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Abstract

In this study, the mechanical properties of tensile samples produced in
3D printers with the fused deposition method (FDM) were investigated.
Here, the parameters such as layer (filament) thickness, infill type and
support angle in the FDM method were examined. The production was
produced with Up-right and edge directions. As a result of the
experiments, the best layer thickness in terms of tensile strength was
0.09 mm, and the infill type was full infill type, while different results
were obtained in the support angle. According to the variance analysis
(ANOVA) values, it was observed that the layer thickness and infill type
were quite effective on the tensile strength, but the support angle was
at a negligible level. In the second stage, the results were estimated with
xgboost and catboost from the machine learning algorithms and linear
regression models. The most effective algorithm on the examined
mechanical properties was determined as the catboost algorithm.

Keywords: Fused deposition model, Mechanical properties, Machine
learning, Regression, Prediction.

0z
Bu ¢alismada ergiyik  yigm etodu (Fused Deposition
Modelleme/FDM) ydntemi il icilarda  liretilen ¢ekme
incelendi. Burada FDM

numunelerinin - mekanik N

yéntemindeki katman (fil & Iig1, dolgu tipi ve support agisi
gibi parametreler incel K% Up-right ve edge yénleri ve her bir
yén icin Taguchi L2 % rimiyla tretildi. Deneyler neticesinde
cekme mukavemeg Ngis1 en iyi katman kalinligi 0,09 mm, dolgu tipi
olarak full dmf% [urken support acisinda farkli sonuclar elde

izi (ANOVA) degerlerine gore parametrelerden
dolgu tipinin cekme mukavemeti tizerinde oldukca
cak support agisinin géz ardi edilebilecek diizeyde
lendi. Ikinci asamada sonuclar makine GGrenmesi
arindan xgboost ve catboost ile ve linear regression ile
inymodelleri yapildi. Incelenen mekanik ézellikler iizerinde en

edildi. Varyaq
katman k
etkili

'etkin lgoritma catboost algoritmasi olarak belirlendi.

Anahtar Kkelimeler: Ergiyik yigma metodu, Mekanik ozellikler,
Makine dgrenmesi, Regresyon, Tahmin.
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1 Introduction N

Fused Deposition Modeling (FDM) is an additiv: ring
technique that works by stacking layers upon layers bf molten
material in a heated nozzle to produce a% %ne part (Fig
1). FDM is one of the most common techyi ployed in the
0

field of 3D printing, and it has becom e popular rapid

prototyping techniques in recent y, NLhis is due to its ability
to construct functional parts wi plex geometric shapes in
a short time. The FDM worki@ is shown in Figure 1.
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Figure 1. FDM method.
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Cantre et al. conducted studies on the positioning of
Acrylonitrile Butadiene Styrene-ABS and polycarbonate parts
during 3D software. In these studies, they obtained up to 33%
differences in the mechanical properties of ABS parts and 20%
differences in the mechanical properties of polycarbonate parts
[1].

Sood et al. examined the effects of parameters such as layer
thickness and support angle on the mechanical properties of 3D
models produced by FDM method. In their study, they
concluded that layer thickness and scanning direction change
the temperature of the bonds between the layers and therefore
have an effect on strength [2].

Tekinalp et al. compared the mechanical properties of
reinforced ABS materials and conventional composites. Here,
the tensile strength and modulus of 3D specimens were
increased by ~115% and ~700%, respectively [3].

Ning et al. produced carbon fiber reinforced plastic composite
parts by FDM method and investigated their tensile strength. In
their study, they stated that the best layer thickness for tensile
and yield strength is 0.15 mm and 0.25 mm layer thickness is
ideal for hardness and ductility [4].

Sa’'ude et al. investigated the mechanical properties of ABS
materials containing copper powders produced by FDM
method. In their study, they observed that up to 22% copper
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powder reinforcement significantly affected the mechanical
properties [5].

Bacak et al. were trying to work out what the process
parameters were doing to the tensile strength of the PLA
samples made using the FDM method on a 3D printer. In their
study, they obtained higher tensile stress at 100% filling rate
compared to 20% filling rate [6].

Evlen, aimed to investigate the effects of occupancy rate on
mechanical properties in three-dimensional printers. They
observed that the values of roughness and tensile strength
were opposite to those of 10% and 20% occupancy rate after
30% occupancy rate [7].

