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Abstract  Öz 

There is often a trade-off between accuracy and interpretability in 
Machine Learning (ML) models. As the model becomes more complex, 
generally the accuracy increases and the interpretability decreases.  
Interpretable Machine Learning (IML) methods have emerged to 
provide the interpretability of complex ML models while maintaining 
accuracy. Thus, accuracy remains constant while determining feature 
importance. In this study, we aim to compare agnostic IML methods 
including SHAP and ELI5 with the intrinsic IML methods and Feature 
Selection (FS) methods in terms of the similarity of attribute selection. 
Also, we compare agnostic IML models (SHAP, LIME, and ELI5) among 
each other in terms of similarity of local attribute selection. 
Experimental studies have been conducted on both general and private 
datasets to predict company default. According to the obtained results, 
this study confirms the reliability of agnostic IML methods by 
demonstrating similarities of up to 86% in the selection of attributes 
compared to intrinsic IML methods and FS methods. Additionally, 
certain agnostic IML methods can interpret models for local instances. 
The findings indicate that agnostic IML models can be applied in 
complex ML models to offer both global and local interpretability while 
maintaining high accuracy. 

 Makine Öğrenmesi (ML) modellerinde genellikle doğruluk ve 
yorumlanabilirlik arasında bir denge vardır. Model daha karmaşık hale 
geldikçe, genellikle doğruluk artar ve yorumlanabilirlik azalır. 
Yorumlanabilir Makine Öğrenimi (IML) yöntemleri karmaşık ML 
modellerinin doğruluğunu korurken yorumlanabilirliğini sağlamak için 
ortaya çıkmıştır. Böylece, öznitelik önemi belirlenirken doğruluk sabit 
kalır. Bu çalışmada, SHAP ve ELI5 gibi agnostik IML yöntemleri ile içsel 
IML yöntemleri ve özellik seçimi (FS) yöntemlerinin öznitelik seçimi 
benzerliği açısından karşılaştırılmasını amaçlıyoruz. Ayrıca agnostik 
IML modellerini (SHAP, LIME ve ELI5) yerel öznitelik seçiminin 
benzerliği açısından kendi aralarında karşılaştırıyoruz. Şirket 
temerrüdünü tahmin etmek için hem genel hem de özel veri kümeleri 
üzerinde deneysel çalışmalar yapılmıştır. Elde edilen sonuçlara göre, bu 
çalışma öznitelik seçiminde içsel IML yöntemleri ve FS yöntemlerine 
kıyasla %86’ya kadar benzerlikler göstererek agnostik IML 
yöntemlerinin güvenilirliğini doğrulamaktadır. Ek olarak, bazı agnostik 
IML yöntemleri, modelleri yerel örnekler için de yorumlayabilmektedir. 
Sonuçlar, agnostik IML modellerinin, yüksek doğruluğu korurken genel 
ve yerel yorumlanabilirlik sağlamak için karmaşık ML modellerinde 
uygulanabileceğini göstermektedir. 

Keywords: Interpretable machine learning, default prediction, 
reliability, Jaccard index similarity, feature selection 

 Anahtar Kelimeler: Yorumlanabilir makine öğrenmesi, temerrüt 
tahmini, güvenilirlik, Jaccard dizin benzerliği, öznitelik seçimi 

1 Introduction 

The benefits of Machine Learning (ML) to human life, 
society, and the environment are indisputable. There are 
two main goals arising from the ML structure that are (i) 
ensuring high accuracy and (ii) providing interpretability by 
preventing the model from behaving like a black-box. 
However, there is a trade-off between the goals as seen in 
Figure 1 [1]–[3]. The higher the interpretability, the lower 
the accuracy, and vice versa. In other words, as ML methods 
become more complex, generally their accuracy increases 
and their interpretability decreases. 

Most powerful but complex ML models such as Random 
Forests (RF), Deep Learning (DL), and Gradient Boosting 
Methods (GBM) generally have better performance at 
yielding highly accurate results on various real-world 
classification, regression, and prediction problems as 
compared to transparent ML models such as Linear 
Regression (LR), Decision Tree (DT), and Naive Bayes (NB). 

                                                           
*Corresponding author/Yazışılan Yazar 

However, the behavior of complex ML models is often not 
transparent to their users. By acting like a black-box, they 
exclude users in the decision-making process. ML users are 
unaware of which particular decisions affect the results. In 
finance, for example, it is important for credit-based score 
models. Financial institutions must be fair as set forth by law 
as to whether to lend to individuals or companies. Based on 
this more detailed explanations of why borrowers’ loans 
were declined - reason codes - are required. 

Feature Selection (FS) becomes the focus of research areas 
of ML problems with the increase in the number of variables 
of datasets leading to high dimensional data. FS 
preprocesses the data to reduce feature size, which also 
allows for a certain level of interpretability. In addition, it 
also causes data loss, which may result in a decrease in the 
accuracy of the ML model. 

Interpretable Machine Learning (IML) has emerged to 
mitigate problems arising from ML models acting like a 
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black-box. It has the ability to explain or present the 
behavior of ML models. Thus, it provides a better 
understanding of how these models behave in predicting 
outputs [4]. In the literature, IML models can be classified as 
intrinsic IML models such as DT and Lasso and agnostic IML 
models such as SHAPley Additive exPlanations (SHAP) [5], 
ELI5 [6], and Local Interpretable Model-agnostic 
Explanations (LIME) [7]. 

 

Figure 1. The trade-off between accuracy and 
interpretability [1] 

In this paper, we focus on comparing agnostic IML methods 
with intrinsic IML methods and FS methods. All methods 
consider the effects of the features on the result. While FS 
methods commonly consider the effects of the features 
before training the model (pre-processing), IML methods 
consider it during (intrinsic IML) or after (agnostic IML) 
training the model. Here, we aim to validate the reliability of 
agnostic IML methods by comparing them with intrinsic and 
FS methods for similarities in attribute selection. Achieving 
high consistency also indicated that the reliability of 
agnostic IML methods is potentially increased. In addition, 
we compare agnostic IML models between each other for an 
instance company (for local interpretability). To the best of 
our knowledge, this is the first attempt to perform a 
comprehensive analysis of agnostic IML methods. Other 
contributions of the paper are listed below. 

• Experiments are conducted in a detailed and comparative 
way in both public and private real-world datasets, 
providing a fine-grained examination of the behavior of 
the models. 

• Experimental results of similarity of attribute selection 
confirm that agnostic IML methods are highly correlated 
with intrinsic IML and FS methods. Hence, IML methods 
can be applied to complex ML models to handle the 
accuracy-interpretability trade-off. 

• Unlike FS and intrinsic IML methods, agnostic IML methods 
can potentially provide local interpretability as well as 
global interpretability. We analyze the local 
interpretability results by comparing agnostic IML 
methods among each other for both datasets. 

The rest of the paper is organized as follows: Section II 
reviews the literature by classifying the existing methods 
according to their target domains and applications. Section 
III presents brief information about the presented 
approaches. Section IV explains the datasets, experimental 
setup, and experimental results for global and local attribute 
selections. Also, it provides a detailed discussion of the 
results. Lastly, Section V concludes the paper by giving some 
highlights about what we achieved. 

