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Abstract  Öz 

Obtaining maximum efficiency from photovoltaic (PV) systems through 
maximum power point tracking (MPPT) remains an ongoing challenge. 
In this study, the weighted mean of vector (INFO) algorithm is employed 
to address and solve the MPPT problem for a photovoltaic system 
operating under partial shading. Besides INFO algorithm, electric eel 
optimization (EEFO), red-tailed hawk algorithm (RTHA), and student 
psychology-based optimization (SPBO) algorithms were also employed, 
and this study is the first to employ these optimization algorithms for 
MPPT purposes. The particle swarm optimization (PSO) algorithm, 
which is frequently employed in MPPT studies, is employed to compare 
the performance of new metaheuristic algorithms. These algorithms are 
tested with challenging shading scenarios where the local maximum 
points (LMPPs) and global maximum power point (GMPP) varied. The 
performance of these algorithms is evaluated using the Friedman test, 
which is a statistical test, and performance metrics. According to the 
findings of the comparison, the INFO algorithm is the most effective 
among the five algorithms for MPPT optimization under partial shading 
conditions, and this conclusion is confirmed statistically. Additionally, 
experimental tests were conducted to evaluate the performance of the 
INFO algorithm on real hardware. A programmable PV simulator, boost 
converter, and STM32 board were used. The experiments demonstrated 
that the algorithm could quickly and stably track the maximum power 
point. 

 Fotovoltaik (FV) sistemlerden maksimum verim elde etmek için 
maksimum güç noktası izleme (MPPT) yöntemi önemli bir araştırma 
konusu olmaya devam etmektedir. Bu çalışmada, kısmi gölgeleme 
koşulları altında çalışan bir FV sistem için MPPT problemini çözmek 
amacıyla vektörlerin ağırlıklı ortalaması (INFO) algoritması 
kullanılmıştır. INFO’ya ek, elektrikli yılanbalığı optimizasyonu, kızıl 
kuyruklu şahin algoritması ve öğrenci psikolojisine dayalı optimizasyon 
algoritması da uygulanmış olup, söz konusu optimizasyon 
algoritmaları MPPT amacıyla ilk kez bu çalışmada kullanılmıştır. Yeni 
meta sezgisel algoritmaların performansını karşılaştırmak amacıyla, 
MPPT çalışmalarında yaygın olarak kullanılan parçacık sürü 
optimizasyonu algoritması da kullanılmıştır. Algoritmalar, yerel 
maksimum güç noktalarının ve küresel maksimum güç noktasının 
değişkenlik gösterdiği zorlu gölgeleme senaryolarında test edilmiştir. 
Algoritmaların performansları, istatistiksel bir test olan Friedman testi 
ve performans metrikleri kullanılarak değerlendirilmiştir. 
Karşılaştırma sonuçlarına göre, kısmi gölgeleme koşulları altında 
MPPT optimizasyonu için en etkili algoritmanın INFO algoritması 
olduğu belirlenmiş ve bu sonuç istatistiksel olarak doğrulanmıştır. 
Ayrıca, INFO algoritmasının gerçek donanımda performansını test 
etmek için deneysel çalışmalar yapılmıştır. Programlanabilir FV 
simülatörü, yükseltici tip dönüştürücü ve STM32 kartı kullanılmıştır. 
Deneyler, algoritmanın hızlı ve kararlı şekilde maksimum güç noktasını 
izlediğini göstermiştir. 

Keywords: Friedman Test, INFO, Maximum Power Point, MPPT, 
Partial Shading, Photovoltaic. 

 Anahtar kelimeler: Friedman Testi, INFO, Maksimum Güç Noktası, 
MPPT, Kısmi Gölgeleme, Fotovoltaik. 

1 Introduction 

1.1 Theoretical background and research gap 

The advancements in technology and the increasing human 
population are causing a rise in the demand for electrical 
energy. If the consumption of electrical energy keeps rising at 
this rate, it is expected that by the year 2050, the world’s 
installed power will need to be twice as much as the current 
installed power [1]. Since it is not possible to meet the 
increasing energy demand entirely from fossil fuels, there has 
been a search for alternative sources to these resources. Due to 
the impossibility of meeting the energy demand solely through 
fossil fuels, there has been a search for alternative resources. In 
this direction, scientists and investors have turned to cleaner, 
more environment-friendly energy resources that do not emit 
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carbon during production [2],[3]. Some of the most significant 
renewable energy sources are wind, solar, biomass, 
hydroelectric and wave. Among these, solar and wind the most 
utilized sources for electricity production due to their 
accessibility [4]. There was a 14% increase in the use of wind 
and a 26% on the rise in the use of solar in 2022 compared to 
the last year, as revealed by the statistics of the International 
Energy Agency [5]. 

PV systems are the most common application for harnessing 
solar energy to produce electrical energy [6]. PV systems offer 
numerous advantages, including directly converting solar 
energy into electrical energy, long-term usage guarantee, lower 
maintenance and repair costs, and the absence of moving 
components [2], [3]. With the decline in the production and 



 

2 
 

initial installation costs of PV systems, their areas of use are 
growing [6]. Although the sun has an enormous energy 
potential, this potential cannot be fully harnessed and 
converted into electrical energy. Despite being claimed to be 
25% under laboratory circumstances, the practical efficiency of 
an average PV array remains below 20% in practice. Therefore, 
most researchers working on PV systems aim to increase this 
efficiency rate. Multiple factors affect the efficiency of PV 
arrays, such as temperature, radiation, shading, and the type 
and quality of the materials used [7]. The most frequently 
utilized method to increase the efficiency of PV arrays is to 
identify the point at which the array operates at maximum 
power (this point is called the maximum power point) and then 
use an algorithm to operate the array continuously at this point. 

The objective of utilizing MPPT approaches is to reduce the 
oscillations induced by variations in temperature and 
irradiation on the power-voltage (P-V) graph. This approach 
allows PV systems to consistently achieve optimal power 
generation, resulting in the highest achievable benefit [8]. 
When there is no shade in PV systems, a single MPP is formed 
on the P-V graph. However, when shading occurs, multiple 
MPPs are formed. In such graphs, one GMPP and multiple 
LMPPs can be observed. The MPPT method employed under 
partial shading conditions must be able to operate at the GMPP 
without getting stuck at the LMPPs. 

1.2 Literature review 

Upon reviewing the literature on MPPT, it is evident that 
various methods are presented. These can be categorized as 
seven categories: traditional methods, fixed parameter 
methods, artificial intelligence-based methods, mathematical-
based methods, methods utilizing characteristic graphs, hybrid 
methods, and metaheuristic algorithm-based methods [9], [10]. 
The categorized MPPT methods are presented in Figure 1. The 
first MPPT category is traditional methods, which are divided 
into three subcategories. These are called perturb & observe 
[11], [12], hill climbing [13], [14], and incremental conductance 
methods [15]. Although traditional methods are easy to use, 

they tend to get stuck at LMPPs under partial shading 
conditions, resulting in a decrease in efficiency [16]. The second 
category consists of methods based on a fixed parameter, with 
the most popular being open circuit voltage [17], short circuit 
current [18], constant current and voltage methods [19]. These 
methods utilize the behavior of PV panel parameters according 
to changes in irradiation and temperature. In particular, the 
short circuit current method is greatly affected by temperature. 
Since it requires periodic measurement of voltage or current, it 
necessitates frequent switching. This situation increases the 
cost while reducing efficiency [20]. The third group comprises 
techniques that are based on artificial intelligence. The most 
frequently employed techniques include fuzzy logic controllers 
[21], artificial neural networks [22], and machine learning 
algorithms [23]. Mathematical-based approaches in the fourth 
category include Chaotic search [24] and beta algorithm [25]. 
These algorithms exhibit significant computational complexity 
and slow convergence rates [9]. The fifth category comprises 
methods that use characteristic curves, which divide the P-V 
graph into trapezoidal regions. These methods have long 
response times and low efficiency in shading scenarios with 
three or more peak points [26-28]. The final category 
encompasses hybrid approaches. Hybrid approaches, which 
involve the combined use of two distinct traditional techniques 
or the combination of conventional methods with 
metaheuristic methods. Hybrid studies, which appear 
frequently in the literature, seek to capitalize on the advantages 
of various approaches [29-32].  

Upon reviewing the current literature, it is evident that there 
has been a substantial increase in studies using MPPT utilizing 
metaheuristic algorithms, particularly in recent years. Due to 
their ease of understanding and implementation, metaheuristic 
algorithms can be easily applied to engineering problems. The 
solutions they provide for intricate optimization problems are 
particularly satisfactory [33]. In the literature, 19 valuable 
studies solving the MPPT optimization problem using 
metaheuristic algorithms have been reviewed. 

 

 

Figure 1. Categorization of MPPT methods. 
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These algorithms include the combination of artificial bee 
colony and teaching learning algorithm [2], sine-cosine 
algorithm [34], honey badger algorithm [35], squirrel search 
algorithm [36], harris hawk optimization [37], falcon 
optimization algorithm [38], hierarchical pigeon-inspired 
optimization [39], dynamic group based cooperation 
optimization [40], grasshopper optimization algorithm [41], 
most valuable player algorithm [42], improved mayfly 
algorithm [43], modified particle swarm optimization 
algorithm [44], modified rat swarm optimization [45], yellow 
saddle goatfish algorithm [46], tuna swarm optimization 

algorithm [47], horse herd optimization [48], henry gas 
solubility optimization [49], ant lion optimization [50], and salp 
swarm optimization [51]. The detailed presentation of this 
literature review is provided in Table 1. This table provides 
comprehensive data on the algorithm, comparison algorithm/s, 
converter type, configuration type (where S denotes series 
connected arrays and P denotes parallel-connected arrays), 
number of scenario/s, GMPP location (including details on 
dynamic fast change irradiance (DFCI)), 
simulation/experimental setup, and statistical test/s.  

