy produced by additive 
manufacturing. Here, they used algorithms such as random 
forest regressor (RFR), gradient boosting regressor (GBR), 
LightGBM, CatBoost, and k-nearest neighbours (KNN). 
However, they obtained the best values with CatBoost [21].    
Wang et al. 2024 studies the XGBoost algorithm and Laser 
Additive Manufacturing (LAM), optimizes and designs 
traditional processes to obtain a more ideal process flow. This 
study utilizes the XGBoost algorithm to improve the LAM 
process, promoting the development of the manufacturing 
industry and improving the quality and production efficiency of 
parts [22]. Wang et al. 2022, propose a data-driven failure 
prediction system framework for metal additive manufacturing 
equipment to overcome the complexity of failure modelling and 
the limitations of health monitoring tools. In the proposed 
failure modelling method, the modelling method based on the 
XGBoost algorithm shows that the higher the depth value of the 
tree used, the faster the iterative convergence speed. Compared 
with other algorithms, the XGBoost-based modelling method 
can provide higher prediction accuracy [23]. In 3D printing, 
determining optimal printing parameters remains a challenge 
and increases pre-printing processing time and material waste. 
Dabbagh et al. presented the first integration of ML and 3D 
printing for optimising printing parameters through an easy-
to-use graphical user interface (GUI) [24]. Zhu et al. developed 
three ML models, SVR, extreme gradient boosting (XGBoost), 
and BPNN, to predict melt pool shapes. They measured 210 
melt pool parameters as training and testing datasets. The SVR 
model achieved an accuracy of approximately 93% in 
predicting melt pool height, while the XGBoost model attained 
accuracies of 97% and 96.3% in predicting melt pool width and 
depth, respectively. After optimization, all three models 
exhibited excellent generalization performance on new sample 
data [25]. Zhang et al. studied two machine learning algorithms, 
including XGBoost and Long short-term memory (LSTM). The 
central hypothesis is that, under various process conditions, 
machine learning can forecast the melt pool temperature 
during DED with high accuracy. Four separate instances were 
used to assess the performance of two machine learning 
algorithms, including XGBoost and LSTM. However, the 
performance of the two ML models based on time series does 
not achieve high accuracy [26]. Huang et al. proposed an 
artificial intelligence-based printing path optimization design 
method to provide new ideas and directions for the 
development of modern printing industry [27]. Zhang et al. 
provided a comprehensive review of parameter optimization 
and in-situ monitoring in laser powder bed fusion (L-PBF) 
technology. They effectively improved the quality of part 

       
 



 

 

manufacturing by deeply extracting the intrinsic links between 
process parameters and key elements such as melt pool 
characteristics, porosity, and mechanical properties [28]. 

 

Additionally, Veeman et al. investigated layer thickness, filling 
density, and print direction in FDM using decision trees (DT), 
random forest (RF) and Adaboost algorithms [29]. Garg and 
Tai, investigated layer thickness, grid angle, grid width, and 
print direction in FDM using artificial neural network (ANN) 
[30]. Agarwal et al. İnvestigated fill percentage, layer height and 
filling mode in FDM using K-nearest neighbors (KNN), support 
vector regression (SVR), DT and RF [31]. Zhu et al. İnvestigated 
layer height, scanning speed, material flow rate and nozzle 
temperature in FDM using Gradient boosting decision tree 
(GBDT) [32]. Barrios and Romeo investigated layer height, 
extrusion temperature and print speed in FDM using RF and DT 
[33]. Nagarajan et al. investigated angle of deposition in FDM 
using ANN [34]. Li et al., investigated layer height, printing 
temperature and print speed in FDM using Adaboost and SVR 
[35]. Hooda et al. investigated angle of deposition in FDM using 
RF [36]. Douard et al., investigated support angle and support 
density in Electron Beam Melting (EBM) using DT [37].  

Machine learning methods have become a widely used tool in 
the health sector for data analysis and diagnosis of diseases and 
for solving complex problems. In this study, After the 
experimental parts of the study were completed, optimization 
was performed with machine learning according to the limited 
number of experiments and results available. Linear 
regression, Xgboost and Catboost algorithms were used. The 

present study employed Python as the designated 
programming language. The parameters used are given in the 
table below. 80% of the data was used for training, while 20% 
was used for testing. 