2 Related Work 

This study presents a comparative analysis of FS, intrinsic 
IML, and agnostic IML methods. All of them contribute to 
interpretability when applied to ML models in the pre-
training, in-training, and post-training processes, 
respectively. Unlike existing studies, this study analyzes the 
similarity of attribute selection of these methods 
comprehensively. In the literature, FS and IML methods are 
examined separately. For this reason, we perform related 
works by grouping them according to the use of FS and IML 
methods. 

2.1 Applications of Feature Selection 

In the literature, FS methods have been generally used to 
improve the quality of attribute sets in different ML tasks 
and domains [8]. According to training data is labeled or not, 
FS methods can be categorized into three groups which are 
(i) supervised, (ii) unsupervised, and (iii) semi-supervised 
FS. In literature, there are comprehensive reviews that 
present detailed and comparative analysis of FS methods for 
supervised learning [9], [10], unsupervised learning [11], 
[12], and semi-supervised learning [13]. The existing FS 
methods for supervised learning can be further classified 
into filter methods, and wrapper methods. 

By employing different techniques, numerous studies are 
presented in the literature to prove the benefits and success 
of FS methods on different real-world applications such as 
text mining [14], image processing [15], intrusion detection 
[16], information retrieval [17] by offering promising 
solutions on different financial [18], biological [19], medical 
[20], security [21], agricultural [22] and environmental [23] 
issues. Furthermore, more recent studies focus on 
combining FS with heuristic [24] and meta-heuristic [25] 
methods.  

However, based on the commonly accepted consensus on FS 
methods, there is no so-called ‘best method’, thereby the 
researchers focus on seeking a good result by using new FS 
methods with different strategies [26], [27]: (i) combining 
more than one FS methods such as filter-filter or filter-
wrapper, (ii) combining with other techniques such as 
feature extraction (iii) FS with an ensemble or heuristic 
methods, (iii) reinterpreting existing methods, (iv) adapting 
an existing method to a certain type of problems, (iv) 
creating a new method for unresolved problems. 

As seen in Table I, FS methods are frequently used in finance 
as well as in other fields in the literature. These methods are 
especially used to improve financial predictions such as 
financial distress, credit risk evaluation, and financial crisis. 
Li et al. [28] aim to identify financial distress with SVM. 
Statistics-based wrapper FS is employed to determine the 
effective features. To that end, the authors first compare the 
statistics-based wrapper with filter FS methods and non-FS 
methods for SVM in financial distress prediction. Then, the 
proposed wrapper is conducted on some variants of SVM 
like linear SVM (LSVM), polynomial SVM (PSVM), Gaussian 
SVM (GSVM), and sigmoid SVM (SSVM). The experiments are 
applied to the data for financial distress prediction collected 
from Chinese public companies. Also, there are three 
benchmark FS methods including a wrapper, MDA, and Logit 
FS methods. Each FS is applied on each SVM variant, and the 
results are compared in terms of prediction performance 
and a two-tailed significance test. Cui et al. [29] introduce  
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Table I. FS Methods in Financial Problems 

Reference Problem Datasets FS methods Benchmarks ML models 
Evaluation 
metrics  

Li et al. [28] 
Distress 
prediction 

Data collected from 
Chinese public 
companies 

Statistics based 
wrapper FS 

A wrapper FS, MDA 
FS, Logit FS 

LSVM, PSVM, 
GSVM, SSVM 

Prediction  
performance, 
two-tailed 
significance test 

Cui et al. [29] 
Credit risk 
evaluation 

P2P(DI), P2P200, 
P2P(R),  CrowdFunding 
and BorrowerCredit 

MSIEN 
InElasticNet, 
ElasticNEt, Lasso, 
InLasso 

SVM 
Accuracy, 
convergence 

Jadhav et al. [30] 
Credit 
scoring 

German, Australian and 
Taiwan credit datasets 

Information 
gain directed FS 

Baseline classifier, 
GA wrapper 

SVM, KNN, NB 
Accuracy, ROC 
curves 

Liang et al. [31] 
Credit 
scoring 

German, Australian  
credit datasets and 
Chinese and Taiwanese  
bankruptcy datasets 

GA and PSO 
wrapper based 
FS, t-Test, LDA 
and LR filter 
based FS 

- 

SVM, 
RBF kernel-SVM, 
NB, KNN, MLP 
Clas. and Reg. 
Tree 

Accuracy, Type-I 
error 

Sivasankar et al. 
[32] 

Credit risk 
prediction 

German, Australian and 
Japanese credit datasets 

Ensemble with 
RS-FS 

Ensemble without 
FS,  
ensemble with GR-
FS 

SVM, KNN, LoR, 
DT 

Accuracy, AUC 

Zhang et al. [33] 
Stock  
prediction 

Annual financial reports 
of A-Shares of the 
Shanghai Stock 
Exchanges 

NoFS, CFS, PCA, 
CART, Lasso 

-  
LR, NB, BN, NN, 
SVM, J48, RF 

Accuracy, number 
of features, 
precision 

Lin et al. [34] 
Bankruptcy 
prediction 

Australian, German and 
Taiwan bankruptcy 
datasets 

Information 
gain, GA-based 
FS 

- 
MLP, DT, SVM, 
KNN 

Type-I error 

multiple structural interacting elastic net (MSIEN) on SVM 
for financial credit risk evaluation. The experiments 
conducted on datasets of internet financing highlight the 
effectiveness of the proposed model according to other FS 
methods such as InElasticNet, ElasticNet, Lasso, and InLasso 
in terms of accuracy and convergence. Some studies focus on 
credit risk assessment by proposing information gain 
directed FS [30], two wrapper methods including GA and 
PSO and three filter methods t-test, LDA, LoR [31], and 
ensemble with a rough set based FS [32] on well-known 
classifiers such as SVM, KNN, NB, MLP by analyzing the 
evaluation metrics like accuracy, ROC curves, AUC values, 
and Type-I errors. Also, Zhang et al. [33] perform 
comprehensive and comparative analysis with different FS 
methods such as CFS, PCA, CART, and Lasso on various 
classifiers including LR, NB, BN, NN, SVM, J48, and RF to 
predict stock exchanges. Shanghai stock Exchange datasets 
are used for experiments. The results are evaluated in terms 
of accuracy, number of features, and precision. Lastly, Lin et 
al. [34] attempt to provide an effective bankruptcy 
prediction model while comparing GA method as a wrapper 
FS and information gain as a filter method. They apply the 
presented FS methods on existing classifiers consisting MLP, 
DT, SVM, KNN and evaluate them in terms of Type-I error 
criterion. 

2.2 Applications of Interpretable Machine Learning 

Although the term IML is relatively new, the problem of 
explaining expert systems dates back much further, mid-
1970’s. Afterward, for many years, the general trend has 
shifted to the development of new methods and algorithms 
with high predictive power [35], [36]. However, especially 
after 2016, interpretability has gained importance again 
with its widespread usage in critical areas such as health 
[37], autonomous systems [38], and finance [39].  

