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Abstract

Obtaining maximum efficiency from photovoltaic (PV) systems through
maximum power point tracking (MPPT) remains an ongoing challenge.
In this study, the weighted mean of vector (INFO) algorithm is employed
to address and solve the MPPT problem for a photovoltaic system
operating under partial shading. Besides INFO algorithm, electric eel
optimization (EEFO0), red-tailed hawk algorithm (RTHA), and student
psychology-based optimization (SPBO) algorithms were also employed,
and this study is the first to employ these optimization algorithms for
MPPT purposes. The particle swarm optimization (PSO) algorithm,
which is frequently employed in MPPT studies, is employed to compare
the performance of new metaheuristic algorithms. These algorithms are
tested with challenging shading scenarios where the local maximum
points (LMPPs) and global maximum power point (GMPP) varieck Th,

performance of these algorithms is evaluated using the Friedmdn test,
which is a statistical test, and performance metrics. According, h

findings of the comparison, the INFO algorithm is the rgds ct
among the five algorithms for MPPT optimization undeggargia ing
conditions, and this conclusion is confirmed statistic: i 1y,

experimental tests were conducted to evaluate the performahce of the
INFO algorithm on real hardware. A programm@bl simud@tor, boost
converter, and STM32 board were used. The expe. emonstrated
that the algorithm could quickly and stably tkac aximum power
point.
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Fotovoltaik (FV) sist,
e

‘maksimum verim elde etmek i¢in
maksimum gii¢ nok (MPPT) yéntemi énemli bir arastirma
konusu olmaya ektedir. Bu calismada, kismi gélgeleme
kosullart altingdg Bglist bir FV sistem icin MPPT problemini ¢6zmek
amactyla v agirlikli - ortalamast  (INFO) algoritmast
kullaniimi§tir. Y@ 'ya ek, elektrikli yilanbaligi optimizasyonu, kizil
indlgoritmasi ve dgrenci psikolojisine dayali optimizasyon
da uygulanmis olup, s6z konusu optimizasyon

rt MPPT amaciyla ilk kez bu ¢alismada kullanilmigstir. Yeni
m gisel algoritmalarin performansini karsilastirmak amaciyla,

e
e

SMPPT calismalarinda yaygin olarak kullanilan parcacik  stiri

optimizasyonu algoritmast da kullamlmistir. Algoritmalar, yerel
maksimum giic noktalarinin ve kiiresel maksimum giic noktasinin
degiskenlik gésterdigi zorlu gélgeleme senaryolarinda test edilmistir.
Algoritmalarin performanslari, istatistiksel bir test olan Friedman testi
ve  performans  metrikleri  kullanilarak  degerlendirilmistir.
Karsilastirma sonuglarina gore, kismi gélgeleme kogsullar: altinda
MPPT optimizasyonu icin en etkili algoritmanin INFO algoritmasi
oldugu belirlenmis ve bu sonug istatistiksel olarak dogrulanmistir.
Ayrica, INFO algoritmasinin gercek donanimda performansini test
etmek icin deneysel calismalar yapilmistir. Programlanabilir FV
simiilatért, ylikseltici tip déniistiiriicti ve STM32 karti kullanilmistir.
Deneyler, algoritmanin hizli ve kararli sekilde maksimum gii¢ noktasini
izledigini gostermistir.

Anahtar Kkelimeler: Friedman Testi, INFO, Maksimum Gii¢ Noktasi,
MPPT, Kismi Gélgeleme, Fotovoltaik.
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1.1 Theoreti% und and research gap

The advance in technology and the increasing human
populatio r%sing a rise in the demand for electrical

sumption of electrical energy keeps rising at
expected that by the year 2050, the world’s

increasing energy demand entirely from fossil fuels, there has
been a search for alternative sources to these resources. Due to
the impossibility of meeting the energy demand solely through
fossil fuels, there has been a search for alternative resources. In
this direction, scientists and investors have turned to cleaner,
more environment-friendly energy resources that do not emit

*Corresponding author/Yazisilan Yazar

carbon during production [2],[3]. Some of the most significant
renewable energy sources are wind, solar, biomass,
hydroelectric and wave. Among these, solar and wind the most
utilized sources for electricity production due to their
accessibility [4]. There was a 14% increase in the use of wind
and a 26% on the rise in the use of solar in 2022 compared to
the last year, as revealed by the statistics of the International
Energy Agency [5].

PV systems are the most common application for harnessing
solar energy to produce electrical energy [6]. PV systems offer
numerous advantages, including directly converting solar
energy into electrical energy, long-term usage guarantee, lower
maintenance and repair costs, and the absence of moving
components [2], [3]. With the decline in the production and



initial installation costs of PV systems, their areas of use are they tend to get stuck at LMPPs under partial shading

growing [6]. Although the sun has an enormous energy conditions, resulting in a decrease in efficiency [16]. The second
potential, this potential cannot be fully harnessed and category consists of methods based on a fixed parameter, with
converted into electrical energy. Despite being claimed to be the most popular being open circuit voltage [17], short circuit
25% under laboratory circumstances, the practical efficiency of current [18], constant current and voltage methods [19]. These
an average PV array remains below 20% in practice. Therefore, methods utilize the behavior of PV panel parameters according
most researchers working on PV systems aim to increase this to changes in irradiation and temperature. In particular, the
efficiency rate. Multiple factors affect the efficiency of PV short circuit current method is greatly affected by temperature.
arrays, such as temperature, radiation, shading, and the type Since it requires periodic measurement of voltage or current, it
and quality of the materials used [7]. The most frequently necessitates frequent switching. This situation increases the
utilized method to increase the efficiency of PV arrays is to cost while reducing efficiency [20]. The third group ises
identify the point at which the array operates at maximum techniques that are based on artificial intelligen %‘ most
power (this point is called the maximum power point) and then frequently employed techniques include fuzz idgontrollers

lgorith 23]. Mathematical-based the fourth
The objective of utilizing MPPT approaches is to reduce the algorithms [23]. Mathematical-based ap hbhe tout

use an algorithm to operate the array continuously at this point. [21], artificial neural networks [22], an%S learning
h

t include Chaoti h [24 lgorithm [25].

oscillations induced by variations in temperature and categoly Iehde LAAONE searc % ejalgorithm [25]

. o ) These algorithms exhibit significa tional complexity
irradiation on the power-vol.t age (P-V) graph. Th,ls approach and slow convergence rates [9\The category comprises
allows PV systems to consistently achieve optimal power

. S . - i methods that use characterist ves, which divide the P-V
generation, resulting in the highest achievable benefit [8]. graph into trapezoidal, re NRese methods have long
When there is no shade in PV systems, a single MPP is formed response times and lo f v in shading scenarios with
on the P-V graph. However, when shading occurs, multiple three or more peak{pol [26-28]. The final category
MPPs are formed. In such graphs, one GMPP and multiple encompasses hybr ches. Hybrid approaches, which

LMPPs can be observed. The MPPT method employed under
partial shading conditions must be able to operate at the GMPP
without getting stuck at the LMPPs.

involve the co
or the «co
metaheuris

of two distinct traditional techniques
ion of conventional methods with
thods. Hybrid studies, which appear
iterature, seek to capitalize on the advantages

1.2  Literature review frequently in
o va% roaches [29-32].
)
ha

Upon reviewing the literature on MPPT, it is evident that
various methods are presented. These can be categorized as
seven categories: traditional methods, fixed parameter

iewing the current literature, it is evident that there
n a substantial increase in studies using MPPT utilizing

methods, artificial intelligence-based methods, mathematical- #metaheuristic algorithms, particularly in recent years. Due to
based methods, methods utilizing characteristic graphs, hybrid their ease of understanding and implementation, metaheuristic
methods, and metaheuristic algorithm-based methods [9} [1 algorithms can be easily applied to engineering problems. The
The categorized MPPT methods are presented in Figure (S solutions they provide for intricate optimization problems are
first MPPT category is traditional methods, which @re«di particularly satisfactory [33]. In the literature, 19 valuable
into three subcategories. These are called pertur rve studies solving the MPPT optimization problem using
[11], [12], hill climbing [13], [14], and incremental co ance metaheuristic algorithms have been reviewed.

methods [15]. Although traditional methods are e 0 use,

°
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Figure 1. Categorization of MPPT methods.



