

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi

Recent advances in the synthesis and biological activity studies of pyridine and pyrimidine derivatives: A review

Piridin ve pirimidin türevlerinin sentezi ve biyolojik aktivite çalişmalarındaki son gelişmeler: Bir inceleme

Gönül Bükülmez1*, Rahmi Kasımoğulları1

¹Department of Chemistry, Faculty of Arts and Sciences, Kütahya Dumlupınar University, Kütahya, Türkiye gonul.bukulmez@dpu.edu.tr, rahmi.kasimogullari@dpu.edu.tr

Received/Geliş Tarihi: 27.05.2025 Accepted/Kabul Tarihi: 21.10.2025 Revision/Düzeltme Tarihi: 10.09.2025 doi: 10.65206/pajes.68353 Review Article/Derleme Makalesi

Abstract

Pyridine and pyrimidine derivatives are aromatic heterocyclic compounds containing one or more nitrogen atoms and have a wide range of applications in modern drug design and development. Their ability to interact at the molecular level, pharmacophore properties, and bioavailability potential make them highly suitable candidates for various therapeutic targets. These derivatives, which can exhibit pharmacological effects such as antibacterial, antifungal, antiviral, anticancer, and anti-inflammatory, play a critical role in the development of molecules with multiple mechanisms of action. Recent studies show that these heterocyclic skeletons can be optimized by chemical modifications to increase their selectivity and efficacy against biological targets. This review discusses innovative methods for the synthesis of pyridine and pyrimidine derivatives, structural diversity strategies, and biological activities of these compounds in vitro and in vivo. Furthermore, recent scientific advances on the mechanisms of action of these compounds in biological systems are discussed, and perspectives that will contribute to future drug discovery efforts are pu forward.

Keywords: Pyridine, Pyrimidine, Heterocyclic, Drugs, Biological Activity

Öz

Piridin ve pirimidin türevleri, bir veya diha fazla azot atomu içeren aromatik heterosiklik bile klevlir ve modern ilaç tasarımı ve geliştirilmesinde geniş bir uygulama alanına sahiptir. Moleküler düzeyde etkileşime g vetenekleri, farmakofor özellikleri ve biyoyararlanım potensir elleri, onları çeşitli terapötik hedefler için oldukça uygun ad yılar haline getirmektedir. Antibakteriyel, antifungal, antiviral, antikan 🔖 anti-inflamatuar gibi farmakolojik etkiler gösterebilen bu törevler, çoklu etki mekanizmalarına sahip gelistirilmesinde kritik bir rol oynamaktadır. Son moleküllerin çalışm ner, bu heterosiklik iskeletlerin biyolojik hedeflere karşı seçrisilinlerini ve etkinliklerini artırmak için kimyasal modifikasyonlarla bu heterosiklik iskeletlerin biyolojik hedeflere karşı ontimi, e edilebileceğini göstermektedir. Bu derlemede, piridin ve pin nir n türevlerinin sentezi için yenilikçi yöntemler, yapısal çeşitlilik edilebileceğini göstermektedir. Bu derlemede, piridin ve stratejileri ve bu bileşiklerin in vitro ve in vivo biyolojik aktiviteleri tartışılmaktadır. Ayrıca, bu bileşiklerin biyolojik sistemlerdeki etki mekanizmalarına ilişkin son bilimsel gelişmeler tartışılmakta ve gelecekteki ilaç keşif çabalarına katkıda bulunacak perspektifler ortaya konmaktadır.

Anahtar kelimeler: Piridin, Pirimidin, Heterosiklik, İlaçlar, Biyolojik Aktivite

1 Introduction

Heterocyclic compounds are involved in many drug molecules and are used in different therapeutic areas such as antifungal [1-4], antiviral [5-7], antidepressant [8-10], anticancer [11, 12], and anti-inflammatory agents [13, 14]. The biological activity of these structures has made them molecules that play a key role in drug design. That is, a both organic and medicinal chemistry, heterocyclic compounds constitute an important research area for the discovery of new and effective treatment methods [15-19]. In this context, another research area of interest in medicinal chemistry is the design and synthesis of metal complexes with pyridine and pyrimidine structures [20-23]. In particular, metal complexes containing Schiff bases have been reported to exhibit remarkable thermochromic and photochromic properties [24]. These properties make these complexes valuable in various applications such as imaging systems [25], organic light emitting diodes photonic/electronic devices [27], and solar filters [28]. Moreover, the coordination of metals with different biological ligands plays an important role in understanding biological

processes and opens new horizons in explaining the biochemical functions of biometals (29).

Pyridine has a six-membered ring structure consisting of one nitrogen and five carbon atoms and is an important heterocyclic compound in organic chemistry (Figure 1).

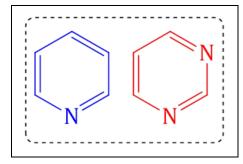


Figure 1. Basic ring structures of pyridine and pyrimidine.

The presence of the nitrogen atom in the ring has a marked effect on the chemical and biological properties of pyridine [30]. Pyridine is a widely used building block, especially in drugs with various biological activities such as antimicrobial

^{*}Corresponding author/Yazışılan Yazar

[31-44], antitumor [45-49], antiviral [50-52], antituberculosis [53, 54], and anti-Alzheimer's [55, 56]. Pyrimidine exhibits a similar structure to pyridine, but has two nitrogen atoms in the first and third positions of its six-membered ring [57]. This difference makes pyrimidine have more biologically specific functions. Pyrimidine derivatives are considered one of the basic building blocks of genetic material, as they are located in DNA and RNA bases (uracil, thymine, and cytosine) [58, 59]. They also form the basic structure of many drugs with anticancer [60-66], antimicrobial [67-70], antiviral [71, 72], and anticonvulsant [73] properties. Both ring systems are widely used in drug discovery. Thus, the fact that pyridine and pyrimidine derivatives offer such a broad spectrum of biological activity has made them indispensable structures in pharmaceutical research and the development of new treatment methods [74].

Although many studies in the literature have separately examined the specific biological activities or synthesis methods of these compounds, studies that comprehensively evaluate both their recent synthesis strategies and their versatile biological activities together are limited. In order to address this shortcoming, in our article, both the current synthesis methods and the biological activities of these compounds, such as anticancer, antibacterial, antiviral, and neurotropic, have been systematically reviewed. Thus, our study aims not only to compile the available information in the literature but also to encourage further in-depth exploration of the biological and pharmaceutical potential of nitrogen-containing heterocyclic compounds.

2 Synthesis and biological activity studies of pyridine and pyrimidine derivatives

2.1. Anticancer Activity Studies

In 2020, Jian *et al.* synthesized 26 novel pyrazolo[3,4-b]pyridine-linked compounds 1 combretastatin A-4 analogs that exhibited antiproliferative and tubulin polymerization inhibitory activities (Figure 2). The most active analog, compound 2, arrests HeLa cells in a dose-dependent manner, indicating the potential for developing potent tubulin inhibitors as anticancer agents (Figure 3). The molecular docking study revealed that this compound likely occupied the colchicine binding site at the α/β -tubulin interface, using similar binding modes as CA-4 [75].

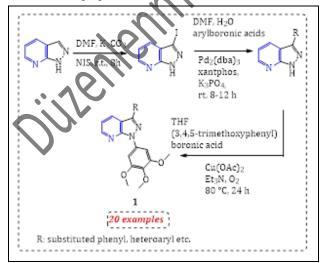


Figure 2. Synthesis of compound 1.

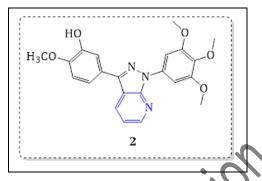


Figure 3. Compound **2**. (IC₅₀±SD: 18.08±1.48 μ**M**)

The study by Hatti et al. 2024 focused on the synthesis of 1,3,4oxadiazole derivatives linked to pyridine and substituted aryl groups. In the first step, nicotinic acid ${\bf 3}$ was refluxed with ethanol and a catalytic amount of N2SO4 for 6 h to obtain ethyl pyridine-3-carboxylate 4. The obtained ester was refluxed with a mixture of ethanol and hydrazine hydrate for 6 h to synthesize pyridine-3-carbohydrazide derivative 5. In the final step, compound 5 was converted into 2,5-disubstituted 1,3,4-oxadiazole derivatives 6 by cyclocondensation with various aromatic carboxylic acids in the presence of polyphosphoric acid (PPA) at 90°C for 4 hours (Figure 4). The anticancer activities of the oxadiazole derivatives against HeLa, MDA-MB-231, MCF-7, and A549 cell lines were investigated using doxorubicin as a standard drug, and the MTT reduction assay protocol (Table 1). It is very important that these derivatives did not show any cytotoxicity on HEK-293 kidney cell lines. In particular, the compound with a cinnamyl ring was found to exhibit better activity against HeLa and MCF-7 cell lines [76].

