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ABSTRACT 
 
 

An analytical method for calculating the stiffness and damping coefficients for journal bearings is briefly 
reviewed with author’s contributions. These coefficients are required for stability calculations of rotor-bearing 
systems. The Reynolds equation governing the pressure field within a bearing is obtained by simplifying the 
Navier-Stokes equations in Cartesian coordinates. It is then solved analytically using the short bearing 
approximation to obtain pressures in the fluid film. Integration of the pressure obtained by the solution of the 
Reynolds equation defines the bearing forces and the corresponding dynamic stiffness and damping coefficients 
of short circular bearings. The results presented in this work can be used in the stability calculations of rotor 
systems with short circular bearings. 
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AKIŞKAN FİLM ŞAFT YATAKLARININ DİNAMİK KATSAYILARININ 
HESAPLANMASI 

 
 

ÖZET 
 
 

Şaft yataklarının rijidlik ve sönüm katsayılarını hesaplamak için analitik bir metot yazarın katkılarıyla birlikte 
kısaca derleniyor. Bu katsayılar rotor-rulman sistemlerinin kararlılık hesaplamaları için gereklidir. Bir rulman 
içindeki basıncı veren Reynolds denklemi kartezyen koordinatlarda Navier-Stokes denklemlerinin 
sadeleştirilmesiyle elde ediliyor. Daha sonra bu denklem akışkan filmdeki basınçları  elde etmek için kısa rulman 
yaklaşımını kullanarak analitik olarak çözülüyor. Reynolds denkleminin çözümünden elde edilen basıncın 
integrasyonu rulman kuvvetlerini ve bunlara karşılık gelen  kısa çembersel rulmanların dinamik rijidlik ve 
sönüm katsayılarını tanımlar.  Bu çalışmada sunulan sonuçlar kısa çembersel rulmanlara sahip rotor sistemlerinin 
kararlılık hesaplamalarında kullanılabilir. 
 
Anahtar Kelimeler : Rotor, Rulman, Reynolds denklemi, Dinamik katsayılar, Kararlılık 
 
 

1. INTRODUCTION 
 
 

The need for higher speed, yet reliable operation of 
rotating machinery continues to increase. A key 
factor in achiving this objective continues to be the 
ability to accurately predict the dynamic response 
and stability of a rotor-bearing system. 

All rotating machinery is supported by one or more 
bearings which play a vital part of the entire system, 
since it is the component that permits the relative 
motion between the stationary and moving parts.  
There are two general types of bearings which are 
commonly used in rotor-bearing system 
applications. These are fluid-film bearings and 
rolling-element bearings. 
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Fluid-film bearings have been succesfully used for 
millennia, and may well be the most used machine 
element in our civilization.  Today large numbers of 
fluid-film bearings are used in myriad of 
applications from small electric motors, to 
automobile and aircraft piston engines, to large 
steam turbines for electric power generation. 
 
It is well known that the fluid-film bearings play a 
significant role in the dynamic behavior of the rotor 
(Goodwin 1989; Rao, 1983; Yücel, 2003). Because 
the thin film that separates the moving surfaces 
supports the rotor load, it acts like a spring and 
provides damping due to squeeze film effect. The 
stifness and damping properties of the fluid-film 
significantly alter the critical speeds and out-of-
balance responce of a rotor. In addition, rotor 
instability occurs, which is a self-exited vibration 
arising out of the bearing fluid-film effects, and this 
is an important factor to be considered in the rotor 
design. 
 
Many theoretical studies, numerical calculations and 
experimental measurements have been carried out to 
determine the effect of self-exited vibration in rotor-
bearing systems due to bearing fluid-film effects.  
The appended reference list gives some, but far from 
all of the papers that mark the development of the 
concept of bearing fluid-film effects. 
 
In this work, a method for calculating the stiffness 
and damping coefficients of short circular bearings 
is presented. These stiffness and damping 
coefficients are necessary for the stability analysis of 
the rotor-bearing systems. The Reynolds equation 
governing the pressure field within a bearing is 
derived from the Navier-Stokes equations in section 
2. Analitical solution of the Reynolds equation using 
the short bearing approximation is given in section 
3.  Integration of the pressure field gives the bearing 
forces acting on a rotor.  Formulas for the stiffness 
and damping coefficients are presented in section 4 
and the results are summurized in section 5. 

 
 

2. DERIVATION OF THE REYNOLDS 
EQUATION 

 
 

Our interest in this section is the derivation of a 
governing equation for the pressure field within a 
bearing. The pressure field will then be integrated to 
determine the bearing forces acting on a rotor 
(shaft). 
 
