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Abstract

An image quality metric is proposed by introducing a new framework
for full reference image quality assessment from the perspective of
image patch manifolds. Assuming that most natural scenes are sampled
from low dimensional manifolds or submanifolds, perceived image
degradations in structural variations can be quantitatively evaluated
on the surfaces of highly nonlinear image manifolds. Manifold distortion
image quality index first characterizes intrinsic geometric properties of
the locally linear manifold structures of spatially local patch spaces, and
then measures the deviation from the original smooth manifold
structure to calculate the distortion index. Experimental results
demonstrate a strong promise with a comparison to both subjective
evaluation and state-of-the-art objective quality assessment methods.

Keywords: Image quality assessment, Image quality index, Manifold
learning, Neighbor embedding.
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Gértintii parcactk manifoldlart perspektifinden, yeni bir tam referans
gortintii kalitesi degerlendirmesi cercevesi olusturularak bir gértintii
kalitesi metrigi dnerilmektedir. Cogu dogal sahnenin diisiik boyutlu
manifoldlardan veya alt-manifoldlardan dérneklendigi varsayilarak,
yapisal varyasyonlarda algilanan goriintii bozulmalari yiiksek derecede
dogrusal olmayan gériintii manifoldlarinin ytizeylerinde nicel olarak
degerlendirilebilir. Manifold bozulmasi goriintii kalite endeksi énce
uzamsal olarak yerel parcacik uzaylarinin yerel dogrusal manifold
yapilarinin igsel geometrik ozelliklerini karakterize etmekte ve daha
sonra bozulma endeksini hesaplamak icin orijinal ptiriizsiiz manifold
yapisindan sapmayl Olgmektedir. Deneysel sonuglar hem 6znel
degerlendirme hem de gelismis objektif kalite degerlendirme
yéntemleriyle kiyaslandiginda giiclii bir taahhtit géstermektedir.

Anahtar kelimeler: Goriinti kalite degerlendirmesi, Goriintii kalite
endeksi, Manifold 6grenmesi, Komsuluk gémiilmesi.

1 Introduction

One of the most important research topics in image and video
processing is the quality assessment (QA) of a visual content.
During and after the acquisition, any captured image or video
may have been introduced different kinds of distortion until it
has been projected or presented to a human observer. There
are basically two main sources of distortion. The first source is
related to the hardware limitations where characteristics of
sensing elements, transmission channels and display devices
play an important role in the final display quality. The second
one is related to the software tools especially along with the
content editing and compression, as well as transmission and
storage algorithms applied to the visual content. Since any
kinds of captured and processed visual content are devoted for
a final human consumption, it is obviously very crucial to
imitate the human visual system (HVS) and obtain objective
quality metrics in an excellent agreement with subjective
opinion from human observers. Therefore, the principal aim is
to design generic quantitative QA models which are highly
aligned with the HVS, to accurately estimate the perceptual
visual quality of a visual content.

Depending on the availability of a reference (i.e., pristine
original) content, image and video QA methods can be
categorized into three groups. In the first group, there is only
the distorted image available and the evaluation of the
perceived quality of this image must be done without any
reference, i.e., no-reference QA. The second group which is
referred to reduced-reference QA, on the other hand, contains

*Corresponding author/Yazisilan Yazar

partial information about the reference content in addition to
the distorted image. This type QA methods makes use of the
available partial knowledge of the reference to assess the
quality of the distorted content. The third group consists in a
full-reference image and a distorted version of it where the
distortion level is measured based on a comparison with the
available distortion-free reference. In this study, the focus will
be on full-reference QA algorithms which basically serve a great
basis for designing distortion resilient image /video processing
applications, e.g,, for acquisition, communication, compression,
editing, displaying and printing. Moreover, an objective full-
reference quality metric will be a key component of embedded
systems evaluating image fidelity or perceived similarity.

Conventional full-reference QA algorithms, including mean
squared error (MSE) [1] and its extensions, i.e., signal-to-noise
ratio (SNR) and peak SNR (PSNR), are mainly based on low level
models of the HVS. Although MSE is an inexpensive signal
fidelity measure with its simple mathematical convention, it
can only estimate point-by-point errors in pixel domain, or in
an appropriate transform domain, without considering
structural changes between the distortion-free and distorted
images. Weighted SNR (WSNR) [2],[3] can yet be thought as an
extension to MSE in which an appropriate weighting has been
incorporated in the distortion measure. The weighting strategy
of WSNR employs a contrast sensitivity function that is a linear
spatially invariant approximation of the HVS. Nonlinear noise
quality measure (NQM) [4] respects to the nonlinear spatially
varying characteristics of the HVS. NQM simply behaves as a
nonlinear weighted SNR. Universal image quality index (UQI)
[5] assumes that the HVS is highly adapted to extract structural
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information from a scene. It models any image distortion with
a combination of three measures: loss of correlation, luminance
distortion and contrast distortion. UQI has been generalized to
structural similarity (SSIM) [6], and SSIM has later been
extended to multiscale SSIM (MSSIM) [7] and information
content weighted SSIM (IWSSIM) [8]. Most apparent distortion
(MAD) [9] combines visual detection and image appearance-
based distortion models to measure the overall perceived
distortion. Gradient similarity metric (GSM) [10] measures
structural and contrast changes using the gradient similarity in
images. It also incorporates a luminance similarity for a
complete quality assessment. In addition, statistical approaches
assume that there are parallels between the models of natural
scenes (visual stimulus of the natural environment) and the
evolution of the HVS [11],[12]. Information fidelity criterion
(IFC) [11] models the scale invariant statistics of images in the
wavelet domain. Visual information fidelity (VIF) [12] can be
regarded as a content dependent extension of IFC. Visual SNR
(VSNR) [13] also operates in a multiscale wavelet domain.
Furthermore, there are feature based similarity metrics based
on transform features, e.g., RFSIM [14], phase congruency and
gradient magnitude features, e.g, FSIM [15], local binary
patterns [16] and image descriptors, e.g., SURF-SIM [17].