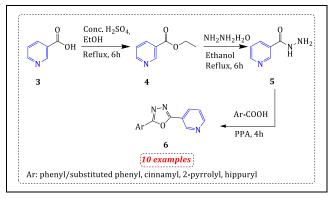


Figure 4. Synthesis of compound 6.

In 2023, Jami *et al.* synthesized a new series of 7 amide derivatives of isoxazole-imidazo[1,2-*a*]pyridine derivatives (Figure 5). In order to evaluate their anticancer potential, the effects of these derivatives on prostate cancer cell lines (PC3 and DU-145), lung cancer cell line (A549), and breast cancer cell line (MCF-7) were studied by MTT assay. The *in vitro* anticancer activity of these compounds was compared with that of the clinical drug candidate etoposide. As a result of the study, five compounds exhibited stronger anticancer activity compared to the positive control (Table 2) [77]. These findings suggest that these compounds in particular could be potential drug candidates in cancer treatment.

Table 1. In vitro cytotoxicity of the compound showing anticancer activity with IC₅₀ in μM and the drug doxorubicin.

Compound	Ar	MDA-MB- 231	A549	HeLa	MCF-7	HEK 293
	cinnamyl	-	8.9±0.06	1.8±0.3	1.3±0.11	97±0.8
Doxorubicin	-	0.36 ±0.14	0.47 ± 0.4	0.98 ±0.14	0.89 ±0.26	-

Table 2. In vitro cytotoxicity of five compounds showing potent anticancer activity with IC₅₀ in μM and the drug etoposide.

Compound	R	PC3	A549	MCF-7	DU-145
	3,4,5-trimethoxy	0.01±0.009	0.11±0.066	0.14±0.074	0.51±0.096
	3,5-dimethoxy	0.83±0.093	0.75±0.081	0.56±0.098	0.89±0.055
	4-methoxy	1.37±0.46	1.44±0.52	2.01±0.86	1.93±2.03
	4-methyl	2.47±1.73	2.11±1.64	2.09±1.40	2.61±1.55
	4-(dimethylamino)	2.70±1.62	1.99±0.75	1.39±0.66	3.55±2.22
Etoposide	-	2.39±1.56	3.08 ± 0.135	2.11 ± 0.024	1.97 ± 0.45

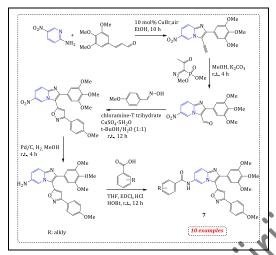


Figure 5. Synthesis of compound 7.

The study on novel pyrrole-pyridine benzamide derivatives **8** synthesized by Zhang *et al.* in 2022 represents an important step forward, especially in cancer research (Figure 6). The cytotoxic activities of 27 synthesized compounds were tested against non-small cell lung cancer (A549), cervical cancer (HeLa), and breast cancer (MCF-7) cells. Cabozantinib anticancer drug was taken as a positive control in the tests performed using the MTT method. According to the results obtained, the compound containing bromophenyl ring showed better antitumor activity in the rate of inhibition of tumor growth compared to Cabozantinib (Table 3). This finding is promising for the development of potential new drug candidates for the treatment of cancer [78].

The study carried out by Khan *et al.* in 2023 focused on the synthesis of pyrimidine-based thiazolidinone derivatives **9**. This synthesis was carried out using stepwise processes (Figure 7). The anti-urease and anticancer activities of the obtained compounds were investigated in the presence of standard drugs thiourea, and tetrandrineb. The four compounds tested in the study showed excellent results for both activity profiles (Table 4). These findings are considered an important development in terms of potential therapeutic applications of the related compounds [79].

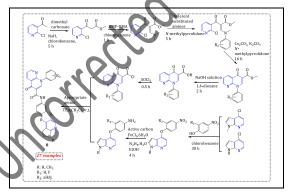


Figure 6. Synthesis of compound 8.

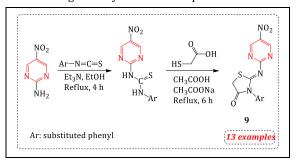


Figure 7. Synthesis of compound 9.

The study by Wang et al. in 2021 focused on 2,4-diamino pyrimidine (DAPY) derivatives 10-11 and investigated their potential as focal adhesion kinase (FAK) inhibitors (Figure 8). FAK is an enzyme overexpressed especially in tumor cells, and plays an important role in cancer cell survival, metastasis, and angiogenesis. Therefore, inhibiting FAK is considered a promising approach for cancer therapy. Most of the DAPY derivatives synthesized in the study effectively suppressed the enzymatic activities of FAK in vitro. In particular, compounds 2-Cl, and 2-methoxy bonded to the ring showed potent antiproliferative activity against **FAK-overexpressing** pancreatic cancer cell lines PANC-1, and BxPC-3. These compounds not only slowed down the growth of cancer cells but also suppressed their ability to form colonies, migrate, and invade in a dose-dependent manner. A flow cytometry assay showed that these compounds induced apoptosis in PANC-1 cells and inhibited cell division by arresting the cell cycle in the G2/M phase. These results suggest that 2-Cl and 2-methoxy

bonded compounds to the ring are potent FAK inhibitors with both antitumor, and anti-angiogenesis potential (Table 5) [80].

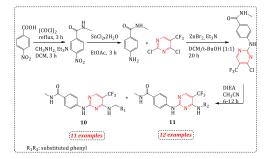


Figure 8. Synthesis of compound 10 and compound 11.

In a study conducted by Reddy *et al.* in 2024, pyridine, and triazole-containing pyrimidine derivatives **12** were synthesized, and their *in vitro* anticancer activities against various human cancer cell lines were evaluated using the MTT method. MCF-7 (breast cancer), A549 (lung cancer), Colo-205 (colon cancer), and A2780 (ovarian cancer) cell lines were used in the study (Figure 9). The IC $_{50}$ values obtained revealed that the compounds showed good to moderate anticancer activity compared to etoposide. In particular, six derivatives exhibited stronger activity than the others, of which the compound 3,4,5-(OCH $_{3}$) $_{3}$ linked to the ring is the most remarkable and showed promising anticancer activity. (Table 6) [81].

Table 3. Compound showing potent anticancer activity and IC50 values of Cabozantinib in µM.

Compound	R	R ₁	R ₂	A549	HeLa	MCF-7
	Н	F	4-Br	1.06 ± 0.04	10.87 ± 2.15	0.11 ± 0.02
Cabozantinib		-	-		79.06 ± 0.39	30.87 ± 0.23

Table 4. IC₅₀ values of compounds and standard drugs with anti-urease (μM ± SEM) and anticancer (mM ± SEM) potential.

Compound	Ar	Anti-urease	Anticancer	
-	4-CF ₃ -C ₆ H ₄	2.30 ± 0.30	3.20 ± 0.50	
-	3-CF ₃ -C ₆ H ₄	3.10 ± 0.20	6.20 ± 0.10	
-	4-F-2-OH-C ₆ H ₄	3.20 ± 0.20	3.80 ± 0.30	
-	3-Cl-4-F-C ₆ H ₄	4.20 ± 0.20	5.10 ± 0.30	
Thiourea	-	8.20 ± 0.20	-	
Tetrandrineb	-	<u> </u>	12.30 ± 0.10	

Table 5. Kinase inhibitory activities and antiproliferative activities of compounds with potent antiproliferative activity and defactinib used as standard against different human cell lines.

Enzymatic activity Antiproliferative activity (IC ₅₀ /μM) (IC ₅₀ , nM) Cancer cells										
Compound	R ₁ /R ₂	FAK	VRGFR2	PANC-1	BxPC-3	MCF-7	MDA- MB-231	HepG2	A549	НСТ-15
10	2-Cl-C ₆ H ₄	2.75	146.8	0.98	0.55	1.47	0.76	0.71	2.72	0.79
11	2-OMe-C ₆ H ₄	1.87	291.8	0.11	0.15	0.25	0.35	0.14	0.65	0.12
Defactinib	-	1.16	273.2	3.48	3.25	5.81	3.75	3.69	4.09	4.36

Antiproliferative activity (IC₅₀/µM)

0///		Normal cells		
Compound	R_1/R_2	HUVEC	HEK293	L02
10	2-Cl-C ₆ H ₄	2.29	4.92	15.14
11	$2\text{-}OMe\text{-}C_6H_4$	0.18	16.17	>20
Defactivib	-	3.24	4.07	4.66

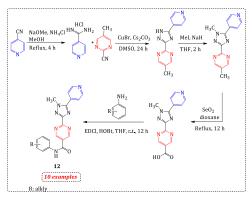


Figure 9. Synthesis of compound 12.