These algorithms include the combination of artificial bee
colony and teaching learning algorithm [2], sine-cosine
algorithm [34], honey badger algorithm [35], squirrel search

algorithm [36], harris hawk optimization [37], falcon
optimization algorithm [38], hierarchical pigeon-inspired
optimization [39], dynamic group based cooperation

optimization [40], grasshopper optimization algorithm [41],
most valuable player algorithm [42], improved mayfly
algorithm [43], modified particle swarm optimization
algorithm [44], modified rat swarm optimization [45], yellow
saddle goatfish algorithm [46], tuna swarm optimization

algorithm [47], horse herd optimization [48], henry gas
solubility optimization [49], ant lion optimization [50], and salp
swarm optimization [51]. The detailed presentation of this
literature review is provided in Table 1. This table provides
comprehensive data on the algorithm, comparison algorithm/s,
converter type, configuration type (where S denotes series
connected arrays and P denotes parallel-connected arrays),
number of scenario/s, GMPP location (including details on
dynamic fast change irradiance (DFCI)),
simulation/experimental setup, and statistical test/s.

Table 1. Literature review

. . . Converter Configuration  Number of GMPP Simulati®n / tistical
Algorithm Comparing Algorithm/s . .
Type Type Scenarios Location Expe Test/s
Improved grey wolf optimization \
(IGWO0)
PSO Standard§, test
Combination of Moth flame optimization condition
teaching learning Salp swarm optimization algorithm Boost 4S3pP (5TC) Simulation/ }
and artificial bee  (SSOA) Experimental
colony [2] Perturb and observation (P&Q)
Variable step size incremental
conductance
Adaptive P&Q and fuzzy logic control
ine-cosi SSOA Middle on left
Sine-cosine CUK 4S1P Simulation -
algorithm [34] P&Q ( DFCI (4s)
'Y
4S1P \“
PSO 4
Hor_ley_ . badger Boost 4S3P 5 N/A Experimental -
optimization [35] P&0O
353
254P
Squirrel search algorithm (SSA) .O \
Genetic algorithm Right
Improved squirrel PSO Middle . .
search  algorithm L o Bo 3S1P 5 Simulation/ B
[36] Ant colony optimization-P&Q Left Experimental
Overall distribution PSO DFCI
Artificial bee colony (ABC)
PSO
Harri hawk Dragonfly  optimization \ 4S1P DFCI (25)
arris aw (DFOA) Boost 4 GMPP and g ulation -
optimization [37] 12S1P LMPPs too
GWO
close
w Q)
STC Friedman
Falcon PSO Left o Test
optimization Boost 4S1P 4 ) . Simulation X
algorithm [38] Middle on right Wilcoxon
\ Right Test
efly algorithm
inistic PSO (DPSO) STC
Hierarchical plg rall distribution Right Simulation/
1nsp1red Boost 5S1P 4 - -
optlmg i ublc spline guided Jaya Left (2nd peak) Experimental
Modified incremental conductance Middle on right
Pigeon inspired optimization
V DragonFly optimizer DFCI (2s)
Dyna group  zpc Middle
based cooperation X Boost 4S1P 4 Simulation -
optimization [40] Cuckoo search algorithm (CSA) Left
PSO Right
Grasshopper P&0
optimization Differential evolution Boost 2S3P 3 N/A Experimental -
algorithm [41] PSO

Table 2. (continued)



. . . Converter Configuration  Number of GMPP Simulation/ Statistical
Algorithm Comparing Algorithm/s . . .
Type Type Scenarios Location Experimental Test/s
Most valuable  Modified Jaya algorithm i i
player  algorithm Boost 4S1P 4 N/A Slmul:f\tlon/ -
PSO Experimental
[42]
Standard test
Improved mayfly condition Simulation/ }
algorithm [43] PO Boost 4s1p 2 (STC) Experimental
Middle on right
Left
. ) Bat algorithm (BAT) Right
?;j;ged particle w0 Buck 251P . Right Simulation/
o PSO 4S1P Middle Experimental
optimization [44] Middle on right (Y
P&Q g
DFCI (1s) r\
DFCI (15) N
Right
Modified rat swarm  Fireworks algorithm and P&Q Boost AS1P P M?ddle ) AV AN ]
optimization [45] Flower pollination algorithm P&Q Middle on ri
Right
Left (anN
BAT
Yellow saddle GWO 4S81P
goatfish algorithm  pgg Buck-Boost 5 Simulation -
[26] 6S1P
Seagull optimization algorithm c
PSO %ddle
Tun.a . swarm - Squirrel Search Algorithm ght ) )
gf)t;:;é}zlitll?:ﬂ Black widow spider optimization Boost 5S1P Middle on right Simulation )
8 algorithm Middle
c Left
GWO N DFCI (2s)
PSO Right o
Horse  herd  Flower pollination algorithm Boost 452 6 Middle onright ~ Simulation/ -
optimization [48] DPSO Middle on left Experimental
CSA v’ Left
DFOA DFCI (25)
PSO o Right
Henry gas solubility  Grasshopper optimization Jo1P Middle on left i i
optimization [49]  pgg pperop BO&Q 1251P 4 GMPP  and Simulation ;
LMPPs too
\J
CsA SN close
“‘ STC
. - Dynamic- fast
Ant lion optimizer P&Q . . .
[50] Flower pollination algorithfi /A N/A 2 fg:f;?ie and Simulation )
\ temperature
DFOA N\Y DECI (25)
ABC o Middle on right
Salp swarm  PSO-Gravitational Boost 451pP 5 Middle on left Simulation/ )
optimization [51] CSA 12S1P GMPP and  Experimental
P&Q LMPPs  too
PSO close
{ N
1.3 Motivatio &)r contributions e This study employed the INFO, EEFO, RTHA, and SPBO
Upon thoroug alion of the literature presented in Table algorithms for the first time in the literature to address the
1, it ig t jthat various algorithms, methods, and MPPT problem.
appro? hés eXist to address the MPPT problem. However, it is o To better examine the performance of selected algorithms,
€54 into account that no single approach is capable the GMPP point's position in the P-V graph was adjusted to

: 1g all the associated challenges [52-53]. In accordance
with % no-free lunch theory, no single metaheuristic
algorithm can solve all problems with equal success [54]. In this
study, the INFO, EEFO, RTHA, SPBO, and PSO algorithms were
selected to address the MPPT problem. In addition, the focus
was not only on how accurately the optimization algorithms
produced the best result once but also on how consistently they
demonstrated the same successful performance. For this
purpose, all algorithms were subjected to statistical testing. The
main contributions of this study to the literature are given
below.

be on the right, middle, and left positions in the tested
scenarios. Additionally, LMPPs and GMPP were positioned
very close to each other to increase the difficulty of the
tested scenarios.

