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ABSTRACT

In this study, we reconsider the problem of an elastic-plastic torsion of a bar made of work hardening material. Nonlinear
partial differential equation derived is reduced to a well known Laplace equation by means of transformation functions and
stresses txz, Ty, and the torque T are analytically found for elliptical and circular cross sections. It is further shown that the
stresses and the twisting moment do not depend on the value of n in the stress-strain law.
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UZAMA SERTLESMELI MALZEMEDEN YAPILMIS BiR SAFTIN ELASTIK-PLASTIK
BURULMA PROBLEMi UZERINE ANALITIK BIR INCELEME

OZET

Bu ¢alismada, uzama serlesmeli malzemeden yapilmis saftlarin elastik-plastik burulma problemini ele alinmistir. Problemin
¢oziimiinde ortaya ¢ikan ve su ana kadar analitik ¢6ziimii bilinmeyen non-lineer kismi diferensiyel denklem, dontisiim
fonksiyonlar: yardimiyla ¢oziimleri ¢ok iyi bilinen Laplace diferensiyel denklemine indirgenmekte ve Txy, tx. gerilmeleri ile
T torku eliptik ve dairesel kesitler i¢in bulunmaktadir. Ayrica, gerilmeler ile burulma momentinin gerilme uzama
badintisindaki n sabitine badli olmadid: da ispat edilmektedir.

Anahtar Kelimeler: Nonlineer, Viskos, Burulma, Miller

1. INTRODUCTION

Analytical expressions have many advantages compared
to numerical technics because of the easiness of
comparison of numerical results with the experimental
results and every day use. By their natures, it is usually
possible to give analytical results for linear differential
equations arising in the formulation of physical events
based on many simplifications. But, if the more physical
quantities are considered or some other nonlinear effects
are included in the theory, then the resulting differential
equation becomes nonlinear and therefore unsolvable in
many cases (Hodge and Prager, 1951, Shames, 1992).
Such differential equations also occur in elastic and plastic
analysis of structures. The usual procedures in these cases
have been to develop numerical technics for possible
solution of the equations. But, in some cases, there may be
a way for determining related quantities in an analytical
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way, and this method can well be extended to include the
other problems resulting in nonlinear equations (Pala,
1994). It is therefore the objective of this paper to develop
an analytical, but rather simple method when possible for
the solution of equations arising in the mathematical
formulation of the problem of a elastic-plastic torsion of a
bar made of work hardening material. We remind that it is
possible to develop numerical methods for the solution of
the nonlinear partial differential which is mentioned below
(Chakrabarty, 1987, Mendelson, 1968).

2. ANALYSIS

Let us consider a uniform shaft having an arbitrary cross-
section and subjected to a torque T (see, Fig.1). The
location of axes x, y, z is chosen at the end section of the
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bar, the z axis being taken parallel to its generator. But,
for convenience, the axes X, y are chosen as principal
axes.

With the assumptions made by Saint-Venant (Shames,
1992), the displacements in the x and y directions for
small deformation are given by the same equations as
were developed for linear elastic shafts.

To analyze the problem of elastic-plastic torsion of a bar
made of work hardening material, it is convenient to
employ a stress-strain relation that corresponds to no well-
defined yield point. The problem can then be simplified
by the absence of an elastic-plastic boundary, which
permits the same equations in linear elastic torsion
problem to apply throughout the cross section
(Chakrabarty, 1987). In the derivation of the governing
equation, we shall use the Ramberg-Osgood equation
(Hodge and Prager, 1951)

Figure 1. Cross Section of a Bar Made of Work
Hardening Material

it

for the uniaxial stress-strain curve, where m and n are
dimensionless constants, and k a nominal yield stress in
simple or pure shear, the slope of the stress-strain curve
being equal to E when ¢=0.

(1.1)

Let us now consider the formulation of the torsion
problem by using the Hencky stress-strain relations
(Chakrabarty, 1987). Since the velocity field in the twisted
bar (Chakrabarty, 1987)is given by the partial derivative
of
u=-0yz, v=06xz , w=w(X,y,0) (1.2)

with respect to 6, which is taken as the time scale, the
components of the shear-strain increment are expressed as
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The elimination of w from these equations leads to the
strain compatibility equation

3
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If we use Hencky stress-strain relations, which may be
written as (Ckakrabarty, 1987).

(1.4)

2Gy,, = k(1+ X)@,
Z (1.5)
2Gy,,= -k(1+ x)&
in the case of monotonic loading, we have from Eq.(1.4)
that

ol opl 0
—L(1+ ﬂ)—J + — [+ 2)]
OX OX oy
(1.6)
_-2G6
Tk

with the boundary condition ¢=constant on the boundary
curve of the cross section (Chakrabarty, 1987), where ¢ is
the stress function and A is a positive quantity given by
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in which t and ¢ are the resultant shear stress and stress
function, respectively.