This paper develops a novel framework for full-reference QA
from the perspective of image manifolds. The proposed
solution builds upon a (multi)patch-based scheme which
naturally leads to a constrained optimization problem for
characterizing the intrinsic properties of image manifold
structures to measure a local distortion index. Experimental
results illustrate a strong promise when compared to both
subjective evaluation and objective QA methods. The rest of this
paper is organized as follows. Section 2 introduces the
motivation and details the main ideas and steps of the proposed
QA algorithm. Section 3 presents the experimental setup and
draws a discussion over the obtained results. Section 4 finally
gives a brief conclusion while describing possible future
directions.

2 Manifold distortion quality index

A very well studied approach in image and video processing is
to make full use of textural and structural self-similarities
within an image and cross-similarities across different images.
The fact is that sufficiently small image patches are very likely
to repeat themselves within the same scale and across different
scales of an image, as well as across different images. Based on
this observation, most of the image processing problems such
as inpainting [18]-[21], denoising [22]-[24], super-resolution
[25]-[28], image prediction and compression [29]-[35], and
more have found their solutions in the literature. All these
methods have mainly been inspired from texture synthesis
techniques [36]-[38] which are highly influenced by Markov
Random Fields [39],[40].

A second observation suggests that most of the natural images
are sampled from low-dimensional (sub)manifolds. This
assumption leads to the fact that densely sampled and
sufficiently small image texture patches can be successfully
reconstructed as a weighted linear combination of their
nearest-neighboring (NN) patches. This is usually referred to as
neighbor-embedding [41]-[44] and is basically aligned with the
main idea of manifold learning algorithms for dimensionality
reduction [45]-[47].

In this work, the texture synthesis principle and the manifold
sampling assumption have been combined resulting in a new

framework for full-reference QA. Given a pair of images of same
size, i.e,, the pristine original and its distorted version, a patch
based scheme builds upon a strictly localized NN search
followed by a characterization of the intrinsic properties of the
manifold structures of spatially local patch spaces, and then by
a calculation of the projected local deviation from the smooth
distortion-free manifold structure, in order to calculate the
distortion index per pixel.

2.1 Problem definition and notation

Given two images of same size N X M pixels represented by
as the distortion free original and & as the distorted version of
B, the main objective is to design a quantitative QA model in
order to accurately estimate the perceptual visual quality of
using the information contained in B. As stated above, the
manifold sampling assumption will be followed and extended
for this purpose. The solution naturally leads to a local multi-
patch scheme which is a powerful and generic enough tool to
deal with different kinds of distortion corruption in &.

A lexical ordering of image pixels and n X n square image
patches as stacked column vectors of size n? X 1 are assumed.
While representing the given images as matrices by X and Y,
each distortion-free patch x; extracted from X has a spatially
collocated distorted patch y; obtained from Y. Here column
vectors X; and y; in fact denote n X n square patches centered
around the pixel indexed by i extracted from X and Y,
respectively, where i = 1...NM and n is odd. Let us denote
these patch pairsin a setas § = {X;,¥;}vi-

2.2 Manifold distortion as a quality index

The main objective here is to characterize point-based image
distortions by means of patch (sub)manifolds through spatially
close and chromatically similar image texture patches. In order
to achieve this aim, distortion-free local neighborhood
information of x; Vi has first been extracted from a strictly
localized search region Q; centered around X;, by minimizing a
weighted distance metric ||x; — xj||;7 where o represents the
standard deviation of the n Xn Gaussian kernel used for
weighting and {xj} ={x;|x; €Q; Ai#j}. K-closest such
neighbors are kept in a set {x;}¥_; as the K-NN of x;. Then
similar to [46], intrinsic local geometric properties of each
individual neighborhood can be linearly characterized as in
Equation (1) by solving

X; — Z AixXik
k

The above constrained least squares optimization can be solved
for a; = [a;; @ ... ajk]T as given in Equation (2) by

2
S. t. Z di = 1,\7’1 (1)
k

2,0

argmin
fauc}

G 1
a. =
I U |

(2)

where G;, = X! X, is the Gram (inner product) matrix and
the columns of the matrix X;, correspond to the set {X3}
representing the x;-centered and then Gaussian weighted NN
set {x;;}, and 1 denotes a column vector of ones of size K X 1.
The optimum reconstruction weights {a;,}¥_, here describe
the local properties of the distortion-free manifold structure.