2.2. Neurotropic Activity Studies

The work of Dashyan *et al.* in 2024 involved the synthesis of novel compounds **13-14** with a wide range of biological activities, such as neuropeptide antagonists, anticancer, antiulcer, antiarthritic, and antidiabetic effects. Ethyl 4-phenyl-2-thioxo-1,2-dihydropyridine-3-carboxylate derivatives were used in the synthesis of these compounds (Figure 10). Eight of the twelve synthesized compounds showed potent anticonvulsant activity through antagonism with pentylenetetrazole. This indicates that the compounds are

2.3. Antimicrobial Activity Studies

The study by Desai *et al.* in 2021 aimed to develop new pyridine-containing compounds **15** as potential antimicrobial agents (Figure 11). These compounds were evaluated for both antibacterial and antifungal activities (Table 7). In particular, 3-OH and 4-F-linked compounds were found to exhibit good activity against *S. aureus* and *Escherichia coli* bacteria, respectively. It was also reported that the 2,4-dichloro-linked compound showed superior activity against *Pseudomonas aeruginosa* compared to the standard drugs ampicillin and chloramphenicol. This compound was also found to be highly effective against *Streptococci pyogenes*. In the study, it was emphasized that derivatives with electron-donating groups (2-

potential candidates for the treatment of neurological disorders such as epilepsy. Furthermore, these compounds also exhibited anxiolytic effects, activating behaviors, and sedative properties, meaning that they could also be treatment options for such disorders. In particular, a fourfold increase in olfactory cell studies compared to diazepam was observed, further reinforcing the potential of these compounds for neurological treatment [82].

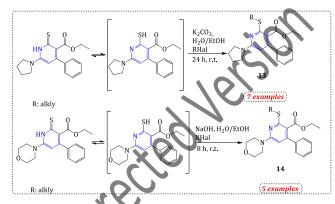


Figure 10. Synthesis of compound 13 and compound 14.

OH, 3-OH, 4-CH₃ and 4-OH-3-OCH₃) showed both antibacterial and antifungal activity. In contrast, derivatives bearing electron-withdrawing groups (4-F and 2,4-dichloro) showed a marked increase in antibacterial activity. In terms of antifungal activities, 4-CH₃ and 4-OH-3-OCH₃-linked compounds exhibited significant activities against various fungal strains. It was reported that 4-CH₃-linked compounds showed significant antifungal activity against *Aspergillus niger*, and 4-OH-3-OCH₃-linked compounds exhibited excellent activity against *Candida albicans* and *Aspergillus clavatus* fungi. These results suggest that novel pyridine-containing compounds have potential as antimicrobial agents and may be effective against fungal infections [83].

Table 6. IC₅₀ values in µM of compounds with strong anticancer activity and Etoposide used as standard.

Compound	R	MCF-7	A549	Colo-205	A2780
=	3,4,5-(OCH ₃) ₃	0.1 ± 0.075	0.26 ± 0.037	0.48 ± 0.048	0.13 ± 0.023
-	3,5-(OCH ₃) ₂	0.86 ± 0.064	0.94 ± 0.082	1.49 ± 0.66	1.22 ± 0.54
-	4-OCH ₃	1.55 ± 0.37	1.61 ± 0.41	1.67 ± 0.48	1.95 ± 0.76
-	4-CH ₃	2.09 ± 0.82	2.10 ± 1.05	2.34 ± 1.12	2.44 ± 1.27
-	4-N(CH ₃) ₂	2.76 ± 1.55	2.38 ± 1.21	2.88 ± 1.89	3.17 ± 2.76
-	3,5-(CH ₃) ₂	3.16 ± 2.49	2.66 ± 1.44	2.81 ± 1.52	2.56 ± 1.33
Etoposide	- 111	2.11 ± 0.024	3.08 ± 0.135	0.13 ± 0.017	1.31 ± 0.27

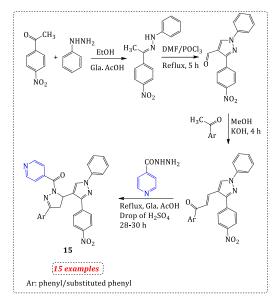


Figure 11. Synthesis of compound 15.

The study by Borthakur *et al.* in 2020 focused on the synthesis of 1,3-thiazolopyrimidine derivatives **18** using 4-phenylthiazol-2-amine **16** and arylidinemalononitrile **17** (Figure 12). The antifungal activities of the synthesized compounds were carried out by testing them against *Rhizoctonia solani* and *Drechslera orazae*, two fungal pathogens causing diseases in rice crops. The results showed that four compounds exhibited mild to moderate antifungal activity (Table 8). This suggests that these compounds could be developed as a potential agricultural antifungal if further tested with other agriculturally important fungi. The study reveals that new antifungal agents can make an important contribution for disease control in agriculture [84].

Figure 12. Synthesis of compound 18

In a study conducted by Hari et al. in 2022, 16 pyrimidine derivatives 19 were synthesized, and the antibacterial activity of these compounds was evaluated (Figure 13). Some of the synthesized compounds showed strong inhibition against bacteria such as Xanthomonas campestris pv. Campestris, Pseudomonas fluorescens, and Bacillus subtilis, while other compounds were moderately effective (Table 9). Such studies can be an important step towards the development of new antibacterial agents. Further research on the structural properties and antibacterial mechanisms of the target molecules will help to better understand the potential of these compounds [85].

Figure 13. Synthesis of compound 19.

In 2024, Elsayed et al. utilized the chalcone derivative 20, obtained from 4-bromoacetophenone and dimethoxybenzaldehyde, as the starting material for the synthesis of pyridine 21 and thienopyridine 22-23 compounds in their studies on the development of new antimicrobial agents. In the study, thienopyridine derivative was obtained from the reaction of chalcone with 2-cyanothioacetamide, and this intermediate product was converted into various pyridine and thienopyridine derivatives by one- or two-step reactions with 2-chloro-N-arylacetamide derivatives, α -haloketones, methyl iodide, and chloroacetonitrile (Figure 14). All synthesized compounds were evaluated against *E. coli, B.* mycoides, and C. albicans, and two compounds showed strong antimicrobial activity (Table 10). The findings suggest that these derivatives have antimicrobial potential and that the relationship between their structural properties and biological activities is important [86].

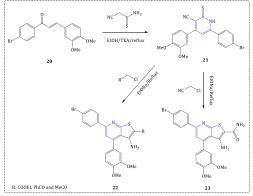


Figure 14. Synthesis of compound **20**, **21**, **22**, and **23** compound.

3 Pyridine and Pyrimidine Derivative Drugs

In recent years, nitrogen-containing fused heterocyclic compounds have attracted great interest in the field of drug discovery. In particular, pyridine and pyrimidine derivatives have become important building blocks in drug discovery, exhibiting a variety of pharmacological properties such as antiviral, antibacterial, antimicrobial and anticancer activities [87, 88]. Such a wide range of biological activity of these compounds is based on the strong interactions of the nitrogen atom in their chemical structure with biological systems. Nitrogen-containing heterocyclic compounds can interact with biological targets by forming hydrogen bonds with biomolecules or by altering electron density. These interactions make them effective against biological agents such as viruses, bacteria and cancer cells. Therefore, pyridine and pyrimidine

derivatives stand out as potential drug candidates for the treatment of various diseases and play a critical role in drug development processes [89-92]. The pharmacological potentials of pyridine and pyrimidine-containing drugs, which

prove their broad efficacy, and the structure of marketed drugs such as minoxidil, divaplon, indiplon, trimethoprim, ocinaplon, etc. are shown below (Table 11).

Table 7. Screening results in μ g/mL for compounds showing potent antibacterial and antifungal activity and drugs used as standards.

			um bacteri			Minimum fungicidal			
			concentrations (MBC)				concentrations (MFC)		
Compound	R	E. c.	P. a.	S. a.	S. p.	С. а.	A. n.	A. c.	
-	2-0H	250	500	100	125	500	50	>1000	
-	3-0H	100	500	50	500	100	>1000	>1000	
-	4-CH ₃	100	500	250	250	>1000	12.5	>1000	
-	4-F	100	200	250	250	200	1000	500	
-	2,4-(Cl) ₂	250	12.5	500	25	250	500	500	
-	4-OH-3-OCH ₃	100	500	125	500	12.5	>1000	12.5	
Ampicillin	-	100	100	250	100	- (-	-	
Chloramphenicol	-	<i>50</i>	<i>50</i>	<i>50</i>	<i>50</i>	$\mathcal{L} \cap \mathcal{V}$	-	-	
Nystatin	-	-	-	-	-	100	100	100	
Griseofulvin	-	-	-	-	-	500	100	100	

Abbreviation: A. c., Aspergillus clavatus; A. n., Aspergillus niger; C.a., Candida albicans; E. c., Escherichia coli; P. a., Pseudomonas aeruginosa; S. a., Staphylococcus aureus; S. p., Streptococcus pyogenes.