The process parameters for tensile strength were optimised by
applying Taguchi methodology. Following a thorough review of
the data, it was determined that the most effective parameter
on tensile strength was the fill rate. Research has identified the
scanning angle and print speed as the other significant
parameters [8].

It is imperative that improvements are made in order to meet
the mechanical requirements of the load-bearing components.
The study concluded that the addition of 6 mm-long carbon
fibre reinforcement to the structure can lead to a substantial
enhancement in part strength. Furthermore, it was determined
that the printing pattern has a considerable impact on the
mechanical properties of the structure [9].

It was determined through a combination of measurement
results and Taguchi analysis that an increase in nozzle diameter
resulted in an increase in the hardness value of the sample.
Conversely, the lowest values were observed in productions
made with a nozzle diameter of 0.25 mm, as well as incomplete
adhesion. The layer height is another effective parameter, wi
a 9.52% impact. The statistical significance of both paraime

was confirmed by analysis of variance, vxhic\
07

demonstrated that the effects of nozzle angle®a

temperature were minimal. It was established t%: ing
parameters which yielded the highest hardne ithin
the specified ranges were as follows: a ngga er of 0.6

mm, a layer height of 0.1 mm, a nozzle an l\ and a nozzle
temperature of 210°C [10].
ickness, filler type

d were examined.
and edge orientations.
performed. In the second
cted by machine learning
st and linear regression.

algorithms xgboos\%
Z% rial and method

This techno % ployed in the field of three-dimensional
(3D) Prifti manufacture robust, durable, and

e stable components that exhibit both
ccuracy and repeatability. The present study
inveStigates the mechanical properties of prototypes (tensile
éns) produced by 3D printers utilising the FDM method.
Flow chart of this study is shown in Figure 2.

Here, parameters such as layer (fil
and support angle in the F
Production was performed wi
Analysis of variance (AN
stage, the results wer

A. Design of Experiment

4

B. 3D Printing of samples

4

C. Mechanical tests of samples Q
L 2

D. Taguchi analysis and ANOVA

P\

E. Analysis of mechanical test results
using machine learning

O

F. Discussions and Conclusions

\‘
@gure 2. Flowchart of this study

I ers such as layer (filament) thickness, filler type
n t angle in the FDM method were controlled by
uchi L2s experimental design and 25 specimens were
rod@iced in the edge and up-right directions (Figure 5). The
specimens of this study were produced on Zortrax M200 model
3D printers (Figure 3). Z-ultrate series ABS filament was used
as the material. The specimens were dimensionally prepared
for tensile testing based on ASTM D638 standard with
dimensions of 165x19x3.2 mm (Figure 4). Up-right and edge
positioning is given (Figure 4). 3D parameters and levels are
given in Table 1 and fill type is given in Figure 6. The MTS EM
tensile device was used to perform this test. The results were

analyzed and plotted in Minitab 21 program.

Figure 3. 3D printer.
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Figure 4. Tensile sample dimensions.

Table 1. 3D print parameters and levels.
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Figure 5. Up-right and edgec\Q
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3D parameters Levels
1 2 3 4 5
Build direction Edge  Up-right - ‘Sg’ ]
Laver thickness (mm) 0.09 0.14 0.19 0. 0.39
Infill type Full Light Medium Qjﬁ%h Solid
Support angle (°) 20 30 40{\ 50 60
Q)
r
FULL LIGHT MEDIUM MESH SOLID

° >
Figlire wint infill type.

. \
.
2.1 Optimization with machine learning< Q

2.1.1 CatBoost (categorical boosting).

CatBoost is a gradient boosting algori t has been
specifically developed for the handlin rical features.
CatBoost represents a departu 0 conventional
methodologies that employ on coding. Instead, it
introduces a novel approach ‘0 minimise overfitting
and reduce computational exity [11]. The system has

been developed to con ecision trees in an optimal

manner, utilising both ical and continuous features. In a
manner analogous other gradient boosting methods,

N
N = Z yi &)
Q |57] 4
XIES;
Tn is as follows:

S; denotes the set of observations relevant to category Ci.

After the categorical features have been transformed, the model
then builds decision trees in a way that's similar to standard
gradient boosting. The idea behind each decision tree is to
reduce the remaining error from the former model.