Now let us think of a special case when there is no distortion on
the pristine original content, i.e., X = Y, the local neighborhood
of and the manifold structure around x; would be identical for

611



Pamukkale Univ Muh Bilim Derg, 27(5), 610-617, 2021
M. Tiirkan

y; Vi. This fact leads to a fundamental observation that, these
local geometric similarities of image spaces can be benefited
from, and a quality index can be successfully calculated based
on manifold distortions, by relating the intrinsic properties of
distortion-free and distorted local patch neighborhoods via
neighbor-embedding. To do so, the parameters of distortion-
free local neighborhood information is directly transferred to
the distorted image manifold structure as if there were no
distortion. These parameters simply correspond to the index
set {ik} of the selected K-NN of x; which will help extract
collocated distorted image patches {y;}X_; from the correct,
indeed ground-truth spatial coordinates in Y. After transferring
this local neighborhood information to the distorted domain,
intrinsic local geometric properties of distorted neighborhood
of y; can be characterized as in Equation (3) by solving

yi — Z WikYik
k

for w; = [wj; ;; ... wik]T as given in Equation (4) by

argmin
{wix}

s.t. Z wx =LY,  (3)
k

2
2,0

G ;1

=k 4
17611 )

w;

G, = Y/, Y; ; is the inner product matrix where the columns of
the matrix Y; , correspond to the set {§7,} representing the y;-
centered and Gaussian weighted NN set {y;.}, and 1 denotes a
column vector of respective size. The optimum reconstruction
weights {w;, }X_, describe the desired local properties of the
distorted manifold structure.

The information extracted above is for both local (point-based
via Gaussian weighting) and nonlocal (patch-based via
reconstruction weights) intrinsic characteristics of distortion-
free and distorted local neighborhoods, and thus, is a valuable
tool for measuring textural and structural deviations from the
original distortion-free structure. While transferring distorted
local neighborhood parameters set {w;; } directly to the original
manifold structure from which quantitative deviations can
easily be measured, two different representations of x; Vi are
reconstructed using the distortion-free local neighborhood
{Xii}. The first one is the distortion-free representation of x;,
i.e, X; = X aixXix; and the second holds the properties of the
distorted manifold structure, i.e., X; = Y. W;xX;x- The next step
then consists in measuring the distortion between X; and X; as
d; = X; — X; = Y@y — wi)Xx. Figure 1 summarizes all these
parameter transfer procedures between distortion-free and
distorted images and corresponding local manifold structures.

During local neighborhood selection and characterization by
the least-squares optimization, much more attention has been
given to the centering pixel indexed by i. Thus, the Manifold
Distortion Quality Index can now be defined as MDQI[i] =
P(d;). The operator P first reshapes d; into an n X n distortion
patch, then extracts the value of the centering pixel location and
clamps it to [—-2™ + 1, 2™ — 1] for m-bit images, if necessary.
Finally, a Manifold Distortion MSE (MDMSE) and a Manifold
Distortion PSNR (MDPSNR) are formulated in Equation (5) by

_1 2
MDMSE = Zi(MDQI[z])
2m—1

VMDMSE

where |@| denotes the number of patch pairs in the set &.

(5)
MDPSNR = 20 log;,

Distortion-free Image Distorted Image
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Figure 1. Parameter transfer between distortion-free and
distorted images and corresponding manifolds.

3 Experimental setup and results

The Tampere Image Database 2013 (TID2013) [48] and The
LIVE Image Quality Assessment Database (LIVE, Release 2)
[49],[50] are utilized and tested for the proposed QA algorithm.
TID2013 contains 25 true color (24-bits/pixel RGB) distortion-
free and 3000 distorted images. In this database, 24 types of
distortions with 5 different levels are introduced, i.e., there are
120 distorted images per reference image. The LIVE Image
Database contains 29 true color distortion-free images which
are distorted by 5 types of distortions with different perceptual
quality levels. LIVE consists of a total 982 test images (including
203 reference images). The distortion types and details of these
datasets are given in Table 1.

Table 1. The distortion details of TID2013 and LIVE datasets.

Database Type Description
AGN additive Gaussian noise
ANC additive noise in color components is more intensive
than additive noise in luminance
SCN spatially correlated noise
MN masked noise

HFN high frequency noise

IN impulse noise
QN quantization noise
GB Gaussian blur
ID image denoising
JP1 JPEG compression
JP2K1  JPEG2K compression
JP2 JPEG transmission errors
TID JP2K2 JPEG2K transmission errors
NEPN non eccentricity pattern noise
LBD local block-wise distortions of different intensity
MS mean (intensity) shift
cC contrast change
CCS change of color saturation
MGN multiplicative Gaussian noise
CN comfort noise
LCNI lossy compression of noisy images
cQDb image color quantization with dither
CA chromatic aberrations
SSR sparse sampling and reconstruction
JPG2K  JPEG2K compression (227 images)
JPG JPEG compression (233 images)
LIVE GBlur Gaussian blur (174 images)
WN white noise in the RGB components (174 images)
FF JPEG2K transmission errors in the bit-stream using a

fast-fading Rayleigh channel (174 images)
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TID2013 and LIVE also provide the mean opinion score (MOS)
for each distorted image. In TID2013, a total of 971 observers
from Finland (116), France (72), Italy (80), Ukraine (602) and
USA (101) have evaluated relative visual quality in 1048680
image pairs, i.e., 524340 visual quality comparisons of distorted
images. The obtained MOS values lie between 0 (minimal) and
9 (maximal). The higher MOS value is the better visual quality
of the image. In LIVE, about 20-29 human subjects have rated
visual quality of each image in seven different experiments,
using the same equipment and viewing conditions. Observers
have evaluated each distortion type in order to provide a visual
quality on a continuous linear scale with five equal regions
labeled as “Bad”, “Poor”, “Fair”, “Good” and “Excellent”. These
raw scores have later been translated into a difference MOS
value for each distorted image.