Table 8. Results of inhibition percentages of compounds with antifungal activity and carbendazim used as standard.

		Rhizoctonian s	colani Concentration	Drechslea orazae Concentration	
Compound	Ar	A.I. (50 ppm)	A.I. (100 ppm)	A.I. (50 ppm)	A.I. (100 ppm)
-	4-Cl-C ₆ H ₄	48.86	64.10	51.09	57.76
-	4-OH-3-OCH ₃ -C ₆ H ₃	37.87	65.88	43.25	55.78
-	4-N(CH ₃) ₂ - C ₆ H ₄	34.77	54.55	54.75	70.45
=	4-OCH ₃ - C ₆ H ₄	46.75	52.76	46.54	67.95
Carbendazim	-	96.67	98.56	95.45	<i>98.26</i>

Table 9. *In vitro* effects of compounds with potent antimicrobial activity and chloramphenicol used as a standard.

		%Inhibition Compared to Positive Control				
Compound	R	Xanthomonas campestris pv. Campestris	Pseudomonas fluorescens	Bacillus subtilis		
-	4-Br-C ₆ H ₄	63.90	70.61	51.02		
-	3,5-(CH ₃) ₂ -C ₆ H ₃	65.76	71.33	51.39		
=	4-Cl-C ₆ H ₄	67.12	69.89	57.49		
-	2-NH ₂ -C ₆ H ₄	67.46	73.12	56.56		
-	4-OCH ₃ -C ₆ H ₄	66.78	70.97	58.41		
Chloramphenicol	-	100	100	100		

Table 10. Antimicrobial activity evaluation of compounds by agar diffusion and MIC values.

		Inhib	Inhibition zone (mm)			MIC value (mg/mL)		
Compound	R	E. coli	i B. mycoides	C. albicans	E. coli	B. mycoides	C. albicans	
22	COOEt	32	33	31	0.0195	>0.0048	>0.0048	
23	-	28	28	29	> 0.0048	0.0098	0.039	
Ampicillin 10 μg	-	20	12	14	-	-	-	
Gentamicin 10 μg		12	11	12	-	-	-	
Tobramycin 10 μg	=	13	10	12	-	-	-	

C No.		lrugs containing pyridines and pyrimidine	S. Transfers and	Dof
S. No	Drug	Structure	Treatment	Ref.
1	Minoxidil	O-	Vasodilator	[93]
		H_2N N^+ NH_2		
		Ν̈́		
		Ň		
2	Divaplon		Anticonvulsant	[94]
		0 N N	and anxiolytic	J '
		N	(2)	
3	Indiplon		Sedative-hypnotic	[95]
3	marpion	0	secutive hyprocie	[55]
		S	0	
		0. N.	6	
4	Trimethoprim	0 N N	Antibiotic	[96]
		0 H_2N NH_2		
		$O \rightarrow H_2N \rightarrow NH_2$		
5	Ocinaplon	Q	Anxiolytic	[97]
		N		
		N N N		
6	Etravirine	Br NH ₂	Antiviral	[98]
	CI)	Nn ₂		
		NC		
		Ν̈́Η		
	W//	NC		
7	Stavudine	0 H	Anti-HIV	[99]
	MI	0 . N		
_ \		но		
. 16		110		
8	Isoniazid	0 NII	Antituberculosis	[100]
. 467		N NH ₂		
		IN		
9	Levofloxacin	0 N	Anti-allergic	[101]
		N		
		но		
		0 0		

10	Iclaprim	0	Antibiotic	[102]
		N		
44	m :1 · 1:1	H_2N N N N N N N N N N	c 11 111	[4.02]
11	Trilaciclib	N H N N	Small-cell lung cancer	[103]
		N N NH	2);),,
12	Ribociclib	Ö	Breast cancer	[104]
		N N N O	1/10.	
		N N N N N N N N N N N N N N N N N N N	0	
13	Palbociclib		Advanced cancer	[105]
		O N N N		
		NH NH		
14	Vonoprazan	O NIII	Gastroesophageal reflux and peptic	[106]
		O'S N HN	ulcer	
15	Futibatinib	F H ₂ N N	Non-small cell lung	[107]
	5	N O III ₂ N	cancer and breast cancer	
	alls	N-N-N		
	Selli.			
16	Olutasidenib	H 0 0	Acute myeloid leukaemia	[108]
76		CI		
18/1	Omidenepag	• N	Glaucoma and	[109]
	Omidenepag	N N	ocular hypertension	[107]
00			• •	
		S N H O		
18	Flucytosine	HN F	Antifungal	[110]
		ONNH ₂		

19	Tisopurine	N H N N	Disorders associated with hyperuricemia	[111]
21	Piribedil	SH O	Parkinsonism	[112]

4 Conclusions

This review systematically brings together the recent synthetic strategies and reported biological activities of pyridine- and pyrimidine-based heterocycles. By outlining both the diversity of synthetic methodologies and the wide spectrum of pharmacological evaluations, we provide a comprehensive perspective that allows researchers to better link chemical design with biological potential. The survey of literature reveals not only the versatility of these scaffolds but also the recurring emphasis on their anticancer, antimicrobial, and neurotropic properties, which highlights promising directions for drug discovery. While our work does not aim to cover mechanistic details exhaustively, its contribution lies in integrating chemical and biological knowledge into a single framework, thus serving as a useful reference point for medicinal chemists. We believe that this synthesis of information can facilitate a more rational approach to the exploration of nitrogencontaining heterocycles and stimulate further innovation in the field.

5 Author contribution statements

Author 1 contributed to the conception of the idea, literature review, writing, and editing of the article, and Author 2 contributed to the literature review and editing of the article.

6 Ethics committee approval and conflict of interest statement

"The prepared article does not require approval from the ethics committee".

"The article was written with no conflict of interest with any individual or organization".

7 References

- [1] S. Wang, L. Bao, D. Song, J. Wang, X. Cao, "Heterocyclic lactam derivatives containing piperonyl moiety as potential antifungal agents" *Bioorganic & Medicinal Chemistry Letters*, 29(20), 126661, 2019
- [2] N. Korol, D. Molnar-babilya, M. Slivka, M. Onysko, "A brief review on heterocyclic compounds with promising antifungal activity against Candida species" *Organic Communications*, (4) 304-323, 2022.
- [3] R.F. Muslim, M.N. Owaid. "Synthesis, characterization and evaluation of the anti-cancer activity of silver nanoparticles by natural organic compounds extracted from cyperus sp. rhizomes" *ACTA Pharmaceutica Sciencia*, 57(2), 129, 2019.
- [4] L. Yang, W. Bo Xu, L. Sun, C. Zhang, C. Hua Jin. "SAR Analysis of Heterocyclic Compounds with Monocyclic and Bicyclic Structures as Antifungal Agents" *ChemMedChem*, 17(12) e202200221, 2022.

- [5] A. Mermer, T. Keles, Y. Sirin. "Recent studies of nitrogen containing heterocyclic compounds as novel antiviral agents: A review" *Bioorganic Chemistry*, 114, 105076, 2021.
- [6] M. Negi, P.A. Chawla, A. Faruk, V. Chawla."Role of heterocyclic compounds in SARS and SARS CoV-2 pandemic." *Bioorganic Chemistry*, 104, 104315, 2020.
- [7] A. Borchers, T. Pieler."Programming pluripotent precursor cells derived from Xenop(s embryos to generate specific tissues and organs." *Genes (Basel)*, 1(3), 413-26, 2010.
- [8] S.B. Wang, H. Liu, G.Y. Li, J. Li, X.J. Li, K. Lei, L.C. Wei, Z.S. Quan, X.K. Wang, R.M. Liu, "Coumarin and 3,4-dihydroquinolinone derivatives: Synthesis, antidepressant activity, and molecular docking studies" *Pharmacological Reports*, 71(6),1244-1252, 2019.
- 9] J.Y. Kim, D. Kim, S.Y. Kang, W.K. Park, H.J. Kim, M.E. Jung, E.J. Son, A.N. Pae, J. Kim, J. Lee. "Arylpiperazine-containing pyrimidine 4-carboxamide derivatives targeting serotonin 5-HT(2A), 5-HT(2C), and the serotonin transporter as a potential antidepressant" *Bioorganic & Medicinal Chemistry Letters* 20(22), 6439-42, 2010.
- [10] K. Singh, R. Pal, S.A. Khan, B. Kumar, M.J. Akhtar. "Insights into the structure activity relationship of nitrogen-containing heterocyclics for the development of antidepressant compounds: An updated review" *Journal of Molecular Structure*, 1237, 130369, 2021.
- [11] J. Akhtar, A.A. Khan, Z. Ali, R. Haider, M. Shahar Yar. "Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities" *European Journal of Medicinal Chemistry*, 125, 143-189, 2017.
- [12] A.Z. Mirza. "Advancement in the development of heterocyclic nucleosides for the treatment of cancer A review" *Nucleosides Nucleotides Nucleic Acids*, 38(11), 836-857, 2019.
- [13] S. Sharma, D. Kumar, G. Singh, V. Monga, B. Kumar. "Recent advancements in the development of heterocyclic anti-inflammatory agents" *European Journal of Medicinal Chemistry*, 200, 112438, 2020.
- [14] Z.Y. Wei, K.Q. Chi, K.S. Wang, J. Wu, L.P. Liu, H.R. Piao. "Design, synthesis, evaluation, and molecular docking of ursolic acid derivatives containing a nitrogen heterocycle as anti-inflammatory agents" *Bioorganic & Medicinal Chemistry Letters*, 28(10), 1797-1803, 2018.
- [15] S. Abubakar, M. Khairuddean, N.Z. Ismail, S.M. Salhimi, M. Al-Amin, T.D. Wahyuningsih. "Synthesis and computational insights of hybrid heterocyclic bis-chalcone compounds and their cytotoxic effects against breast cancer cells" *Results in Chemistry*, 7, 101464, 2024.