Although intrinsic algorithms such as LR and DT provide 
interpretability inherently, they often suffer from poor 
performance than complex and hard-to-interpret models 
like deep neural network, random forest, and gradient 
boosting machine. For this reason, recent studies aim to 
ensure that powerful algorithms reduce their opaqueness 
while maintaining their prediction success. 

Credit scoring has gained high popularity since the recent 
innovations in the field of artificial intelligence enable 
experts to make insightful and more accurate decisions. 
With IML methods, decisions potentially can be made both 
accurate and interpretable. However, there are limited 
studies addressing financial issues with IML in the literature. 
Table II shows the related works in the literature that use 
IML methods for financial prediction. Demajo et al. [39] 
propose a 360-degree explanation framework that enables 
three different explanations (global, local feature-based, and 
local instance-based) on XGBoost algorithm to predict credit 
scoring. It employs SHAP+GIRP for global explanations, 
Anchors for local feature-based explanations, and ProtoDash 
for local instance-based explanations. The model is applied 
on Home Equity Line of Credit (HELOC) and Lending Club 
(LC) datasets. The proposed model is compared with BRCG 
method, which generates Boolean rules to interpret the 
model globally. Also, three different evaluation approaches 
which are functionally-grounded, application-grounded, and 
human-grounded are adopted to analyze the proposed 
model in terms of consistency, simplicity, correctness, 
effectiveness, easy understanding, detail sufficiency, and 
trustworthiness. 
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TABLE II. IML Methods in Financial Predictions 

Reference Problem Datasets 
IML 
methods 

Benchmark 
IML 
methods 

ML 
models 

Benchmar
k ML 
models 

Explanation 
types 

Evaluation 
metrics 

Demajo et 
al. [39] 

Credit 
scoring 

HELOC, LC 
datasets 

SHAP+GIRP, 
Anchors, 
ProtoDash 

Boolean 
Rules via 
Column 
Generation 
(BRCG) 

XGBoost - 

Local feature-
based, 
Local instance-
based, Global 

Number of unique 
rules, Average 
number of rule 
conditions, 
Consistency of rules, 
Completeness rate 

Bussman et 
al. [40] 

Credit 
scoring 

Data from 
ECAI 

SHAPley 
values 

- XGBoost 
Optimal 
LoR 

Local - 

Ito et al. 
[41] 

Text  
summarizati
on 

Posts on 
the  Yahoo 
Finance  
Board, 
news 
articles 

GINN - NN 
Base MLP, 
plus MLP 

Local Correspondence 

Cong et al. 
[42] 

Portfolio 
management 

CRSP, 
CRSP 
Compustat 
Merged, 
Financial 
Ratio Firm 
Level 

AlphaPortfoli
o model 
with 
gradient-
based 

methods, 
Lasso 

- 

LSTM, 
RNN, 
Transfor
mer 

- Local 
Out-of-sample 
Sharpe ratio, 
robustness 

Grath et al. 
[43] 

Credit risk 
assessment 

HELOC 
dataset 

Two 
weighted 
strategies for 
Counterfactu
al 
explanations 

Baseline 
weighted 
Counterfact
ual 
explanations 

LoR, 
GBM, 
SVC, MLP 

- Local 

Predictive power, 
average size of 
generated 
counterfactual 
explanations 

Ghosh et al. 
[44] 

Financial 
stress 

Financial 
stress 
variables 
regulated 

by the OFR  

Permutation 
feature 
importance, 
LIME 

- 

EEMD-
LSTM 
EEMD-
Prophet 

ARIMA, 
SARIMA, 
BSTS, MLP  

Local,  Global 

Permutation 
importance, local 
level feature 
contribution 

Babaei et al. 
[45] 

Credit risk,  
expected 
return 

financial 
indicators 
of a sample 
of 2049 
Italian 
SMEs in 
2018 

SHAP - XGBoost - Local,  Global Feature importance 

Tran et al. 
[46] 

Financial 
distress 
prediction 

Dataset 
includes 
companies 
in Vietnam 
from 2010 
to 2021 

SHAP - 

LR, SVM, 
DT, RF, 
XGBoost, 
ANN  

- Global Feature importance 

Ariza-
Garzón et al. 
[47] 

Credit risk 
scoring 

LC dataset SHAP - 
DT, RF,   
XGBoost, 

LoR  Global 
Feature importance, 
dependence,  
monotonicity 

Misheva et 
al. [48] 

Credit risk 
scoring 

LC dataset 

SHAP, LIME, 
Accumulated 
Local Effects 
(ALE) plots 

- 

LoR, SVM, 
RF, 
XGBoost, 
NN 
classifier 

- Local, Global 
Feature importance, 
dependence,  

Bracke et al. 
[49] 

Default 
prediction 

Snapshot of 
the 
residential 
mortgages 
in 
the UK 

SHAP - 
Logit, 
GTB 

- Local, Global Feature importance 
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Bussmann et al. [40] attempt to predict credit risk in peer-
to-peer lending. To solve this problem, they propose 
XGBoost, which has high predictive success with limited 
interpretability. SHAPley value is employed to provide 
interpretability to the model in terms of the 
creditworthiness of each company. The proposed model is 
trained on data from European External Credit Assessment 
Institution (ECAI) and compared with optimal Logistic 
Regression (LoR) by evaluating their ROC curves. Ito et al. 
[41] propose gradient neural network (GINN) to visualize 
financial documents, thereby non-experts can easily 
understand the market sentiments. Two different datasets 
are obtained from the posts on the Yahoo Finance Board and 
Japanese financial news articles. Their proposal shows 
superiority when compared to the base MLP and plus MLP 
in terms of F scores.  Also, human interpretability tests are 
conducted to measure the correspondence between 
sentiment scores obtained by GINN and perceptions of 
people. Cong et al. [42] introduce a reinforcement-based 
portfolio management model, called AlphaPortfolio, to 
increase the performance out-of-sample drastically and 
provide robustness. Then, the authors project the model 
onto a linear model by carrying out a polynomial sensitivity 
analysis that allows ML models to be more transparent and 
interpretable. The proposed model is conducted on three 
different WRDS databases which are CRSP, CRSP Compustat 
Merged, and Financial Ratio Firm Level. The experimental 
results show that the proposed model outperforms existing 
ML models especially when it is restricted by some financial 
constraints or restrictions.  

Some IML methods like counterfactual explanation can be 
challenging when the number of features increased. Grath et 
al. [43] aims to overcome this problem by proposing positive 
counterfactual and two weighted counterfactuals which are 
feature importance and nearest neighbour based strategies. 
The experiments that are conducted on HELOC loan 
application datasets show that the weighted counterfactual 
generation strategy shows a better performance than the 
baseline counterfactual, by suggesting smaller 
counterfactuals while maintaining more interpretable 
decisions. 