Table 2 Machine learning parameters 

Parameters  Xgboost Catboost 
Learning rate  0,05 0,05 
N_estimatör 1000 - 
Iteration - 1000 
Eval metric RMSE RMSE 
Max depth 6 6 
Eta 0,3 - 
Gama  0 - 
Border count - 254 
Subsample 1 1 

 

3 Results and discussions 

The data obtained as a result of tensile tests are given in Table 
3. In the table, the tensile force value, the time for the maximum 
value and the amount of elongation occurring in the specimens 
are given. In addition, the images of the specimens fractured as 
a result of the tensile test are given in Figure 7. In this context, 
Figure 8 shows that the best tensile strength results were 
obtained at 0.09 mm layer thickness, full filling type and 20° 
support angle.

 

Table 3. Design of experiment and results. 

Build 
Direction 

Sample 
Layer 

Thickness 
(mm) 

Infill 
type 

Support 
angle (°) 

Y1 
Max Force 

(N) 

Y2 
Elongation at 

break (ε) 

Y3 
Tensile 

strength (σ) 

Y4 
Elastic 
Module  

Edge 

1 0.09 Full 20 376.8948 0.0412 19.32 432.025 

2 0.09 Solid 30 348.3393 0.0393 17.86 584.370 

3 0.09 Medium 40 426.9743 0.0571 21.89 500.850 

. . . . . . .  

. . . . . . .  

Up-right 

. . . . . . .  

. . . . . . .  

48 0.39 Medium 30 73.79607 0.059 3.78 180.270 

49 0.39 Light 40 103.8705 0.0827 5.32 126.060 

50 0.39 Mesh 50 26.48006 0.0075 1.35 246.068 
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Figure 7. Specimens fractured after tensile test. 

 

Figure 8. The effects of parameters on max force.

It was also observed that the weakest tensile strength values were obtained at 0.39 mm layer thickness, mesh infill type and 50° 
support angle. When the ANOVA values given for Max Force (Table 4) are analyzed, build direction with 21.87%, Layer thickness with 
24.94% and Infill type with 36.43% were effective. However, support angle (1.94%) did not show a significant effect on max force.   

Table 4. Analysis of variance for N. 

Source symbol DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 

Build direction Bd 1 40750 21.87% 40750 40749.8 53.15 0.000 

Layer thickness Lt 4 46468 24.94% 46468 11617.1 15.15 0.000 

Infill type It 4 67867 36.43% 67867 16966.8 22.13 0.000 

Support angle Sa 4 3614 1.94% 3614 903.4 1.18 0.337 

Error  36 27602 14.82% 27602 766.7   

Total  49 186301 100.00%     

The regression equation obtained for max force as a result of  
the analysis is given below.  



 

 

N = 396.20+ 28.55 Bd_Edge- 28.55 Bd_Upright+ 38.04 Lt_0.
09+ 22.14 Lt_0.14+ 2.31 Lt_0.19- 11.85 Lt_0.29- 50.64 
Lt_0.39+ 51.13 It_Full- 58.84 It_Light+ 0.57 It_Medium-
 14.93 It_Mesh+ 22.08 It_Solid+ 10.68 Sa_20- 1.00 Sa_3
0- 0.91 Sa_40- 14.56 Sa _50 + 5.79 Sa _60 

When the graph in Figure 9 is analyzed, it is observed that the 
best elongation at break results were obtained at 0.09 mm layer 
thickness, full infill type and 40° support angle. When the 
ANOVA values for elongation at break (Table 5) are analyzed, 
build direction with 25.19%, Layer thickness with 31.70% and 
Infill type with 38.27% were effective. However, support angle 
(0.75%) did not show a significant effect on the elongation at 
break.   

Figure 9. The effects of parameters on elongation at break. 

Table 5. Analysis of variance for ε. 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 

Build direction 1 0.000106 25.19% 0.000106 0.000106 221.50 0.000 
Layer thickness 4 0.000134 31.70% 0.000134 0.000033 69.69 0.000 

Infill type 4 0.000161 38.27% 0.000161 0.000040 84.15 0.000 

Support angle 4 0.000003 0.75% 0.000003 0.000001 1.65 0.182 

Error 36 0.000017 4.09% 0.000017 0.000000   

Total 49 0.000422 100.00%     

The regression equation obtained for elongation at break as a  
result of the analysis is given below. 