N
Le= D i = fia () = e () @)

i=1

CatBoost employs an iterative process to incorporate decision
trees that have been trained on residuals [11]-[13]. The model
under consideration has been developed for the purpose of
handling categorical variables by means of ordered target
statistics. The way these statistics work out target values is by
looking at past data points, not all data points together. This
stops the problem of overfitting. The dataset X is defined by the
target variable Y, with the i-th observation represented by xi
and the categorical feature Cj. The calculation of the key
transformation for a categorical feature is outlined as follows:

Cj signifies the average target value for the categorical feature.

This transformation is achieved through the utilisation of
ordered goal statistics. In this process, the goal statistic is
computed for each data point using only preceding data points.
This process is known as the 'exclusion of data leakage’ [11]-
[13].

The location is as follows:

The abbreviation 'f;_;(x;)' denotes the prediction of the
previous model, whilst 'n' is the learning rate. is employed to
denote the decision tree model that has been trained on the
residuals. The objective of each tree is to minimise this residual
error, with the effect of each tree being adjusted using the
gradient descent method. Subsequent to the construction of the



trees, the last model, f(x), is constituted as a weighted sum of
all the decision trees. The learning rate () is a critical factor in
the training process, as it determines the importance or weight
assigned to each tree in the learning process [11]-[13].

T
) = fol)+ ) ke () ®)
t=1

In the initial model, designated f,(x), the mean of the goal
values is typically employed. The objective function employed
for the optimisation of the CatBoost model is analogous to that
utilised in other gradient boosting algorithms. The following
illustration is offered in order to elucidate the aforementioned
point. For this purpose, the loss function for regression will be
considered, i.e. the mean squared error (MSE)[11]-[13].

N
@)= ) 0= fGx)Y: 4)
i=1

The gradient of this loss function is used to help the model
improve. In machine learning, the new tree (ht(x)) is adjusted
at each step to match the negative gradient of the loss function.
This is congruent with the residuals from the preceding model.

CatBoost also wuses regularization techniques to stop
overfitting. The model we're talking about uses a mix of
features and techniques to improve how well the model
generalises. In order to achieve this objective, an exploration is
undertaken of a variety of methodologies for combining
features [11]-[13]. The regularization term can be expressed as
follows:

O(hy) =T += ,1 Z(w,)z

The location is as follows:
T is the number of leaves in the tree,

&

It is evident that both y and A func egularlzatlon
parameters, thereby exerting a de ontrol over the

complexity of the trees. %
st is great for working

de both categories and
his, think about a study of

polymer material y, the conditions during the
polymerisation prN. temperature, pressure, and types
of catalyst) can b ingo groups. At the same time, properties

such as tensile% th, viscosity, and melting temperature are

wj is the weight of each leaf node,

In the field of polymer resear;
with complex data sets t
continuous variables. T

s. CatBoost has been shown to be good at
ifferent types of data. You can build strong

To illustrate this point, consider the task of predicting the
tensile strength of a polymer. This can be achieved through the
consideration of various processing conditions and chemical
additives:

T
9= O = fo () + ) mhe () ©)
t=1

In this study, the dependent variable is represented by Y_i,
which is the predicted tensile strength. The independent
variables are represented by X_i, which includes both
continuous features (e.g. temperature) and categorical features
(e.g. the type of chemical additive).

CatBoost has been shown to be effective in handling categorical
features directly, thus obviating the necessity for one-hot
encoding. This property has been demonstrated to reduce
computational complexity, enhancing the model's efficiency

and accuracy. Consequently, CatBoost is well-suwited for
polymer field tasks involving substantial and intriﬁ%ets.
°

2.1.2 XGBoost (eXtreme gradlent boo \

XGBoost is an improved versio
algorithm. It has been designed to t
improve prediction accuracy“and
understand. Using regularisati chniques is important for
preventing overfitting. It to manage data that is
incomplete and use moZ effici t tralmng methods, such as
parallelisation and har ptimisations [11], [14]. XGBoost
constructs models ntlally integrating decision trees,
with each tree b aljprated to the residuals (errors) from
& n essence, the objective is to minimise

the preceding
the loss fun% incorporating an additional regularisation

stop overfitting.

term. Th<l
i\Q ation, the model is updated as follows:
Ly = Z[}’i
Y 4

i=1

dlent boosting
g more efficient,
e models easier to

= fe—1(x) — nhe(x)]? ™

The location is as follows:

For instance, the true label for i is denoted by y_i. To illustrate,
within a decision tree, f (t-1) (x_i) denotes the model's
prediction for instance i at the preceding step, h_t (x_i) signifies
the prediction of the new decision tree at the t*(th) step, and n
denotes the learning rate [11]. This formula is employed to
minimise the residual error from the preceding model. The
ultimate model prediction is the aggregate of all tree
predictions. XGBoost basically penalises complexity and
reduces overfitting by using regularisation [15]. We include the
regularisation term Q(f) in The objective function is defined as
follows to keep the model's complexity in check.