The INFO, EEFO, RTHA, SPBO, and PSO algorithms were
compared using evaluation metrics and statistical test
called Friedman test.

The INFO algorithm performed better than the others
based on both evaluation metrics and the Friedman test.
This reinforces the success and consistency of the INFO



algorithm in resolving the MPPT optimization problem.

The INFO algorithm was experimentally validated under
partial shading condition, confirming its real-world
applicability.

1.4 Organization of the article

This study consists of six sections. Following the Introduction,
Section 2 presents the definition of the MPPT optimization
problem. Section 3 explains the INFO algorithm in detail,
followed by brief summaries of the EEFO, RTHA, SPBO, and PSO
algorithms. The simulation results are given in Section 4.
Section 5 provides the experimental validation of the INFO
algorithm under partial shading conditions. Finally, Section 6

presents the conclusions of this work and discusses potential
future studies.

2 Definition of the MPPT optimization
problem under partial shading conditions

The main goal of this paper is to implement MPPT for a PV
system that operates partial shading conditions. For this
purpose, a PV system consisting of a PV array, DC-DC boost
converter, MPPT controller, and load components has been

designed and presented in Figure 2. The evaluation ¢ ia for
these components and algorithms are provi i\, the

subsections. ® \
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2.1 PV cell and module V+NsceulmoduteXRs
. . Lo = L — I x |0 asvns ) _q
A PV cell is the smallest element in the PV arrays. e cells module = “ph 10
are connected to each other either in serie§ or inwparallel to V + Lyoguie X Ns X Rg (5)
form the PV modules. In the literature; therejare different - R
models for the electrical equivalent ci V cell. In this sh
study, the single-diode model is se to its simplicity, (prv+1v51amyx1es)
accuracy, and frequent usage. e 3, the electrical larray = Np X Ipp — Ig X |e\ @XVexNexNp /] — 1]
equivalent models of a single ell, PV module, and PV (6)
array are presented. T ingle-diode equivalent model — V X Np + larray X Ns X Rs
consists of a current sou a diode, parallel (Ry), and a Rsn X Np
series resistance ) athematical expressions for the
cell’s output current ibde current are given in Equations
(1)-(2). Equation ides the mathematical expression for
the junction tl alyoltage (V).
° Leen
'% cen = Ipn —Ia — Isn (1) 1
e +
YHceuxRs, Ly J, I l Rs
Ipj=Iyx|e *®&V% ~—1 (2)
SOV,
ph D R.
kxT; 3) C k "
g
(V+Iceu><RS) V+1oouxRs
leen = Ipn — Ip X [e ve S — 1] T Rg (4) a) PV cell
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Figure 3. Single diode equivalent circuit model of PV cell, PV
module, and PV array

In these equations, q represents the electron charge, k is the
Boltzmann constant, and T; is the junction temperature. The
mathematical formulation for the output current (I ;) of the
PV cell is given in Equation (4). According to this equation, I,
the diode ideality factor (@), the reverse saturation current of
the diode (Iy), Rgp, and Ry are the unknown parameters of this
single diode equivalent circuit model. The mathematical
expressions for the PV module and array are presented in
Equations (5) and (6), respectively. In these equations, Lg,q

represents the output current of the PV module, ana‘%
t

h

number of series-controlled cells while the N, *de the
number of parallel-connected modules. pre-eRisting
photovoltaic model was not employed in this e PV
arrays were constructed for the required sifiulation$ utilizing
the mathematical formulae outlined in, thi cussion. The
unknown parameters of the equivale for the single-
diode photovoltaic cell were obtai om the reference
mentioned in [55].

denotes the output current of the PV array. Ng remes&

2.2 DC-DC Boost conver

The model of the DC-DC
Converters are

verter is depicted in Figure 2.

1 0 mitigate power and voltage
fluctuations in ources that are affected by
environmental c i like wind or solar energy. Moreover,
the output of the panels may not be sufficient,
particularlyffer ating loads in PV system. Therefore, boost
converterS\ akegpfrequently utilized in PV systems. Boost
c efisure that the output voltage of the circuit is higher
tha input voltage, depending on the duty cycle of the
switchigg element. The DC-DC boost converter consists of five
elements: inductor, capacitor, switching element, diode and

load. The values of these components are calculated using
Equations (7) -(9).

()

_dex(1—d)? xR

Lmin - 2 % f (8)
S
d
Conin =, 0
R X V—O X fi
0

In this context, V, denotes the output voltage of the boost
converter circuit, V; represents the input voltage of the same
boost converter circuit, L,,;, denotes the minimum v. of the
inductor, d. symbolizes the duty cycle, f; re tSy the
switching frequency, and C,,;;, denotes the minij value of

the capacitor. lca\
2.3 Load \
Previous studies in the literaturee@n %ve shown that a
battery pack or ohmic load is cennec the output of the DC-
DC boost converter. In this icle, an ohmic resistor is
preferred as the load.

2.4 MPPT and parti &2&
PV cells operate bet is#o circuit current and open circuit

voltage on the I-V e current / voltage of a PV cell are
not linear. Insi a cell, as the voltage increases up to a
certain poi Rc rent also increases. The MPP is the last
j inearity is disrupted. In order to achieve
effiéi€ncy, it is important for a PV cell or PV module
t the specific current and voltage levels that
to MPP. Irradiance and temperature are significant
faetory that affect the efficiency of PV systems. There is a
tandardized condition for the efficiency analysis of PV
systems. This is known as the standard test condition (STC).
This standard consists of an irradiance value of 1000W/m2 and
an ambient temperature of 25 °C. One of the main factors
regarding the efficiency of PV systems is shading. Clouds,
buildings, or trees can cause shading. Shade prevents the entire
PV system from receiving uniform irradiance. Consequently,
the system's efficiency drops significantly. Even if only one cell
in a PV system is shaded, the output power of the entire system
significantly decreases because the series-connected cells can
only produce as much power as the lowest-performing
component. To minimize this efficiency loss and continuously
operate the PV system at the optimal point, we utilized
metaheuristic algorithms to conduct MPPT in this article.

2.5 Evaluation Criteria

To compare the performance of the INFO, EEFO, RTHA, SPBO,
and PSO algorithms used to solve the MPPT problem,
MPPTefficiencywas used as an evaluation criterion. MPPT
efficiency is obtained through the calculations provided in
Equation (10).

Pyupp—PuMpPa
MPPT,tficiency = %}f’:’“g x 100 (10)
In this equation, Pyppqi4 represents the MPP calculated by the
algorithms, and Pypp denotes the system’s MPP.

3 INFO algorithm for the MPPT optimization
problem under partial shading
In addition to presentation of the INFO algorithm for the MPPT
optimization problem under partial shading conditions, brief

summaries of the EEFO, RTHA, SPBO, and PSO algorithms are
provided in the subsections.



3.1 INFO

INFO algorithm was proposed in 2022 by Ahmadianfar et al.
[56]. INFO algorithm is a swarm-based that consists of a series
of vectors. It manages the process by calculating the weighted
mean of potential solution vectors. INFO algorithm consists of
four stages: initialization, updating rule, vector combining, and
local search. INFO is based on the weighted mean function
shown in Equation (11).