It is worth noting here that a single scale of analysis might not
be effective since both image resolution and viewing distance
have great effect on the perceived quality. In practice, it has
been suggested to use an empirical formula to determine the
scale for images viewed from a typical distance [6]. In this
study, all images are automatically decimated by a factor F =
max(1, round(min(M, N)/256)) with a simple averaging filter
of size F X F pixels. Another keynote is that the elements of the
set @ can be used to calculate the distortion index for all pixels,
or a subset of pixels in the image for the sake of computational
complexity. In the latter case, a subset § can be chosen from
with a predetermined regular pixel offsets in both dimensions
of the image. This paper assumes § = S.

In order to evaluate and compare the performance of MDQI
with the competing methods, four widely utilized metrics are
employed, namely Spearman rank-order correlation coefficient
(SROCC) [51], Kendall rank-order correlation coefficient
(KROCC) [52], Pearson linear correlation coefficient (PLCC) and
root MSE (RMSE). The calculation details of these metrics are
illustrated in Table 2.

Table 2. The details of SROCC, KROCC, PLCC and RMSE for a
given paired data {(ay, by), ..., (an, by)} consisting of N pairs.

Metric Formula Description
6%, d2 d,: difference between
SROCC 1-— % two ranks of each
NV -1) observation,n =1..N
N.= number of rank-
2(N. =N, i
KROCC (N — Ng) concordant pairs

N(N-1) Ng=number of rank-
discordant pairs

Yn(an — o) by — tp) Ug=sample mean of a
up=sample mean of b

\/Zn(an - ﬂa)z \/Zn(bn - Mb)z n=1..N

—b.)2
RMSE M n=1..N
N

While SROCC and KROCC measure the ranking monotonicity
between the subjective MOS and the objective score variables,
both PLCC and RMSE need a prior regression analysis to get a
nonlinear mapping between these variables. For this purpose,
a five-parameter logistic function with a linear term that is
constrained to be monotonic is utilized as in Equation (6) by

PLCC

1 1
fx)=p (E—m)'ﬂﬁx"‘ﬂs (6)

5
where the parameter set {ﬁp}p_l needs to be fitted to minimize

the MSE between the mapped objective scores and the MOS
[49]. A better objective QA metric is expected to have higher
SROCC, KROCC and PLCC values, but a lower RMSE value.

For computational purposes, local search region (), is fixed to a
square window of size 27 X 27 pixels centered around the pixel
indexed by i Vi, and all image patches are of size 9 X 9 pixels,
i.e, n = 9. This block size has been experimentally shown to be
large enough in order to capture local structures and fine
details, to be small enough in order to apply neighbor-
embedding in terms of texture synthesis. The standard
deviation o of the 9 X 9 Gaussian kernel used for weighting is
setto 3.50, and then this kernel is uniformly normalized to have
a centering coefficient equal to “1”. The same kernel is applied
both for local neighborhood (K-NN) selection and for local
geometry characterization by least-squares optimization. K is
set to 8 providing a sparsity notion for the representation. It is
important note here that all these parameters are fixed in the
reported experimental results for a fair comparison with the
competing methods.

For distortion-free and distorted neighborhood optimizations,
mean subtracted image patches are employed as textural
features rather than patch absolute intensities. Although first
and/or second order gradients could be extracted asin [41] and
[53] for this purpose, it is sufficient here to consider
representative features as relative textural and structural
variations with respect to the patch mean. In this way, the
distortion d; can easily detect local intensity and structural
changes.

Figure 2 depicts a visual example of image quality index maps
for the Einstein image. In this example, all distorted images have
roughly the same MSE values with respect to the original image,
but they have obviously different visual quality. MDMSE leads
to a better indication of image quality assessment together with
a visual index map. The details of the calculated QA statistics
with MDQI in comparison to the widely used MSE and SSIM
scores are summarized in Table 3.

All experiments performed for all quality metrics on TID 2013
and LIVE are reported in Table 4, Table 5, and Table 6. Table 4
and Table 5 illustrate detailed performance comparison on
each individual distortion type (as listed in Table 1) in terms of
SROCC on TID 2013 and LIVE, respectively. In these tables, the
statistics are calculated on each distortion type separately and
the top-three performing QA models are given in bold (per-
row). It can be clearly observed from these statistics, MDQI
demonstrates a strong global promise when compared to both
state-of-the-art objective methods and subjective evaluation
scores. In addition to that, it is better than the most distortion
types, and in some cases a comparable alternative to the other
QA models. On the other hand, MDQI tends to fail when there
are local or global uniform intensity changes and/or contrast
changes between images. This can be well-explained with the
constrained optimization of each local neighborhood, which is
in fact translation invariant because of the sum-to-one
constraint on weights. This observation however is aligned
with the HVS which is insensitive to uniform intensity changes
up to a level.

Table 6 further gives an overall performance comparison of
several QA models in terms of SROCC, KROCC, PLCC and RMSE
on TID 2013 and LIVE datasets. In this table, the statistics are
calculated on the whole datasets employed and the top-three
performing QA models are highlighted in bold (per-row). MDQI
outperforms most of the models on TID 2013 and in some cases,
it is comparable to the other QA models on LIVE.