L7

Since Eq.(1.4) also holds in the plastic range with 1, and
1y, replaced by 2Gyy, and 2Gyy,, respectively
(Chakrabarty, 1987), we can write the non-zero stresses as
Txz = k(1+ >") ¢y! Tyz = 'k(1+ 7") ¢x (18)
Although this formulation seems to be identical to the
linear elastic torsion problem, stresses and the governing
Eq.(1.6) are given in completely different forms.

3. SOLUTION

It is almost impossible to find the open form of ¢
satisfying both the equation (1.6) and the boundary
condition ¢$=0. Instead of that, we will try to find the shear
stresses in terms of the partial derivatives of a special
function y which depends on ¢.

Let us make use of the transformations
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W= (M0 by o vy = (124, (1.9)
from which we can write
X = ¥x (1.10)

where yy and y are the partial derivatives of the function
v with respect to x and vy, respectively. Then, Eq.(1.6)
reduces to well known Laplace equation

=0 (1.11)

after making a second transformation in the form of
y=y1-(A/4) (x>+y?), where A=2Go/K.

Now, on the other hand, considering the boundary
condition ¢=constant, we can also write ¢./¢y= -dy/dx on
the boundary curve. Employing equation (1.10), we have

Yx_ O _ dy (1.12)

Shear stresses 1, and 1y, and the twisting moment T
(Chakrabarty, 1987) can be written in terms of yy and y
without using ¢x and ¢y since it is not possible to find an
expression for ¢x and ¢y because of the nonlinear relation
between vy, yy and ¢x, ¢y (Chakrabarty, 1987):

sz:k‘//yv z'yz:_k‘//x
T = [l(xzy, - yry)dxdy (1.13)
= -k Hxy, +yw,)dxdy

Our aim is to find the functions y and yy both satisfying
Egs.(1.6) and (1.12).

Elliptical and Circular Cross Sections:

We assume that the boundary condition of the cross
section is an ellipse, whose equation is given by
b?x?+a%y?=a?n? where a and b are semiaxes. Then, we
have for the slope of the curve that -dy/dx=(b%a?)(x/y).
Substituting this expression into (1.12), we have

2
Yx _ b°X (1.14)

On the other hand, since the function . satisfies Laplace
equation, it can be written as the real parts of the complex
function z=(x+iy)?, which will be found for the integer

values of 3. Among these solutions, the unique one which
is compatible with the boundary condition (1.10) is x-y2.
Therefore, y must be taken in the form of

A
v =a(x?-y) S0+ y) (1.15)
from which we find that
A A
v, :(Za - ij , Wy = —[Za + Ejy (1.16)

Substituting Eq.(1.16) in Eq.(1.14) and finding m out, we
obtain

_A a-2_b2
PR (1.17)
and
Al a?-p? ]
=— x2-y2)- (x2+y? 1.18
7 4{a2+b2( ) - ( )J (1.18)

Then, Egs.(1.16) give
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The stresses 1, 1y, and the torque T are given by

KA 32 _ kAp?
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Using Egs.(1.5), strain components vy, and vy, are
obtained as

__Kk -Aa®
x50 a2+b2y' (1.21)
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It is observed from Eqgs.(1.20) that the elastic-plastic
boundary on which t?+1,,°=k? where k is the yield
stress, is again an ellipse for an elliptical cross section. For
circular cross section where a=b, elastic-plastic boundary
is circle, as is clear from Egs.(1.20).

4. RESULTS AND CONCLUSIONS
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It has been shown here that, in a bar made of work
hardening material, it is possible to solve the governing
equation and to find the stress distribution for the elliptical
and circular cross sections in an analytical way. One
important point that has been observed in this analysis is
that stresses tx, 1y, and the torque T do not depend on the
constant n in the stress strain law (see, Eq.(1.3)) for a
work hardening material. These results are also supported
by numerical technics (Chakrabarty, 1987). Indeed, it is
seen in the case of square cross section that the twisting
moment gives very near values for the values between 1
and 9 of n (Chakrabarty, 1987). However, It must be
reminded here that it is not possible to find the value of A
in an analytical way (Chakrabarty, 1987, Hodge and
Prager, 1951, Prager, 1947). It is also beneficial to say a
few words about square cross section. Since, by Eq.(1.10),
the function v is also constant on the surface, the
conditions in this problem are identical with those in the
torsion problem of linear elastic shafts and therefore ¢y
and ¢y in there can directly be taken as yx and yy in this
problem (Shames, 1992, Pala, 1994).
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