The components used in the theory of hydrodynamic 
bearings are the bearing journal (shaft), the lubricant 
and the bearing bushing which is a plain cylindrical 

sleeve wrapped around the journal. The bearing 
bushing is rigidly supported. Figure 1 shows the 360 
degree plain journal bearing layout. The journal 
rotates with angular velocity Ω  and is statically or 
dynamically loaded in the radial direction. Figure 2 
illustrates the cross-section of a plain journal 
bearing. The bearing center is at the midpoint of the 
bearing length L  and is denoted by bC . The point 

bC  is the origin of the coordinate system ZYX ,, . 
The bearing journal has radius R  and center jC  in 
the XY -plane. It is assumed for simplicity that the 
journal remains parallel to the bearing bushing and 
undergoes only tranlational motion parallel to the 
XY -plane (in addition to the rotation). In other 

words, any moments arising from journal tilt are 
neglected. 
 

 

Lubricant

Journal 
(Shaft) 

L 

Bearing Bushing 
     (Housing) 

Housing is fixed 
Ω

 
 

Figure 1. 360 degree plain journal bearing layout 
 

 

bC jC  

e 

ϕ  

γ  

θ  c h

X

Y 

 
 
Figure 2. Diagramatic layout of assumed clearance 
geometry 
 
The journal is considered unloaded when jC and 

bC  are coincident. The radial distance between the 
journal surface and the bearing bushing for a central 
journal is denoted by c . The position of the journal 
is defined by the eccentricity e and the angle γ . For 
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an accentric journal the fluid film tickness is given 
by (Yucel, 2000). 
 

( ) ( )γϕϕ −−= cosech ,                                         (1)  
 
and for a moving journal with e(t) and )(tγ  
 

( ) ( ) ( )( )ttecth γϕϕ −−= cos, .                               (2) 
 
The following simplifying assumptions are made in 
the derivation of the governing equation for the 
pressure field within a bearing: 
 

1. The curvature of fluid film is negligible. 
2. The lubricant is massless and 

incompressible. 
3. The lubricant is Newtonian and its viscosity 

is constant in the whole of the fluid-film. 
4. The flow is laminar. 
5. The pressure of the lubricant is constant in 

the radial direction. 
6. The fluid-film thickness is small compared 

to the journal radius. 
 
In view of the assumption one, we can consider the 
fluid filled area of the bearing as the flow region 
between an infinite rigid plate and an ondulating 
second surface as shown in Figure 3. 
 

 

),( txh

U 

Journal 

Bushing 
ux,

vy,  

ux,

wz,  

L 

 
 

Figure 3. Coordinates of fluid-film 
 
The infinite plate corresponds to the bearing 
bushing. The ondulating surface corresponds to the 
journal surface and moves to the right with speed  

Ω= RU . The distance between the two surfaces is 
represented by ),( txh  where x measures the 
distance along the periphery of the bearing bushing. 
 

We use the other assumptions listed above to 
simplify the study of the fluid flow between the two 
surfaces. Using Cartesian coordinates and neglecting 
body forces, the Navier-Stokes equations can be 
stated as; 
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Where, ρ  and  η  are the fluid density and 
kinematic viscosity, respectively.  Further, p is the 
pressure, and wvu ,,  the fluid velocity components 
in the zyx ,,  directions. The flow field model is 
completed by the incompressible fluid continuity 
equation 
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The spatial coordinates are nondimensionalized via 

 

R
zz

c
yy

R
xx === ,, .                            (5) 

 
The velocity components are also 
nondimensionalized via 

 

Ω
=
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The nondimensionalization is completed by 

( )
ttcRe

R
p

R
cep Ω=

Ω
=ℜ

Ω
⎟
⎠
⎞

⎜
⎝
⎛ℜ= ,,2 ηρ

.     (7) 

 
Substituting the nondimensionalized variables into 
Eqns. (3), we obtain 
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Neglecting second order terms in ( )Rc , the above 
equations simplify to; 
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Hence, because of the small ( )Rc  ratio, the 
pressure gradient across the film is entirely 
negligible. 
 
In analyzing hydrodynamic bearings, the temporal 
and acceleration terms on the left of Eqns. (9) are 
neglected since these terms are arguably small 
provided that  ( )Rceℜ  is less than one.  Hence, the 
dimensional governing equations become; 
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Where, µ  is the absolute viscosity.  From Figure 3, 
the boundary conditions can be stated as; 

hywUu

ywu
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0at0,0
.                            (11) 