The nonlinear regression parameters in Equation (6) are
obtained using iterative least squares estimation with initial
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values set to {ﬁp} = {MO0S,,1,QA,,1,0.1} where MOS, and Figure 3 demonstrates some examples of scatter plots of the
QA,, represent the standard deviation of the MOS and the mean MOS versus MDQI together with other selected QA models, i.e,,
of the QA model selected, respectively. This initialization of IWSSIM, GSM, MAD, FSIM, MSSIM, SSIM, PSNR. The black curves
parameters gives a meaningful conditioning while reducing the shown in this figure are obtained by the logistic function. It can
probability of having a local minimum in the final estimation. also be seen from these scatter plots that MDQI has a consistent

correlation with the MOS.

Figure 2. The Einstein image. (Top Left-to-right) Original (MSE = 0, SSIM = 1, MDMSE = 0); uniform mean shift (MSE = 144, SSIM =
0.988, MDMSE = 0.001); contrast change (MSE=144, SSIM = 0.913, MDMSE = 30.50); impulse noise (MSE = 144, SSIM = 0.840,
MDMSE=20.93); blur (MSE=144, SSIM=0.694, MDMSE = 96.41); JPEG compression (MSE = 142, SSIM = 0.662, MDMSE = 121.48).
(Bottom Left-to-right) MDQI maps of the original, uniform mean shift, contrast change, impulse noise, blur and JPEG compression.
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Figure 3. Example scatter plots of the MOS vs. scores of QA models on TID 2013. The black curves are obtained by the logistic
regression function. (Top Left-to-right) MDQI, IWSSIM, GSM, MAD; (Bottom Left-to-right) FSIM, MSSIM, SSIM, PSNR.

Table 3. The Einstein image statistics.

Type MSE SSIM MDMSE
Original 0 1 0
Mean Shift 144 0.988 0.001
Contrast Change 144 0.913 30.50
Impulse Noise 144 0.840 20.93
Blur 144 0.694 96.41
JPEG Compression 142 0.662 121.48
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Table 4. Performance comparison of several QA models for each individual distortion type of TID2013 in terms of SROCC.

TID PSNR _SSIM _MSSIM _VSNR _ VIF uQI IFC_ _NQM WSNR SNR  FSIM MAD  GSM _ IWSSIM _IWPSNR _ MDQI
AGN 0936 0867 0861 0824 0914 0583 0707 0814 0855 0864 0897 0859 0906  0.858 0.927 0916
ANC 0.891 0773 0769 0.664 0.848 0496 0589 0718 0811 0838 0818 0738 0818  0.766 0.864  0.831
SCN 0920 0851 0854 0.807 0908 0606 0724 0787 0882 0850 0875 0871 0916  0.846 0.956  0.916
MN 0799 0777 0745 0662 0.837 0567 0.691 0690 0595 0718 0794 0573 0729  0.754 0681  0.814
HFN 0950 0863 0869 0814 0907 0657 0773 0863 0892 0915 0897 0850 0887  0.874 0918 0915
IN 0.899 0750 0750 0790 0.870 0505 0.622 0791 0.909 0898 0808 0687 0796  0.745 0914  0.888
QN 0904 0866 0871 0854 0.861 0656 0.662 0826 0.890 0879 0871 0866 0884  0.859 0.898  0.854
GB 0950 0.967 0962 0945 0.966 0912 0905 0901 0934 0936 0955 0863 0969  0.964 0.917 0.957
D 0951 0925 0931 0921 0927 0767 0826 0918 0920 0.938 0930 0906 0.943  0.925 0914 0935
JP1 0960 0920 0920 0860 0937 0786 0869 0887 0919 0927 0933 0894 0928 0917 0935  0.948
JP2K1 | 0969 0947 0948 0921 0958 0866 0910 0926 0927 0924 0958 0913 0.960  0.951 0951  0.970
JP2 0798 0.849 0824 0755 0.856 0845 0773 0736 0665 0771 0847 0756 0.851  0.820 0.768 0.827
JP2K2 | 0950 0.883 0874 0820 0890 0749 0809 0808 0826 0.897 0891 0860 0918  0.865 0857 0918
NEPN | 0733 0782 0804 0736 0812 0769 0542 0747 0788 0703 0792 0.828 0.813 0811 0.804  0.830
LBD 0.087 0.572 0144 0110 0497 0513 0420 0001 0138 0071 0551 0059 0.642  0.185 0.081 0.426
MS 0767 0775 0791 0574 0625 0744 0580 0608 0773 0774 0752 0598 0.787  0.789 0.617 0.606
cC 0431 0377 0461 0334 0.828 0361 0358 0462 0418 0422 0468 0192 0486 0451 0.419 0.246
ccs 0.009 0414 0362 0159 0230 0301 0379 0124 0077 0006 0378 0038 0359  0.340 0.088  0.679
MGN | 0.898 0780 0780 0801 0875 0505 0666 0768 0800 0.878 0847 0793 0835  0.79 0.889  0.889
CN 0936 0857 0878 0858 0923 0738 0835 0870 0916 0890 0912 0874 0912  0.892 0931 0944
LCNI | 0948 0906 0910 0914 0949 0780 0850 0905 0949 0907 0947 0932 0.956 0912 0.967  0.958
cQD 0928 0854 0882 0.882 0877 0665 0669 0862 0.896 0.897 0876 0864 0.897  0.877 0.893 0.885
cA 0.889 0877 0868 0847 0859 0783 0804 0810 0827 0.883 0871 0766 0.882  0.859 0.820 0.848
SSR 0962 0946 0950 0940 0957 0867 0918 0946 0948 0919 0956 0947 0.967  0.953 0959  0.964