ε = 0.036088+ 0.001457 Bd_Edge- 0.001457 Bd_ 
Upright+ 0.002229 Lt_0.09+ 0.001195 Lt_0.14- 
0.000052 Lt_0.19- 0.000885 Lt_0.29- 0.002487  

Lt_0.39+ 0.002818 It_Full- 0.002365 It_Light- 0.
000593 It_Medium- 0.000988 It_Mesh+ 0.00112
 It_Solid+ 0.000028 Sa_20+ 0.000125 Sa_30+ 0.
000246 Sa_40+ 0.000083 Sa_50- 0.000483 Sa_60 

When the graph in Figure 10 is analyzed, it is observed that the 
best tensile stress results were obtained at 0.09 mm layer 
thickness, full infill type and 60° support angle. When the 
ANOVA values for tensile strength (Table 6) are analyzed, build 
direction with 42.38%, Layer thickness with 15.16% and Infill 
type with 37.14% were effective. However, support angle 
(0.37%) did not show a significant effect on tensile stress.   
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Figure 10. The effects of parameters on tensile strength. 

Table 6. Analysis of variance for σ. 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 

Build direction 1 134.678 42.38% 134.678 134.678 308.32 0.000 
Layer thickness 4 48.171 15.16% 48.171 12.043 27.57 0.000 

Infill type 4 118.020 37.14% 118.020 29.505 67.55 0.000 

Support angle 4 1.189 0.37% 1.189 0.297 0.68 0.610 

Error 36 15.725 4.95% 15.725 0.437   

Total 49 317.783 100.00%     

The regression equation obtained for tensile stress as a result  
of the analysis is given below.    

σ = 16.7054+ 1.6412 Bd_Edge- 1.6412 Bd_Upright+ 1.263 Lt 
_0.09+ 0.802 Lt_0.14+ 0.075 Lt_0.19- 0.694 Lt_0.29- 1.4
46 Lt_0.39+ 2.190 It_Full- 2.494 It_Light+ 0.005 It_Mediu
m- 0.459 It_Mesh+ 0.758 It_Solid+ 0.036 Sa_20- 0.053 Sa

_30+ 0.118 Sa_40- 0.270 Sa_50+ 0.168 Sa_60 

The ANOVA values for the effects of the parameters on tensile 
strength are given in Table 3. According to the table, it was 
concluded that layer thickness and filler type were highly 

effective (P<0.05) on tensile strength. However, support angle 
had no significant effect on tensile strength.   

 

When the graph in Figure 11 is analyzed, it is observed that the 
best tensile stress results were obtained at 0.19 mm layer 
thickness, full infill type and 60° support angle. When the 
ANOVA values for tensile strength (Table 7) are analyzed, build 
direction with 4.81%, Layer thickness with 2.94% and Infill 
type with 6.74% were effective. However, support angle 
(67.68%) did not show a significant effect on tensile stress. 

 

 



 

 

 

Figure 11. The effects of parameters on elastic modüle. 

Table 7. Analysis of variance for σ. 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 

Build direction 1 83953 4,81% 83953 83953 0,18 0,675 

Layer thickness 4 761964 2.94% 761964 190491 0,38 0,824 

Infill type 4 1362803 6.74% 1362803 340701 0,72 0,580 

Support angle 4 2248205 67.68% 2248205 2248205 4,78 0,034 

Error 36 1973768 17.83% 19737688 469945   

Total 49 2347256 100.00%     

 

The regression equation obtained for tensile stress as a result  
of the analysis is given below. 

E = 766 + 0,0 Lt _0,09 - 183 Lt _0,14 + 161 Lt _0,19- 151 Lt 
_0,29 - 85 Lt _0,39 + 0,0 Sa _20+ 35 Sa _30 + 181 Sa _40 
+ 166 Sa _50+ 684 Sa _60 + 0,0 Bd _Edge + 82 Bd _Up-
right+ 0,0 It _Full - 503 It _Light - 221 It _Medium- 310 It 
_Mesh - 341 It _Solid 

 

 

The results obtained are given in the table 8 below. In general, 
the models obtained with both linear regression and xgboost 
and catboost algorithms are quite suitable.  For max force, the 
r2 value (0.757) was best in Catboost algorithm. Approximate 
values were also obtained in Linear regression (0,79). For 
elongation at break, the highest r2 value (0.906) was obtained 
in the Catboost algorithm. For tensile strength, the highest r2 
value (0.861) was obtained in the Catboost algorithm. This has 
demonstrated that catboost is effective, as in similar studies 
[21]. For elastic module, the highest r2 value (0.27) was 
obtained in the xgboost algorithm. However, this situation is 
not a desirable or expected outcome.  