Table 1. Literature review 

Algorithm Comparing Algorithm/s 
Converter 
Type 

Configuration 

Type 

Number of 
Scenarios 

GMPP 
Location 

Simulation/ 
Experimental 

Statistical 
Test/s 

Combination of 
teaching learning 
and artificial bee 
colony [2] 

Improved grey wolf optimization 
(IGWO) 

PSO 

Moth flame optimization  

Salp swarm optimization algorithm 
(SSOA) 

Perturb and observation (P&Q) 

Variable step size incremental 
conductance  

Adaptive P&Q and fuzzy logic control 

Boost 4S3P 4 

Standard test 
condition 
(STC) 

Right 

Middle on right 

Middle on left 

Simulation/ 
Experimental 

- 

Sine-cosine 
algorithm [34] 

SSOA 

P&Q 
CUK 4S1P 4 

Middle on left 

DFCI (4s) 
Simulation - 

Honey badger 
optimization [35] 

PSO 

P&O 
Boost 

4S1P 

4S2P 

4S3P 

3S3P 

2S4P 

5 N/A Experimental - 

Improved squirrel 
search algorithm 
[36] 

Squirrel search algorithm (SSA) 

Genetic algorithm  

PSO 

Ant colony optimization-P&Q 

Overall distribution PSO 

Artificial bee colony (ABC) 

Boost 3S1P 5 

Right 

Middle 

Left 

DFCI 

Simulation/ 
Experimental 

- 

Harris hawk 
optimization [37] 

PSO 

Dragonfly optimization algorithm 
(DFOA) 

GWO 

P&O 

Boost 
4S1P 

12S1P 
4 

DFCI (2s) 

GMPP and 
LMPPs too 
close 

Simulation - 

Falcon 
optimization 
algorithm [38] 

PSO 

P&O 
Boost 4S1P 4 

STC 

Left 

Middle on right 

Right 

Simulation 

Friedman 
Test 

Wilcoxon 
Test 

Hierarchical pigeon 
inspired 
optimization [39] 

Modified firefly algorithm 

Deterministic PSO (DPSO) 

Overall distribution 

Cubic spline guided Jaya  

Modified incremental conductance 

Pigeon inspired optimization  

Boost 5S1P 4 

STC 

Right 

Left (2nd peak) 

Middle on right 

Simulation/ 
Experimental 

- 

Dynamic group 
based cooperation 
optimization [40] 

DragonFly optimizer  

ABC 

Cuckoo search algorithm (CSA) 

PSO 

Boost 4S1P 4 

DFCI (2s)  

Middle 

Left 

Right 

Simulation - 

Grasshopper 
optimization 
algorithm [41] 

P&O 

Differential evolution 

PSO 

Boost 2S3P 3 N/A Experimental - 

 

Table 2. (continued) 
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Algorithm Comparing Algorithm/s 
Converter 
Type 

Configuration 

Type 

Number of 
Scenarios 

GMPP 
Location 

Simulation/ 
Experimental 

Statistical 
Test/s 

Most valuable 
player algorithm 
[42] 

Modified Jaya algorithm 

PSO 
Boost 4S1P 4 N/A 

Simulation/ 
Experimental 

- 

Improved mayfly 
algorithm [43] 

PSO Boost  4S1P 2 

Standard test 
condition 
(STC) 
Middle on right 

Simulation/ 
Experimental 

- 

Modified particle 
swarm 
optimization [44] 

Bat algorithm (BAT) 
IGWO 
PSO 

P&Q 

Buck  
2S1P 

4S1P 
6 

Left 
Right 
Right 
Middle 
Middle on right 

DFCI (1s) 

Simulation/ 
Experimental 

- 

Modified rat swarm 
optimization [45] 

Fireworks algorithm and P&Q 

Flower pollination algorithm P&Q 
Boost 4S1P 6 

DFCI (1s) 
Right 
Middle 
Middle on right 
Right 

Left (2nd peak) 

Experimental - 

Yellow saddle 
goatfish algorithm 
[46] 

BAT 
GWO 
PSO 

Seagull optimization algorithm 

Buck-Boost 
4S1P 

6S1P 
5 DFCI (5s) Simulation - 

Tuna swarm 
optimization 
algorithm [47] 

PSO 
Squirrel Search Algorithm 

Black widow spider optimization 
algorithm  

Boost 5S1P 6 

Left 
Middle 
Right 
Middle on right 
Middle 

Left 

Simulation - 

Horse herd 
optimization [48] 

GWO 
PSO 
Flower pollination algorithm  
DPSO 

CSA 

Boost 4S2P 6 

DFCI (2s) 
Right 
Middle on right 
Middle on left 

Left 

Simulation/ 
Experimental 

- 

Henry gas solubility 
optimization [49] 

DFOA 
PSO 
Grasshopper optimization 
P&Q 

CSA 

Boost 
4S1P 

12S1P 
4 

DFCI (2s) 
Right 
Middle on left 

GMPP and 
LMPPs too 
close 

Simulation - 

Ant lion optimizer 
[50] 

P&Q 

Flower pollination algorithm  
N/A N/A 2 

STC 

Dynamic- fast 
changing 
irradiance and 
temperature 

Simulation - 

Salp swarm 
optimization [51] 

DFOA 
ABC 
PSO-Gravitational Search 
CSA 
P&Q 

PSO 

Boost 
4S1P 

12S1P 
5 

DFCI (2s) 
Middle on right 
Middle on left 
GMPP and 
LMPPs too 
close 

Simulation/ 
Experimental 

- 

 

1.3 Motivation and major contributions 

Upon thorough evaluation of the literature presented in Table 
1, it is evident that various algorithms, methods, and 
approaches exist to address the MPPT problem. However, it is 
essential to take into account that no single approach is capable 
of handling all the associated challenges [52-53]. In accordance 
with the no-free lunch theory, no single metaheuristic 
algorithm can solve all problems with equal success [54]. In this 
study, the INFO, EEFO, RTHA, SPBO, and PSO algorithms were 
selected to address the MPPT problem. In addition, the focus 
was not only on how accurately the optimization algorithms 
produced the best result once but also on how consistently they 
demonstrated the same successful performance. For this 
purpose, all algorithms were subjected to statistical testing. The 
main contributions of this study to the literature are given 
below. 

• This study employed the INFO, EEFO, RTHA, and SPBO 
algorithms for the first time in the literature to address the 
MPPT problem.  

• To better examine the performance of selected algorithms, 
the GMPP point's position in the P-V graph was adjusted to 
be on the right, middle, and left positions in the tested 
scenarios. Additionally, LMPPs and GMPP were positioned 
very close to each other to increase the difficulty of the 
tested scenarios. 

• The INFO, EEFO, RTHA, SPBO, and PSO algorithms were 
compared using evaluation metrics and statistical test 
called Friedman test. 

• The INFO algorithm performed better than the others 
based on both evaluation metrics and the Friedman test. 
This reinforces the success and consistency of the INFO 
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algorithm in resolving the MPPT optimization problem. 

• The INFO algorithm was experimentally validated under 
partial shading condition, confirming its real-world 
applicability. 

1.4 Organization of the article 

This study consists of six sections. Following the Introduction, 
Section 2 presents the definition of the MPPT optimization 
problem. Section 3 explains the INFO algorithm in detail, 
followed by brief summaries of the EEFO, RTHA, SPBO, and PSO 
algorithms. The simulation results are given in Section 4. 
Section 5 provides the experimental validation of the INFO 
algorithm under partial shading conditions. Finally, Section 6 

presents the conclusions of this work and discusses potential 
future studies. 

2 Definition of the MPPT optimization 
problem under partial shading conditions 

The main goal of this paper is to implement MPPT for a PV 
system that operates partial shading conditions. For this 
purpose, a PV system consisting of a PV array, DC-DC boost 
converter, MPPT controller, and load components has been 
designed and presented in Figure 2. The evaluation criteria for 
these components and algorithms are provided in the 
subsections.

 
Figure 2. PV system and component . 

 
2.1 PV cell and module 

A PV cell is the smallest element in the PV arrays. These cells 
are connected to each other either in series or in parallel to 
form the PV modules. In the literature; there are different 
models for the electrical equivalent circuit of a PV cell. In this 
study, the single-diode model is selected due to its simplicity, 
accuracy, and frequent usage. In Figure 3, the electrical 
equivalent models of a single diode PV cell, PV module, and PV 
array are presented. The single-diode equivalent model 
consists of a current source (𝐼𝑝ℎ), a diode, parallel (𝑅𝑠ℎ), and a 

series resistance (𝑅𝑠). The mathematical expressions for the 
cell’s output current and diode current are given in Equations 
(1)-(2). Equation (3) provides the mathematical expression for 
the junction thermal voltage (𝑉𝑡). 