Ghosh et al. [44] emphasize the need for accurate prediction 
of financial stress and propose two granular hybrid 
predictive frameworks to discover the inherent pattern of 
financial stress across several critical variables and 
geography. The predictive structure utilizes the Ensemble 
Empirical Mode Decomposition (EEMD) for granular time 
series decomposition. Then, LSTM and Facebook's Prophet 
algorithms are invoked on top of the decomposed 
components to investigate the predictability of financial 
stress variables. Also, permutation feature importance and 
LIME methods are used to interpret the models and provide 
insights into the factors that contribute to financial stress. 

Babaei et al. [45] propose an explainable AI model designed 
for analyzing SMEs and predicting their expected return 
based on credit risk and expected profitability. The 
proposed model employs SHAP enabling interpretable 
predictions from AI models both globally and locally. To 
validate the model, the authors extracted financial 
performance indicators from the annual balance sheets of 
2049 SMEs. Tran et al. [46] compare the predictive 
performance of various machine learning algorithms 

including LoR, SVM, DT, RF, XGBoost, Artificial Neural 
Network (ANN) and use SHAP values to interpret the 
prediction results on a dataset of listed companies in 
Vietnam from 2010 to 2021. The experimental results reveal 
that XGBoost and RF models outperform other algorithms. 

Ariza-Garzón et al. [47] conduct a comparative analysis of 
machine learning algorithms, including DT, RF, and XGBoost, 
against LoR models for predicting personal loans from the 
LC company. They further assess the contribution of 
variables in the models using SHAP and LIME methods. The 
outcomes demonstrate that the application of SHAP to 
machine learning methods significantly enhances the 
interpretability of these models, capturing nonlinear 
relationships more effectively compared to the traditional 
LoR model. Similarly, Misheva et al. [48] present a similar 
study on the LC dataset. The authors show that the 
explanatory results obtained are robust and coherent with 
logical financial explanations. In this study, the SHAP and 
LIME methods are employed to interpret the results of the 
machine learning models. 

Bracke et al. [49] employ the Linear Logistic Regression 
(Logit) and GBM to predict mortgage loan defaults in the UK. 
The authors introduce a novel approach called quantitative 
input influence (QII), which evaluates the contribution of 
input variables to the target variable by computing Shapley 
values. Through this method, the authors demonstrate the 
ability to offer a comprehensive explanation of the variable's 
impact on various customer groups, providing detailed 
insights into the degree of influence for each group. 

3 Background Information 

In this section, we give additional information about FS and 
IML approaches by examining and categorizing them into 
sub-methods. 

3.1 Feature Selection 

Over the past few years, the dimensionality of data has been 
growing exponentially, causing serious problems to existing 
learning methods like curse of dimensionality. To address 
this problem, FS methods have become popular by reducing 
dimensionality for better performance, lower computational 
cost, and better interpretability. The aim of FS is to select a 
subset of relevant features that represent the data in the best 
way, thereby diminishing the effects of irrelevant or 
redundant data and constructing simpler and 
comprehensible models [50], [51]. 

FS process consists of four main steps. These steps are 
subset generation, subset evaluation, stopping criterion, and 
result validation. In the FS process, first, a subset of features 
is generated from the original dataset. The generation 
process depends on the state space search strategy. After the 
selection of the candidate subset, it is evaluated using 
certain methods. Subset generation and evaluation steps 
repeat until the stopping criteria are met. Hence, the best 
candidate selected features are determined. Lastly, the 
subset with these features is validated on an independent 
dataset [8]. 

In this study, we only focus on supervised FS methods, since 
our problem is a supervised learning problem. Depending on 
the evaluation criteria, these methods can be classified into 
two groups [9], [10], [52]: (i) filter methods based on 
statistical information, (ii) the wrapper methods that try to 
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achieve the best prediction performance by evaluating by 
using a predetermined ML algorithm. 

3.1.1 Filter Methods 

In filter methods, which are based on statistical information, 
the selection process is only performed based on statistical 
measurements like distance, frequency, or consistency 
without using any ML algorithm. These methods first obtain 
a score according to the evaluation criteria for each feature. 
Then, they form a subset of the features among the scores 
with the highest value. In these methods, the size of the 
attribute subset is determined according to the minimum 
sub- score value. Although there are many different filter 
methods, Mutual Information (MI), Chi-square (X2), F-score, 
T-score, Information Gain (IG), and relief are among the 
well-known methods in the literature [52]. 

MI is a filter-based method based on probability theory. It is 
a measure of mutual information between two variables. In 
other words, it is a measure of the amount of information 
about a random variable by observing another random 
variable. It uses entropy. Entropy is a measure of uncertainty 
and is calculated as in Equation (1): 

                             𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑠) = ∑ −𝑝𝑖𝑙𝑜𝑔2
𝑐
𝑖=1 𝑝𝑖                      (1) 

where 𝑠 denotes the training dataset, and 𝑐 is the number of 
different values of the target. 𝑝𝑖 is the probability of the 
target variable in training data of class 𝑖. MI tends to select 
features with high entropy.  

3.1.2 Wrapper Methods 

In wrapping methods, after the generation of a subset of 
features, ML algorithms are employed instead of statistical 
criteria such as distance, frequency, and consistency. The 
subset of features that makes the best predictive 
performance of ML is selected. Since wrapper methods 
consider the performance of the selected features unlike 
filter methods, wrapper methods achieve better 
performance than filter methods in exchange for 
computation cost. The most commonly used wrapper 
methods in the literature are Sequential Forward Selection 
(SFS), Sequential Backward Selection (SBS), Sequential 
Forward Floating Selection (SFFS), and Sequential 
Backward Floating Selection (SBFS) [9]. 

SFS starts with an empty subset of attributes and decides 
whether to add a new attribute at each step. The attribute is 
added to the subset if it enhances the performance of the 
model. It is extracted if it lowers success. Until every 
attribute has been tested, this procedure continues. 

3.2 Interpretable Machine Learning 

IML is a more recent and general concept than FS. In some 
studies, it covers FS as a technique where interpretability is 
achieved before building the model [53]. Note that, 
dimensionality reduction methods like FS or feature 
extraction can provide interpretability since the outcomes 
are intuitively explained by selected attributes [54]. 

As seen in Figure 2, IML enables users and part of internal 
systems to be more transparent and allows them to explain 
how they make decisions [55]. This concept also overlaps 
with the explainable artificial intelligence concept, which is 
frequently used in the literature. While both concepts are 
similar and serve the same purpose, there is little difference 
between the meanings. Interpretable systems become 
explainable when their inner operations are intelligible, in 

other words, understandable by a human. As in the ML 
community, the term ’interpretable’ is more commonly used 
[35], so we prefer to use the concept of IML. But still, we 
utilize both concepts interchangeably in this study. 

 

Figure 2. The general view of IML [55] 

According to the study of [56], the goals of interpretability 
are to achieve (i) accuracy that represents the similarity 
between explanations and model predictions, (ii) readability 
that represents the simplicity of understanding the behavior 
of the model and (iii) efficiency that represents the time 
constraint to comprehend evaluations.  

In addition, the quality of interpretability can be assessed by 
some properties described in the study of [57]. 

• Accuracy: It refers to the generalization of explanations 
of existing decisions to cover unseen instances. 