T
1
() =T +32 ) (@)’ ®
=

The location is as follows:

It can thus be concluded that T denotes the total number of
leaves in the tree, w_j denotes the weight of the j-th leaf, and y
is aregularisation parameter that controls the number of leaves
in the tree. In addition, there is another regularisation
parameter, denoted by A, that controls the size of the weights
[11].

The regularization term has been demonstrated to function as
a mechanism that discourages the development of overly
complex trees with numerous leaves and substantial weights,
thereby aiding in the process of preventing overfitting [16].

The last thing we need to do to minimise the objective function
in XGBoost is combine the loss function (residuals) and the
regularisation term:
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The location is as follows:

The loss function L(y;, f (x;)), which is employed to quanury e
discrepancy between the true label yi and the predicted value
f(xi), is a fundamental component of the model. The
regularization term Q(f), which was previously defined, plays a
crucial role in ensuring the stability and accuracy of the model.
The objective of XGBoost is to identify the function f(x) that
minimises the objective function [11].

XGBoost constructs trees by employing a greedy algorithm that
selects the optimal split at each node, as determined by the
objective function. The optimal split Q for a given node can be
determined by maximising the gain:

: _1(Gierg)® | Cierdi)® _ Siesgi)?
Gain (q) = 2 ( hp+2 + hg+A hg+1 ) (10

The location is as follows:

Itis evident that 'gi' and 'hi' represent the gradient and Hessian
of the loss function, respectively, i.e. the first and second
derivatives. Furthermore, 'L', 'R’, and 'S' denote the left, right,
and split node, in that order [11].

The gain is defined as the reduction in loss following the
implementation of the split. It is important to note that the
objective of the split is to maximise the gain [17].

The final prediction is derived from the summation of the
predictions of all individual trees once they have been
constructed.

The location is as follows:

N\

The initial model, designated f,(x), is freguently the mean
value of the target. The learning rate is %by 7, and the

prediction from the t-th tree is represen; X).

So, the prediction for a new instance ed out by adding
together the predictions of all the ith the weights based
on the learning rate [18]. a machine learning
algorithm that incorporate topping as a means of
preventing overfitting [49]. ing the training phase, the
model checks howsyellfitis performing on a separate set of data
after each boostin%t e performance on the validation
set doesn't get beft r a set number of rounds (called the
early stoppin% "),'the training is stopped [11], [18], [19].

XGBoqgt hés shown to be a useful tool for predicting
polyme es, especially when numerical and categorical
feqy oth present. When researchers study polymers,

eh work with large sets of data. These data include
(for example, how thick a liquid is, how strong it is,
and what its heat properties are) and categories (for example,
the type of polymer, the catalyst used, and the conditions of the
reaction). XGBoost is particularly good at making these types of
predictions because it can process both numerical and
categorical data, and it learns quickly [11]. For instance, Ueki et
al. [20] used machine learning (ML) to predict how much we
could graft in a radiation-induced graft polymerisation of
methacrylate ester monomers onto PE-coated PP fabric. The
XGBoost model was the best at predicting what would happen,

and it showed that monomer polarizability and 02 NMR shift
were the main things affecting grafting efficiency.

T
9= FO) = fo () + ) mhe () (12)
t=1

To illustrate this point, consider the potential of XGBoost in
predicting the stability of a polymer under various conditions.
These conditions may include exposure to UV radiation or
chemical reactions, with the relevant features being ecular
structure, temperature, and the type of additives uti 1].
The ultimate prediction for polymer pro
expressed as follows.