- 16] M. Albratty, H.A. Alhazmi. "Novel pyridine and pyrimidine derivatives as promising anticancer agents: A review" *Arabian Journal of Chemistry*, 15(6), 103846, 2022.
- [17] B. Borah, S. Banerjee, B.K. Allam. "Recent Advances in the Catalytic Applications of Tin Dioxide-Based Materials in the Synthesis of Bioactive Heterocyclic Compounds" *Tetrahedron Green Chem*, 100048, 2024.
- [18] A.Z. Macit, E. Hasanoğlu Özkan, H. Ogutcu, D. "Nartop, Synthesis and *in vitro* Antimicrobial Evaluation of Novel Potent Bioactive Heterocyclic Compounds" *Polycyclic Aromatic Compounds*, 1-12, 2023.
- [19] G.S. Masaret. "New Potential Antitumor Pyrimidine Derivatives: Synthesis and Cytotoxicity Evaluation" *Polycyclic Aromatic Compounds*, 42(8), 5336-5351, 2022.
- [20] Savcı, A., Turan, N., Buldurun, K., Alkış, M. E., Alan, Y. "Schiff base containing fluorouracil and its M (II) complexes: Synthesis, characterization, cytotoxic and antioxidant activities" *Inorganic Chemistry Communications*, 143, 109780, 2022.
- [21] Savci, A., Buldurun, K., Kirkpantur, G. "A new Schiff base containing 5-FU and its metal Complexes: Synthesis, Characterization, and biological activities" *Inorganic Chemistry Communications*, 134, 109060, 2021.
- [22] Buldurun, K., Turan, N., Aras, A., Mantarcı, A., Turkan, F., Bursal, E. "Spectroscopic and structural characterization, enzyme inhibitions, and antioxidant effects of new Ru (II) and Ni (II) complexes of Schiff base" Chemistry & biodiversity, 16(8), e1900243, 2019.
- [23] Buldurun, K., Turan, N., Savci, A., Alan, Y., Colak, N. "Synthesis, characterization, X-ray diffraction analysis of a tridentate Schiff base ligand and its complexes with Co (II), Fe (II), Pd (II) and Ru (II): Bioactivity studies" Iran. J. Chem. Chem. Eng. Research, 41(8), 2022.
- [24] Ibarra-Rodríguez, M., Muñoz-Flores, B. M., Dias, H. R., Sanchez, M., Gomez-Trevino, A., Santillan, R., Farfán, N., Jimenez-Perez, V. M. "Fluorescent molecular rotors of organoboron compounds from schiff bases: synthesis, viscosity, reversible thermochromism, cytotoxicity, and bioimaging cells" *The Journal of Organic Chemistry*, 82(5), 2375-2385, 2017.
- [25] Goshisht, M. K., Patra, G. K., Tripathi, N. "Fluorescent Schiff base sensors as a versatile tool for metal ion detection: strategies, mechanistic insights, and applications" *Materials Advances*, 3(6), 2612-2669, 2022.
- [26] Kagatikar, S., Sunil, D. "Schiff bases and their complexes in organic light emitting diode application" *Journal of Electronic Materials*, 50(12), 6708-6723, 2021.
- [27] Buldurun, K., Tanış, E., Turan, N., Çolak, N., Çankaya, N. "Solvent effects on the electronic and optical properties of Ni (II), Zn (II), and Fe (II) complexes of a Schiff base derived from 5-bromo-2-hydroxybenzaldehyde" *Journal of Chemical Research*, 45(7-8), 753-759, 2021.
- [28] Jeevadason, A. W., Murugavel, K. K., & Neelakantan, M. A. "Review on Schiff bases and their metal complexes as organic photovoltaic materials" *Renewable and Sustainable Energy Reviews*, 36, 220-227, 2014.
- [29] El-Remaily, M. A. E. A. A. A., El-Dabea, T., El-Khatib, R. M., Abdou, A., El Hamd, M. A., Abu-Dief, A. M. "Efficiency and development of guanidine chelate catalysts for rapid and green synthesis of 7-amino-4, 5-dihydro-tetrazolo [1,5-*a*] pyrimidine-6-carbonitrile derivatives supported by density functional

- theory (DFT) studies" *Applied Organometallic Chemistry*, 37(11), e7262, 2023.
- [30] P. HM, Zabiulla, S.A. Khanum. "An Overview of the Synthetic Routes and Pharmacological Aspects of Pyridine, Isoxazole, Thiazole, and Indole Derivatives" *Polycyclic Aromatic Compounds*, 1-29, 2023.
- [31] M.F. Abdel-Megeed, B.E. Badr, M.M. Azaam, G.A. El-Hiti. "Synthesis, antimicrobial and anticancer activities of a novel series of diphenyl 1-(pyridin-3-yl)ethylphosphonates" *Bioorganic & Medicinal Chemistry*, 20(7), 2252-8, 2012.
- [32] N.M. Shukla, D.B. Salunke, E. Yoo, C.A. Mutz, R. Balakrishna, S.A. David. "Antibacterial activities of Groebke-Blackburn-Bienayme-derived imidazo[1,2-a]pyridin-3-amines" *Bioorganic & Medicinal Chemistry*, 20(19), 5850-63, 2012.
- [33] H.H. Jardosh, M.P. Patel. "Design and synthesis of biquinolone-isoniazid hybrids as a new class of antitubercular and antimicrobial agents" *European Journal of Medicinal Chemistry*, 65, 348-59, 2013.
- Chemistry, 65, 348-59, 2013.
 [34] H.S. Kim, J.R. Jadhav, S.J. Jung, J.H. Kwak. "Synthesis and antimicrobial activity of imidazole and pyridine appended cholestane-based conjugates" *Bioorganic & Medicinal Chemistry Letters*, 23(15), 4315-8, 2013.
- [35] G. Jose, T.H. Suresha Kumara, G. Nagendrappa, H.B. Sowmya, I.P. Jasinski, S.P. Millikan, N. Chandrika, S.S. More, B.G. Harish. 'New polyfunctional imidazo[4,5-c]pyridine motifs: synthesis crystal studies, docking studies and antimicrobial evaluation' *European Journal of Medicinal Chemistry*, 77, 288-97, 2014.
- [36] G. Jose, T.H. Suresha Kumara, G. Nagendrappa, H.B.V. Sowmya, J.P. Jasinski, S.P. Millikan, S.S. More, B. Janardhan, B.G. Harish, N. Chandrika. "Synthesis, crystal structure, molecular docking and antimicrobial evaluation of new pyrrolo[3,2-c]pyridine derivatives" *Journal of Molecular Structure*, 1081, 85-95, 2015.
- [37] S. Kumar, N. Sharma, I.K. Maurya, A.K.K. Bhasin, N. Wangoo, P. Brandao, V. Felix, K.K. Bhasin, R.K. Sharma. "Facile synthesis, structural evaluation, antimicrobial activity and synergistic effects of novel imidazo[1,2-a]pyridine based organoselenium compounds" *European Journal of Medicinal Chemistry*, 123, 916-924, 2016.
- [38] N.S. El-Gohary, M.T. Gabr, M.I. Shaaban. "Synthesis, molecular modeling and biological evaluation of new pyrazolo[3,4-b]pyridine analogs as potential antimicrobial, antiquorum-sensing and anticancer agents" *Bioorganic Chemistry*, 89,102976, 2019.
- [39] R.A. Azzam, R.E. Elsayed, G.H. Elgemeie. "Design and Synthesis of a New Class of Pyridine-Based N-Sulfonamides Exhibiting Antiviral, Antimicrobial, and Enzyme Inhibition Characteristics" *ACS Omega*, 5(40), 26182-26194, 2020.
- [40] M.D. Milosevic, A.D. Marinkovic, P. Petrovic, A. Klaus, M.G. Nikolic, N.Z. Prlainovic, I.N. Cvijetic. "Synthesis, characterization and SAR studies of bis(imino)pyridines as antioxidants, acetylcholinesterase inhibitors and antimicrobial agents" *Bioorganic Chemistry*, 102, 104073, 2020.
- [41] V. Kamat, R. Santosh, B. Poojary, S.P. Nayak, B.K. Kumar, M. Sankaranarayanan, Faheem, S. Khanapure, D.A. Barretto, S.K. Vootla. "Pyridine- and Thiazole-Based Hydrazides with Promising Anti-inflammatory and Antimicrobial Activities along with Their In Silico Studies" *ACS Omega*, 5(39), 25228-25239, 2020.