• Fidelity: It describes the degree of how well an 
explanation expresses the behavior of ML model. 

• Consistency: It measures the degree of difference 
between explanations in case different models are 
trained to fulfill the same task. 

• Stability: It is a degree of difference between an 
application for similar instances. Apart from 
consistency, this property tackles with explanations 
obtained by the same model. 

• Comprehensibility: It is related to the readability and 
size of explanations. In other words, it tries to measure 
how well explanations are understood by a human. 

• Certainty: It assesses the reflection of explanations about 
the certainty of the ML model. 

• Degree of Importance: It measures the degree of how well 
explanations present the importance of features. 

• Novelty: It considers whether an explained instance is 
included in the training set, thereby evaluating the 
certainty. 

• Representativeness: It assesses the representativeness of 
a model by considering whether it covers the behavior of 
the whole or part of the model. 

According to when the technique is applicable, the IML methods 
in the literature can be classified into intrinsic and agnostic IML 
methods [53]. Intrinsic models inherently restrict the 
complexity of ML models during the period of training. Due to 
the restriction during training, attributes are intuitively listed 
by feature importance, which may provide also interpretability. 
On the other hand, agnostic models provide analysis and 
interpretation of the model with certain methods after the 
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training process. 

Also, according to the scope of interpretability methods can be 
classified as global and local interpretability. Local 
interpretability provides a local understanding of why and how 
specific predictions can be made depending on an instance [39]. 
Local instance-based explanations focus on providing 
interpretability by looking at particular single or multiple 
instances. 

SHAP [5], counterfactual explanations [58], and LIME are some 
popular methods presented for individual predictions. On the 
other hand, global interpretability aims to describe the model 
as a whole. More specifically, it requires comprehending 
decisions, features, structures, and each learned component 
such as weights and parameters. Especially, it seeks to answer 
the questions of which features are more important and what 
kind of interactions are realized among them. 

3.2.1 SHAP 

It is an agnostic IML algorithm proposed by Lundberg and Lee 
[5] in 2017. It is developed based on the SHAPley value which 
is one of the popular game theory methods. The purpose of 
SHAP is to describe how each attribute of a sample affects the 
prediction. The prediction is based on the SHAPley value that 
was developed to measure the marginal contribution of each 
player to the score in a team game. This is accomplished by 
calculating the difference in the score resulting from replacing 
each team member with a random player one at a time. In this 
way, the marginal contribution of each player to the score can 
be measured. Since each player is eliminated one by one, 
SHAPley value is calculated exponentially as the number of 
players on the team increases. The SHAP model treats each 
player as an attribute in a similar manner. It aims to provide the 
explainability of the method by quantifying the contribution of 
each attribute to ML algorithm prediction. 

SHAP integrates LIME and SHAPley values and can be 
formalized as follows [5]: 

                                      𝑔(𝑧′) =  Φ0 + ∑ Φ𝑗
𝑀
𝑗=1 𝑧𝑗

′                        (2) 

where g is an explanatory model, M is the maximum number 
of attributes,  and  z′ ∈ [0, 1]  M is the simplified new dataset.  
Lastly,  Φj ∈  R is the contribution of the j attribute, which 

means that it is the SHAPley value. Here, SHAPley value,  Φj 

can be calculated as in Equation (3) [5]: 

 

                            
(3) 

where Φ𝑗  denotes the difference between the prediction 

with attribute 𝑗 and the prediction without attribute 𝑗. Thus, 
the marginal contribution of the 𝑗 attribute is determined. 
𝑓(𝑆 ∪ {𝑗}) is the new set after including attribute 𝑗. 𝐹 shows 
all the attributes. Lastly, 𝑆 ⊑ 𝐹  \𝑗 shows possible subsets 
excluding the attribute 𝑗. 

3.2.2 LIME 

LIME [7] method is used to interpret the single instances of 
ML algorithms in a data set. It explains the single instances 
by using an interpretable surrogate model. This surrogate 
model is an interpretable model such as LR and DT and 
employs a heuristic approach. It considers ML algorithms as 
a black box and analyzes inputs and predictions of ML 
algorithms. Its aim is to understand why ML makes a certain 

prediction for a sample. To do so, it generates new samples 
that are similar to the chosen ones. They are weighted 
according to the degree of closeness. LIME is trained with 
the surrogate model with the new weighted data set. 
Interpretability is ensured by the weights given to the 
variables by the surrogate model. 

LIME is mathematically formulated as shown in Equation 
(4): 

                         exp(𝑥) = arg 𝐿(𝑓, 𝑔, 𝜋𝑥)𝑔∈𝐺
𝑚𝑖𝑛 + Ω𝑔                     (4) 

where 𝑥 is the sample to be explained. 𝑔 is the surrogate 
model such as LR or DT, 𝑓 is the actual model that makes the 
predictions such as RF, and 𝜋𝑥  represents the closeness 
measure of the sample 𝑥. 𝐿 is the function that minimizes the 
loss function, such as the least mean square error. Ω𝑔  is used 

to keep the number of attributes of the surrogate model low. 
Note that, the number of attributes is usually determined by 
the user.  

3.2.3 ELI5 

ELI5 [6] uses the permutation importance or mean decrease 
accuracy method to provide interpretability to complex 
algorithms. This method eliminates each attribute from the 
dataset, retrains the model, and weights the attributes 
according to the decrease in the success measure used by the 
model, such as F1 score, R-squared or accuracy. Since it is 
repeated for each attribute, it is a computationally expensive 
algorithm. However, it is widely used because it supports 
Python libraries such as Sklearn and Keras. 

4 Experimental Analysis and Discussion 

In this study, we perform a comparative analysis by 
grouping the methods into three categories as FS, intrinsic 
IML, and agnostic IML methods. We intend to measure the 
similarities in the selection of attributes. Our motivation is 
to increase the reliability of agnostic IML methods by 
confirming the similarity of attribute selection with FS and 
intrinsic IML methods. Thus, agnostic IML methods will be 
able to provide interpretability by applying them to highly 
accurate complex models. 

The experimental study is separated into two sub-studies 
comparing global and local attribute selections for two 
different datasets. The pseudocode of the study is given in 
Table III. In the aim of measuring the similarity among 
different models, the first study includes the comparison of 
the global attribute selection results for FS, intrinsic IML, 
and agnostic IML models. In the second study, the similarity 
of local attribute selection is measured and compared with 
three different IML methods. 