𝐼𝑐𝑒𝑙𝑙 = 𝐼𝑝ℎ − 𝐼𝑑 − 𝐼𝑠ℎ (1) 

𝐼𝑑 = 𝐼0 × [𝑒
(
𝑉+𝐼𝑐𝑒𝑙𝑙×𝑅𝑆

𝛼×𝑉𝑡
)
− 1] (2) 

𝑉𝑡 =
𝑘 × 𝑇𝑖
𝑞

 (3) 

𝐼𝑐𝑒𝑙𝑙 = 𝐼𝑝ℎ − 𝐼0 × [𝑒
(
𝑉+𝐼𝑐𝑒𝑙𝑙×𝑅𝑆

𝛼×𝑉𝑡
)
− 1] −

𝑉+𝐼𝑐𝑒𝑙𝑙×𝑅𝑆

𝑅𝑠ℎ
   (4) 

𝐼𝑚𝑜𝑑𝑢𝑙𝑒 = 𝐼𝑝ℎ − 𝐼0 × [𝑒
(
𝑉+𝑁𝑆𝑐𝑒𝑙𝑙𝐼𝑚𝑜𝑑𝑢𝑙𝑒×𝑅𝑆

𝛼×𝑉𝑡×𝑁𝑆
)
− 1]

−
𝑉 + 𝐼𝑚𝑜𝑑𝑢𝑙𝑒 × 𝑁𝑆 × 𝑅𝑆

𝑅𝑠ℎ
 

(5) 

𝐼𝑎𝑟𝑟𝑎𝑦 = 𝑁𝑃 × 𝐼𝑝ℎ − 𝐼0 × [𝑒
(
𝑁𝑃×𝑉+𝑁𝑆𝐼𝑎𝑟𝑟𝑎𝑦×𝑅𝑆

𝛼×𝑉𝑡×𝑁𝑆×𝑁𝑃
)
− 1]

−
𝑉 × 𝑁𝑃 + 𝐼𝑎𝑟𝑟𝑎𝑦 × 𝑁𝑆 × 𝑅𝑆

𝑅𝑠ℎ × 𝑁𝑃
 

(6) 

 

 

 

a) PV cell 
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b) PV module 

 

c) PV array 

Figure 3. Single diode equivalent circuit model of PV cell, PV 
module, and PV array 

In these equations, 𝑞 represents the electron charge, 𝑘 is the 
Boltzmann constant, and 𝑇𝑖  is the junction temperature. The 
mathematical formulation for the output current (𝐼𝑐𝑒𝑙𝑙) of the 
PV cell is given in Equation (4). According to this equation, 𝐼𝑝ℎ, 

the diode ideality factor (𝛼), the reverse saturation current of 
the diode (𝐼0), 𝑅𝑠ℎ, and 𝑅𝑠 are the unknown parameters of this 
single diode equivalent circuit model. The mathematical 
expressions for the PV module and array are presented in 
Equations (5) and (6), respectively. In these equations, 𝐼𝑚𝑜𝑑𝑢𝑙𝑒  
represents the output current of the PV module, and 𝐼𝑎𝑟𝑟𝑎𝑦 

denotes the output current of the PV array. 𝑁𝑆 represents the 
number of series-controlled cells while the 𝑁𝑃 denotes the 
number of parallel-connected modules. A pre-existing 
photovoltaic model was not employed in this study. The PV 
arrays were constructed for the required simulations utilizing 
the mathematical formulae outlined in this discussion. The 
unknown parameters of the equivalent circuit for the single-
diode photovoltaic cell were obtained from the reference 
mentioned in [55].  

2.2 DC-DC Boost converter 

The model of the DC-DC boost converter is depicted in Figure 2. 
Converters are employed to mitigate power and voltage 
fluctuations in energy sources that are affected by 
environmental conditions like wind or solar energy. Moreover, 
the output voltage of the panels may not be sufficient, 
particularly for fluctuating loads in PV system. Therefore, boost 
converters are frequently utilized in PV systems. Boost 
converters ensure that the output voltage of the circuit is higher 
than the input voltage, depending on the duty cycle of the 
switching element. The DC-DC boost converter consists of five 
elements: inductor, capacitor, switching element, diode and 
load. The values of these components are calculated using 
Equations (7) -(9). 

𝑉0 =
𝑉𝑖

1 − 𝑑𝑐
      (7) 

𝐿𝑚𝑖𝑛 =
𝑑𝑐 × (1 − 𝑑𝑐)

2 × 𝑅

2 × 𝑓𝑠
      (8) 

𝐶𝑚𝑖𝑛 =
𝑑𝑐

𝑅 ×
∇𝑉0
𝑉0

× 𝑓𝑠

      (9) 

In this context, 𝑉0 denotes the output voltage of the boost 
converter circuit, 𝑉𝑖  represents the input voltage of the same 
boost converter circuit, 𝐿𝑚𝑖𝑛  denotes the minimum value of the 
inductor, 𝑑𝑐  symbolizes the duty cycle, 𝑓𝑠 represents the 
switching frequency, and 𝐶𝑚𝑖𝑛 denotes the minimum value of 
the capacitor.  

2.3 Load 

Previous studies in the literature on MPPT have shown that a 
battery pack or ohmic load is connected to the output of the DC-
DC boost converter. In this article, an ohmic resistor is 
preferred as the load. 

2.4 MPPT and partial shading 

PV cells operate between short circuit current and open circuit 
voltage on the I-V graph. The current / voltage of a PV cell are 
not linear. Inside of a PV cell, as the voltage increases up to a 
certain point, the current also increases. The MPP is the last 
point just before linearity is disrupted. In order to achieve 
maximum efficiency, it is important for a PV cell or PV module 
to function at the specific current and voltage levels that 
correlate to MPP. Irradiance and temperature are significant 
factors that affect the efficiency of PV systems. There is a 
standardized condition for the efficiency analysis of PV 
systems. This is known as the standard test condition (STC). 
This standard consists of an irradiance value of 1000W/m2 and 
an ambient temperature of 25 °C. One of the main factors 
regarding the efficiency of PV systems is shading. Clouds, 
buildings, or trees can cause shading. Shade prevents the entire 
PV system from receiving uniform irradiance. Consequently, 
the system's efficiency drops significantly. Even if only one cell 
in a PV system is shaded, the output power of the entire system 
significantly decreases because the series-connected cells can 
only produce as much power as the lowest-performing 
component. To minimize this efficiency loss and continuously 
operate the PV system at the optimal point, we utilized 
metaheuristic algorithms to conduct MPPT in this article. 

2.5 Evaluation Criteria 

To compare the performance of the INFO, EEFO, RTHA, SPBO, 
and PSO algorithms used to solve the MPPT problem, 
𝑀𝑃𝑃𝑇𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦was used as an evaluation criterion. MPPT 

efficiency is obtained through the calculations provided in 
Equation (10). 

𝑀𝑃𝑃𝑇𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑃𝑀𝑃𝑃−𝑃𝑀𝑃𝑃𝑎𝑙𝑔

𝑃𝑀𝑃𝑃
× 100  (10) 

In this equation, 𝑃𝑀𝑃𝑃𝑎𝑙𝑔 represents the MPP calculated by the 

algorithms, and 𝑃𝑀𝑃𝑃 denotes the system’s MPP. 

3 INFO algorithm for the MPPT optimization 
problem under partial shading 

In addition to presentation of the INFO algorithm for the MPPT 
optimization problem under partial shading conditions, brief 
summaries of the EEFO, RTHA, SPBO, and PSO algorithms are 
provided in the subsections. 
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3.1 INFO 

INFO algorithm was proposed in 2022 by Ahmadianfar et al. 
[56]. INFO algorithm is a swarm-based that consists of a series 
of vectors. It manages the process by calculating the weighted 
mean of potential solution vectors. INFO algorithm consists of 
four stages: initialization, updating rule, vector combining, and 
local search. INFO is based on the weighted mean function 
shown in Equation (11). 

𝑊𝑀 =
(∑ 𝑥𝑖

𝑁
𝑖=1 ×𝑤𝑖)

(∑ 𝑤𝑖
𝑁
𝑖=1 )

   (11) 

In this equation, while weighted mean (𝑊𝑀) is calculated using 
the weights of the vectors (𝑤𝑖) with average of positions (𝑥𝑖). 
Here 𝑁 represents the number of vectors. The weights of each 
vector are computed using Equation (12). According to this 
equation, ω is the dilation parameter. 

𝑤 = 𝑐𝑜𝑠(𝑥) × 𝑒𝑥𝑝 (−
𝑥2

𝜔
)   (12) 

3.1.1 Initialization phase 

Potential solutions (𝑋), the dimension of the problem (𝐷), and 
the vector population (𝑁𝐼𝑁𝐹𝑂), along with two control 
parameters, namely, the scaling factor (𝜎), and the weighted 
mean factor (𝛿), are defined at this stage. Subsequently, the 
vectors are randomly initialized using Equation (13). 

𝑋𝑙,𝑗
𝑡 = {𝑋𝑙,1

𝑡 , 𝑋𝑙,2
𝑡 , ⋯ , 𝑋𝑙,𝐷

𝑡 }

𝑙 = 1,2,3,⋯ ,𝑁𝐼𝑁𝐹𝑂

 
(13) 

3.1.2 Updating rule 

The fundamental principle of this algorithm is not to direct the 
existing vector to the best solution but to take the average of 
the vectors. In the INFO algorithm, increasing diversity is the 
task of this stage. An averaging rule (𝑀𝑒𝑎𝑛𝑅𝑢𝑙𝑒) based on the 
worst, good and the best solution is created at this stage. After 
initializing the algorithm with a random start, the 𝑀𝑒𝑎𝑛𝑅𝑢𝑙𝑒 
information is used for the next solution. Although it varies 
based on the objective function, the best solution is selected 
from among the top five good solutions. The 𝑀𝑒𝑎𝑛𝑅𝑢𝑙𝑒 is 
presented in Equation (14).  