Cevik et al. investigated the opti
micro-milling of aluminiumgall
manufacturing. Here, they us ms such as random
forest regressor (RFR), gradi osting regressor (GBR),
LightGBM, CatBoost, @ est neighbours (KNN).
However, they obtain e values with CatBoost [21].
Wang et al. 2024 studjes XGBoost algorithm and Laser
LAM), optimizes and designs

Additive Manuf:
traditional pro % btain a more ideal process flow. This
study utiliz K Boost algorithm to improve the LAM
process, l%l the development of the manufacturing
d roving the quality and production efficiency of
ang et al. 2022, propose a data-driven failure
n'system framework for metal additive manufacturing
equipment to overcome the complexity of failure modelling and

}he itations of health monitoring tools. In the proposed
failure modelling method, the modelling method based on the

XGBoost algorithm shows that the higher the depth value of the

can provide higher prediction accuracy [23]. In 3D printing,
determining optimal printing parameters remains a challenge
and increases pre-printing processing time and material waste.
Dabbagh et al. presented the first integration of ML and 3D
printing for optimising printing parameters through an easy-
to-use graphical user interface (GUI) [24]. Zhu et al. developed
three ML models, SVR, extreme gradient boosting (XGBoost),
and BPNN, to predict melt pool shapes. They measured 210
melt pool parameters as training and testing datasets. The SVR
model achieved an accuracy of approximately 93% in
predicting melt pool height, while the XGBoost model attained
accuracies of 97% and 96.3% in predicting melt pool width and
depth, respectively. After optimization, all three models
exhibited excellent generalization performance on new sample
data [25]. Zhang et al. studied two machine learning algorithms,
including XGBoost and Long short-term memory (LSTM). The
central hypothesis is that, under various process conditions,
machine learning can forecast the melt pool temperature
during DED with high accuracy. Four separate instances were
used to assess the performance of two machine learning
algorithms, including XGBoost and LSTM. However, the
performance of the two ML models based on time series does
not achieve high accuracy [26]. Huang et al. proposed an
artificial intelligence-based printing path optimization design
method to provide new ideas and directions for the
development of modern printing industry [27]. Zhang et al.
provided a comprehensive review of parameter optimization
and in-situ monitoring in laser powder bed fusion (L-PBF)
technology. They effectively improved the quality of part

i Ny ® tree used, the faster the iterative convergence speed. Compared
f) = folx) + Znht () . ® with other algorithms, the XGBoost-based modelling method
t=1 [



manufacturing by deeply extracting the intrinsic links between
process parameters and key elements such as melt pool
characteristics, porosity, and mechanical properties [28].

Additionally, Veeman et al. investigated layer thickness, filling
density, and print direction in FDM using decision trees (DT),
random forest (RF) and Adaboost algorithms [29]. Garg and
Tai, investigated layer thickness, grid angle, grid width, and
print direction in FDM using artificial neural network (ANN)
[30]. Agarwal et al. investigated fill percentage, layer height and
filling mode in FDM using K-nearest neighbors (KNN), support
vector regression (SVR), DT and RF [31]. Zhu et al. Investigated
layer height, scanning speed, material flow rate and nozzle
temperature in FDM using Gradient boosting decision tree
(GBDT) [32]. Barrios and Romeo investigated layer height,
extrusion temperature and print speed in FDM using RF and DT
[33]. Nagarajan et al. investigated angle of deposition in FDM
using ANN [34]. Li et al., investigated layer height, printing
temperature and print speed in FDM using Adaboost and SVR
[35]. Hooda et al. investigated angle of deposition in FDM using
RF [36]. Douard et al., investigated support angle and support
density in Electron Beam Melting (EBM) using DT [37].

Machine learning methods have become a widely used tool in
the health sector for data analysis and diagnosis of diseases and
for solving complex problems. In this study, After the
experimental parts of the study were completed, optimization
was performed with machine learning according to the limited
number of experiments and results available. Linear
regression, Xgboost and Catboost algorithms were used. The

present study employed Python as the designated
programming language. The parameters used are given in the
table below. 80% of the data was used for training, while 20%
was used for testing.