_ (Bl xixwy)
WM = ) (11)
In this equation, while weighted mean (WM) is calculated using
the weights of the vectors (w;) with average of positions (x;).
Here N represents the number of vectors. The weights of each
vector are computed using Equation (12). According to this
equation, w is the dilation parameter.

w = cos(x) X exp (— %2) (12)

3.1.1 Initialization phase

Potential solutions (X), the dimension of the problem (D), and
the vector population (N;ypo), along with two control
parameters, namely, the scaling factor (o), and the weighted
mean factor (§), are defined at this stage. Subsequently, the
vectors are randomly initialized using Equation (13).

t _ t t t
Xl,j = {Xl,1»XL,z»""XL,D}

13
l = 1,2,3,"',N1NFO ( )

3.1.2 Updating rule

The fundamental principle of this algorithm is not to direct t
existing vector to the best solution but to take the avera

the vectors. In the INFO algorithm, increasing diversity 4

task of this stage. An averaging rule (MeanRule) base (%

worst, good and the best solution is created at this stage.After
initializing the algorithm with a random start; Rule
it varies

information is used for the next solution. Althoug
based on the objective function, the be&\ ion 1s selected

from among the top five good soluti MeanRule is
presented in Equation (14).

MeanRule = r x WM1! Qp X wMm2t
(14)
! =1Q

wM1t =
w3(Xaz — X

6 X || walxgs — (14.1)

ws+wy,+wy+e)|+(exr

"R
.Q
w =®va1) — F(%a2))
+ 1) (14.2)
x exp(=|(f (1) — f (a2))/ @)

wy = cos((f (xq1) — f(*a3))
+ 1) (14.3)
X exp(—|(f (xa1) — f(x43))/w])

w3 = cos((f (Xa2) — f(Xa3))

+1) (14.4)
X exp(—|(f (xaz) — f (*a3))/w|)
w =max(f(xa1), f(Xaz), f(xa3)) (14.5)

WM2t =
w3 (Xps — Xpe) +
8 X || wy(xps — Xus) + /(w3+wz+w1+s) +(exnm
w3 (xbt - st)

(14.6)

wy = cos((f(xps) — f(xpr)) + 1) X

exp(=1(F(ps) — Gx0)) /1)
W, = cos( ((xps) — F(ws) 49
+11) X exp(—| (FGxps) — FCkws)), Q{
[ Y
ws = cos((f (o) — f Cows)) 6
’ ” +1) (?\ (14.9)
o))

x exp(—|(f (xp

(14.7)

= f(Xaws (14.10
)

The first weighted mean
mean (WM2}) in the MeghRu
(14.1) and (14.6). In ‘thes
represent the firs

and the second weighted
uations are given in Equation
quations, (wy), (w;), and (w3)
d, and third wavelet functions,
respectively. el nctions are used to compute the
weighted mea‘k ctors. The wavelet functions for the first
weighted meam\are provided in Equations (14.2) -(14.4), and

for the séco eighted mean in Equations (14.7) -(14.9). In
thes ions, w is the dilation parameter, f(x) is the
object nction, ay, a, and a3 are unequal integers selected

erange [1, Nyypo], € is a very small number, x4, X4,, and

,xa3 e the positions of the vectors, xs, Xpt, and xps are the

worst, good and best solutions, respectively, r is a random
number in the range [0,0.5]. In equation (16), the scaling factor
(8) is given. The value of 8, which is computed based on an
exponential function with the current iteration (t), and the
maximum iteration (Tiygg), is presented in Equation (15).

ﬁ=a=2><exp(—4>< ) (15)

Tinro
§=2XfXrand — (16)

After completing the first task of the update rule (calculating
the weighted mean), the second task of accelerating
convergence begins. This task affects the algorithm's
performance and goal to achieve the best result. In Equation
(18), this stage varying the step size so that to direct the vectors
towards a better direction. The newly obtained vector (z}) is
given in Equation (17). Update rule (Rule,,) is given Equation
(19). In accordance with the r parameter, the new vector
update rule is applied to the first and second vectors. In
Equation (20), the scaling factor (o) for the vectors is given and
this parameter is related to exploitation and exploration the
calculation of « is presented in Equation (21). There, d and ¢
are constant number and equal to 4 and 2, separately.

zf = xf 4+ o X MeanRule + CA (17)



t
Xps — Xq1
randn X
<f(xbs) - flxa) + 1)
cA dn x < Xz — Yo ) (18)
=< randn
flxi) = flxbs) +1
xt,—x
randn x al “az )
<f(XZ1) —flxi) +1
Rule,,
Xbs f(xps)
=xt+oxM Rl+[( )/( s
zlj=x{+0 eanRule _xt, CF(xt,) + 1
t (xt,)
z1t = x! 4+ 0 X MeanRule + [( Xaz )/( f (xa
_ ! ¢ —Xg3 —f(xs) +1 (19)
B X f(xg1)
2§ = x5 + 0 x MeanRule + | *% ) / a1
z2] = xps + 0 X MeanRule [(—x,ﬁ) CF(xt) + 1
xg f(xéq)
2§ = 2 + 0 x MeanRule + |( "ot ) /(_ F et
FOLT e o HeanTie [(—x§z> —f(x2) +
c=2XaXrand —a (20)
t
a=c><exp(—d>< ) (21)
Tinro

3.1.3 Vector combining

The third stage's task is to rise population diversity and expand
the local search. So, the vectors z1} and z2! are obtained from
the update rule operator as seen in Equation (22). The
parameter y is given in Equation (23).

Rule,. =
uf = z15 + p.|z18 — 228 rand, < 0.5
uf = 228 + p.|z18 — 228 rand, = 0.5

uf = xf

1= 0.05 X randn 3)
3.1.4 Local search .

The fourth stage of this algorithm is the loc&%h. The role of
this stage is to support exploitation phds ieves this by

creating a new vector using mea leNand global position
(xfese)- Thus, it tries to reach the optimum point. The
mean rule and global positio erate a new vector. In
Equations (24)-(28), The u le (Ruley), the average
solution (x4y4), and the ion (x,q), are given.

Rule;, = %
(

uf = x, x (MeanRule +

(xfs — x51)), rand, < 0.5 (24)
c?f —% randn X (MeanRule +

T Xps — Uz X Xpng)), rand, = 0.5

Xavg = (xq +xp +x3)/3 (25)

Xrna = ¢ X Xavg T (1= ¢) x (P X xpe + (1 — ¢) X xp5) (26)

rand; < 0.5..(2

rand, =,0.
°

! p=<05
UL = {2 xrand p>0.5 (27)
_(rand p <05
V2 = {1 p=05 (28)

In Figure 4, flowchart of the INFO algorithm is presented.

3.2 Brief summaries of EEFO, RTHA, SPBO and PSO
algorithms

The sources of inspiration, rules/phases/stages/operators that
govern their processes, and control parameters of the EEFO,
RTHA, SPBO, and PSO algorithms, which are compared with the
results of the INFO algorithm, are provided in Table 2 and
summarized in the subsections.

3.2.1 EEFO

The EEFO algorithm was proposed in 2024 by Zhao epal.
It is a bio-inspired, swarm-based algorithm.

algorithm was enhanced according to the fora ior of

a group of electric eels in nature. EEFO consi stages:
interaction, resting, hunting, and migrati e’stages are

designed to ensure exploration and e Ni , which are
present in every algorithm. Addition l% EFO algorithm
an
e

includes an energy factor to the balance between
exploration and exploitation in search space. The EEFO
algorithm has two control p % s: the maximum number

of iterations (Tggro) ao Glation size (Nggpo). In this
t0'8

study, these values we 0 and 4, respectively.