𝑀𝑒𝑎𝑛𝑅𝑢𝑙𝑒 = 𝑟 ×𝑊𝑀1𝑙
𝑡 + (1 − 𝑟) ×𝑊𝑀2𝑙

𝑡 

 𝑙 = 1,2 . . NP 
   (14) 

  𝑊𝑀1𝑙
𝑡 =

𝛿 × [(

𝑤3(𝑥𝑎2 − 𝑥𝑎3) +

𝑤2(𝑥𝑎1 − 𝑥𝑎3) +

𝑤1(𝑥𝑎1 − 𝑥𝑎2)
) (𝑤3 + 𝑤2 + 𝑤1 + 𝜀)⁄ ] + (𝜀 × 𝑟𝑎𝑛𝑑) 

(14.1) 

𝑤1 = 𝑐𝑜𝑠((𝑓(𝑥𝑎1) − 𝑓(𝑥𝑎2))
+ 𝜋)
× 𝑒𝑥𝑝(−|(𝑓(𝑥𝑎1) − 𝑓(𝑥𝑎2)) 𝜔⁄ |) 

(14.2) 

𝑤2 = 𝑐𝑜𝑠((𝑓(𝑥𝑎1) − 𝑓(𝑥𝑎3))
+ 𝜋)
× 𝑒𝑥𝑝(−|(𝑓(𝑥𝑎1) − 𝑓(𝑥𝑎3)) 𝜔⁄ |) 

(14.3) 

𝑤3 = 𝑐𝑜𝑠((𝑓(𝑥𝑎2) − 𝑓(𝑥𝑎3))
+ 𝜋)
× 𝑒𝑥𝑝(−|(𝑓(𝑥𝑎2) − 𝑓(𝑥𝑎3)) 𝜔⁄ |) 

(14.4.) 

𝜔 = 𝑚𝑎𝑥(𝑓(𝑥𝑎1),  𝑓(𝑥𝑎2),  𝑓(𝑥𝑎3)) (14.5) 

  𝑊𝑀2𝑙
𝑡 =

𝛿 × [(

𝑤3(𝑥𝑏𝑠 − 𝑥𝑏𝑡) +

𝑤2(𝑥𝑏𝑠 − 𝑥𝑤𝑠) +

𝑤3(𝑥𝑏𝑡 − 𝑥𝑤𝑠)
) (𝑤3 + 𝑤2 + 𝑤1 + 𝜀)⁄ ] + (𝜀 × 𝑟𝑎𝑛𝑑) 

(14.6) 

w1 = cos( (f(xbs) − f(xbt)) + π) ×  

exp(−|(f(xbs) − f(xbt)) ω⁄ |) 
(14.7) 

w2 = cos( (f(xbs) − f(xws))
+ π) × exp(−|(f(xbs) − f(xws)) ω⁄ |) 

(14.8) 

𝑤3 = 𝑐𝑜𝑠( (𝑓(𝑥𝑏𝑡) − 𝑓(𝑥𝑤𝑠))
+ 𝜋)
× 𝑒𝑥𝑝(−|(𝑓(𝑥𝑏𝑡) − 𝑓(𝑥𝑤𝑠)) 𝜔⁄ |) 

(14.9) 

𝜔 = 𝑓(𝑥𝑤𝑠) (14.10
) 

  The first weighted mean (𝑊𝑀1𝑙
𝑡) and the second weighted 

mean (WM2𝑙
t) in the 𝑀𝑒𝑎𝑛𝑅𝑢𝑙𝑒 equations are given in Equation 

(14.1) and (14.6). In these equations, (𝑤1), (𝑤2), and (𝑤3) 
represent the first, second, and third wavelet functions, 
respectively. Wavelet functions are used to compute the 
weighted mean of vectors. The wavelet functions for the first 
weighted mean are provided in Equations (14.2) -(14.4), and 
for the second weighted mean in Equations (14.7) -(14.9). In 
these equations, 𝑤 is the dilation parameter, 𝑓(𝑥) is the 
objective function, 𝑎1, 𝑎2, 𝑎𝑛𝑑 𝑎3 are unequal integers selected 

from the range [1, 𝑁𝐼𝑁𝐹𝑂], 𝜀 is a very small number, 𝑥𝑎1, 𝑥𝑎2, and 
𝑥𝑎3 are the positions of the vectors, xws, xbt, and xbs are the 
worst, good and best solutions, respectively, 𝑟 is a random 
number in the range [0,0.5]. In equation (16), the scaling factor 
(𝛿) is given. The value of 𝛽, which is computed based on an 
exponential function with the current iteration (𝑡), and the 
maximum iteration (TINFO), is presented in Equation (15). 

𝛽 = 𝛼 = 2 × 𝑒𝑥𝑝 (−4 ×
𝑡

𝑇𝐼𝑁𝐹𝑂
)    (15) 

𝛿 = 2 × 𝛽 × 𝑟𝑎𝑛𝑑 − 𝛽    (16) 

After completing the first task of the update rule (calculating 
the weighted mean), the second task of accelerating 
convergence begins. This task affects the algorithm's 
performance and goal to achieve the best result. In Equation 
(18), this stage varying the step size so that to direct the vectors 
towards a better direction. The newly obtained vector (𝑧𝑙

𝑡) is 
given in Equation (17). Update rule (𝑅𝑢𝑙𝑒𝑢𝑟) is given Equation 
(19). In accordance with the 𝑟 parameter, the new vector 
update rule is applied to the first and second vectors. In 
Equation (20), the scaling factor (𝜎) for the vectors is given and 
this parameter is related to exploitation and exploration the 
calculation of 𝛼 is presented in Equation (21). There, 𝑑 and 𝑐 
are constant number and equal to 4 and 2, separately. 

𝑧𝑙
𝑡 = 𝑥𝑙

𝑡 + 𝜎 ×𝑀𝑒𝑎𝑛𝑅𝑢𝑙𝑒 + 𝐶𝐴   (17) 
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𝐶𝐴 =

{
 
 
 

 
 
 𝑟𝑎𝑛𝑑𝑛 × (

𝑥𝑏𝑠 − 𝑥𝑎1
𝑡

𝑓(𝑥𝑏𝑠) − 𝑓(𝑥𝑎1
𝑡 ) + 1

)

𝑟𝑎𝑛𝑑𝑛 × (
𝑥𝑎2
𝑡 − 𝑥𝑎3

𝑡

𝑓(𝑥𝑎2
𝑡 ) − 𝑓(𝑥𝑎3

𝑡 ) + 1
)

𝑟𝑎𝑛𝑑𝑛 × (
𝑥𝑎1
𝑡 − 𝑥𝑎2

𝑡

𝑓(𝑥𝑎1
𝑡 ) − 𝑓(𝑥𝑎2

𝑡 ) + 1
)

   (18) 

𝑅𝑢𝑙𝑒𝑢𝑟

=

{
 
 
 
 

 
 
 
 𝑧1𝑙

𝑡 = 𝑥𝑙
𝑡 + 𝜎 × 𝑀𝑒𝑎𝑛𝑅𝑢𝑙𝑒 + [(

𝑥𝑏𝑠
−𝑥𝑎1

𝑡 ) (
𝑓(𝑥𝑏𝑠)

−𝑓(𝑥𝑎1
𝑡 ) + 1

)⁄ ] 𝑟 < 0.5

𝑧1𝑙
𝑡 = 𝑥𝑎

𝑡 + 𝜎 ×𝑀𝑒𝑎𝑛𝑅𝑢𝑙𝑒 + [(
𝑥𝑎2
𝑡

−𝑥𝑎3
𝑡 ) (

𝑓(𝑥𝑎2
𝑡 )

−𝑓(𝑥𝑎3
𝑡 ) + 1

)⁄ ] 𝑟 ≥ 0.5

𝑧2𝑙
𝑡 = 𝑥𝑏𝑠 + 𝜎 ×𝑀𝑒𝑎𝑛𝑅𝑢𝑙𝑒 + [(

𝑥𝑎1
𝑡

−𝑥𝑏
𝑡) (

𝑓(𝑥𝑎1
𝑡 )

−𝑓(𝑥𝑎2
𝑡 ) + 1

)⁄ ] 𝑟 < 0.5

𝑧2𝑙
𝑡 = 𝑥𝑏𝑡 + 𝜎 ×𝑀𝑒𝑎𝑛𝑅𝑢𝑙𝑒 + [(

𝑥𝑎1
𝑡

−𝑥𝑎2
𝑡 ) (

𝑓(𝑥𝑎1
𝑡 )

−𝑓(𝑥𝑎2
𝑡 ) + 1

)⁄ ] 𝑟 ≥ 0.5

 
  (19) 

𝜎 = 2 × 𝛼 × 𝑟𝑎𝑛𝑑 − 𝛼   (20) 

𝛼 = 𝑐 × 𝑒𝑥𝑝 (−𝑑 ×
𝑡

𝑇𝐼𝑁𝐹𝑂
)   (21) 

3.1.3 Vector combining 

The third stage's task is to rise population diversity and expand 
the local search. So, the vectors 𝑧1𝑙

𝑡 and 𝑧2𝑙
𝑡  are obtained from 

the update rule operator as seen in Equation (22). The 
parameter 𝜇 is given in Equation (23). 