 
Integrating Eqns. (10) with respect to y and 
employing the above boundary conditions, we obtain 
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We note that u is the sum of the flow due to 
circumferential pressure gradient xp ∂∂  and the 
flow due to the no-slip boundary conditions.  Note 
further that the pressure gradients xp ∂∂ and 

zp ∂∂ are independent of y.  Substitution from Eqns. 
(12) into the continuity Eqn. (4) yields. 
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Integration with respect to y from y = 0 to y = h 
yields. 
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In the above equation, we consider that thv ∂∂=  at 
the journal surface.  Applying Leibniz’s rule for the 
differentiation of integrals, 
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to the first integral of Eqn. (14), we obtain 
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Since µ , xp ∂∂  and zp ∂∂  are independent of y, 
the indicated integrations can be completed to yield 
the following laminar flow Reynolds equation for an 
isoviscous incompressible fluid: 



Calculation of Dynamic Coefficients for Fluid Film Journal Bearings, U. Yücel 
 

Mühendislik Bilimleri Dergisi  2005 11 (3) 335-343 339 Journal of Engineering Sciences 2005  11 (3) 335-343
 

t
h

x
hU

z
ph

zx
ph

x ∂
∂

+
∂
∂

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂ 126

33

µµ
.    (16) 

 
With this equation and appropriate boundary and 
initial conditions the pressure p  in the fluid-film is 
determined. 

 
 

3. SOLUTION OF THE REYNOLDS 
EQUATION 

 
 

The Reynolds equation derived in the previous 
section is usually solved on the computer using 
finite difference or finite element methods.  
However, there are two approximations to Eqn. (16) 
that have closed-form analytical solutions (Kirk and 
Gunter, 1976; Szeri, 1980; Szeri, 1987; Hamrock, 
1994).  These are known as the short bearing and 
long bearing approximations.  For bearings that are 
short in the axial direction, the pressure change in 
the circumferential direction is neglected.  On the 
other hand, for a long bearing, the pressure change 
in the axial direction is neglected.  In this work, we 
only consider the short bearing approximation for 
the solution of the Reynolds equation given by Eqn. 
(16).  Hence, we remove the first term on the left 
hand side of Eqn. (16).  With 0=∂∂ xp , the 
Reynolds equation takes the following form: 
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With ϕRx =  and ),( th ϕ  from Eq. (2), we can write 
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Substituting Eqs. (18) into Eq. (17) and using 

γϕθ −= , we obtain 
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where the dot indicates the derivative with respect to 
time.  Here, we note that e  and γe  correspond to 
the radial and tangential velocities of the journal in 
the bearing, respectively.  By integration, one 
obtains the pressure function 
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where C~  and  D~  are the integration constants to be 
determined using the boundary conditions  0=p  at 

2Lz ±= .  Making use of these boundary 
conditions results in 
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Integrating the pressure obtained by the solution of 
Reynolds equation, the fluid-film force is 
determined.  The integration must be done very 
carefully since a subambient pressure  will not be 
permitted to exist in the fluid film (Kirk and Gunter, 
1976).  Integrating Eqn. (21) over z gives the fluid 
film force per unit length in the circumferential 
direction as 
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where 
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In the above equation, ε  is the eccentricity ratio 
( ce=ε ).  In the static case, we obtain 
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Figure 4 shows the behavior of ( )θ*q  for several 
values of the eccentricity ratio ε . 
 
As can be seen from the figure, in the region 

πθ <<0 , ( )θ*q  is negative. Therefore, one 

assumes in this region that  ( ) 0* =θq  (Childs, 1993; 
Kramer, 1993).  Possitive pressures occur in the 
lower half as a result of the eccentricity vector e in 
the plane YX ′′ (see Figure 5).  The resultant of 
forces θqRddF =  loads the bearing shell and the 
journal.  The corresponding static equilibrium force 
on the journal is shown as 0F . 
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Figure 4. Fluid film force per unit length in the 
circumferential direction for several values of ε  
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Figure 5. Forces due to static loading for short 
circular bearing 
 
Now, we consider a horizontally supported shaft 
with static loadings as shown in Figure 6.  If 1F  and 

2F  are the force components in the X and Y 
directions, respectively, then we have 
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Figure 6. Special case of a static load 
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where 
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In equations (26) , µF  is given by 
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The angle γ  shown in Figure 6 is obtained from the 
first of equations (25) as 
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The angle α  between the vertical direction (load 
direction) and the line of centers (shown in Figure 6) 
is related to γ  by 2πγα +=  and consequently is 
given by 
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From the second of equations (25), from equations 
(26) and (28) and using 
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it follows that the relative static force is given by 
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This ratio is refered to as the bearing Summerfeld 
number. 
 
In the dynamic case, the components of the fluid 
film force, that is of the journal force in the YX ′′ -
system shown in Figure 5, are 
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As it was mentioned earlier the force components 
relative to the XY-system are 
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With equations (32) to (34) the explicit relations for 
the magnitude and directions of the journal force are 
obtained as functions of positions γε ,  and of 
velocities γε ,  of the journal center jC . 