3.2.2 RTHA Q?

The RTHA alg & s proposed in 2023 by Ferahtia et al
[58]. It i &; pired, swarm-based algorithm. RTHA

is
algorith loped based on the hunting tactics of the
red-tailed hay?kRTHA consists of three phases. These are high
soarimlg, oaring and stooping, and swooping. In the first

e algorithm creates the search space and marks the
where the prey is found. In the second phase, the
lIgorithm models the red-tailed hawk's movement around the
prey to select the optimal position to capture it. The final stage
models the hawk capturing and striking the prey. RTHA has five
control parameters, namely, angle gain (A4), the initial value of
the radius during low soaring (R,), control gain (r), maximum
number of iterations (Tgry4) and population size (Ngrya)- In
this article, the parameters 4, Ry, and r are set to 15, 0.5, and
1.5, respectively, as in the reference paper [58].

3.2.3 SPBO

The SPBO algorithm was proposed in 2020 by Das et al. [59].
SPBO is a metaheuristic algorithm inspired by the psychology
of students striving to become the best in their class. This
algorithm categorizes students into four categories: best
student, good student, average student, and students who try to
improve randomly. This algorithm has two control parameters.
These are the maximum number of iterations (Tspgo) and the
population size (Nsppo). In this study, control parameters were
set to 30 and 4, respectively.

3.2.4 PSO

The PSO algorithm was proposed in 1995 by Eberhart et al.
[60]. PSO is inspired by the behavior of animals such as birds,
fish, and insects that move in swarms. The core of PSO is based
on the exchange of information among particles. The main goal
of the PSO algorithm is to ensure that the particles reach the
best position in the search space. In the PSO algorithm, all
particles in the swarm record the best position they have
visited. Before moving again, the entire swarm communicates
so that the best position found so far can be shared with other
particles. In PSO, the position of the particles depends on their
velocity. This algorithm has five control parameters: cognitive
component (c;), social component (c,), inertia weight (w),
maximum number of iterations (Tpsp) and population size



(Npso)- The control parameters ¢y, ¢;, Wipa, and Wy, of the error approach. In this study, cognitive component was set to

PSO algorithm have been tested multiple times, and the values 1.1, social component to 1.9, the maximum number of iterations
provided in the table have been selected through a trial-and- to 30, and the population size to 4.
Start
¢ _ _ :
Setting constant parameters of INFO randl <05 Calculate w; for Rule,,
NINFO, TINFO, D, Ub, Lb rand2 < 0.5 Eq. (22) (situation 1)
y < Q
2 Q
Assign variable parameters of INFO ) 3 \
XBEST. XWORST. XBETTER rand, < 0.5 Calculate u, for Rule,, v Q >
Alpha, Objective function, location rand;2 0.3 Eq. (22) (situation 2) 3
vectors of search agents =
R
¢ ) . Calculate u; for Rule,, v
rand; = 0.5 o g .
t—1 (iteration) Eq. (12) (situation 3) y
\ 4
i | cC alculate w; for Rule,, Yes rand; < 0.5
Calculate Alpha Eq. (24) (sitvation 1) |~ rand> < 0.5
Eq. (21) 5
= No
' 7 1
-
N=1 (ageni) 5 vy Calculate u, for Rule, Yes rand, < 0.5
| Eq. (24) (situation 2) rand,> 0.5
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X, Xy X,
' Calculate the fitness
function of all vectors
Calculate w,, w>ve w;for
WM ¢
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= * b
Update evaluated
~ : -
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£ WM2
] Eq. (14.7)-(14.9) Yes l N-N 17
J
Update 6and No -
Eq. (15)-(16) ¢— t<Tnro
& 1=t
Calculate z; ve z,for Rule,, Yes l
Eq. (19) J’
} Show best results
Stop
Figure 4. Flow diagram of the INFO algorithm
Table 3. Brief summary of INFO, EEFO, RTHA, SPBO, and PSO algorithms
Algorithm Inspiration Rule/Phase/Stage/Operator Control Parameter Value
. e  Updating rule c 2
INFO Weighted mean of vectors e Vector combining d 4




e  Local search

Interaction

: Restin Nezro *
EEFO Electric eels . §
e  Hunting Tero 30
e  Migration
e High soaring };4 (1)55
. 0 .
RTHA Red-tailed hawks *  Lowsoaring r 15
e  Stooping N 4
e  Swooping TRTHA
RTHA
e  Beststudent Nspgo c N\
°
SPBO Student psychology *  Good student Q
e Average student Tepso 30
e  Students who improves randomly (
N\ 1.1
2 1.9
PSO Swarming insects and animals P051t1'0n phase * 0.8
Velocity phase Wyin 0.4
Npso 4
4 Simulation results and analysis Mﬂ% Wer 40 w
The simulation results and analysis related to solving the MPPT &1 cIrcuit \%
L . . 21.6
optimization problem are presented in seven subsections: oltage (V,.)
computer specifications, definition of PV system input Qﬁ ort circuit 236 A
parameters, definition of INFO, EEFO, RTHA, SPBO, and PSO Q) current (Iyc)
algorithms' control parameters, MPPT scenarios, results of Lon 1.6639 A
MPPT optimization, MPPT optimization results based on lo 1.73866 nA
. . - a 1.5203 -
evaluation metrics, and MPPT optimization results based on R 15.9283 qQ
P sh .
statistical tests. p R 0.00427 Q
4.1 Computer specifications Switching device IGBT -
e L 1.2 mH
For MPPT optimization problem, the PV system was dési Boost C 47 uF
using MATLAB/Simulink software. The computer used | converter fi 20 kHz
this problem has the following specifications: Inte i\re D, 100 ms
Load R 100 0

processor, 4.4 GHz processor speed, and 16 GB

4.2 Definition of PV system input parameters
The input parameters of the PV system C(?

of a PV module, DC-DC boost conver 1‘&
optimization, are given in Table 3.
40/36 was selected as the PV mod
not used for this module; i t was defined using
mathematical equations. Th ter values of the created
PV module are provided e*3. Three PV modules were
connected in serieg, a e'series modules were connected
in parallel to fo ee *parallel structures. Thus, the
simulation studi e nducted with a 3-series 3-parallel
(3S3P) config %ypass diodes were added in parallel
with each n,the PV system, the DC-DC boost converter
circuitefs % iminate fluctuations in the output voltage
an % e duty cycle of the PV system. The duty cycle
(d¢ itted to the system via the switching element. d.
holdi e sent by all algorithms to the Simulink environment
was set to Dg 100 ms to prevent voltage fluctuations in the

simulation. An ohmic resistor was preferred as the load, and the
value of the used resistor is 100 Q.

ts, consisting
ad for MPPT
htitten Solar STM6-
ady-made block was

Table 4. Parameters of PV system

Component Parameter Value Unit
Schutten Solar -
PV module PVbrand STM6-40/36
PV-type Mono-crystalline -

4.3 Definition of INFO, EEFO, RTHA, SPBO, and PSO
algorithms control parameters

In this article, INFO, EEFO, RTHA, SPBO, and PSO optimization
algorithms were used, and in Table 2, the control parameters of
these algorithms are provided. INFO has two control
parameters, EEFO has 2, RTHA has 5, SPBO has 2, and PSO has
five control parameters.