- [42] I. Ali, S. Burki, B.M. El-Haj, Shafiullah, S. Parveen, H.S. Nadeem, S. Nadeem, M.R. Shah. "Synthesis and characterization of pyridine-based organic salts: Their antibacterial, antibiofilm and wound healing activities" *Bioorganic Chemistry*, 100, 103937, 2020.
- [43] M.A.A. Radwan, M.A. Alshubramy, M. Abdel-Motaal, B.A. Hemdan, D.S. El-Kady. "Synthesis, molecular docking and antimicrobial activity of new fused pyrimidine and pyridine derivatives" *Bioorganic Chemistry*, 96, 103516, 2020.
- [44] I. Mamedov, F. Naghiyev, A. Maharramov, O. Uwangue, A. Farewell, P. Sunnerhagen, M. Erdelyi. "Antibacterial activity of 2-amino-3-cyanopyridine derivatives" *Mendeleev Communications*, 30(4), 498-499, 2020.
- [45] A. Gangjee, O.A. Namjoshi, J. Yu, M.A. Ihnat, J.E. Thorpe, L.C. Bailey-Downs, N2-Trimethylacetyl substituted and unsubstituted-N4-phenylsubstituted-6-(2-pyridin-2-ylethyl)-7*H*-pyrrolo[2,3-d]pyrimidine-2,4-diamines: design, cellular receptor tyrosine kinase inhibitory activities and *in vivo* evaluation as antiangiogenic, antimetastatic and antitumor agents" *Bioorganic & Medicinal Chemistry*, 21(5), 1312-23, 2013.
- [46] K. Chand, S. Prasad, R.K. Tiwari, A.N. Shirazi, S. Kumar, K. Parang, S.K. Sharma. "Synthesis and evaluation of c-Src kinase inhibitory activity of pyridin-2(1*H*)-one derivatives" *Bioorganic Chemistry*, 53, 75-82, 2014.
- [47] H. Hu, J. Wu, M. Ao, X. Zhou, B. Li, Z. Cui, T. Wu, L. Wang, Y. Xue, Z. Wu, M. Fang. "Design, synthesis and biological evaluation of methylenehydrazine-1-carboxamide derivatives with (5-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)-1*H*-indole scaffold: Novel potential CDK9 inhibitors" *Bioorganic Chemistry*, 102, 104064, 2020.
- [48] H. Yang, Q. Li, M. Su, F. Luo, Y. Liu, D. Wang, Y. Fan. "Design, synthesis, and biological evaluation of novel 6-(pyridin-3-yl) quinazolin-4(3*H*)-one derivatives as potential anticancer agents via PI3K inhibition" *Bioorganic & Medicinal Chemistry*, 46, 116346, 2021.
- [49] Q. Ye, C. Fu, J. Li. "Studying the Binding Modes of Novel 2-Aminopyridine Derivatives as Effective and Selective c-Met Kinase Type 1 Inhibitors Using Molecular Modeling Approaches" *Molecules*, 26(1) 2020.
- [50] P.O. Miranda, B. Cubitt, N.T. Jacob, K.D. Janda, J.C. de la Torre "Mining a Krohnke Pyridine Library for Anti-Arenavirus Activity" *ACS Infectious Diseases*, 4(5), 815-824, 2018.
- [51] G. Wang, J. Wan, Y. Hu, X. Wu, M. Prhavc, N. Dyatkina, V.K. Rajwanshi, D.B. Smith, A. Jekle, A. Kinkade, J.A. Symons, Z. Jin, J. Deval, Q. Zhang, Y. Tam, S. Chanda, L. Blatt, L. Beigelman. "Synthesis and Anti-Influenza Activity of Pyridine, Pyridazine, and Pyrimidine C-Nucleosides as Favipiravir (T-705) Analogues" *Journal of Medicinal Chemistry*, 59(10), 4611-24, 2016.
- [52] M. de Candia, F. Fiorella, G. Lopopolo, A. Carotti, M.R. Romano, M.D. Lograno, S. Martel, P.A. Carrupt, B.D. Belviso, R. Caliandro, C. Altomare. "Synthesis and biological evaluation of direct thrombin inhibitors bearing 4-(piperidin-1-yl)pyridine at the P1 position with potent anticoagulant activity" *Journal of Medicinal Chemistry*, 56(21), 8696-711, 2013.
- [53] S. Kang, R.Y. Kim, M.J. Seo, S. Lee, Y.M. Kim, M. Seo, J.J. Seo, Y. Ko, I. Choi, J. Jang, J. Nam, S. Park, H. Kang, H.J. Kim, J. Kim, S. Ahn, K. Pethe, K. Nam, Z. No, J. Kim. "Lead optimization of a novel series of imidazo[1,2-a]pyridine amides leading to a

- clinical candidate (Q203) as a multi- and extensively-drugresistant anti-tuberculosis agent" *Journal of Medicinal Chemistry*, 57(12), 5293-305, 2014.
- [54] S.J. Tantry, S.D. Markad, V. Shinde, J. Bhat, G. Balakrishnan, A.K. Gupta, A. Ambady, A. Raichurkar, C. Kedari, S. Sharma, N.V. Mudugal, A. Narayan, C.N. Naveen Kumar, R. Nanduri, S. Bharath, J. Reddy, V. Panduga, K.R. Prabhakar, K. Kandaswamy, R. Saralaya, P. Kaur, N. Dinesh, S. Guptha, K. Rich, D. Murray, H. Plant, M. Preston, H. Ashton, D. Plant, J. Walsh, P. Alcock, K. Naylor, M. Collier, J. Whiteaker, R.E. McLaughlin, M. Mallya, M. Panda, S. Rudrapatna, V. Ramachandran, R. Shandil, V.K. Sambandamurthy, K. Mdluli, C.B. Cooper, H. Rubin, T. Yano, P. Iyer, S. Narayanan, S. Kavanagh, K. Mukherjee, V. Balasubramanian, V.P. Hosagrahara, S. Solapure, S. Ravishankar, P.S. Hameed. "Discovery of Imidazo[1,2-a]pyridine Ethers and Squaramides as Selective and Potent Inhibitors of Mycobacterial Adenosine Triphosphate (ATP) Synthesis" Journal of Medicinal Chemistry, 60(4), 1379-1399, 2017.
- [55] S.R. Sagar, D.P. Singh, R.D. Das, N.B. Panchal, V. Sudarsanam, M. Nivsarkar, K.K. Vasu. "Investigations on substituted (2-annothiazol-5-yl)(imidazo[1,2-a]pyridin-3-yl)methanones for the treatment of Alzheimer's disease, *Bioorganic & Medicinal Chemistry*, 36, 116091, 2021.
- [56] S. Zarei, M. Shafiei, M. Firouzi, L. Firoozpour, K. Divsalar, A. Asadipour, T. Akbarzadeh, A. Foroumadi. "Design, synthesis and biological assessment of new 1-benzyl-4-((4-oxoquinazolin-3(4H)-yl)methyl) pyridin-1-ium derivatives (BOPs) as potential dual inhibitors of acetylcholinesterase and butyrylcholinesterase" *Heliyon*, 7(4), e06683, 2021.
- [57] M.A. Chiacchio, D. Iannazzo, R. Romeo, S.V. Giofrè, L. Legnani. "Pyridine and pyrimidine derivatives as privileged scaffolds in biologically active agents" *Current Medicinal Chemistry*, 26(40), 7166-7195, 2019.
- [58] H.H. Lackey, Z. Chen, J.M. Harris, E.M. Peterson, J.M. Heemstra. "Single-molecule kinetics show DNA pyrimidine content strongly affects RNA: DNA and TNA: DNA heteroduplex dissociation rates" *ACS Synthetic Biology*, 9(2), 249-253, 2020.
- [59] M. Grazia Martina, L. Giannessi, M. Radi. "Multicomponent Synthesis of Purines and Pyrimidines: From the Origin of Life to New Sustainable Approaches for Drug-Discovery Applications" *European Journal of Organic Chemistry*, 26(2), 2022.
- [60] E. Nassar, Y. A El Badry, A.M.M. Eltoukhy. "Synthesis and Antiproliferative Activity of 1-(4-(1H-Indol-3-Yl)-6-(4-Methoxyphenyl)Pyrimidin-2-yl)Hydrazine and Its Pyrazolo Pyrimidine Derivatives" *Medicinal Chemistry*, 06(04), 2016.
- [61] A. Kamal, J.S. Reddy, M.J. Ramaiah, D. Dastagiri, E.V. Bharathi, M.V. Prem Sagar, S.N.C.V.L. Pushpavalli, P. Ray, M. Pal-Bhadra. "Design, synthesis and biological evaluation of imidazopyridine/pyrimidine-chalcone derivatives as potential anticancer agents" *Medicinal Chemistry Communications*, 1(5) 355, 2010.
- [62] B. Mathew, J. Suresh, S. Anbazghagan, J. Paulraj, G.K. Krishnan "Heteroaryl chalcones: Mini review about their therapeutic voyage" *Biomedicine & Preventive Nutrition*, 4(3), 451-458, 2014.
- [63] K.K. Brown, J.B. Spinelli, J.M. Asara, A. Toker. "Adaptive Reprogramming of De Novo Pyrimidine Synthesis Is a Metabolic Vulnerability in Triple-Negative Breast Cancer" *Cancer Discovery*, 7(4), 391-399, 2017.