Table 2 Machine learning parameters

Parameters Xgboost Catboost
Learning rate 0,05 0,05
N_estimator 1000 -
Iteration - 1000

Eval metric RMSE RMSE

Max depth 6 6

Eta 03 PANN)
Gama b\\
Border count - e d &54’
Subsample 1 \ &)

The data obtained as a1 nsile tests are given in Table
3. In the table, the tensile foregyvalue, the time for the maximum
value and the amou gation occurring in the specimens
are given. In addifio images of the specimens fractured as
a result of the tensile test are given in Figure 7. In this context,

at the best tensile strength results were

Figure 8 s
obtaine% mm layer thickness, full filling type and 20°

N

3 Results @cussions
1

4
Table 3. Design o eriment and results.
)
. Layer ) N Y1 Y2 Y3 Y4
Di]::i‘ijon Sample  Thickness ItnﬁLl U 1 Max Force Elongation at Tensile Elastic
(mm) yp KN {a N) break () strength (o) Module
1 0.09 Q\ZO 376.8948 0.0412 19.32 432.025
2 0.09 Soli 30 348.3393 0.0393 17.86 584.370
L )
Edge 3 0.09 \%m 40 426.9743 0.0571 21.89 500.850
Up-right %Q 0.39 Medium 30 73.79607 0.059 3.78 180.270
Q 0.39 Light 40 103.8705 0.0827 5.32 126.060
50 0.39 Mesh 50 26.48006 0.0075 1.35 246.068

V)

N\
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Figure 7. Specimens fractured after tensile test. ®
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Data Means

Mean of Means
]
e

o
A
1

350

°
@ The effects of parameters on max force
It was also observed that the weakesgatensilesstrength values were obtained at 0.39 mm layer thickness, mesh infill type and 50°

support angle. When the ANOVA v for Max Force (Table 4) are analyzed, build direction with 21.87%, Layer thickness with
24.94% and Infill type with 3% reveffective. However, support angle (1.94%) did not show a significant effect on max force.
SGN symbol DF SeqSS Contribution AdjSS AdjMS  F-Value P-Value
ir&ction B4 1 40750 21.87% 40750 40749.8 53.15 0.000
ickness Lt 4 46468 2494% 46468 11617.1  15.15 0.000

% fill type It 4 67867 36.43% 67867 16966.8 22.13  0.000
® Support angle Sa 4 3614 1.94% 3614 903.4 1.18 0.337

S\/ Error 36 27602 1482% 27602 7667
Q Total 49 186301  100.00%

Table 4. Analysis of variance for N.

The regression equation obtained for max force as a result of
the analysis is given below.



When the graph in Figure 9 is analyzed, it is observed that the
best elongation at break results were obtained at 0.09 mm layer
thickness, full infill type and 40° support angle. When the
ANOVA values for elongation at break (Table 5) are analyzed,
build direction with 25.19%, Layer thickness with 31.70% and
Infill type with 38.27% were effective. However, support angle
(0.75%) did not show a significant effect on the elongation at

N= 396.20+ 28.55 Ba_Edge- 28.55 Ba_Upright+ 38.04 L. 0.
09+ 22.14 L 0.14+ 2.31 L¢_0.19- 11.85 L 0.29- 50.64
L:_0.39+ 51.13 Ic_Full- 58.84 It_Light+ 0.57 It Medium-
14.93 It_Mesh+ 22.08 I:_Solid+ 10.68 Sa_20- 1.00 Sa_3
0- 0.91 Sa_40- 14.56 Sa _50 + 5.79 Sa _60

break.
Data Means QQ
| BuildDirection |  layerThickness | Infill type Support angle 3\

0,039

0,038

00371

00357

Mean of Means

0,035

0,034

0,033

ﬁ.ﬂf k!f {'_-,{:' ﬁ:u Q:-" {;I" o & ﬁ #.‘4‘ @Eﬁ' q} 1 Ay # o )
R &

(% v
Figure 9. The xfparameters on elongation at break.
. Analysis of variance for e.
Source DF * \%SJ Contribution  Adj SS Adj MS F-Value P-Value

Build direction Q 0106 25.19% 0.000106 0.000106 221.50  0.000

Layer thickness 000134 31.70% 0.000134 0.000033 69.69 0.000
Infill type % .000161 38.27% 0.000161  0.000040 84.15 0.000
Support angl 0.000003 0.75% 0.000003 0.000001 1.65 0.182
E 36 0.000017 4.09% 0.000017  0.000000
1 49 0.000422 100.00%

The regressio% ioh obtained for elongation at break as a

result of is given below.
.
0,0% 8% 0.001457 Ba_Edge- 0.001457 Ba_ When the graph in Figure 10 is analyzed, it is observed that the
w_ 4+ 0.002229 L:_0.09+ 0.001195 L 0.14- best tensile stress results were obtained at 0.09 mm layer
0000052 L 0.19- 0.000885 L_0.29- 0.002487 thickness, full infill type and 60° support angle. When the

ANOVA values for tensile strength (Table 6) are analyzed, build
direction with 42.38%, Layer thickness with 15.16% and Infill
type with 37.14% were effective. However, support angle
(0.37%) did not show a significant effect on tensile stress.