𝑅𝑢𝑙𝑒𝑣𝑐 =

{

𝑢𝑙
𝑡 = 𝑧1𝑙

𝑡 + 𝜇. |𝑧1𝑙
𝑡 − 𝑧2𝑙

𝑡| 𝑟𝑎𝑛𝑑2 < 0.5

𝑢𝑙
𝑡 = 𝑧2𝑙

𝑡 + 𝜇. |𝑧1𝑙
𝑡 − 𝑧2𝑙

𝑡| 𝑟𝑎𝑛𝑑2 ≥ 0.5
𝑟𝑎𝑛𝑑1 < 0.5

𝑢𝑙
𝑡 = 𝑥𝑙

𝑡 𝑟𝑎𝑛𝑑1 ≥ 0.5

        
  (22) 

𝜇 = 0.05 × 𝑟𝑎𝑛𝑑𝑛   (23) 

3.1.4 Local search 

The fourth stage of this algorithm is the local search. The role of 
this stage is to support exploitation phase. It achieves this by 
creating a new vector using mean rule and global position 
(𝑥𝑏𝑒𝑠𝑡
𝑡 ). Thus, it tries to reach the global optimum point. The 

mean rule and global position (𝑥𝑏𝑒𝑠𝑡
𝑡 ) generate a new vector. In 

Equations (24)-(28), The update rule (𝑅𝑢𝑙𝑒𝑙𝑐), the average 
solution (𝑥𝑎𝑣𝑔), and the new solution (𝑥𝑟𝑛𝑑), are given. 

𝑅𝑢𝑙𝑒𝑙𝑐 =

{
 
 

 
 𝑢𝑙

𝑡 = 𝑥𝑏𝑠 + 𝑟𝑎𝑛𝑑𝑛 × (𝑀𝑒𝑎𝑛𝑅𝑢𝑙𝑒 +

𝑟𝑎𝑛𝑑𝑛 × (𝑥𝑏𝑠
𝑡 − 𝑥𝑎1

𝑡 )), 𝑟𝑎𝑛𝑑2 < 0.5

𝑢𝑙
𝑡 = 𝑥𝑟𝑛𝑑 + 𝑟𝑎𝑛𝑑𝑛 × (𝑀𝑒𝑎𝑛𝑅𝑢𝑙𝑒 +

𝑟𝑎𝑛𝑑𝑛 × (𝜐1 × 𝑥𝑏𝑠 − 𝜐2 × 𝑥𝑟𝑛𝑑)), 𝑟𝑎𝑛𝑑2 ≥ 0.5

   
(24) 

𝑥𝑎𝑣𝑔 = (𝑥𝑎 + 𝑥𝑏 + 𝑥3) 3⁄  (25) 

𝑥𝑟𝑛𝑑 = 𝜙 × 𝑥𝑎𝑣𝑔 + (1 − 𝜙) × (𝜙 × 𝑥𝑏𝑡 + (1 − 𝜙) × 𝑥𝑏𝑠) (26) 

𝜐1 = {
1 𝑝 ≤ 0.5
2 × 𝑟𝑎𝑛𝑑 𝑝 > 0.5

 (27) 

𝜐2 = {
𝑟𝑎𝑛𝑑 𝑝 < 0.5
1 𝑝 ≥ 0.5

 (28) 

In Figure 4, flowchart of the INFO algorithm is presented.  

3.2 Brief summaries of EEFO, RTHA, SPBO and PSO 
algorithms 

The sources of inspiration, rules/phases/stages/operators that 
govern their processes, and control parameters of the EEFO, 
RTHA, SPBO, and PSO algorithms, which are compared with the 
results of the INFO algorithm, are provided in Table 2 and 
summarized in the subsections.  

3.2.1 EEFO 

The EEFO algorithm was proposed in 2024 by Zhao et al. [57]. 
It is a bio-inspired, swarm-based algorithm. The EEFO 
algorithm was enhanced according to the foraging behavior of 
a group of electric eels in nature. EEFO consists of four stages: 
interaction, resting, hunting, and migration. These stages are 
designed to ensure exploration and exploitation, which are 
present in every algorithm. Additionally, the EEFO algorithm 
includes an energy factor to manage the balance between 
exploration and exploitation in the search space. The EEFO 
algorithm has two control parameters: the maximum number 
of iterations (𝑇𝐸𝐸𝐹𝑂) and the population size (𝑁𝐸𝐸𝐹𝑂). In this 
study, these values were set to 30 and 4, respectively. 

3.2.2 RTHA 

The RTHA algorithm was proposed in 2023 by Ferahtia et al 
[58]. It is a bio-inspired, swarm-based algorithm. RTHA 
algorithm was developed based on the hunting tactics of the 
red-tailed hawk. RTHA consists of three phases. These are high 
soaring, low soaring and stooping, and swooping. In the first 
phase, the algorithm creates the search space and marks the 
location where the prey is found. In the second phase, the 
algorithm models the red-tailed hawk's movement around the 
prey to select the optimal position to capture it. The final stage 
models the hawk capturing and striking the prey. RTHA has five 
control parameters, namely, angle gain (𝐴), the initial value of 
the radius during low soaring (𝑅0), control gain (𝑟), maximum 
number of iterations (𝑇𝑅𝑇𝐻𝐴) and population size (𝑁𝑅𝑇𝐻𝐴). In 
this article, the parameters 𝐴, 𝑅0, and 𝑟 are set to 15, 0.5, and 
1.5, respectively, as in the reference paper [58].  

3.2.3 SPBO 

The SPBO algorithm was proposed in 2020 by Das et al. [59]. 
SPBO is a metaheuristic algorithm inspired by the psychology 
of students striving to become the best in their class. This 
algorithm categorizes students into four categories: best 
student, good student, average student, and students who try to 
improve randomly. This algorithm has two control parameters. 
These are the maximum number of iterations (𝑇𝑆𝑃𝐵𝑂) and the 
population size (𝑁𝑆𝑃𝐵𝑂). In this study, control parameters were 
set to 30 and 4, respectively. 

3.2.4 PSO 

The PSO algorithm was proposed in 1995 by Eberhart et al. 
[60]. PSO is inspired by the behavior of animals such as birds, 
fish, and insects that move in swarms. The core of PSO is based 
on the exchange of information among particles. The main goal 
of the PSO algorithm is to ensure that the particles reach the 
best position in the search space. In the PSO algorithm, all 
particles in the swarm record the best position they have 
visited. Before moving again, the entire swarm communicates 
so that the best position found so far can be shared with other 
particles. In PSO, the position of the particles depends on their 
velocity. This algorithm has five control parameters: cognitive 
component (𝑐1), social component (𝑐2), inertia weight (𝑤), 
maximum number of iterations (𝑇𝑃𝑆𝑂) and population size 
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(𝑁𝑃𝑆𝑂). The control parameters 𝑐1, 𝑐2, 𝑊𝑚𝑎𝑥  and 𝑊𝑚𝑖𝑛  of the 
PSO algorithm have been tested multiple times, and the values 
provided in the table have been selected through a trial-and-

error approach. In this study, cognitive component was set to 
1.1, social component to 1.9, the maximum number of iterations 
to 30, and the population size to 4.   

 

Figure 4. Flow diagram of the INFO algorithm 

Table 3. Brief summary of INFO, EEFO, RTHA, SPBO, and PSO algorithms 

Algorithm Inspiration Rule/Phase/Stage/Operator Control Parameter Value 

INFO Weighted mean of vectors 
• Updating rule 
• Vector combining 

𝑐 2 
𝑑 4 
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• Local search 

EEFO Electric eels 

• Interaction 
• Resting 
• Hunting 
• Migration 

𝑁𝐸𝐸𝐹𝑂 4 

𝑇𝐸𝐸𝐹𝑂 30 

RTHA Red-tailed hawks 

• High soaring 
• Low soaring 
• Stooping 
• Swooping 

𝐴 15 
𝑅0 0.5 
𝑟 1.5 

𝑁𝑅𝑇𝐻𝐴 4 
𝑇𝑅𝑇𝐻𝐴 30 

SPBO Student psychology 

• Best student 
• Good student 
• Average student 
• Students who improves randomly  

𝑁𝑆𝑃𝐵𝑂 4 

𝑇𝑆𝑃𝐵𝑂 30 

PSO Swarming insects and animals 
• Position phase 
• Velocity phase 

𝑐1 1.1 
𝑐2 1.9 

𝑤𝑀𝑎𝑥 0.8 
𝑤𝑀𝑖𝑛 0.4 
𝑁𝑃𝑆𝑂 4 
𝑇𝑃𝑆𝑂 30 

4 Simulation results and analysis 

The simulation results and analysis related to solving the MPPT 
optimization problem are presented in seven subsections: 
computer specifications, definition of PV system input 
parameters, definition of INFO, EEFO, RTHA, SPBO, and PSO 
algorithms' control parameters, MPPT scenarios, results of 
MPPT optimization, MPPT optimization results based on 
evaluation metrics, and MPPT optimization results based on 
statistical tests. 

4.1 Computer specifications 

For MPPT optimization problem, the PV system was designed 
using MATLAB/Simulink software. The computer used to solve 
this problem has the following specifications: Intel® Core i5 
processor, 4.4 GHz processor speed, and 16 GB RAM. 

4.2 Definition of PV system input parameters 

The input parameters of the PV system components, consisting 
of a PV module, DC-DC boost converter, and load for MPPT 
optimization, are given in Table 3. The Schutten Solar STM6-
40/36 was selected as the PV module. A ready-made block was 
not used for this module; instead, it was defined using 
mathematical equations. The parameter values of the created 
PV module are provided in Table 3. Three PV modules were 
connected in series, and these series modules were connected 
in parallel to form three parallel structures. Thus, the 
simulation studies were conducted with a 3-series 3-parallel 
(3S3P) configuration. Bypass diodes were added in parallel 
with each array. In the PV system, the DC-DC boost converter 
circuit is used to eliminate fluctuations in the output voltage 
and to change the duty cycle of the PV system. The duty cycle 
(𝑑𝑐) is transmitted to the system via the switching element. 𝑑𝑐  
holding time sent by all algorithms to the Simulink environment 
was set to 𝐷𝑠 100 ms to prevent voltage fluctuations in the 
simulation. An ohmic resistor was preferred as the load, and the 
value of the used resistor is 100 Ω. 