- [64] A.S. Hassan, M.F. Mady, H.M. Awad, T.S. Hafez. "Synthesis and antitumor activity of some new pyrazolo[1,5-a]pyrimidines" *Chinese Chemical Letters*, 28(2), 388-393, 2017.
- [65] H.S. Khalaf, H.E.M. Tolan, M.A.A. Radwan, A.M. Mohamed, H.M. Awad, W.A. El-Sayed. "Design, synthesis and anticancer activity of novel pyrimidine and pyrimidine-thiadiazole hybrid glycosides" *Nucleosides Nucleotides Nucleic Acids*, 39(7), 1036-1056, 2020.
- [66] V. Banda, D. Gaddameedi Jitender, K. Gautham Santhosh, R. Pillalamarri Sambasiva, K. Chavva, P. Rajesh, R. Janapala Venkateswara, N. Banda. "Studies on Synthesis of Novel Pyrido[2,3-d] pyrimidine Derivatives and Their Anticancer Activity" *Journal of Heterocyclic Chemistry*, 55(11), 2538-2544, 2018
- [67] P.K. Padarthi, S. Sridhar, K. Jagatheesh, E. Namasivayam. "Synthesis and Biological Activity of Imidazole Derived Chalcones and It's Pyrimidines" *International journal of Research in Ayurveda & Pharmacy*, 4(3), 355-362, 2013.
- [68] M.M. Hassan, O. Farouk. "Synthesis and Antimicrobial Evaluation of some Functionalized Heterocycles Derived from Novel Quinolinyl Chalcone" *Journal of Heterocyclic Chemistry*, 54(6), 3133-3142, 2017.
- [69] S.S. Gaikwad, V.S. Suryawanshi, K.S. Lohar, D.V. Jadhav, N.D. Shinde "Synthesis and Biological Activity of Some 3,4-Dihydro-4-(4-substituted aryl)-6-(naptho[2,1-*b*]furan-2-yl pyrimidine-2(1*H*)-one Derivatives" *Journal of Chemistry*, 9(1), 175-180, 2011.
- [70] A.H.M. Hussein, M.A.M. Gad-Elkareem, A.-B.A.A.M. El-Adasy, A.A. Khames, I.M.M. Othman. "β-Oxoanilides in Heterocyclic Synthesis: Synthesis and Antimicrobial Activity of Pyridines, Pyrans, Pyrimidines and Azolo, Azinopyrimidines Incorporating Antipyrine Moiety" *International Journal of Organic Chemistry*, 02(04), 341-351, 2012.
- [71] Anupama, B. Singh "Synthesis of Pharmacologically Important Some Novel Pyrimidine and Chalcone Moieties Containing s-triazines" *American Chemical Science Journal*, 8(2), 1-7, 2015.
- [72] P. Perlikova, M. Hocek. "Pyrrolo[2,3-d]pyrimidine (7-deazapurine) as a privileged scaffold in design of antitumor and antiviral nucleosides" *Medicinal Research Reviews*, 37(6), 1429-1460, 2017.
- [73] J. Shen, X. Meng. "Selective synthesis of pyrimidines from cinnamyl alcohols and amidines using the heterogeneous OMS-2 catalyst" *Catalysis Communications*, 138, 105846, 2020.
- [74] M.A. Radwan, M.A. Alshubramy, M. Abdel-Motaal, B.A. Hemdan, D.S. El-Kady, "Synthesis, molecular docking and antimicrobial activity of new fused pyrimidine and pyridine derivatives" *Bioorganic Chemistry*, 96, 103516, 2020.
- [75] X.E. Jian, F. Yang, C.S. Jiang, W.W. You, P.L. Zhao. "Synthesis and biological evaluation of novel pyrazolo[3,4-b]pyridines as cis-restricted combretastatin A-4 analogues, *Bioorganic & Medicinal Chemistry Letters*, 30(8), 127025, 2020.
- [76] I. Hatti, O. Sujana, M. Nookaraju, J. Suresh, K. Aparna Seetharam, R.R. Raju. "Rational design, synthesis, and anticancer evaluation of pyridine and substituted aryl linked 1,3,4-oxadiazole derivatives" *Results in Chemistry*, 11, 101755, 2024.
- [77] P.K. Jami, S.R. Battula, J. Sandhya, U.D. Parimi. "Design, synthesis and biological evaluation of amide derivatives of

- isoxazole-imidazo[1,2-a]pyridine as anticancer agents'' *Chemical Data Collections*, 44, 101001, 2023.
- [78] J. Zhang, J. Dai, X. Lan, Y. Zhao, F. Yang, H. Zhang, S. Tang, G. Liang, X. Wang, Q. Tang. "Synthesis, bioevaluation and molecular dynamics of pyrrolo-pyridine benzamide derivatives as potential antitumor agents *in vitro* and *in vivo*" *European Journal of Medicinal Chemistry*, 233, 114215, 2022.
- [79] S. Khan, H. Ullah, F. Rahim, R. Hussain, Y. Khan, M.S. Khan, R. Iqbal, B. Ali, M.F. Albeshr. "Synthesis, biological evaluation and molecular docking study of pyrimidine based thiazolidinone derivatives as potential anti-urease and anticancer agents" *Journal of Saudi Chemical Society*, 27(4), 101688, 2023.
- [80] S. Wang, R.-H. Zhang, H. Zhang, Y.-C. Wang, D. Yang, Y.-L. Zhao, G.-Y. Yan, G.-B. Xu, H.-Y. Guan, Y.-H. Zhou, D.-B. Cui, T. Liu, Y.-J. Li, S.-G. Liao, M. Zhou. "Design, synthesis, and biological evaluation of 2,4-diamino pyrimidine derivatives as potent FAK inhibitors with anti-cancer and anti-angiogenesis activities" *European Journal of Medicinal Chemistry*, 222, 113573, 2021.
- [81] B. Siva Reddy, G. Purna Chandra Rao, E. Ramya Devi, K.R.S. Prasad, S. Nalla. "Synthesis and biological evaluation of 1,2,3-triazole incorporated pyridin-4-yl)-1*H*-1,2,4-triazol-3-yl)pyrimidine derivatives as anticancer agents" *Results in Chemistry*, 8, 101598, 2024.
- [82] S. Sh Dashyan, E.V. Babaev, A.G. Ayvazyan, S.S. Mamyan, E.G. Paronikyan, T.A. Nikoghosyan, L.S. Hunanyan, R.G. Paronikyan. "Synthesis, evaluation of biological activity and SAR of new thioalkyl derivatives of pyridine" *Bioorganic Chemistry*, 148, 107435, 2024.
- [83] N.C. Desai, D.V. Vaja, J.D. Monapara, V. Manga, T. Vani. "Synthesis, biological evaluation, and molecular docking studies of novel pyrazole, pyrazoline-clubbed pyridine as potential antimicrobial agents" *Journal of Heterocyclic Chemistry*, 58(3), 737-750, 2021.
- [84] S.K. Borthakur, P.K. Kalita, S. Borthakur. "Synthesis and antifungal activities of 3,5-diphenyl-7-amino-[1,3]-thiazolo[3,2-*a*]pyrimidine-6-nitrile derivatives" *Journal of Heterocyclic Chemistry*, 57(3), 1261-1265, 2020.
- [85] K.N. Hari, B. Poojary, G. Chandrasehar. "Design, synthesis and evaluation of new alkylated pyrimidine derivatives as antibacterial agents" *Results in Chemistry*, 4, 100676, 2022.
- [86] Elsayed, M. A., Elsayed, A. M., Sroor, F. M. "Novel biologically active pyridine derivatives: Synthesis, structure characterization, *in vitro* antimicrobial evaluation and structure-activity relationship" *Medicinal Chemistry Research*, 33(3), 476-491, 2024.
- [87] A.U. Nerkar. "Use of Pyrimidine and Its Derivative in Pharmaceuticals: A Review" *Journal of Advanced Chemical Sciences*, 7(2), 729-732, 2021.
- [88] S. Mohana Roopan, R. Sompalle. "Synthetic chemistry of pyrimidines and fused pyrimidines: A review" *Synthetic Communications*, 46(8), 645-672, 2016.
- [89] N. Kerru, L. Gummidi, S. Maddila, K.K. Gangu, S.B. Jonnalagadda. "A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications" *Molecules*, 25(8), 2020.
- [90] S. Pinheiro, E.M.C. Pinheiro, E.M.F. Muri, J.C. Pessôa, M.A. Cadorini, S.J. Greco. "Biological activities of [1,2,4]triazolo[1,5-a]pyrimidines and analogs" *Medicinal Chemistry Research*, 29(10), 1751-1776, 2020.