 
 

4. DETERMINATION OF STIFFNESS 
AND DAMPING COEFFICIENTS 

 
 

For rotordynamic analysis we need to calculate the 
perturbations in the forces ( )21 , FF  which arise due 
to a small vibration of the journal center about its 
equilibrium position ( )00 ,YX  under the static load 
( )2010 , FF (see Fig. 7). 
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Figure 7. Coordinates for stiffness and damping 
coefficients for short circular bearings 

In general the relation between the force and the 
motion is non-linear.  For small displacements 

21, xx  and velocities 21 , xx  of the journal center 
we linearize the forces 1F  and 2F  as follows 
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where the partial diffrentials with respect to 
displacement and velocity are the stiffness and 
damping coefficients, respectively.  These 
coefficients are to be calculated at the static 
equilibrium and given by 
 

2,1,2,1,,
00

==
∂
∂

=
∂
∂

= ji
x
F

C
x
F

K
j

i
ij

j

i
ij . (36) 

 
From equations (34), 1F  and 2F  are functions of 

γε ,  and γε , .  Thus, the required differentials are 
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The displacements 21 , dxdx  in the XY-system 
correspond to the displacements γdde,  as follows 
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Equations (38) can be solved for γdde,  to produce 
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Considering that the derivatives of equations (37) 
are to be calculated at the static equilibrium, and 
remembering that ce=ε , we can write 
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Here, we note that under the condition of static 
equilibrium, the first two terms on the right of the 
second equations of (37) vanish.  In addition, the last 
two terms on the right of the first equations of (37) 
vanish since the derivatives jx∂∂ε and jx∂∂γ  
vanish in view of equations (39). 
 
With these relationships, one finally obtains after 
transformation the following relationships for the 
stiffness and damping coefficients of the short 
circular bearing 
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where *

ijK  and *
ijC  are the dimensionless stiffness 

and damping coefficients, respectively.  They are 
given by 
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where 
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Note that a MAPLE  worksheet has been used to 
derive the above coefficients.  Figure 8 and Figure 9 
show the plots of the dimensionless stiffness and 
damping coefficients versus the eccentricity ratio, 
respectively. 
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Figure 8. Dimensionless stiffness coefficients for 
short circular bearing 
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Figure 9. Dimensionless damping coefficients for 
short circular bearing 
 
These coefficients can now be inserted into the 
equation of motion of the journal.  And then a 
stability analysis can be performed.  This subject 
will not be considered in this work. 
 
 

5. CONCLUSIONS 
 
 
In this work, an analitycal method for computing the 
stiffness and damping coefficients of short circular 
bearings has been summurized.  The concept of 
stiffness and damping coefficients for journal 
bearings has proven very fruitful, and modern rotor 
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dynamic calculations for unbalance response, 
damped natural frequencies, and stability are based 
on this concept. 
 
In recent years, extensive experimental works have 
been carried out to measure the bearing coefficients.  
Many rusults show good agrement with the 
theoretical values.  That is why many authors are 
still using these coefficients obtained by the method 
just described in this work in their stability analysis. 

 
6. REFERENCES 

 
Chids, D. 1993. Turbomachinery Rotordynamics, 
Phenomena, Modeling, and Analysis, Texas A&M 
University, College Station, Texas. 
 
Goodwin, M. J. 1989. Dynamics of Rotor-Bearing 
Systems, Unwin Hyman. 
 
Hamrock, B. J. 1994. Fundamentals of Fluid Film 
Lubrication, The Ohio State University, Columbus, 
Ohio, McGraw-Hill, Inc.  

Kirk, R. G., and Gunter, E. J. 1976. Short Bearing 
Analysis Applied to Rotor Dynamics Part I: Theory, 
ASME Journal of Lubrication Technology, January, 
47-56.  
 
Kramer, E. 1993. Dynamics of Rotors and 
Foundations, Springer-Verlag, Berlin, Heidelberg. 
 
Rao, J. S. 1983. Rotor Dynamics, John Wiley and 
Sons. 
 
Szeri, A. Z. 1980. Tribology, Friction, Lubrication, 
and Wear, University of Pittsburg, Hemishphere 
Publishing Corporation.  
 
Szeri, A. Z. 1987. Some Extensions of the 
Lubrication Theory of Osborne Reynolds, ASME 
Journal of Tribology, 109, 21-36.  
 
Yucel, U. 2000. Effects of Labyrinth Seals on the 
Stability of Rotors, PhD Dissertation, Lehigh 
University, Bethlehem, PA, USA. 
 
Yücel, U. 2003. Stability of Rotor-Bearing Systems, 
Pamukkale University, Engineering College, Journal 
of Engineering Sciences, 9 (3), 387-392. 
 

 

 