 

Table 4. Parameters of PV system 

Component Parameter Value Unit 

PV module 
PV brand 

Schutten Solar 
STM6-40/36 

- 

PV-type Mono-crystalline - 

Maximum power 
(𝑃max) 

40 
W 

Open circuit 
voltage (𝑉𝑜𝑐) 

21.6 
V 

Short circuit 
current (𝐼𝑠𝑐) 

2.36 
A 

𝐼𝑝ℎ 1.6639 A 

𝐼0 1.73866 µA 
𝛼 1.5203 - 
𝑅𝑠ℎ 15.9283 Ω 
𝑅𝑠 0.00427 Ω 

Boost 
converter 

Switching device IGBT - 
𝐿 1.2 mH 
𝐶 47 µF 
𝑓𝑠 20 kHz 

𝐷𝑠 100 ms 

Load 𝑅 100 Ω 

 
4.3 Definition of INFO, EEFO, RTHA, SPBO, and PSO 

algorithms control parameters 

In this article, INFO, EEFO, RTHA, SPBO, and PSO optimization 
algorithms were used, and in Table 2, the control parameters of 
these algorithms are provided. INFO has two control 
parameters, EEFO has 2, RTHA has 5, SPBO has 2, and PSO has 
five control parameters. 

4.4 MPPT scenarios 

For MPPT, four different shading scenarios were planned: STC, 
shading 1, shading 2, and shading 3. The performance of our 
algorithms solving the MPPT problem was tested with these 
scenarios. The GMPP value, GMPP location, and irradiance 
information for these scenarios are provided in Table 4, and the 
P-V graphs are shown in Figure 4. 

• STC: All PV modules operate under an irradiance of 1000 
W/m² and a temperature of 25 °C. The graphical 
representation of the STC scenario is shown in Figure 5(a). 
In this scenario, since there is no shading, a single GMPP 
point is formed on the P-V graph, and the value of this 
point, i.e., the maximum power output (𝑃𝑚𝑎𝑥), is 
approximately 370 W.  

• Shading 1: In this shading model, not all PV modules 
receive equal irradiance. The graphical representation of 
the Shading 1 scenario is shown in Figure 5(b). The 
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parallel-connected series PV modules operate at 
irradiance values of 200 W/m², 800 W/m², and 300 W/m², 
respectively. In the P-V graph, three different peaks are 
formed. One of these peaks is the GMPP point, while the 
other two are LMPP points. In this shading model, the 
GMPP point is the leftmost of the three peaks on the P-V 
graph. The maximum power output of this model is 
approximately 90 W. 

• Shading 2: In this shading model, the parallel-connected 
series PV modules operate at irradiance values of 1000 
W/m², 400 W/m², and 800 W/m², respectively. The 
graphical representation of the Shading 2 scenario is 
shown in Figure 5(c). On the P-V graph, the GMPP point is 
located in the middle of the three peaks. The maximum 
power output of this shading model is approximately 200 
W. 

• Shading 3: In this shading model, the parallel-connected 
series PV modules operate at irradiance values of 850 
W/m², 700 W/m², and 550 W/m², respectively. The 
graphical representation of the Shading 3 scenario is 
shown in Figure 5(d). On the P-V graph, the GMPP point is 
located at the rightmost of the three peaks. The maximum 
power output of this shading model is approximately 215 

W. 

In the created scenarios, the location of the GMPP point on the 
P-V graph was set to the right, center, and left. Additionally, in 
these scenarios, LMPP and GMPP points were chosen to be 
close to each other to examine the performance of the 
algorithms under challenging shading conditions. 

Table 5. MPPT scenarios 

Scenario Irradiance (W/m2) 
Power at GMPP 
(W) 

GMPP 
Location 

STC  [

𝑃/𝑆 𝑆1 𝑆2 𝑆3
𝑃1 1 1 1
𝑃2 1 1 1
𝑃3 1 1 1

]  370.5955 STC 

Shading 
1 

[

𝑃/𝑆 𝑆1 𝑆2 𝑆3
𝑃1 200 800 300
𝑃2 200 800 300
𝑃3 200 800 300

]  89.9953 Left 

Shading 
2 

[

𝑃/𝑆 𝑆1 𝑆2 𝑆3
𝑃1 1000 400 800
𝑃2 1000 400 800
𝑃3 1000 400 800

]  202.4634 Middle 

Shading 
3 

[

𝑃/𝑆 𝑆1 𝑆2 𝑆3
𝑃1 850 700 550
𝑃2 850 700 550
𝑃3 850 700 500

]  215.8228 Right 

 
a) STC            b) Shading 1 

       
c) Shading 2         d) Shading 3 

Figure 5. P-V curves of partial shading. 

 

4.5 Results of MPPT optimization 

The STC, shading 1, shading 2, and shading 3 scenarios were 
sequentially applied to the designed PV system. The MPPT 
results of the INFO, EEFO, RTHA, SPBO, and PSO algorithms 

were recorded, and their performance was evaluated using the 
MPPT efficiency given in Equation (10). 

4.5.1 Results of scenario: STC 
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STC is the test condition where there is no shading, meaning 
there is optimal irradiance and temperature. The simulation 
results of the INFO, EEFO, RTHA, SPBO, and PSO algorithms 
under these conditions are provided in Table 5. This table 
includes the following information: 𝑃𝑀𝑃𝑃 (W), 𝑃𝑀𝑃𝑃𝑎𝑙𝑔 (W), 

MPP tracking time (s), MPPT efficiency (%), and MPPT 
efficiency rank. The results in the table are the best results 
obtained from 30 independent runs of each algorithm. Upon 
examining the Table 5, it can be seen that all algorithms 
achieved over 99% MPPT efficiency. Additionally, when ranked 
by MPPT efficiency, the INFO algorithm is the most successful. 
Figure 6 presents the P-V graphs of all algorithms run under 
STC conditions. Upon examining the graphs, it is evident that all 
algorithms successfully found the MPP point, indicating that all 
algorithms are usable under STC conditions. 

4.5.2 Results of scenario: Shading 1 

Shading 1 is a scenario model where shading occurs, and the 
GMPP is located on the left side. Under this scenario, the 𝑃𝑀𝑃𝑃 
(W), 𝑃𝑀𝑃𝑃𝑎𝑙𝑔 (W), MPP tracking time (s), MPPT efficiency (%), 

and MPPT efficiency rank of the INFO, EEFO, RTHA, SPBO, and 
PSO algorithms are provided in Table 6. The results in the table 
6 are the best results obtained from 30 independent runs of 
each algorithm. When examining the results, it can be seen that 
all algorithms achieved over 98% MPPT efficiency. When 
ranked by MPPT efficiency, the INFO algorithm is the most 
successful. Figure 7 presents the P-V graphs of all algorithms 
run under shading 1 conditions. Upon examining the graphs, it 
is evident that all algorithms successfully found the GMPP 
point, indicating that the algorithms are usable in this scenario 
model. 

4.5.3 Results of scenario: Shading 2 

Shading 2 is a scenario model where shading occurs, and the 
GMPP is located in the middle of the three peaks formed. Under 
this scenario, the 𝑃𝑀𝑃𝑃 (W), 𝑃𝑀𝑃𝑃𝑎𝑙𝑔 (W), MPP tracking time (s), 

MPPT efficiency (%), and MPPT efficiency rank of the INFO, 
EEFO, RTHA, SPBO, and PSO algorithms are provided in Table 
7. The results in the table are the best results obtained from 30 
runs of each algorithm. When examining the results, it can be 
seen that all algorithms achieved over 99% MPPT efficiency. 
When ranked by MPPT efficiency, the INFO algorithm is the 
most successful. Figure 8 presents the P-V graphs of all 
algorithms run under shading 2 conditions. Upon examining 
the graphs, it is evident that all algorithms successfully found 
the GMPP point, indicating that the algorithms are usable in this 
scenario model. 

4.5.4 Results of scenario: Shading 3 

Shading 3 is a scenario model where shading occurs, and the 
GMPP is located on the right side. Under this scenario, the 𝑃𝑀𝑃𝑃 
(W), 𝑃𝑀𝑃𝑃𝑎𝑙𝑔 (W), MPP tracking time (s), MPPT efficiency (%), 

and MPPT efficiency rank of the INFO, EEFO, RTHA, SPBO, and 
PSO algorithms are provided in Table 8. The results in the table 
8 are the best results obtained from 30 independent runs of 
each algorithm. When examining the results, it can be seen that 
all algorithms achieved over 99% MPPT efficiency. When 
ranked by MPPT efficiency, the INFO algorithm is the most 
successful. Figure 9 presents the P-V graphs of all algorithms 
run under shading 3 conditions. Upon examining the graphs, it 
is evident that all algorithms successfully found the GMPP 
point, indicating that the algorithms are usable in this scenario 
model.