avg | 0811 0807 0792 0741 0.838 0668 0703 0740 0773 0779 0.826 0730 0.835  0.792 0790  0.832
std | 0257 0149  0.193 0225 0163 0159 0160 0231 0235 0249 0149 0258 0.148  0.190 0246 0.174
Table 5. Performance comparison of several QA models for each individual distortion type of LIVE in terms of SROCC.

LIVE | PSNR __SSIM _ MSSIM _VSNR __ VIF uQI IFC_ __NQM _WSNR SNR FSIM MAD GSM _ IWSSIM IWPSNR _MDQI
JPG2K | 0970 0984 0.985 0967 0.988 0934 0955 0973 0966 0957 0.988 0957 0.987  0.983 0.983 0.977
JPG 0970 0984 0985 0961 0987 0950 0965 0979 0977 0965 0.987 0952 0.985  0.984 0984 0971
GBlur | 0931 0972 0980 0973 0.981 0968 0970 0908 0919 0913 0.983 0956 0972  0.984 0.965 0.952
WN 0989 0982 0987 0988 0.992 0934 0966 0.991 0981 0984 0980 0978 0987  0.988 0986 0985
FF 0946 0974 0931 0905 0959 0961 0961 0.896 0.896 0948 0971 0945 0.965  0.941 0874 0947

avg | 0961 0979 0974 0959 0.981 0949 0963 0949 0948 0953 0982 0958 0.979  0.976 0.958 0.966
std | 0020 0.005 0021 0028 0012 0014 0.005 0.039 0.034 0023 0.006 0011 0.009 0.018 0.043 0.015
Table 6. Performance comparison of several QA models. TID2013 and LIVE in terms of SROCC, KROCC, PLCC and RMSE.

TID [ PSNR__SSIM__MSSIM__VSNR __ VIF uQI IFC __NQM__WSNR__SNR __FSIM___MAD _ GSM__ IWSSIM__IWPSNR _ MDQI
SROCC | 0.634 0742 0756  0.663 0769 0.633 0570 0646 0533 0617 0802 0721 0795  0.742 0.630  0.832
KROCC | 0493 0559 0579 0496 0592 0458 0422 0476 0404 0467 0629 0549 0.626  0.563 0465  0.647
PLCC 0705 0760 0.805 0.689 0824 0.691 0673 0676 0611 0681 0.859 0760 0.846  0.670 0.602  0.852
RMSE | 0.880 0.806 0735 0899 0702 0.897 0917 0913 0981 0908 0.635 0806 0.660  0.921 0.991  0.650

LIVE | PSNR__SSIM _MSSIM _VSNR __ VIF uQI IFC NQM _WSNR _SNR FSIM MAD GSM__ IWSSIM _IWPSNR _ MDQI
SROCC | 0958 0973 0970 0957 0.979 0940 0952 0954 0953 0952 0981 0957 0.977 0973 0.952 0.965
KROCC | 0832 0864 0862 0829 0.883 0802 0810 0830 0827 0821 0888 0844 0.876 0873 0.825 0.844
PLCC 0949 0828 0637 0956 0965 0.880 0879 0949 0946 0941 0848 0.961 0772  0.651 0.945  0.960
RMSE 986 1753 2412 917 825 1486 1494 986  10.14 1059 16.60 871  19.89  23.75 10.21 8.71

4 Conclusion

In this study, a novel technique for full-reference QA through
manifold learning is developed with results highly correlated to
subjective assessments. To the best of available knowledge, the
proposed algorithm is a new framework which takes advantage
of texture synthesis and manifold sampling through neighbor
embeddings of image patches. The proposed model, namely
MDQ], i.e, MDMSE and MDPSNR, is capable of quantitively
evaluating perceived image degradations in structural and
textural variations, and moreover it can produce an index map
because of its pixel-based structure. Possible future directions
include the investigation of other efficient ways to measure
distortion values through intrinsic properties of each individual
neighborhood, a gradient-features based characterization of
neighborhoods, an adaptation of the constrained optimization
to handle local/global uniform intensity and contrast changes,
and a multi-scale extension to MDQI (MMDQI) not only for
increasing its accuracy but also for assessing quality of images
with different sizes.

5 Author contribution statements

In the scope of this study, Mehmet TURKAN, in the formation of
the idea, the design and the literature review, performing
analyzes and examining the results, the spelling and checking
the article in terms of content were contributed.

6 Ethics committee approval and conflict of
interest statement

There is no need to obtain permission from the ethics
committee for the article prepared.

There is no conflict of interest with any person / institution in
the article prepared.

7 References

[1] Wang Z, Bovik AC. “Mean squared error: Love it or leave
it? A new look at signal fidelity measures”. IEEE Signal
Processing Magazine, 26(1), 98-117, 2009.
Mannos ], Sakrison D. “The effects of a visual fidelity
criterion of the encoding of images”. IEEE Transactions on
Information Theory, 20(4), 525-536, 1974.