The pseudocode outlines the steps of the study. In summary, 
the pseudocode begins by reading two different datasets and 
imputing missing data with ‘0’. The dependent variable for 
predicting default is separated from the independent 
variables. For each dataset, the threshold values of 25% and 
50% are determined and listed. The study encompasses 
both global and local similarity calculations, which are coded 
separately. 
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Table III. The pseudocode of the study 

Read the datasets (Turkish and Polish datasets). 
Perform imputation on missing data by replacing them with 0. 
Separate the independent variable. 
For each dataset: 
       Determine the number of selected attributes (either 25% or 50%). 
#Global similarity 
For each dataset: 
        For each threshold value: 
                Run MI algorithm. 
                Run SFS algorithm. 
                Run Lasso algorithm. 
                Run DT algorithm. 
                Create prediction model using RF for SHAP and ELI5: 
                        Run SHAP algorithm. 
                        Run ELI5 algorithm. 
                Create a dataframe of selected attribute by the 6 algorithms. 
                Generate a table of the most commonly selected attributes by the 6 algorithms. 
                Compare the attribute dataframe using Jaccard similarity. 
                Visualize the comparison results using a heatmap. 
#Local similarity 
For each dataset: 
        Select randomly 10 default companies and 10 non-default companies. 

                 For each threshold value: 
                Create a prediction model using RF: 
                        For each selected company:  
                                Run SHAP algorithm. 
                                Run LIME algorithm. 
                                Run ELI5 algorithm. 
                Create a dataframe of selected attributes by the 3 algorithms. 
                Generate a table of the most commonly selected attributes by the 3 algorithms based on the threshold value. 
                Compare the attribute dataframe using Jaccard similarity. 
                Calculate the average of the comparison results and visualize them using a heatmap. 

To measure global similarity, nested loops are created for 
each dataset and threshold value. For each dataset and 
threshold value, the MI, SFS, Lasso, DT, SHAP, and ELI5 
algorithms are executed in sequence, through the entire 
dataset. Since SHAP and ELI5 algorithms require a trained 
ML model, the RF algorithm is first trained on the entire 
dataset, and then SHAP and ELI5 are executed. The selected 
attributes by the six algorithms are stored in a dataframe, 
and tables of the most commonly selected attributes by the 
six algorithms are generated. The attribute dataframes are 
compared using Jaccard similarity, and the results are 
visualized using a heatmap. This process is repeated for each 
dataset and threshold value. 

For local similarity, intrinsic models are not applicable, thus 
20 companies (10 default and 10 non-default) are randomly 
selected. For each dataset, 20 companies are selected. For 
each threshold value, the RF algorithm is executed. For each 
dataset, threshold value, and selected company, SHAP, LIME, 
and ELI5 algorithms are executed. The selected attributes by 
the three algorithms are stored in a dataframe. The attribute 
dataframes are compared using Jaccard similarity. The 
average of the comparison results for the 20 companies is 
calculated and visualized using a heatmap. 

4.1 Dataset  

In this study, the company default prediction problem is 
addressed. By using the variables from balance sheet data, 
company default is predicted. Here, company default is the 
inability of the company to pay its debt on time. 

Experimental studies are conducted on two different 
datasets which are Polish and Turkish datasets. Both 

datasets consist of values of ratios calculated from company 
balance sheets such as net profit / total assets, total assets / 
total assets, working capital / total assets, and current assets 
/ short-term assets. Also, all values of each attribute are 
continuous. Therefore, the attributes of these datasets are 
homogeneous. Our first dataset [59] is public and belongs to 
Polish companies operating between 2000-2012. It has 64 
attributes and 43405 instances. Our second dataset is 
private and randomly selected from Turkish companies 
operating between 2015-2017. It has 74 attributes and 
43318 instances. Since the missing value ratio is below 1% 
in both datasets and all attributes are numeric, we resolved 
the missing data problem by assigning a value of ‘0’.  

TABLE IV. Default rates for Polish and Turkish companies 

 Number of 
attributes 

Number 
of 
instance 

Default 
rate 

Data type 

Polish 
dataset 

64 
43405 

 
0.0481 Numeric 

Turkish 
dataset 

74 43318 0.0719 Numeric 

The default rates for the datasets are given in Table IV. As 
can be seen from the default rates, the datasets are 
unbalanced. 

4.2 Experimental Setup  

All experiments have been performed on a notebook with 
Intel Core i7-7600U CPU 2.9 GHz processor and 15.9 GM 
RAM. The models have been developed on Python 3.7.6 
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version. Also, Python’s Sklearn, SHAP, LIME, and ELI5 
libraries are employed in the experiments. 

The FS and intrinsic IML methods are generally used with 
default values from the Python Sklearn library. The number 
of neighbors for MI is 3. K Neighbors Classifier is used for 
SFS. The number of neighbors for SFS is set to 3 as well. 
Accuracy is determined for scoring. For Lasso, L1 was 
chosen as the penalty value of the LoR classifier. The 
regularization strength value is set to 1. Liblinear is used as 
the solver. In DT classifier, Gini is used for criterion, min 
samples split is set to 2, and min samples leaf is set to 1. 

4.3 Evaluation Criteria  

There are various similarity measurement methods used for 
different purposes in the literature. Jaccard index similarity 
[60] is determined as the comparison metric, since the lists 
of attributes selected for the prediction are lists of the same 
length containing 0 and 1. As shown in Equation (5), Jaccard 
index is calculated for infinite sets by dividing the 
intersection of the sets by the union of the sets. 

                               𝐽(𝐴, 𝐵) =  
|𝐴∩𝐵  |

| 𝐴∪𝐵 |
=

| 𝐴∩𝐵 |

| 𝐴 |+| 𝐵 |−| 𝐴∩𝐵 |
                (5) 

where 𝐽(𝐴, 𝐵) represents Jaccard index and takes values 
between 0 and 1 inclusive. 𝐴 and 𝐵 represent two finite sets. 
The closer the Jaccard index is to 1, the greater the similarity. 

Cosine similarity [61] is another commonly used similarity 
algorithm in the literature, which can be employed to 
enhance the reliability of the IML results. It is a metric used 
to measure similarity between vectors, generating a 
similarity score based on the angle between vectors. 
However, in this study, we solely conduct similarity analyses 
using Jaccard similarity to maintain the comprehensibility of 
the paper and avoid overwhelming the readers with 
excessive similarity results. 

4.4 Comparison of Similarity of Global Attribute 
Selection 

In the experiments for global interpretability, we categorize 
the methods into three groups: FS, intrinsic IML, and 
agnostic IML methods. In each category, two algorithms are 
selected. Accordingly, MI and SFS are chosen as FS methods, 
DT, and Lasso are selected as intrinsic IML models, and SHAP 
and ELI5 are determined as agnostic IML models. The goal is 
to demonstrate the consistency of attribute selection 
between agnostic IML methods and the FS and intrinsic IML 
methods. We compare the globally selected attributes by 
each algorithm in terms of attribute selection. This 
comparison is performed separately for both datasets.  

Agnostic IML models are employed to determine the feature 
importance based on the ML algorithm results. Specifically, 
attribute selection is carried out using a threshold value 
obtained from the feature importance determined by the 
agnostic models. For this purpose, we utilize the RF 
algorithm as an ML algorithm since it is known for its high 
accuracy and complex interpretability. Hence, it serves as a 
suitable candidate for agnostic models to provide 
interpretability while maintaining high accuracy. 

The results are obtained using two different threshold 
values, set at 25% and 50% of the total number of attributes. 
This corresponds to 16 and 32 attributes for the Polish 
dataset, and 19 and 37 attributes for the Turkish dataset, 
respectively. Subsequently, the similarity of the globally 

selected attributes is measured and compared among the 
previously determined algorithms. 