Table 6. Results of MPPT optimization scenario: STC 

Table 7. Results of MPPT optimization scenario: Shading 1 

Algorithm 𝑃𝑀𝑃𝑃 (W) 𝑃𝑀𝑃𝑃𝑎𝑙𝑔 (W) MPP Tracking Time (s) MPPT Efficiency (%) MPPT Efficiency Rank 

INFO 370.5954 370.294395687 0.141554535 99.918751223 1 

EEFO 370.5954 370.204100199 0.581360925 99.894386251 5 

RTHA 370.5954 370.293337734 0.144730806 99.918465749 2 

SPBO 370.5954 370.286416007 0.141255258 99.916598018 3 

PSO 370.5954 370.279889272 0.134185720 99.914836870 4 

Algorithm 𝑃𝑀𝑃𝑃 (W) 𝑃𝑀𝑃𝑃𝑎𝑙𝑔 (W) MPP Tracking Time (s) MPPT Efficiency (%) MPPT Efficiency Rank 

INFO 89.9953 88.678347477 0.131130323 98.536626025 1 

EEFO 89.9953 88.675386103 0.231645710 98.533335438 5 

RTHA 89.9953 88.669446464 0.560735668 98.526735496 3 

SPBO 89.9953 88.678274249 0.188122822 98.536544657 2 

PSO 89.9953 88.677785309 0.280607540 98.536001362 4 
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a) INFO        b) EEFO 

 
c) RTHA        d) SPBO 

 
e) PSO 

Figure 6. Results of STC power- time graph 

 

Table 8. Results of MPPT optimization scenario: shading 2 

 
Algorithm 𝑃𝑀𝑃𝑃 (W) 𝑃𝑀𝑃𝑃𝑎𝑙𝑔 (W) MPP Tracking Time (s) MPPT Efficiency (%) MPPT Efficiency Rank 

INFO 202.4634 202.460432218 0.238326224 99.998522782 1 

EEFO 202.4634 202.459966503 0.335683211 99.998292757 2 

RTHA 202.4634 202.407728662 0.149314755 99.972491632 4 

SPBO 202.4634 202.459550753 0.240279532 99.998087412 3 

PSO 202.4634 202.403081026 0.238231818 99.970196089 5 
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a) INFO        b) EEFO 

 
c) RTHA       d) SPBO 

               
          e) PSO 

Figure 7. Results of shading 1 power-time graph 

 
 

Table 9. Results of MPPT optimization scenario: shading 3 

Algorithm 𝑃𝑀𝑃𝑃 (W) 𝑃𝑀𝑃𝑃𝑎𝑙𝑔 (W) MPP Tracking Time (s) MPPT Efficiency (%) MPPT Efficiency Rank 

INFO 215.8228 215.793319619 0.443408974 99.986332950 1 

EEFO 215.8228 215.783301603 0.184012194 99.981691172 2 

RTHA 215.8228 215.759109543 0.242454338 99.970481950 4 

SPBO 215.8228 215.751963737 0.235139757 99.967170990 5 

PSO 215.8228 215.768350699 0.429528723 99.974763775 3 
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a) INFO        b) EEFO 

 

c) RTHA       d) SPBO 

 

e) PSO 

Figure 8. Results of shading 2 power- time graph 

 
4.6 Results of MPPT optimization 

In order to optimize MPPT, all scenarios were run 30 times 
independently with our algorithms, and the results were 
recorded. The recorded findings were assessed with respect to 
computational accuracy and computational time using the 
evaluation metrics.  

4.6.1 Computational accuracy 

Performance of the algorithms for all scenarios over 30 runs 
was evaluated in terms of computational accuracy (𝑃𝑀𝑃𝑃𝑎𝑙𝑔), 

and the results are demonstrated in Table 9. A general 
inspection is provided at the bottom of the table to facilitate the 

evaluation of the results. The results of the algorithms were 
analyzed using the evaluation metrics of minimum, mean, 
maximum, standard deviation. Since MPPT optimization is a 
maximization problem, all metrics except for the standard 
deviation are ranked from largest to smallest. In this table, a 
rank of 1 represents the most successful algorithm, while a rank 
of 5 represents the least successful algorithm. When examining 
the total ranking, which is assessed based on the average 
ranking for all metrics, it was observed that the INFO algorithm 
is the most successful. According to both individual and overall 
results, the solutions produced by the INFO algorithm are more 
consistent and successful than the other algorithms.  
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a) INFO        b) EEFO 

 

c) RTHA       d) SPBO 

 

e) PSO 

Figure 9. Results of shading 3 power- time graph. 

 
4.6.2 Computational time 

The computational complexity of the INFO, EEFO, RTHA, SPBO, 
and PSO algorithms employed in this study depends on the 
maximum number of iterations (𝑇𝐼𝑁𝐹𝑂, 𝑇𝐸𝐸𝐹𝑂, 𝑇𝑅𝑇𝐻𝐴, 𝑇𝑆𝑃𝐵𝑂, 
𝑇𝑃𝑆𝑂) the population size (𝑁𝐼𝑁𝐹𝑂, 𝑁𝐸𝐸𝐹𝑂 , 𝑁𝑅𝑇𝐻𝐴, 𝑁𝑆𝑃𝐵𝑂, 𝑁𝑃𝑆𝑂) 
and the problem dimension (𝑑). The computational complexity 
formulas for these algorithms are given in Equations 28–32, 
respectively.  

𝑂(𝐼𝑁𝐹𝑂) = 𝑂(𝑇𝐼𝑁𝐹𝑂 × 𝑁𝐻𝑂𝐴 × 𝑑)    (28) 

𝑂(𝐸𝐸𝐹𝑂) = 𝑂(𝑇𝐸𝐸𝐹𝑂 × 𝑁𝐸𝐸𝐹𝑂 × 𝑑)    (29) 

𝑂(𝑅𝑇𝐻𝐴) = 𝑂(𝑇𝑅𝑇𝐻𝐴 × 𝑁𝑅𝑇𝐻𝐴 × 𝑑)    (30) 

𝑂(𝑆𝑃𝐵𝑂) = 𝑂(𝑇𝑆𝑃𝐵𝑂 × 𝑁𝑆𝑃𝐵𝑂 × 𝑑)    (31) 

𝑂(𝑃𝑆𝑂) = 𝑂(𝑇𝑃𝑆𝑂 × 𝑁𝑃𝑆𝑂 × 𝑑)    (32) 

The performance of these algorithms for all scenarios over 30 
runs was evaluated in terms of computational time, and the 
outcomes are recorded in Table 10. A general inspection is 
provided at the bottom of the table to facilitate the evaluation 
of the results. The algorithms' computational time results were 
analyzed using the evaluation metrics than ranked from 
smallest to largest. When examining the total ranking, which is 
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assessed based on the average ranking for all metrics, it is 
stated that the INFO is the fastest algorithm. The algorithms can 
be ranked based on the standard deviation metric of 
computational time as INFO, PSO, SPBO, EEFO, and RTHA. The 
INFO algorithm ranks first in both computational accuracy and 

computational time. On the other hand, the EEFO algorithm 
ranks second in computational accuracy (standard deviation 
metric) but fourth in computational time. It is not entirely 
correct to evaluate algorithms based solely on computational 
speed.

Table 10. Computational accuracy (𝑃𝑀𝑃𝑃𝑎𝑙𝑔) values for 30 runs 

Scenario Algorithm Minimum Rank Mean Rank Maximum Rank 
Standard 
Deviation 

Rank 

STC 

INFO 97.955024463 1 345.452290862 1 370.294395687 1 65.228535457 1 
EEFO 74.300717390 2 292.694948651 4 370.204100199 5 86.843124322 2 
RTHA 43.280487206 5 306.461347189 3 370.293337734 2 100.862534197 4 
SPBO 73.374961994 3 278.144033516 5 370.286416007 3 101.663011661 5 
PSO 67.138108397 4 309.953248733 2 370.279889272 4 97.891634323 3 

Shading 
1 

INFO 61.907736805 1 79.073770220 1 88.678347477 1 9.403077260 1 
EEFO 46.000277648 4 75.232226322 2 88.675386103 4 12.459007718 4 
RTHA 50.308382767 2 74.594803815 4 88.669446464 5 9.461124980 2 
SPBO 49.649242458 3 73.516421739 5 88.678274249 2 9.809112660 3 
PSO 44.444612666 5 74.726489162 3 88.677785309 3 13.084648658 5 

Shading 
2 

INFO 153.359561825 1 193.456665039 1 202.460432218 1 12.862841063 1 
EEFO 13.360287259 5 159.235791528 5 202.459966503 2 37.579794382 4 
RTHA 62.374604752 4 164.839356348 4 202.407728662 4 41.726370190 5 
SPBO 129.410386798 2 190.937856196 2 202.459550753 3 20.655018495 2 
PSO 69.602866059 3 183.267487513 3 202.403081026 5 29.732151321 3 

Shading 
3 

INFO 78.305977577 1 199.903284278 1 215.793319619 1 31.286826185 1 
EEFO 68.244279253 2 176.347690810 4 215.783301603 2 37.325329256 2 
RTHA 57.601884014 5 175.568794333 5 215.759109543 4 55.921143579 5 
SPBO 57.601884036 4 178.584180192 3 215.751963737 5 48.102392309 4 
PSO 57.601880718 3 184.227942644 2 215.768350699 3 47.283058094 3 

Scenario Algorithm 
Mean 
Rank 

Total 
Rank 

Mean 
Rank 

Total 
Rank 

Mean 
Rank 

Total 
Rank 

Mean 
Rank 

Total 
Rank 

STC 
Shading 1 
Shading 2 
Shading 3 

INFO 1 1 1 1 1 1 1 1 
EEFO 3.25 3 3.75 3 3.25 2 3 2 
RTHA 4 5 4 5 3.75 3 4 5 
SPBO 3 2 3.75 3 3.25 2 3.75 4 
PSO 3.75 4 2.5 2 3.75 3 3.5 3 