(2]

615



Pamukkale Univ Muh Bilim Derg, 27(5), 610-617, 2021
M. Tiirkan

[10]

[11]

[12

—_—

[13

[}

[14]

[15

—_

[16]

[17]

(18]

[19]

[20]

Mitsa T, Varkur KL. “Evaluation of contrast sensitivity
functions for the formulation of quality measures
incorporated in halftoning algorithms”. I[EEE 1993
International Conference on Acoustics, Speech, and Signal
Processing, Minneapolis, MN, USA, 27-30 April 1993.
Damera-Venkata N, Kite TD, Geisler WS, Evans BL, Bovik
AC. “Image quality assessment based on a degradation
model”. [EEE Transactions on Image Processing,
9(4), 636-650, 2000.

Wang Z, Bovik AC. “A universal image quality index”.
IEEE Signal Processing Letters, 9(3), 81-84, 2002.

Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. “Image
quality assessment: From error visibility to structural
similarity”. IEEE Transactions on Image Processing,
13(4), 600-612, 2004.

Wang Z, Simoncelli EP, Bovik AC. “Multiscale structural
similarity for image quality assessment”. 2003 Asilomar
Conference on Signals, Systems & Computers, Pacific Grove,
CA, USA, 9-12 November 2003.

Wang Z, Li Q. “Information content weighting for
perceptual image quality assessment”. I[EEE Transactions
on Image Processing, 20(5), 1185-1198, 2011.

Larson EC, Chandler DM. “Most apparent distortion: Full-
reference image quality assessment and the role of
strategy”. Journal of Electronic Imaging, 2010.
https://doi.org/10.1117/1.3267105.

Liu A, Lin W, Narwaria M. “Image quality assessment
based on gradient similarity”. IEEE Transactions on Image
Processing, 21(4), 1500-1512,2012.

Sheikh HR, Bovik AC, de Veciana G. “An information
fidelity criterion for image quality assessment using
natural scene statistics”. [EEE Transactions on Image
Processing, 14(12), 2117-2128, 2005.

Sheikh HR, Bovik AC. “Image information and visual
quality”. [IEEE Transactions on Image Processing,
15(2), 430-444, 2006.

Chandler DM, Hemami SS. “VSNR: A wavelet-based visual
signal-to-noise ratio for natural images”. I[EEE
Transactions on Image Processing, 16(9), 2284-2298,
2007.

Zhang L, Zhang L, Mou X. “RFSIM: A feature based image
quality assessment metric using Riesz transforms”. I[EEE
2010 International Conference on Image Processing,
Hong Kong, China, 26-29 September 2010.

Zhang L, Zhang L, Mou X, Zhang D. “FSIM: A feature
similarity index for image quality assessment”. IEEE
Transactions on Image Processing, 20(8), 2378-2386,
2011.

Wu ], Lin W, Shi G. “Image quality assessment with
degradation on spatial structure”. IEEE Signal Processing
Letters, 21(4), 437-440, 2014.

Wang F, Sun X, Guo Z, Huang Y, Fu K. “An object-distortion
based image quality similarity”. IEEE Signal Processing
Letters, 22(10), 1534-1537, 2015.

Criminisi A, Perez P, Toyama K. “Region filling and object
removal by exemplar-based image inpainting”. IEEE
Transactions on Image Processing, 13(9), 1200-1212,
2004.

Zhang Y, Xiao ], Shah M. “Region completion in a single
image”. 2004 Eurographics, Grenoble, France, 30 August-3
September 2004.

Sun ], Yuan L, Jia ], Shum HY. “Image completion with
structure propagation”. ACM Transactions on Graphics,
24(3),861-868, 2005.

[21] C. Barnes, Shechtman E, Finkelstein A, Goldman DB.
“PatchMatch: A randomized correspondence algorithm
for structural image editing”. ACM Transactions on
Graphics, 2009.
https://doi.org/10.1145/1531326.1531330.

[22] Buades A, Coll B, Morel J. “A non-local algorithm for image
denoising”. [EEE 2005 Computer Society Conference on
Computer Vision and Pattern Recognition, San Diego, CA,
USA, 20-25 June 2005.

[23] Mahmoudi M, Sapiro G. “Fast image and video denoising
via nonlocal means of similar neighborhoods”. IEEE Signal
Processing Letters, 12(12), 839-842, 2005.

[24] Dabov K, Foi A, Katkovnik V, Egiazarian K. “Image
denoising with block-matching and 3D filtering”. SPIE
2006 Electronic Imaging, San Jose, CA, USA, 17 February
2006.

[25] Freeman WT, Jones TR, Pasztor EC. “Example-based
super-resolution”. I[EEE  Computer  Graphics and
Applications, 22(2), 56-65, 2002.

[26] Glasner D, Bagon S, Irani M. “Super-resolution from a
single image”. IEEE 2009 International Conference on
Computer Vision, Kyoto, Japan, 29 September-2 October
20009.

[27] Freedman G, Fattal R. “Image and video upscaling from
local self-examples”. ACM Transactions on Graphics,
30(2),2011. https://doi.org/10.1145/1944846.1944852.

[28] Michaeli T, Irani M. “Nonparametric blind super-
resolution”. [EEE 2013 International Conference on
Computer Vision, Sydney, NSW, Australia, 1-8 December
2013.