4.4.1 Experimental Results for Global Interpretability 

The selected six algorithms are run twice for both datasets. 
Table V shows the global attribute selection with a 25% 
threshold for each algorithm. Additionally, Figures 3 and 4 
depict the similarity matrices for global attribute selection 
with thresholds of 25% and 50%, respectively. These 
matrices illustrate the similarity ratios calculated based on 
the Jaccard index of the attributes selected by the 
algorithms. 

Statistical significance tests are performed for all 
experimental analyses conducted using the Jaccard index. 
The R language is utilized for statistical significance testing, 
and since the number of variables is small, the 'exact' 
method is applied. The statistical significance of the 
similarity of all models is assessed, and the p-values of the 
statistical significance tests for all models are found to be 
less than 0.05, indicating that the similarities are statistically 
significant. 

4.4.2 Discussion for Global Interpretability 

Table V shows the attributes selected by each algorithm with 
25% threshold value. The attributes are listed so that the 
most selected attributes are located above in the table. As 
seen in this table, many attributes are selected by more than 
one algorithm. For the Polish dataset, 25 out of 64 attributes 
are chosen by at least two algorithms, while 24 attributes are 
not selected by any algorithm.  Similar results are obtained 
within the Turkish dataset. Additionally, it is noteworthy 
that the relatively new SHAP and ELI5 algorithms show 
similar attribute selections compared to FS and intrinsic 
methods. These findings serve as strong indicators that 
enhance the reliability of agnostic IML models. 

The similarities of the selected attributes are compared 
using the Jaccard index. In Figure 3 and Figure 4, Jaccard 
similarity matrices are calculated for both datasets with 
25% and 50% threshold values, respectively. The highest 
similarity of 0.86 is measured between the DT and ELI5 
algorithms with a 25% threshold value for the Polish 
dataset. 

When comparing the Turkish dataset with the Polish 
dataset, fewer similarities are observed in the Turkish 
dataset due to its larger number of attributes. Having more 
attributes increases the likelihood of correlations between 
them, resulting in lower similarity. This situation may occur 
because algorithms randomly select among the attributes 
with high correlation during attribute selection. 

Comparing the 25% and 50% threshold values, the 25% 
attribute selection shows higher similarity. The main reason 
for this is that the selected attributes (25%) and non-
selected attributes (75%) cause an imbalance in favor of the 
non-selected ones. This imbalance leads to an increase in 
similarity. When the threshold is set to 50%, this imbalance  

 

 

 

 

 

 



 

10 
 

 

Table V. Global attributes with 25% of threshold. 

Polish dataset Turkish dataset 

 FS IML  FS IML 

 Intrinsic Agnostic  Intrinsic Agnostic 

Attributes MI SFS DT Lasso SHAP ELI5 Attributes MI SFS DT Lasso SHAP ELI5 

Attr46    1    1    1    1    1    1    L13    1    0    1    1    1    1    

Attr22    1    1    1    1    1    1    F3    1    0    1    0    1    1    

Attr24    1    1    1    0    1    1    L3    1    0    1    0    1    1    

Attr42    1    0    1    1    1    1    T4    1    0    1    0    1    1    

Attr39    1    1    1    0    1    1    F27    1    0    1    0    1    1    

Attr27    1    0    1    0    1    1    F1    1    1    0    0    1    1    

Attr58    0    1    1    0    1    1    F14    0    0    1    1    1    0    

Attr26    1    0    0    1    1    1    F21    1    0    1    0    1    0    

Attr35    1    0    0    1    1    1    F13    0    1    0    1    1    0    

Attr40    0    0    1    1    0    1    F26    1    0    0    0    1    1    

Attr16    1    0    0    1    1    0    P3    1    1    0    0    1    0    

Attr41    1    0    1    0    1    0    F2    1    0    0    0    1    1    

Attr29    0    0    1    1    0    1    L12    1    0    0    0    1    1    

Attr13    1    1    0    0    1    0    L10    1    0    1    0    0    1    

Attr38    0    0    0    1    1    0    L9    0    1    1    0    0    1    

Attr48    0    0    0    1    1    0    P17    0    0    1    0    1    1    

Attr51    0    1    0    1    0    0    F19    0    0    1    0    1    1    

Attr56    0    0    1    0    0    1    F18    0    1    0    1    0    0    

Attr1    0    1    0    1    0    0    F28    0    1    0    1    0    0    

Attr34    0    0    1    0    0    1    P4    1    1    0    0    0    0    

Attr11    0    0    0    1    1    0    F25    0    1    0    1    0    0    

Attr21    0    0    1    0    1    0    P18    0    1    1    0    0    0    

Attr19    1    1    0    0    0    0    P6    0    1    0    0    1    0    

Attr6    0    1    0    0    0    1    L1    1    1    0    0    0    0    

Attr9    0    0    0    1    0    1    P24    0    1    0    1    0    0    

Attr3    0    0    0    1    0    0    T3    0    0    1    0    0    1    

Attr59    0    1    0    0    0    0    F15    0    1    0    1    0    0    

Attr4    0    1    0    0    0    0    P12    0    1    0    0    1    0    

Attr5    0    0    1    0    0    0    T5    0    0    1    0    0    1    

Attr55    0    0    0    0    0    1    F6    0    1    0    1    0    0    

Attr50    0    1    0    0    0    0    T7    0    0    1    0    0    1    

Attr45    1    0    0    0    0    0    T8    0    0    1    0    0    1    

Attr25    1    0    0    0    0    0    L5    0    0    0    1    1    0    

Attr44    0    0    1    0    0    0    T9    0    1    0    1    0    0    

Attr15    1    0    0    0    0    0    P13    1    0    0    0    1    0    

Attr20    0    1    0    0    0    0    P23    0    0    1    0    0    0    

Attr23    1    0    0    0    0    0    T6    0    0    0    0    0    1    

Attr37    0    1    0    0    0    0    P15    0    0    1    0    0    0    

Attr36    0    0    0    1    0    0    P14    1    0    0    0    0    0    

Attr60    0    1    0    0    0    0    F24    0    1    0    0    0    0    

                                   P11    0    0    1    0    0    0    

                                   P8    0    0    0    1    0    0    

                                   P7    0    1    0    0    0    0    

                                   P5    1    0    0    0    0    0    

                                   L2    1    0    0    0    0    0    

                                   F20    0    0    0    1    0    0    

                                   F17    0    0    0    1    0    0    

                                   F16    0    0    0    1    0    0    

                                   F12    0    0    0    1    0    0    

                                   F9    1    0    0    0    0    0    

                                   F5    0    0    0    1    0    0    

                                   F4    0    0    0    1    0    0    

                                   L8    0    0    0    1    0    0    

                                   L4    0    1    0    0    0    0    

                                   T2    0    0    0    0    0    1    
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Figure 3.  Jaccard index similarity of global attribute selection with 25% of threshold for a) Polish dataset b) Turkish dataset 

  

Figure 4. Jaccard index similarity of global attribute selection with 50% of threshold for a) Polish dataset b) Turkish dataset 

 

disappears, and the attribute selection similarity results at 
50% still indicate that IML algorithms are sufficiently similar 
to other algorithms. 