4.4 MPPT scenarios

For MPPT, four different shading scenarios were planned: STC,
shading 1, shading 2, and shading 3. The performance of our
algorithms solving the MPPT problem was tested with these
scenarios. The GMPP value, GMPP location, and irradiance
information for these scenarios are provided in Table 4, and the
P-V graphs are shown in Figure 4.

e STC: All PV modules operate under an irradiance of 1000
W/m? and a temperature of 25 °C. The graphical
representation of the STC scenario is shown in Figure 5(a).
In this scenario, since there is no shading, a single GMPP
point is formed on the P-V graph, and the value of this
point, ie., the maximum power output (Ppay), is
approximately 370 W.

e Shading 1: In this shading model, not all PV modules
receive equal irradiance. The graphical representation of
the Shading 1 scenario is shown in Figure 5(b). The

10



parallel-connected series PV modules operate at
irradiance values of 200 W/m?, 800 W/m?, and 300 W/m?,
respectively. In the P-V graph, three different peaks are
formed. One of these peaks is the GMPP point, while the
other two are LMPP points. In this shading model, the
GMPP point is the leftmost of the three peaks on the P-V
graph. The maximum power output of this model is
approximately 90 W.

Shading 2: In this shading model, the parallel-connected
series PV modules operate at irradiance values of 1000
W/m?, 400 W/m? and 800 W/m? respectively. The
graphical representation of the Shading 2 scenario is
shown in Figure 5(c). On the P-V graph, the GMPP point is
located in the middle of the three peaks. The maximum
power output of this shading model is approximately 200
W.

Shading 3: In this shading model, the parallel-connected
series PV modules operate at irradiance values of 850
W/m? 700 W/m? and 550 W/m? respectively. The
graphical representation of the Shading 3 scenario is
shown in Figure 5(d). On the P-V graph, the GMPP point is
located at the rightmost of the three peaks. The maximum
power output of this shading model is approximately 215

400 | T
&
_ 300 —
= =
5 200 | '8
g &
100 STC
& GMPP
D L ’l i i A
8] 20 40 60
Voltage (V)
aste NN
200 1 4
- 150
5 o
= 100 |
- Shading 2
& GMPP
NS o LMPR
N\ LM
Q
0 20 40 60
Voltage (V)

c) Shading 2

w.

In the created scenarios, the location of the GMPP point on the
P-V graph was set to the right, center, and left. Additionally, in
these scenarios, LMPP and GMPP points were chosen to be
close to each other to examine the performance of the
algorithms under challenging shading conditions.

Table 5. MPPT scenarios

Scenario Irradiance (W/m2) ?\;}/\Sver atGMPP E(l;/ipp'on
P/S S1 S2 S3 f S
P11 1 1 °®
STC S 1\ 370.5955 %
P3 1 1 1 C
P/S S1 S22 S3 M
Shading P1 200 800 300
1 P2 200 800 300 89 QQJ Left
P3 200 800 300 \
P/S S1  S2 S3 N
Shading P1 1000 400 .
2 P2 1000 400 4634 Middle
P3 1000
P/S S1 7%
Shading P1 850 i
3 P2 8 215.8228 Right
P3 0
~
100
&
ao
Q
60
40 Shading 1
& GMPP
20 LMPP
o LMPP
0! I
0 20 40 B0
Vaoliage (V)
b) Shading 1
&
200
5
z 100 o
& Shading 3
& GMPP
50 LAMPF
Lare
0
0 20 40 60

Voltage (V)
d) Shading 3

Figure 5. P-V curves of partial shading.

4.5

The STC, shading 1, shading 2, and shading 3 scenarios were
sequentially applied to the designed PV system. The MPPT
results of the INFO, EEFO, RTHA, SPBO, and PSO algorithms

Results of MPPT optimization

were recorded, and their performance was evaluated using the
MPPT efficiency given in Equation (10).

4.5.1 Results of scenario: STC

11



STC is the test condition where there is no shading, meaning
there is optimal irradiance and temperature. The simulation
results of the INFO, EEFO, RTHA, SPBO, and PSO algorithms
under these conditions are provided in Table 5. This table
includes the following information: Pypp (W), Pyppaig (W),
MPP tracking time (s), MPPT efficiency (%), and MPPT
efficiency rank. The results in the table are the best results
obtained from 30 independent runs of each algorithm. Upon
examining the Table 5, it can be seen that all algorithms
achieved over 99% MPPT efficiency. Additionally, when ranked
by MPPT efficiency, the INFO algorithm is the most successful.
Figure 6 presents the P-V graphs of all algorithms run under
STC conditions. Upon examining the graphs, it is evident that all
algorithms successfully found the MPP point, indicating that all
algorithms are usable under STC conditions.

4.5.2 Results of scenario: Shading 1

Shading 1 is a scenario model where shading occurs, and the
GMPP is located on the left side. Under this scenario, the Pypp
(W), Pyppaig (W), MPP tracking time (s), MPPT efficiency (%),
and MPPT efficiency rank of the INFO, EEFO, RTHA, SPBO, and
PSO algorithms are provided in Table 6. The results in the table
6 are the best results obtained from 30 independent runs of
each algorithm. When examining the results, it can be seen that
all algorithms achieved over 98% MPPT efficiency. When
ranked by MPPT efficiency, the INFO algorithm is the most
successful. Figure 7 presents the P-V graphs of all algorithms
run under shading 1 conditions. Upon examining the graphs, it
is evident that all algorithms successfully found the GMPP
point, indicating that the algorithms are usable in this scenario
model.

Table 6. Results of M

4.5.3 Results of scenario: Shading 2

Shading 2 is a scenario model where shading occurs, and the
GMPP is located in the middle of the three peaks formed. Under
this scenario, the Pypp (W), Pyppaig (W), MPP tracking time (s),
MPPT efficiency (%), and MPPT efficiency rank of the INFO,
EEFO, RTHA, SPBO, and PSO algorithms are provided in Table
7. The results in the table are the best results obtained from 30
runs of each algorithm. When examining the results, it can be
seen that all algorithms achieved over 99% MPPT efficiency.
When ranked by MPPT efficiency, the INFO algori is the
most successful. Figure 8 presents the P-V g - all
algorithms run under shading 2 conditions. Updn eka ining
the graphs, it is evident that all algorithms % y found
3

the GMPP point, indicating that the algorith&

scenario model. %
4.5.4 Results of scenario: Sha

Shading 3 is a scenario model @ihere shading occurs, and the
GMPP is located on the right si er this scenario, the Py pp
(W), Pyppaig (W), MPP tra tiffte (s), MPPT efficiency (%),
and MPPT efficiency ra NFO, EEFO, RTHA, SPBO, and

PSO algorithms are Table 8. The results in the table

8 are the best re % dined from 30 independent runs of
n

ed over 99% MPPT efficiency. When

fficiency, the INFO algorithm is the most

able in this

timization scenario: STC

Algorithm Pypp (W) Pyppaig (W) MP. T, ime (s) MPPT Efficiency (%) MPPT Efficiency Rank
INFO 370.5954 370.294395687 “Q 41554535 99.918751223 1
EEFO 370.5954 370.204—100199% 0.581360925 99.894386251 5
RTHA 370.5954 370.2933?’7 % 0.144730806 99.918465749 2
SPBO 370.5954 370.2 GX 0.141255258 99.916598018 3
PSO 370.5954 889272 0.134185720 99.914836870 4

Table 7. Results of MPPT optimization scenario: Shading 1
Algorithm PVP % Pupparg (W) MPP Tracking Time (s) MPPT Efficiency (%) MPPT Efficiency Rank