 

Table 11. Computational times values for 30 runs 

Scenario Algorithm Minimum Rank Mean Rank Maximum Rank 
Standard 
Deviation 

Rank 

STC 

INFO 0.141554535 4 0.379338996 1 1.130601579 1 0.291374607 1 
EEFO 0.147670937 5 1.056636987 5 1.566972325 2 0.615141584 4 
RTHA 0.090495923 1 0.990388498 4 4.667068048 5 1.341881332 5 
SPBO 0.141255258 3 0.536560457 3 1.567014106 3 0.396103558 2 
PSO 0.130428383 2 0.514153774 2 1.568090278 4 0.470457937 3 

Shading 
1 

INFO 0.112801897 2 0.361952719 3 1.559556248 3 0.267388011 3 
EEFO 0.149143050 5 0.658589255 4 1.561778813 4 0.504764641 4 
RTHA 0.131931967 3 0.742473777 5 4.581600047 5 1.133262503 5 
SPBO 0.147605150 4 0.345967825 2 0.849073878 1 0.175437520 1 
PSO 0.100143525 1 0.332134818 1 1.037585589 2 0.193048506 2 

Shading 
2 

INFO 0.096964729 1 0.243467089 1 0.645670166 1 0.139086438 1 
EEFO 0.147311447 5 0.823075015 5 1.596622325 4 0.457335654 4 
RTHA 0.140906333 4 0.717591982 4 4.395430985 5 0.896026814 5 
SPBO 0.133022947 3 0.313205900 2 1.564238472 2 0.291695234 3 
PSO 0.130365980 2 0.370753535 3 1.564586795 3 0.284002378 2 

Shading 
3 

INFO 0.132006949 3 0.379566887 1 1.483584262 1 0.318474071 1 
EEFO 0.182548994 5 0.827965822 4 1.565018367 2 0.565184573 3 
RTHA 0.120788841 1 1.280649996 5 4.681229484 5 1.683392051 5 
SPBO 0.148153674 4 0.809822232 3 4.629693700 4 0.872586050 4 
PSO 0.126537645 2 0.546406237 2 1.566938549 3 0.422117618 2 

Scenario Algorithm 
Mean 
Rank 

Total 
Rank 

Mean Rank 
Total 
Rank 

Mean 
Rank 

Total 
Rank 

Mean 
Rank 

Total 
Rank 

STC 
Shading 1 
Shading 2 
Shading 3 

INFO 2.5 3 1.5 1 1.5 1 1.5 1 
EEFO 5 5 4.5 4 3 3 3.75 4 
RTHA 2.25 2 4.5 4 5 5 5 5 
SPBO 3.5 4 2.5 3 2.5 2 2.5 3 
PSO 1.75 1 2 2 3 3 2.25 2 

 
The key is the consistency of the algorithms in producing 
accurate and stable results. Therefore, computational time 

alone is not a sufficient criterion. Computational time and 
accuracy should be evaluated based on the problem's objective. 



 

18 
 

The main goal in solving the MPPT problem under partial 
shading conditions is to identify the GMPP point accurately. In 
PV systems, shading conditions do not change constantly; they 
may vary every few minutes. Thus, computational time can be 
considered secondary for MPPT. 
4.7 MPPT optimization results based on statistical test 

The INFO algorithm's MPPT optimization results have been 
successful and consistent according to evaluation metrics. To 
further strengthen our confidence in the INFO algorithm's 
ability to solve this problem, we also subjected it to the 
Friedman test. Friedman test ranks the performance of all 
algorithms separately and allows for comparison among the 
algorithms within the group [61]. The Friedman test checks if 
there is a meaningful difference between the algorithms and 
ranks this algorithm according to their significance level [62]. 
Since the problem of this article is MPPT optimization, a higher 
Friedman mean rank indicates higher algorithm success. The 
Friedman test results for the five metaheuristic algorithms, at a 
5% significance level, are provided in Table 11. According to the 
table 11, it can be seen that the P-value is less than 0.05 for all 
scenarios. This indicates that there is a meaningful difference 

between the algorithms. Table 12 provides each algorithm's 
importance rank, mean rank, and total rank across the all of 
models. This table statistically demonstrates that the INFO 
algorithm is the most successful. 

Table 12. Mean and total ranking of algorithms based on 
Friedman test. 

Scenario INFO EEFO RTHA SPBO PSO 

STC 1 4 3 5 2 

Shading 1 1 3 4 5 2 

Shading 2 1 4 3 2 2 

Shading 3 1 5 2 4 3 

Mean Rank 1 4 3 4 2.25 

Total Rank 1 4 3 4 2 

 

 

Table 13. Ranking list of algorithms according to the Friedman test 

Scenario Algorithm 
Friedman 

Mean Rank 
Algorithm 

Rank 
P-value Conclusion 

STC 

INFO 4.4333 1 

4.3834 E-12 P-value: 4.3834 E-12<0.05 

EEFO 2.0333 4 

RTHA 3.1333 3 

SPBO 1.7667 5 

PSO 3.6333 2 

Shading 1 

INFO 4.3000 1 

3.8687E-07 P-value: 3.8687E-07<0.05 

EEFO 2.9333 3 

RTHA 2.8000 4 

SPBO 1.9000 5 

PSO 3.0667 2 

Shading 2 

INFO 3.9667 1 

4.4426E-16 P-value: 4.4426E-16<0.05 

EEFO 1.3667 4 

RTHA 1.8667 3 

SPBO 3.9000 2 

PSO 3.9000 2 

Shading 3 

INFO 4.7333 1 

1.8802E-11 P-value: 1.8802E-11<0.05 
EEFO 1.8333 5 
RTHA 3.1000 2 
SPBO 2.4667 4 
PSO 2.8667 3 

 

5 Experimental validation 

An experimental study was conducted to evaluate the real-time 
performance of the INFO algorithm, whose effectiveness had 
been demonstrated through simulation studies and statistical 
tests. The physical layout of the experimental setup is 
presented in Figure 10. The system consists of a Magna-Power 
programmable PV simulator, 250 W boost type DC-DC 
converter, resistive load and a microcontroller board based on 
STM32. During the experiments, a 155 W thin-film PV panel 
was used. The performance of the INFO algorithm was assessed 
under two different test scenarios: STC and partial shading 
conditions. 
Test 1 – STC: In the first stage, the system was operated under 
standard test conditions, specifically 1000 W/m² irradiance 
and 25 °C ambient temperature. Under these stable 
environmental conditions, the INFO algorithm accurately and 

rapidly tracked the maximum power point (MPP). In this 
scenario, the algorithm achieved an efficiency of 99.83%. The 
corresponding P–V and P–I curves are shown in Figure 11(a) 
and (b), respectively. 
Test 2 – Partial shading condition: In this stage, the performance 
of the INFO algorithm under challenging environmental 
conditions was analyzed. For this purpose, a partial shading 
scenario was created by gradually reducing the irradiance level 
using the PV simulator in a controlled manner. The INFO 
algorithm responded promptly to this sudden change, 
successfully converged to the new maximum power point, and 
maintained high system efficiency. The efficiency achieved in 
this scenario was 99.37%. The corresponding P–V and P–I 
curves are presented in Figure 11(c) and (d), Correspondingly. 
As clearly seen in Figure 11, the GMPP points are explicitly 
marked, illustrating the precise tracking capability of the 
algorithm. 
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Figure 10. Experimental setup 

 

           
 

(a) P-V curve at Test 1       (b) P-I curve at Test 1 

 

          
 
(c) P-V curve at Test 2      (d) P-I curve at Test 2 

 
Figure 11. Experimental performance of the INFO algorithm: P–V and P–I profiles 

6 Conclusion 

In this article, the MPPT problem was addressed to accurately 
and quickly reach the GMP point. The MPPT optimization 
problem of a PV system operating under partial shading 
conditions was solved using the INFO, EEFO, RTHA, SPBO, and 
PSO algorithms. INFO, EEFO, RTHA, and SPBO were utilized for 
the first time in this article to solve the MPPT optimization 
problem. The widely used PSO algorithm in the literature was 
chosen to compare the performance of these new algorithms. 
The algorithms were tested under challenging shading 
scenarios where LMPP and GMPP varied. The results of the 
algorithms were evaluated from two perspectives: evaluation 
metrics and the Friedman test. The indicated that the INFO 
algorithm performed more successfully and consistently than 
its competitors. As demonstrated by both evaluation metrics 

and the Friedman test, INFO was proven to be faster, more 
reliable, and more consistent than the EEFO, RTHA, SPBO, and 
PSO algorithms.  

Additionally, an experimental validation was carried out to 
confirm the real-time applicability and performance of the 
INFO algorithm. The experimental setup included a 
programmable PV simulator, a boost converter, and an STM32 
microcontroller. The INFO algorithm was embedded on the 
STM32 board and tested under both ideal and partial shading 
conditions. The experimental results verified that INFO 
effectively tracked the maximum power point in real hardware 
scenarios, demonstrating fast convergence and stable 
operation, consistent with the simulation outcomes. 

In future studies, it is aimed to use the INFO algorithm along 
with well-known metaheuristic algorithms and newly 
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proposed algorithms for MPPT optimization. It is planned to 
work on hybrid algorithm structures to further upgrade the 
performance and success rate of the INFO algorithm. 
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