L:_0.39+ 0.002818 I:_Full- 0.002365 It_Light- 0.
000593 It_Medium- 0.000988 I;_Mesh+ 0.00112
It_Solid+ 0.000028 Sa_20+ 0.000125 Sa_30+ 0.
000246 Sa_40+ 0.000083 Sa_50- 0.000483 Sa_60
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Figure 10. The effects of parameters on t%“rength.
Table 6. Analysis of Vakﬂ& :
Source DF  SeqSS Contribution \ i8S Adj MS F-Value P-Value
Build direction 1  134.678 42.38% .678 134.678 308.32 0.000
Layer thickness 4 48.171 15.16% ¢ 48171 12.043 27.57 0.000
Infill type 4 118.020 .37. 118.020 29.505 67.55 0.000
Support angle 4 1.189 0 1.189 0.297 0.68 0.610
Error 36 15.725 15.725 0.437
Total 49 317.783° 0.00%
The regression equation obtained for tef¥sjl ess'as a result effective (P<0.05) on tensile strength. However, support angle
of the analysis is given below. \ had no significant effect on tensile strength.

pright+ 1.263 Lt

0 =16.7054+ 1.6412 Ba_Edge- 1.
119%0.694 1:_0.29- 1.4 When the graph in Figure 11 is analyzed, it is observed that the

_0.09+ 0.802 L¢_0.14+ 0.07

46 L:_0.394 2.190 I;_Full 24 =light+ 0.005 I;_Mediu best tensile stress results were obtained at 0.19 mm layer

m- 0.459 I;_Mesh+ 0.7 id+ 0.036 Sa_20- 0.053 Sa thickness, full infill type and 60° support angle. When the

30+ 0.118 S,_40- 0. 0+ 0.168 S,_60 ANOVA values for tensile strength (Table 7) are analyzed, build

direction with 4.81%, Layer thickness with 2.94% and Infill

The ANOVA valueﬁxe ects of the parameters on tensile type with 6.74% were effective. However, support angle
strength are giv e 3. According to the table, it was (67.68%) did not show a significant effect on tensile stress.

concluded th% hickness and filler type were highly
)
.&
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Figure 11. The effects of parameters Wlodﬁle.
Table 7. Analysis of yar Qo.
yarhgte e
Source DF  SeqSS Contribution M AdjMS  F-Value P-Value
Build direction 1 83953 481% ¢ 83953 83953 0,18 0,675
Layer thickness 4 761964 2. 0 761964 190491 0,38 0,824
Infill type 4 1362803 N % 1362803 340701 0,72 0,580
Supportangle 4 2248‘%)5\ G8% 2248205 2248205 4,78 0,034
Error 36 1 37% 7.83% 19737688 469945
Total 49 23 100.00%

° c <
The regression equation obtained S

@tress as aresult
of the analysis is given below.
o\

E =766+0,0L:_0,09-183L:_0,14 + 161 L:_0,19- 151 Lt
_0,29-85L:_0,39 4+ 0,0 Sa_20+ 35S._30 + 181 S._40
+ 166 Sa _50+ 684 Sa_60 + 0,0 Ba _Edge + 82 Ba _Up-
right+ 0,0 It _Full - 503 It _Light - 221 It _Medium- 310 I;
_Mesh - 341 I; _Solid

S

The results obtained are given in the table 8 below. In general,
the models obtained with both linear regression and xgboost
and catboost algorithms are quite suitable. For max force, the
r2 value (0.757) was best in Catboost algorithm. Approximate
values were also obtained in Linear regression (0,79). For
elongation at break, the highest r2 value (0.906) was obtained
in the Catboost algorithm. For tensile strength, the highest r2
value (0.861) was obtained in the Catboost algorithm. This has
demonstrated that catboost is effective, as in similar studies
[21]. For elastic module, the highest r2 value (0.27) was
obtained in the xgboost algorithm. However, this situation is
not a desirable or expected outcome.