- [91] X.J. Dai, L.P. Xue, S.K. Ji, Y. Zhou, Y. Gao, Y.C. Zheng, H.M. Liu, H.M. Liu. "Triazole-fused pyrimidines in target-based anticancer drug discovery" *European Journal of Medicinal Chemistry*, 249, 115101, 2023.
- [92] K. Oukoloff, B. Lucero, K.R. Francisco, K.R. Brunden, C. Ballatore. "1,2,4-Triazolo[1,5-a]pyrimidines in drug design" *European Journal of Medicinal Chemistry*, 165, 332-346, 2019.
- [93] A. Frydrych, K. Jurowski. "Toxicity of minoxidil Comprehensive in silico prediction of main toxicity endpoints: Acute toxicity, irritation of skin and eye, genetic toxicity, health effect, cardiotoxicity and endocrine system disruption" *Chemico-Biological Interactions*, 393, 110951, 2024.
- [94] S.M. Mohammed, A.A. Masry, A.H. Moustafa, H.A. El-Sayed, E.M. Gad, H.A. Morsy. "K₂CO₃-nanoparticles catalyzed the synthesis of 3-arylidine imidazo[1,2-c]pyrimidine candidates" Cytotoxic activity and docking study" *Synthetic Communications*, 53(16), 1319-1332, 2023.
- [95] C.F. Burgos, C. Sanchez, C. Sepulveda, E. Fuentes, I. Palomo, M. Alarcon. "Anti-aggregation effect on platelets of Indiplon a hypnotic sedative non-benzodiazepine drug" *Biomed Pharmacother*, 111, 378-385, 2019.
- [96] G. Piccirillo, R. Aroso, J.A. Baptista, A.E.C. R, G.J. da Silva, M.J.F. Calvete, M.M. Pereira, J. Canotilho, S.E.M. Ermelinda. "Trimethoprim-Based multicomponent solid Systems: Mechanochemical Screening, characterization and antibacterial activity assessment" *International Journal of Pharmaceutics*, 661, 124416, 2024.
- [97] P. Skolnick. "Anxioselective anxiolytics: on a quest for the Holy Grail" *Trends in Pharmacological Sciences*, 33(11), 611-20, 2012.
- [98] A. Nur Oktay, J.E. Polli. "Comparison of a single pharmaceutical surfactant versus intestinal biorelevant media for etravirine dissolution: Role and impact of micelle diffusivity" *International Journal of Pharmaceutics*, 624, 122015, 2022.
- [99] M.V. Muftakhov, P.V. Shchukin, R.V. Khatymov. "Thymidine and stavudine molecules in reactions with low-energy electrons" *Radiation Physics and Chemistry*, 184, 109464, 2021.
- [100] M. Bachir, L. Guglielmetti, S. Tunesi, T. Billard-Pomares, S. Chiesi, J. Jaffre, H. Langris, V. Pourcher, F. Schramm, N. Lemaitre, J. Robert, G. Isoniazid Resistance. "Molecular detection of isoniazid monoresistance improves tuberculosis treatment: A retrospective cohort in France" *Journal of Infection*, 85(1), 24-30, 2022
- 30, 2022.

 [101] X. Wang, G. Cheng, X. Liang, J. Yang, A. Deng, D. Chen, C. Liu, Y. Gao, J. Li. "Toxic Epidermal Necrolysis Observed in a Patient With the HLA-B*1502 Treated With Levofloxacin" *Clinical Therapeutics*, 2024.
- [102] S. Neuner, T. Gelbrich, K. Wurst, J. Spreitz, S. Nerdinger, U.J. Griesser, M. Stefinovic, H. Schottenberger. "Iclaprim mesylate displaying a hydrogen-bonded molecular tape" *Acta Crystallographica Section E Crystallographic Communications*, 79(1), 24-27, 2023.
- [103] K. Hoseyni, B. Sepehri, M. Irani "Discovery of new Glyoxalase I inhibitors by repurposing of FDA-approved drugs: An in silico study" *Journal of Molecular Structure*, 1312, 138522, 2024.

- [104] O. Fiste, E. Mavrothalassitis, K. Apostolidou, C. Trika, M. Liontos, K. Koutsoukos, M. Kaparelou, C. Dimitrakakis, M. Gavriatopoulou, M.A. Dimopoulos, F. Zagouri. "Cardiovascular complications of ribociclib in breast cancer patients" *Critical Reviews in Oncology/Hematology*, 196, 104296, 2024.
- [105] M.S. Sedrak, M.K. Lee, J. Ji, D.V. Satele, R.A. Freedman, P.D. Poorvu, T. O'Connor, G.R. Williams, J.O. Hopkins, H.B. Muss, H.J. Cohen, A.H. Partridge, L.A. Carey, S.L. Chow, N. Subbiah, J. Le-Rademacher, A. Jatoi. "Palbociclib in adults aged 70 years and older with advanced breast cancer: A phase 2 multicenter trial (Alliance A171601)" *Journal of Geriatric Oncology*, 15(6), 101813, 2024.
- [106] K. Sakaguchi, T. Naito, K. Hoshikawa, Y. Miyadera, H. Tanaka, E. Nakatsugawa, T. Furuta, K. Sugimoto, J. Kawakami. "Characterization of plasma vonoprazan and CYP3A activity using its endogenous marker and genetic variants in patients with digestive system disorders" Drug Metabolism and *Pharmacokinetics*, 101027, 2024.
- [107] R.M. Alzhrani, A.H. Almalki, M.E. Alosaimi, M.A. Algarni, M.H. Abduljabbar, M.F. Aldawsari, M.S. Alturki, F.T. Alsulami, A.H. Abdelazim. "Spectrofluorometric determination of futibatinib in human plasma and pharmaceutical formulations" *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 320, 124543, 2024.
- [108] B. Nehra, M. Kumar, S. Singh, P.A. Chawla. "Olutasidenib: A ray of hope in the treatment of acute myeloid leukaemia" *Health Sciences Review*, 7, 100100, 2023.
- [109] J. Bacharach, J.W. Brubaker, D.G. Evans, F. Lu, N. Odani-Kawabata, T. Yamabe, D.L. Wirta'' Omidenepag Isopropyl Versus Timolol in Patients With Glaucoma or Ocular Hypertension: Two Randomized Phase 3 Trials (SPECTRUM 4 and 3)'' *American Journal of Ophthalmology*, 263, 23-34, 2024.
- [110] R.C. Mashau, S.T. Meiring, V.C. Quan, J. Nel, G.S. Greene, A. Garcia, C. Menezes, D.L. Reddy, M. Venter, S. Stacey, M. Madua, L. Boretti, T.S. Harrison, G. Meintjes, A. Shroufi, L. Trivino-Duran, J. Black, N.P. Govender, S.A. Germs. "Outcomes of flucytosine-containing combination treatment for cryptococcal meningitis in a South African national access programme: a cross-sectional observational study" *Lancet Infect Dis*, 22(9), 1365-1373, 2022.
- [111] E. Zarenezhad, M. Farjam, A. Iraji. "Synthesis and biological activity of pyrimidines-containing hybrids: Focusing on pharmacological application" *Journal of Molecular Structure* 1230, 129833, 2021.
- [112] C.T. Uppuluri, P.R. Ravi, A.V. Dalvi. "Design and evaluation of thermo-responsive nasal in situ gelling system dispersed with piribedil loaded lecithin-chitosan hybrid nanoparticles for improved brain availability" *Neuropharmacology*, 201, 108832, 2021.

Oitzenemis sirim. Incorrected Version