INFO \ 88.678347477 0.131130323 98.536626025 1
%@9 88.675386103 0.231645710 98.533335438 5
88.669446464 0.560735668 98.526735496 3
88.678274249 0.188122822 98.536544657 2
88.677785309 0.280607540 98.536001362 4
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Table 8. Results of MPPT optimization scenario: shading 2
Algorith 7 (W) Puppag (W) MPP Tracking Time (s) MPPT Efficiency (%) MPPT Efficiency Rank
\202.4634 202.460432218 0.238326224 99.998522782 1
°
.g 202.4634 202.459966503 0.335683211 99.998292757 2
HA 202.4634 202.407728662 0.149314755 99.972491632 4
SPBO 202.4634 202.459550753 0.240279532 99.998087412 3
PSO 202.4634 202.403081026 0.238231818 99.970196089 5
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Table 9. Results of MPPT optimization scenario: shading 3
Al m Pypp (W) Pupparg (W) MPP Tracking Time (s) MPPT Efficiency (%) MPPT Efficiency Rank
INFO 215.8228  215.793319619 0.443408974 99.986332950 1
EEFO 215.8228  215.783301603 0.184012194 99.981691172 2
RTHA 215.8228  215.759109543 0.242454338 99.970481950 4
SPBO 215.8228  215.751963737 0.235139757 99.967170990 5
PSO 215.8228  215.768350699 0.429528723 99.974763775 3
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4.6 Results o

imize MPPT, all scenarios were run 30 times
ntly with our algorithms, and the results were
ed. The recorded findings were assessed with respect to
computational accuracy and computational time using the
evaluation metrics.

PPT optimization

4.6.1 Computational accuracy

Performance of the algorithms for all scenarios over 30 runs
was evaluated in terms of computational accuracy (Pyppaig),
and the results are demonstrated in Table 9. A general
inspection is provided at the bottom of the table to facilitate the
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Figure 8. Results of shading 2 power- time graph

evaluation of the results. The results of the algorithms were
analyzed using the evaluation metrics of minimum, mean,
maximum, standard deviation. Since MPPT optimization is a
maximization problem, all metrics except for the standard
deviation are ranked from largest to smallest. In this table, a
rank of 1 represents the most successful algorithm, while a rank
of 5 represents the least successful algorithm. When examining
the total ranking, which is assessed based on the average
ranking for all metrics, it was observed that the INFO algorithm
is the most successful. According to both individual and overall
results, the solutions produced by the INFO algorithm are more
consistent and successful than the other algorithms.
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algorithms employed in this study depends on the
maxim®m number of iterations (Tynro, Teero, Trruar Tspsos
Tpso) the population size (Niyro, Negro, Neruar Nsppo, Npso)
and the problem dimension (d). The computational complexity
formulas for these algorithms are given in Equations 28-32,
respectively.

O(INFO) = O(Tinpo X Nyoa X d) (28)

O(EEFO) = O(Tggro X Nggro X d) (29)

Figure 9. Results of shading 3 power- time graph.

O(RTHA) = O(Tgrya X Nrrua X d) (30)
O(SPBO) = O(Tsppo X Nsppo X d) (31)
O(PSO) = O(TPSO X NPSO X d) (32)

The performance of these algorithms for all scenarios over 30
runs was evaluated in terms of computational time, and the
outcomes are recorded in Table 10. A general inspection is
provided at the bottom of the table to facilitate the evaluation
of the results. The algorithms' computational time results were
analyzed using the evaluation metrics than ranked from
smallest to largest. When examining the total ranking, which is
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assessed based on the average ranking for all metrics, it is
stated that the INFO is the fastest algorithm. The algorithms can
be ranked based on the standard deviation metric of
computational time as INFO, PSO, SPBO, EEFO, and RTHA. The
INFO algorithm ranks first in both computational accuracy and

computational time. On the other hand, the EEFO algorithm
ranks second in computational accuracy (standard deviation
metric) but fourth in computational time. It is not entirely
correct to evaluate algorithms based solely on computational

speed.

Table 10. Computational accuracy (Pyppaig) values for 30 runs

Scenario Algorithm Minimum Rank Mean Rank Maximum Rank 3:;[;:;2‘:1 Rank
INFO 97.955024463 1 345.452290862 1 370.294395687 1 65.228535457 1
EEFO 74.300717390 2 292.694948651 4 370.204100199 5 86.843124322 2
STC RTHA 43.280487206 5 306.461347189 3 370.293337734 2 100.86253419 Q
SPBO 73.374961994 3 278.144033516 5 370.286416007 3 101.6630®™6 5
PSO 67.138108397 4 309.953248733 2 370.279889272 4 97.8916 X 3
INFO 61.907736805 1 79.073770220 1 88.678347477 1 9.403 3% 1
Shading EEFO 46.000277648 4 75.232226322 2 88.675386103 4 12. 77 4
1 RTHA 50.308382767 2 74.594803815 4 88.669446464 5 . 24980 2
SPBO 49.649242458 3 73.516421739 5 88.678274249 2 660 3
PSO 44.444612666 5 74.726489162 3 88.677785309 3 4648658 5
INFO 153.359561825 1 193.456665039 1 202.460432218 1 12.862841063 1
Shading EEFO 13.360287259 5 159.235791528 5 202.459966503 7.579794382 4
2 RTHA 62.374604752 4 164.839356348 4 202.407728662 41.726370190 5
SPBO 129.410386798 2 190.937856196 2 202.459550753 & 20.655018495 2
PSO 69.602866059 3 183.267487513 3 202.40308102& 29.732151321 3
INFO 78.305977577 1 199.903284278 1 215.79331 1 31.286826185 1
Shading EEFO 68.244279253 2 176.347690810 4 215.783 2 37.325329256 2
3 RTHA 57.601884014 5 175.568794333 5 215.7% 4 4 55.921143579 5
SPBO 57.601884036 4 178.584180192 3 21 3737 5 48.102392309 4
PSO 57.601880718 3 184.227942644 2 21576 699 3 47.283058094 3
. . Mean Total Mean Total n Total Mean Total
Scenario  Algorithm Rank Rank Rank le“ ank Rank Rank Rank
INFO 1 1 1 1 \‘ 1 1 1 1
Sh:ﬁ . EEFO 3.25 3 3.75 3.25 2 3 2
o, dmg 5 RTHA 4 5 4 3.75 3 4 5
shadings  SPBO 3 2 3.75 73 3.25 2 3.75 4
PSO 3.75 4 2.5 2 3.75 3 3.5 3
° N
Y
Table 1{&0@@:&1 times values for 30 runs
Scenario  Algorithm Minimum Ran| Xl Rank Maximum Rank 3:::;;:;2‘:1 Rank
INFO 0.141554535 4 338996 1 1.130601579 1 0.291374607 1
EEFO 0.147670937 & 1056636987 5 1.566972325 2 0.615141584 4
STC RTHA 0.090495923 0.990388498 4 4.667068048 5 1.341881332 5
SPBO 0.141255258 0.536560457 3 1.567014106 3 0.396103558 2
PSO 0.13042838 0.514153774 2 1.568090278 4 0.470457937 3
INFO 0.112801 2 0.361952719 3 1.559556248 3 0.267388011 3
Shading EEFO 0.149 5 0.658589255 4 1.561778813 4 0.504764641 4
1 RTHA 0.1 3 0.742473777 5 4.581600047 5 1.133262503 5
SPBO 05%50 4 0.345967825 2 0.849073878 1 0.175437520 1
PSO 525 1 0.332134818 1 1.037585589 2 0.193048506 2
IN ) 64729 1 0.243467089 1 0.645670166 1 0.139086438 1
Shading EENO. 7311447 5 0.823075015 5 1.596622325 4 0.457335654 4
2 R .140906333 4 0.717591982 4 4.395430985 5 0.896026814 5
0.133022947 3 0.313205900 2 1.564238472 2 0.291695234 3
0, 0.130365980 2 0.370753535 3 1.564586795 3 0.284002378 2
< M 0.132006949 3 0.379566887 1 1.483584262 1 0.318474071 1
FO 0.182548994 5 0.827965822 4 1.565018367 2 0.565184573 3
RTHA 0.120788841 1 1.280649996 5 4.681229484 5 1.683392051 5
SPBO 0.148153674 4 0.809822232 3 4.629693700 4 0.872586050 4
PSO 0.126537645 2 0.546406237 2 1.566938549 3 0.422117618 2
. . Mean Total Total Mean Total Mean Total
Scenario  Algorithm Rank Rank Mean Rank Rank Rank Rank Rank Rank
INFO 2.5 3 1.5 1 1.5 1 1.5 1
Sh;;ﬁ . EEFO 5 5 45 4 3 3 3.75 4
Sha din§ 5 RTHA 2.25 2 4.5 4 5 5 5 5
Shading 3 SPBO 3.5 4 2.5 3 2.5 2 2.5 3
PSO 1.75 1 2 2 3 3 2.25 2