Another important finding is that the similarity of SHAP and 
ELI5 algorithms becomes high for all experimental studies. 
This demonstrates that both agnostic models consistently 
produce similar results. 

As seen in the matrices, there is a high similarity between 
agnostic IML models and their counterparts. This enables us 
to address the opacity issue of complex models, which are 
often preferred for prediction tasks due to their highly 
accurate prediction capability. The results of this study 
demonstrate that interpretability in complex models can be 
made reliable with agnostic models such as SHAP and ELI5. 

As explained in Section II, complex ML algorithms are 
applied to various problems. However, their major 
drawback is poor interpretability. In recent years, IML 
algorithms have been proposed to maintain accuracy while 
prioritizing interpretability, especially in domains where 
interpretability is crucial, such as healthcare, automation, 
and finance.  

The experimental results demonstrate a high level of 
consistency, which enhances the reliability of agnostic IML 

methods. Considering the expected increase in the use of 
IML models in the future, we believe that this study will 
make a valuable contribution to the literature. 

4.5 Comparison of Similarity of Local Attribute 
Selection 

Agnostic IML models can provide both local and global 
interpretability, unlike intrinsic models, which can only offer 
global interpretability. Local interpretability refers to 
explaining the behavior of a single instance rather than 
representing the entire dataset. This enables us to interpret 
the results for each instance within the dataset. For example, 
we can explain the default prediction for a single company 
using our dataset. Consequently, in the second part of the 
study, we aim to measure the similarity of agnostic models 
for local interpretability. 

For the experiments on local interpretability, we consider 
the LIME algorithm in addition to the SHAP and ELI5 
algorithms. We use the RF as our ML model. The 
experiments are conducted on 10 default and 10 non-default 
companies, randomly selected from both datasets. These 
companies are then evaluated for their local interpretability 
using the three agnostic models. 
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During the similarity analysis, the threshold value is set to 
25%. This means that 25% of attributes are selected based 
on their feature importance to perform the local 
interpretability analysis. 

4.5.1 Experimental Results for Local Interpretability 

Table VI presents the local attribute selection with a 25% 
threshold value for a specific company in both datasets. The 
table shows the positive and negative effects of the 
attributes on the result, along with the coefficients of these 
effects for each algorithm. For this sample company, the 
effect direction and impact weight of the attributes selected 
by each agnostic IML model are depicted in Figures 5 and 6, 
respectively. 

To assess the similarity of the local attribute selection for 20 
different instance companies, the Jaccard index similarity is 
separately measured for the three agnostic models. 
Subsequently, the average Jaccard index similarity ratios for 
the selected companies from each dataset are calculated. In 
Figures 5 and 6, the average similarity ratios of these 
algorithms are presented. 

4.5.2 Discussion for Local Interpretability 

According to Table VI, it is seen that the selected and non-
selected attributes by the three algorithms are similar. A 
comparison between the results in Table V and Table VI, 
where the global and local interpretability results are listed, 
shows that the attributes selected locally differ from the 
ones selected globally. This indicates that interpretability is 
tailored to capture different details locally, which is one of 
the major contributions of agnostic IML models. 

The matrices in Figures 5 and 6 illustrate the results of local 
similarity of IML agnostic models. As FS and intrinsic IML 
models generally do not provide local interpretability, 
comparisons between these models could not be made. 
However, when all matrices are examined collectively, it 
becomes apparent that IML methods exhibit sufficient 
similarities. 

 

 

TABLE VI. Local attributes with 25% of threshold for an instance company 

Polish dataset Turkish dataset 

Attributes SHAP LIME ELI5 Attributes SHAP LIME ELI5 

Attr27 1 1 1 F27 1 1 1 

Attr18 1 1 1 P6 1 1 1 

Attr46 1 1 1 L12 1 1 1 

Attr38 1 1 1 F2 1 1 1 

Attr10 1 1 0 L3 1 0 1 

Attr53 1 0 1 F4 0 1 1 

Attr49 1 1 0 P3 1 0 1 

Attr35 1 0 1 P13 1 0 1 

Attr20 1 0 1 P17 1 0 1 

Attr21 1 0 1 T4 1 0 1 

Attr26 1 0 1 F3 1 0 1 

Attr48 1 1 0 F1 1 0 1 

Attr51 0 1 0 L13 1 0 1 

Attr56 0 1 0 L10 1 0 1 

Attr58 0 0 1 F26 0 1 1 

Attr43 0 0 1 F25 0 1 0 

Attr42 0 1 0 P24 1 0 0 

Attr39 1 0 0 P23 0 1 0 

Attr1 0 1 0 P12 1 0 0 

Attr34 0 0 1 P4 0 1 0 

Attr31 0 1 0 T5 0 0 1 

Attr3 0 1 0 T8 1 0 0 

Attr25 0 1 0 F21 1 0 0 

Attr24 0 0 1 F24 0 0 1 

Attr22 0 0 1 F23 0 1 0 

Attr19 0 1 0 F22 0 1 0 

Attr16 1 0 0 L4 0 1 0 

Attr15 0 0 1 F20 1 0 0 

Attr13 1 0 0 F18 0 1 0 

Attr9 1 0 0 F17 0 1 0 

Attr6 0 1 0 F15 0 1 0 

Attr59 0 0 1 F14 0 1 0 

    F13 0 1 0 

    F12 1 0 0 

    F6 0 1 0 

    L8 0 1 0 

    L6 0 0 1 

    T1 0 0 1 
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Figure 5. Jaccard index similarity of local attribute selection with 25% of threshold for a) Polish dataset b) Turkish dataset 

  

Figure 6. Jaccard index similarity of local attribute selection with 50% of threshold for a) Polish dataset b) Turkish dataset 

 

5 Conclusion 

ML algorithms have gained significant attention in different 
prediction problems recently. However, achieving high 
accuracy is not enough for ML algorithms to make insightful 
decisions for especially critical areas like finance or 
healthcare. Arising criticism about these algorithms is about 
their black- box wise behavior in the decision-making 
process. In recent years, IML algorithms have emerged to 
solve this problem by offering both high accuracy and 
interpretability when applied to complex ML methods. In 
this study, we aim to measure the reliability of agnostic IML 
algorithms by comparing them with FS and intrinsic IML 
methods. Results are evaluated by Jaccard index similarity. 
As it is expected, results clearly show that the agnostic IML 
methods produce similar results to FS methods and intrinsic 
IML methods. In other words, especially agnostic IML 
techniques can potentially provide interpretability as well 
as high accuracy for complex ML models. Also, agnostic IML 
methods can potentially offer local interpretability that 
enables local predictions for a single instance. 

Our future plan consists of applying agnostic IML methods 
for sector-based prediction problems, analyzing the results 

of agnostic IML methods for deep learning models, and 
improving the reliability of the results by evaluating 
consistency with assessments of domain experts. 
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