[29] Sugimoto K, Kobayashi M, Suzuki Y, Kato S, Boon CS. “Inter
frame coding with template matching spatio-temporal
prediction”. IEEE 2004 International Conference on Image
Processing,  Singapore, Republic of Singapore,
24-27 October 2004.

[30] Yang ], Yin B, Sun Y, Zhang N. “A block-matching based
intra frame prediction for H.264/AVC”. IEEE 2006
International Conference on Multimedia and Expo,
Toronto, Ontario, Canada, 9-12 July 2006.

[31] Tan TK, Boon CS, Suzuki Y. “Intra prediction by template
matching”. IEEE 2006 International Conference on Image
Processing, Atlanta, GA, USA, 8-11 October 2006.

[32] Tan TK, Boon CS, Suzuki Y. “Intra prediction by averaged
template matching predictors”. IEEE 2007 Consumer
Communications and Networking Conference, Las Vegas,
NV, USA, 11-13 January 2007.

[33] Turkan M, Guillemot C. “Sparse approximation with
adaptive dictionary for image prediction”. IEEE 2009
International ~ Conference on Image  Processing,
Cairo, Egypt, 7-10 November 2009.

[34] Turkan M, Guillemot C. “Image prediction: Template
matching vs. sparse approximation”. [EEE 2010
International Conference on Image Processing, Hong Kong,
China, 26-29 September 2010.

[35] Turkan M, Guillemot C. “Image prediction based on
neighbor-embedding methods”. IEEE Transactions on
Image Processing, 21(4), 1885-1898, 2012.

[36] Efros AA, Leung TK. “Texture synthesis by non-parametric
sampling”. [EEE 1999 International Conference on
Computer Vision, Kerkyra, Greece, 20-27 September 1999.

[37] Wei LY, Levoy M. “Fast texture synthesis using tree-
structured vector quantization”. 2000 Annual Conference
on Computer Graphics and Interactive Techniques,
New Orleans, LA, USA, 23-28 July 2000.

616


https://doi.org/10.1117/1.3267105
https://doi.org/10.1145/1531326.1531330
https://doi.org/10.1145/1944846.1944852

Pamukkale Univ Muh Bilim Derg, 27(5), 610-617, 2021
M. Tiirkan

[38] Ashikhmin M. “Synthesizing natural textures”. 2001
Symposium on Interactive 3D Graphics, Chapel Hill, NC,
USA, 26-29 March 2001.

[39] Besag J. “Spatial interaction and the statistical analysis of
lattice systems”. Journal of the Royal Statistical Society
Series B, 36(2), 192-236, 1974.

[40] Cross GR, Jain AK. “Markov random field texture models”.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 5(1), 25-39, 1983.

[41] Chang H, Yeung DY, Xiong Y. “Super-resolution through
neighbor embedding”. [EEE 2004 Computer Society
Conference on Computer Vision and Pattern Recognition,
Washington, DC, USA, 27 June-2 July 2004.

[42] Turkan M, Thoreau D, Guillotel P. “Self-content super-
resolution for ultra-HD up-sampling”. 2012 European
Conference on Visual Media Production, London, UK,
5-6 December 2012.

[43] Turkan M, Thoreau D, Guillotel P. “Optimized neighbor
embeddings for single-image super-resolution”. IEEE
2013 International Conference on Image Processing,
Melbourne, VIC, Australia, 15-18 September 2013.

[44] Turkan M, Thoreau D, Guillotel P. “Iterated neighbor-
embeddings for image super-resolution”. [EEE 2014
International ~ Conference on Image  Processing,
Paris, France, 27-30 October 2014.

[45] Tenenbaum ]B, de Silva V, Langford ]C. “A global geometric
framework for nonlinear dimensionality reduction”.
Science, 290(5500), 2319-2323, 2000.

[46] Roweis ST, Saul LK. “Nonlinear dimensionality reduction
by locally linear embedding”. Science, 290(5500)
2323-2326, 2000.

[47] Donoho DL, Grimes C. “Hessian eigenmaps: Locally linear
embedding techniques for high-dimensional data”.
2003 Proceedings of the National Academy of Sciences,
100(10), 5591-5596, 2003.

[48] Ponomarenko N, Jin L, leremeiev O, Lukin V, Egiazarian K,
Astola ], Vozel B, Chehdi K, Carli M, Battisti F, Kuo CCJ.
“Image database TID2013: Peculiarities, results and
perspectives”. Signal Processing: Image Communication,
30,57-77,2015.

[49] Sheikh HR, Sabir MF, Bovik AC. “A statistical evaluation of
recent full reference image quality assessment
algorithms”. IEEE Transactions on Image Processing,
15(11), 3440-3451, 2006.

[50] Sheikh HR, Wang Z, Cormack L, Bovik AC. “LIVE Image
Quality Assessment Database Release 2”.
http://live.ece.utexas.edu/research/quality
(03.05.2020).

[51] Spearman C. “The proof and measurement of association
between two things”. The American Journal of Psychology,
15(1), 72-101, 1904.

[52] Kendall MG. “A new measure of rank correlation”.
Biometrika, 30(1-2),81-93,1938.

[53] Yang ], Wright ], Huang TS, Ma Y. “Image super-resolution
via sparse representation”. IEEE Transactions on Image
Processing, 19(11), 2861-2873, 2010.

617


http://live.ece.utexas.edu/research/quality