The key is the consistency of the algorithms in producing
accurate and stable results. Therefore, computational time

alone is not a sufficient criterion. Computational time and
accuracy should be evaluated based on the problem's objective.
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The main goal in solving the MPPT problem under partial
shading conditions is to identify the GMPP point accurately. In
PV systems, shading conditions do not change constantly; they
may vary every few minutes. Thus, computational time can be
considered secondary for MPPT.

4.7 MPPT optimization results based on statistical test

The INFO algorithm's MPPT optimization results have been
successful and consistent according to evaluation metrics. To
further strengthen our confidence in the INFO algorithm's
ability to solve this problem, we also subjected it to the
Friedman test. Friedman test ranks the performance of all
algorithms separately and allows for comparison among the
algorithms within the group [61]. The Friedman test checks if
there is a meaningful difference between the algorithms and
ranks this algorithm according to their significance level [62].
Since the problem of this article is MPPT optimization, a higher
Friedman mean rank indicates higher algorithm success. The
Friedman test results for the five metaheuristic algorithms, at a
5% significance level, are provided in Table 11. According to the
table 11, it can be seen that the P-value is less than 0.05 for all
scenarios. This indicates that there is a meaningful difference

Table 13. Ranking list of algorithms according to the

between the algorithms. Table 12 provides each algorithm's
importance rank, mean rank, and total rank across the all of
models. This table statistically demonstrates that the INFO
algorithm is the most successful.

Table 12. Mean and total ranking of algorithms based on
Friedman test.

Scenario INFO EEFO RTHA SPBO PSO
STC 1 4

Shading 1 1 3 QQ

Shading 2 1 4

Shading 3 1 5 \ Q\ 2
Mean Rank 1 “ 2.25

Total Rank 1 4

3

S
N

Scenario Algorithm ];‘Z:x:ig;lnk Al%::lﬁlm P- vaﬁ Conclusion
INFO 4.4333
EEFO 2.0333 4

STC RTHA 3.1333 3 E-12 P-value: 4.3834 E-12<0.05

SPBO 1.7667 5
PSO 3.6333 2
INFO 4.3000
EEFO 2.9333

Shading 1 RTHA 2.8000 o 3.8687E-07 P-value: 3.8687E-07<0.05
SPBO 1.9000 Q
PSO 3.0667° o 2
INFO 3.9667 N 1
EEFO 1. 4

Shading 2 RTHA 8667 3 4.4426E-16 P-value: 4.4426E-16<0.05
SPBO ¢ 2
PSO ,\\9 2
INFO ®%33 1
EEFO 1.8333 5

Shading 3 RTHA % 3.1000 2 1.8802E-11 P-value: 1.8802E-11<0.05
SPBO, 2.4667 4
PS 2.8667 3

\ hJ
5 E ental validation rapidly tracked the maximum power point (MPP). In this

An experimental% s conducted to evaluate the real-time
performance % FO algorithm, whose effectiveness had
T through simulation studies and statistical
. e ical layout of the experimental setup is
bedhin/Figure 10. The system consists of a Magna-Power
ammable PV simulator, 250 W boost type DC-DC
, resistive load and a microcontroller board based on
STM32. During the experiments, a 155 W thin-film PV panel
was used. The performance of the INFO algorithm was assessed
under two different test scenarios: STC and partial shading
conditions.
Test 1 — STC: In the first stage, the system was operated under
standard test conditions, specifically 1000 W/m? irradiance
and 25°C ambient temperature. Under these stable
environmental conditions, the INFO algorithm accurately and

scenario, the algorithm achieved an efficiency of 99.83%. The
corresponding P-V and P-I curves are shown in Figure 11(a)
and (b), respectively.

Test 2 — Partial shading condition: In this stage, the performance
of the INFO algorithm under challenging environmental
conditions was analyzed. For this purpose, a partial shading
scenario was created by gradually reducing the irradiance level
using the PV simulator in a controlled manner. The INFO
algorithm responded promptly to this sudden change,
successfully converged to the new maximum power point, and
maintained high system efficiency. The efficiency achieved in
this scenario was 99.37%. The corresponding P-V and P-I
curves are presented in Figure 11(c) and (d), Correspondingly.
As clearly seen in Figure 11, the GMPP points are explicitly
marked, illustrating the precise tracking capability of the
algorithm.
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re 11. Experimental performance of the INFO algorithm: P-V and P-I profiles

Conclusion

In this %rtim% T problem was addressed to accurately
and quic the GMP point. The MPPT optimization

a¥YPV system operating under partial shading
corg Was solved using the INFO, EEFO, RTHA, SPBO, and
gorithms. INFO, EEFO, RTHA, and SPBO were utilized for
the first time in this article to solve the MPPT optimization
problem. The widely used PSO algorithm in the literature was
chosen to compare the performance of these new algorithms.
The algorithms were tested under challenging shading
scenarios where LMPP and GMPP varied. The results of the
algorithms were evaluated from two perspectives: evaluation
metrics and the Friedman test. The indicated that the INFO
algorithm performed more successfully and consistently than
its competitors. As demonstrated by both evaluation metrics

and the Friedman test, INFO was proven to be faster, more
reliable, and more consistent than the EEFO, RTHA, SPBO, and
PSO algorithms.

Additionally, an experimental validation was carried out to
confirm the real-time applicability and performance of the
INFO algorithm. The experimental setup included a
programmable PV simulator, a boost converter, and an STM32
microcontroller. The INFO algorithm was embedded on the
STM32 board and tested under both ideal and partial shading
conditions. The experimental results verified that INFO
effectively tracked the maximum power point in real hardware
scenarios, demonstrating fast convergence and stable
operation, consistent with the simulation outcomes.

In future studies, it is aimed to use the INFO algorithm along
with well-known metaheuristic algorithms and newly
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proposed algorithms for MPPT optimization. It is planned to
work on hybrid algorithm structures to further upgrade the
performance and success rate of the INFO algorithm.
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