 

Table 8. Machine learning results 
 Linear Regression Xgboost Catboost 

  Test   Train   Test   Train   Test    Train  

 r² rmse mape r² rmse mape r² rmse mape r² rmse mape r² rmse mape r² rmse mape 

Y1 0.79 26.69 0.062 0.59 34.66 0.076 0.507 30.514 0.058 1.0 0.0048 0.00008 0.757 20.32 0.040 1.0 0.008 0.000016 

Y2 0.87 0.001 0.023 0.82 0.001 0.026 0.77 0.001 0.025 0.97 0.0004 0.009 0.906 0.001 0.018 1.0 0.00 0.00001 

Y3 0.86 0.95 0.047 0.74 1.17 0.057 0.76 1.11 0.56 1.00 0.0008 0.77 0.861 0.76 0.40 1.0 0.00055 0.000024 

Y4 -4.04 201.3 0.309 -5.12 237.1 0.350 0.27 206.48 0.358 1.0 0.0018 0.00003 -1.654 173.99 0.283 1.0 0.125 0.00025 
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When the max force graphs are analyzed, the blue marks 
indicate the test results and the orange marks indicate the 
model values (Figure 12). A consistent and meaningful 
parallelism is observed here. In addition, in the graphs of 
Xgboost and Catboost algorithms, test data and model data 
overlap in places. This is a result of the validity of the model.                

 
a) 

 
b) 

 
c) 

Figure 12. Max force graphs; (a) Lineer regression,  

(b) Xgboost, (c) Catboost algorithm.  

When the elongation at break graphs are analyzed, a consistent 
and meaningful distribution of linear regression and other 
Xgboost and Catboost algorithms is observed here (Figure 13). 
In addition, in the graphs of Linear regression, Xgboost and 

Catboost algorithms, test data and model data overlap in places. 
This is a result of the accuracy of the model. 

 
a) 

 
b) 

 
c) 

Figure 13. Elongation at break graphs; (a) Lineer regression,  

(b) Xgboost, (c) Catboost algorithm. 

When the tensile strength graphs are analyzed, the model 
fitting valid for the other two concepts is also observed here 
(Figure 14). The model obtained with both linear regression 
and xgboost and catboost algorithms is quite appropriate. 

 



 

 

 
a) 

 
b) 

 
c) 

Figure 14. Tensile strength graphs; (a) Lineer regression,  

(b) Xgboost, (c) Catboost algorithm. 

 
When the elastic module graphs are analyzed, a consistent and 
meaningful distribution of linear regression and other Xgboost 
and Catboost algorithms is observed here (Figure 15). 
However, in the graphs of the linear regression, Xgboost and 
Catboost algorithms, the test data and model data appear quite 
distinct. This has been an indication that the model is not as 
expected and the results are not favourable.  
 

 
a) 

 
b) 

 
c) 

Figure 15. Elastic module; (a) Lineer regression, 

(b) Xgboost, (c) Catboost algorithm. 
 

According to the results, three validation experiments were 
conducted (Figure 16). Accordingly, the best maximum force 
value was obtained with Edge, a layer thickness of 0.09 mm 
layer thickness, full fill type, and a support value of 20⁰. The 
average maximum force value obtained here is 423.56 N. The 
best elongation at break value was obtained with Edge, 0.09 
mm layer thickness, full infill type, and 40⁰ support values. The 
average elongation at break value obtained here is 0.037. The 
best tensile strength value was obtained with Edge, 0.09 mm 
layer thickness, full infill type, and 60⁰ support values. The 
average tensile strength value obtained here is 16.91MPa. The 
best elastic modulus value was obtained with Up-right, 0.19 



 

 

mm layer thickness, full infill type, and 60⁰support values. The 
average elastic modulus value obtained here is 796.35 MPa. 
 

 
Figure 16. verification test samples 

4 Conclusion  

An investigation was conducted into the mechanical properties 
of prototypes produced using 3D printers with the FDM 
method. The results of this investigation are presented in the 
following section. 

The optimal layer thickness for achieving maximum force, 
elongation at break and tensile strength was determined to be 
0.09 mm, while the optimum full filler type was identified as 
well. Furthermore, the investigation revealed that the optimal 
support angle was 20°. With regard to the direction of build, 
optimal outcomes were achieved at the edge position.  

The maximum force value that was recorded was 482 N, while 
the elongation at break was found to be 0.042 and the tensile 
strength was determined to be 21.868.  

For max force, the r2 value (0.757) was best in Catboost 
algorithm. Approximate values were also obtained in Linear 
regression (0.788). For elongation at break, the highest r2 value 
(0.906) was obtained in the Catboost algorithm. For tensile 
strength, the highest r2 value (0.861) was obtained in the 
Catboost algorithm. 

As demonstrated by the analysis of variance (ANOVA) results, 
the build direction, layer thickness and infill type were found to 
have a significant impact on the maximum force, elongation at 
break and tensile strength. However, the effect of the support 
angle was found to be negligible. 
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