Table 8. Machine learning results

Linear Regression Xgboost Catboost
Test Train Test Train Test Train
r? rmse  mape r? rmse  mape r? rmse mape r? rmse mape r? rmse mape r? rmse mape
Y1 0.79 26.69 0.062 | 0.59 34.66 0.076 0.507 30.514 0.058 1.0 0.0048 0.00008 0.757 20.32 0.040 1.0 0.008 0.000016
Y2 0.87 0.001 0.023 | 0.82 0.001 0.026 0.77 0.001 0.025 0.97 0.0004 0.009 0.906 0.001 0.018 1.0 0.00 0.00001
Y3 0.86 0.95 0.047 | 0.74 1.17 0.057 0.76 1.11 0.56 1.00 0.0008 0.77 0.861 0.76 0.40 1.0 0.00055  0.000024
Y4 -4.04 2013 0309 | -5.12 237.1 0.350 0.27 206.48 0.358 1.0 0.0018 0.00003 -1.654 173.99 0.283 1.0 0.125 0.00025
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When the max force graphs are analyzed, the blue marks Catboost algorithms, test data and model data overlap in places.
indicate the test results and the orange marks indicate the This is a result of the accuracy of the model.

model values (Figure 12). A consistent and meaningful Lineer Regression

parallelism is observed here. In addition, in the graphs of 0040 ] 0
Xgboost and Catboost algorithms, test data and model data
overlap in places. This is a result of the validity of the model. ° v e
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test data
- ) When the tensile strength graphs are analyzed, the model

fitting valid for the other two concepts is also observed here
(Figure 14). The model obtained with both linear regression
(b) Xgboost, (c) Catboost algorithm. and xgboost and catboost algorithms is quite appropriate.

Figure 12. Max force graphs; (a) Lineer regression,

When the elongation at break graphs are analyzed, a consistent
and meaningful distribution of linear regression and other
Xgboost and Catboost algorithms is observed here (Figure 13).
In addition, in the graphs of Linear regression, Xgboost and
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Figure 14. ileystrength graphs; (a) Lineer regression,
& b oost, (c¢) Catboost algorithm.
Wh elastic module graphs are analyzed, a consistent and
meani 1 distribution of linear regression and other Xgboost
and Catboost algorithms is observed here (Figure 15).
However, in the graphs of the linear regression, Xgboost and
Catboost algorithms, the test data and model data appear quite
distinct. This has been an indication that the model is not as
expected and the results are not favourable.
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Figure 15. Elastic module; (a) Lineer regression,
(b) Xgboost, (c) Catboost algorithm.

According to the results, three validation experiments were
conducted (Figure 16). Accordingly, the best maximum force
value was obtained with Edge, a layer thickness of 0.09 mm
layer thickness, full fill type, and a support value of 20°. The
average maximum force value obtained here is 423.56 N. The
best elongation at break value was obtained with Edge, 0.09
mm layer thickness, full infill type, and 40° support values. The
average elongation at break value obtained here is 0.037. The
best tensile strength value was obtained with Edge, 0.09 mm
layer thickness, full infill type, and 60° support values. The
average tensile strength value obtained here is 16.91MPa. The
best elastic modulus value was obtained with Up-right, 0.19



mm layer thickness, full infill type, and 60°support values. The
average elastic modulus value obtained here is 796.35 MPa.

I

Figure 16. verification test samples

4 Conclusion

An investigation was conducted into the mechanical properties
of prototypes produced using 3D printers with the FDM
method. The results of this investigation are presented in the
following section.

The optimal layer thickness for achieving maximum force,
elongation at break and tensile strength was determined to be
0.09 mm, while the optimum full filler type was identified as
well. Furthermore, the investigation revealed that the optimal
support angle was 20°. With regard to the direction of build,
optimal outcomes were achieved at the edge position.

The maximum force value that was recorded was 482 N, while
the elongation at break was found to be 0.042 and the tensile
strength was determined to be 21.868.

For max force, the r2 value (0.757) was best in Catboost
algorithm. Approximate values were also obtained in Linear
regression (0.788). For elongation at break, the highest r2 value
(0.906) was obtained in the Catboost algorithm. For tensile
strength, the highest r2 value (0.861) was obtained in the
Catboost algorithm.

As demonstrated by the analysis of variance (ANOVA) resu

the build direction, layer thickness and infill type were fo 0

have a significant impact on the maximum force, ebn% a
0

break and tensile strength. However, the effect Pth rt
angle was found to be negligible. <
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